Przetwarzanie obrazów wykład 6. Adam Wojciechowski

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "Przetwarzanie obrazów wykład 6. Adam Wojciechowski"

Transkrypt

1 Przetwarzanie obrazów wykład 6 Adam Wojciechowski

2 Przykłady obrazów cyfrowych i ich F-obrazów Parzysta liczba powtarzalnych wzorców

3 Transformata Fouriera może być przydatna przy wykrywaniu określonych wzorców w obrazie Gdyby powiązać z poszczególnymi słupkami informację wizualną zawartą w obrazie to można by łatwo wyodrębniać z obrazu wybrane fragmenty informacji

4 Nieparzysta liczba powtarzalnych wzorców

5 Transformacja obrazu Lena

6 Cechy obrazu obserwowane na jego F-obrazie oglądanym w postaci poziomów szarości Symetrie amplitudy i fazy obrazu związek pomiędzy kierunkiem krawędzi w obrazie i kierunkiem linii w amplitudzie i w fazie.

7

8 Dwa elementy obrazu wnoszą niezależnie swoje cechy do F-obrazu. Efekt sumowania jest dobrze widoczny dzięki temu, że kwadraty posiadają ten sam kolor.

9 Zmiany w położeniu tego samego kształtu na obrazie mają wpływ na zmianę F-obrazu

10

11 Wnioski Można w dziedzinie Fouriera zastosować odpowiednie filtry wycinające wybrane pasmo na przykład biegnące na skos przez pole F-obrazu i w ten sposób zostaną wyeliminowane krawędzie obrazu oryginalnego o tym samym nachyleniu. Jednakże wygodniej jest przeprowadzać modyfikacje w dziedzinie rzeczywistej obrazu gdyż możemy od razu śledzić efekty i nie wywoływane są uboczne efekty.

12 Zawartość informacji wizualnej w poszczególnych składowych F-obrazu Obraz uzyskany poprzez IFFT dla F- obrazów mają wartości rzeczywiste, jednak wartości są zazwyczaj bardzo źle dopasowane do przedziału Należy więc zmodyfikować zakres aby na powstałym obrazie zarysowały się kształty obrazu oryginalnego

13 Kryterium poprawności wizualnej lepiej sprawdza się dla obrazu fazowego. Obraz amplitudowy jest nieczytelny gdyż nałożyły się symetrie wykrywane przy FFT i IFFT. Widać to na wykresie b).

14 Filtracja obrazów w dziedzinie Fouriera Filtrację można zinterpretować jako mnożenie punktowe dwóch F-obrazów - jednego pochodzącego od filtrowanego obrazu i drugiego będącego filtrem. Wykres amplitudy F- obrazu jest potraktowany jako filtr. Obszar wypełniony 1 będzie nazywany oknem częstotliwościowym. Część pikseli F-obrazu kwadratu zostanie wyzerowana, natomiast część pozostanie bez zmian. Filtr dolnoprzepustowy.

15 Wynik działania F-filtru dolnoprzepustowego Po dokonaniu filtracji w dziedzinie F powrócono do dziedziny pierwotnej. Przed wizualizacją należy obraz przeskalować do zakresu Charakterystyczną cechą idealnych filtrów określonych w dziedzinie F-pikseli o wartościach 0 i 1, jest powstawanie oscylacji w obrazie otrzymanym po filtracji.

16 Pomyłki w położeniu jedynek filtru może skutkować zaskakującymi różnicami. Przesunięcie okna częstotliwościowego odpowiednio o jeden F- piksel w pionie i o jeden w poziomie powodują powstanie w dziedzinie pierwotnej obrazu zespolonego z częścią rzeczywistą i urojoną co jest niepożądanym efektem.

17 Przykłady filtracji obrazu różnymi filtrami zdefiniowanymi w postaci zero-jedynkowych F-obrazów Obrazy otrzymane po filtracji pokazują jaka zawartość informacji wizualnej zawarta jest w zachowanej części F- obrazu. Taka transformacja przybliża związek pomiędzy obrazem i jego F-obrazem.

18 Dolnoprzepustowa filtracja obrazu dwa kwadraty zilustrowana jest tylko w postaci amplitudy F-obrazu po filtracji

19 Filtr górno-przepustowy Jest filtrem komplementarnym do filtra dolno-przeputowego, tzn. że w F-obrazie filtru dolnoprzepustowego zamieniono zera z jedynkami. Dodanie F-obrazów komplementarnych filtrów będzie zawierało same jedynki i nic nie zmieniała by w obrazie. Oznacza to, że cała informacja wizualna może zostać rozłożona na dwie części w oparciu o wybór fragmentu F-obrazu.

20 Kształt filtru Nazewnictwo filtrów górno- i dolno-przepustowych pochodzi od przetwarzania sygnałów jednowymiarowych, gdzie wystarczyło podać jedną wartość oddzielającą pasmo górne od dolnego. Dotychczas kształt filtra przybierał postać kwadratowych pól zer i jedynek. Można jednak obszar zdefiniować jako koło, elipsa, romb, prostokąt. Za każdym razem obraz będzie nieco inny. Szczególnym przypadkiem może być filtr o jakimś wyróżnionym kierunku. Przyjmujemy, że jeżeli obszar jedynek F-obrazu jest figurą wypukłą to będzie to filtr dolnoprzepustowy. Dopełnienie filtru dolnoprzepustowego jest filtrem górno-przepustowym.

21 Filtracja obrazu Lena filtrem dolnoprzepustowym o wyraźnej preferencji jednego kierunku oraz filtrem do niego komplementarnym (górno-przepustowym) eksponuje krawędzie poziome.

22 Taka sama filtracja dla obrazu dwa kwadraty

23 Wynik filtracji dla obróconej o kąt prosty orientacji filtru

24 Wynik filtracji obrazu Lena za pomocą filtru niestandardowego oraz filtru do niego komplementarnego.

25 Filtracja za pomocą filtrów komplementarnych generuje dwa obrazy, które łącznie posiadają pełną informację cyfrową, jaka była w obrazie pierwotnym przed filtracją. Jeśli dodamy do siebie dwa odtworzone obrazy w dziedzinie pierwotnej, przed skalowaniem poziomów szarości, to otrzymamy obraz oryginalny. Sumując obrazy uprzednio przeskalowane otrzymana suma może różnić się od oryginału.

26 Zestaw trzech filtrów zero-jedynkowych rozkładających obraz cyfrowy na trzy składowe podobrazy. Każdy z filtrów określa osobne podpasmo.

27 Obraz Lena poddany filtracji trzema komplementarnymi filtrami podpasmowymi. Łatwo jest wymyślić kształt filtru podpasmowego, ale trudno jest uzasadnić ich użyteczność. Podział na podpasma znajduje zastosowanie głównie w dziedzinie kompresji obrazów cyfrowych.

28 Obraz dwa kwadraty poddany filtracji trzema komplementarnymi filtrami podpasmowymi.

29 Rozplatanie filtracja odwrotna Odtwarzanie wyglądu obrazu tak aby jak najbardziej przypominał obraz sprzed filtracji. Zwykle filtracja, do której poszukujemy filtracji odwrotnej nie jest realizowana celowo, ale jest niepożądanym efektem ubocznym jakiegoś etapu procesu rejestracji obrazu. Jeżeli dane zniekształcenie da się opisać filtrem to wystarczy zniekształcony obraz poddać filtracji filtrem, którego każdy F- piksel stanowić będzie odwrotność F-piksela filtru zniekształcającego obraz. Warunkiem jest jednakowe zniekształcenie obrazu na całej powierzchni przy układach optycznych jest to problem i liniowość czyli możliwość dodania do siebie obrazów jak pomnożenia przez liczbę zarówno przed jak i po operacji.

30 Komfortowa sytuacja, w której znamy filtr zniekształcający. Aby znaleźć filtr odwrotny wartości filtra zniekształcającego powinny być różne od zera (filtrów zerojedynkowych nie da się idealnie neutralizować)

31 Sytuacja idealna pozwala na odtworzenie obrazu zniekształconego. Amplituda filtru odwrotnego

32 W rzeczywistości wartości pikseli obrazu zniekształconego zostały zapisane z 8-bitową precyzją (skończona dokładność). Okazuje się, że kwantyzacja wartości prowadzi do pewnych zniekształceń w odtworzonym obrazie.

33 Można jednak próbować odzyskać obraz zniekształcony bez wyznaczania filtru odwrotnego metodą iteracyjną. Filtracja musi być zazwyczaj wykonywana wielokrotnie. Dobre rezultaty uzyskujemy już po kilku iteracjach, lecz ich zbyt duża ilość powoduje pojawienie się niespodziewanych efektów ubocznych.

34

Filtracja obrazów w dziedzinie Fouriera

Filtracja obrazów w dziedzinie Fouriera Filtracja obrazów w dziedzinie Fouriera Filtracj mo na zinterpretowa jako mno enie punktowe dwóch F-obrazów - jednego pochodz cego od filtrowanego obrazu i drugiego b d cego filtrem. Wykres amplitudy F-

Bardziej szczegółowo

Przekształcenia widmowe Transformata Fouriera. Adam Wojciechowski

Przekształcenia widmowe Transformata Fouriera. Adam Wojciechowski Przekształcenia widmowe Transformata Fouriera Adam Wojciechowski Przekształcenia widmowe Odmiana przekształceń kontekstowych, w których kontekstem jest w zasadzie cały obraz. Za pomocą transformaty Fouriera

Bardziej szczegółowo

Analiza obrazu. wykład 6. Marek Jan Kasprowicz Uniwersytet Rolniczy 2009

Analiza obrazu. wykład 6. Marek Jan Kasprowicz Uniwersytet Rolniczy 2009 Analiza obrazu komputerowego wykład 6 Marek Jan Kasprowicz Uniwersytet Rolniczy 2009 Slajdy przygotowane na podstawie książki Komputerowa analiza obrazu R.Tadeusiewicz, P. Korohoda, oraz materiałów ze

Bardziej szczegółowo

Podstawy Przetwarzania Sygnałów

Podstawy Przetwarzania Sygnałów Adam Szulc 188250 grupa: pon TN 17:05 Podstawy Przetwarzania Sygnałów Sprawozdanie 6: Filtracja sygnałów. Filtry FIT o skończonej odpowiedzi impulsowej. 1. Cel ćwiczenia. 1) Przeprowadzenie filtracji trzech

Bardziej szczegółowo

Diagnostyka obrazowa

Diagnostyka obrazowa Diagnostyka obrazowa Ćwiczenie szóste Transformacje obrazu w dziedzinie częstotliwości 1 Cel ćwiczenia Ćwiczenie ma na celu zapoznanie uczestników kursu Diagnostyka obrazowa z podstawowymi przekształceniami

Bardziej szczegółowo

BIBLIOTEKA PROGRAMU R - BIOPS. Narzędzia Informatyczne w Badaniach Naukowych Katarzyna Bernat

BIBLIOTEKA PROGRAMU R - BIOPS. Narzędzia Informatyczne w Badaniach Naukowych Katarzyna Bernat BIBLIOTEKA PROGRAMU R - BIOPS Narzędzia Informatyczne w Badaniach Naukowych Katarzyna Bernat Biblioteka biops zawiera funkcje do analizy i przetwarzania obrazów. Operacje geometryczne (obrót, przesunięcie,

Bardziej szczegółowo

Diagnostyka obrazowa

Diagnostyka obrazowa Diagnostyka obrazowa Ćwiczenie szóste Transformacje obrazu w dziedzinie częstotliwości 1. Cel ćwiczenia Ćwiczenie ma na celu zapoznanie uczestników kursu Diagnostyka obrazowa z podstawowymi przekształceniami

Bardziej szczegółowo

Transformata Fouriera

Transformata Fouriera Transformata Fouriera Program wykładu 1. Wprowadzenie teoretyczne 2. Algorytm FFT 3. Zastosowanie analizy Fouriera 4. Przykłady programów Wprowadzenie teoretyczne Zespolona transformata Fouriera Jeżeli

Bardziej szczegółowo

Analiza obrazów - sprawozdanie nr 2

Analiza obrazów - sprawozdanie nr 2 Analiza obrazów - sprawozdanie nr 2 Filtracja obrazów Filtracja obrazu polega na obliczeniu wartości każdego z punktów obrazu na podstawie punktów z jego otoczenia. Każdy sąsiedni piksel ma wagę, która

Bardziej szczegółowo

Analiza obrazu. wykład 5. Marek Jan Kasprowicz Uniwersytet Rolniczy 2008

Analiza obrazu. wykład 5. Marek Jan Kasprowicz Uniwersytet Rolniczy 2008 Analiza obrazu komputerowego wykład 5 Marek Jan Kasprowicz Uniwersytet Rolniczy 2008 Slajdy przygotowane na podstawie książki Komputerowa analiza obrazu R.Tadeusiewicz, P. Korohoda, oraz materiałów ze

Bardziej szczegółowo

CZWÓRNIKI KLASYFIKACJA CZWÓRNIKÓW.

CZWÓRNIKI KLASYFIKACJA CZWÓRNIKÓW. CZWÓRNK jest to obwód elektryczny o dowolnej wewnętrznej strukturze połączeń elementów, mający wyprowadzone na zewnątrz cztery zaciski uporządkowane w dwie pary, zwane bramami : wejściową i wyjściową,

Bardziej szczegółowo

Filtracja obrazu operacje kontekstowe

Filtracja obrazu operacje kontekstowe Filtracja obrazu operacje kontekstowe Podział metod filtracji obrazu Metody przestrzenne i częstotliwościowe Metody liniowe i nieliniowe Główne zadania filtracji Usunięcie niepożądanego szumu z obrazu

Bardziej szczegółowo

BADANIE FILTRÓW. Instytut Fizyki Akademia Pomorska w Słupsku

BADANIE FILTRÓW. Instytut Fizyki Akademia Pomorska w Słupsku BADANIE FILTRÓW Cel ćwiczenia. Celem ćwiczenia jest zapoznanie się z właściwościami filtrów. Zagadnienia teoretyczne. Filtry częstotliwościowe Filtrem nazywamy układ o strukturze czwórnika, który przepuszcza

Bardziej szczegółowo

Filtracja obrazu operacje kontekstowe

Filtracja obrazu operacje kontekstowe Filtracja obrazu operacje kontekstowe Główne zadania filtracji Usunięcie niepożądanego szumu z obrazu Poprawa ostrości Usunięcie określonych wad obrazu Poprawa obrazu o złej jakości technicznej Rekonstrukcja

Bardziej szczegółowo

Cyfrowe przetwarzanie i kompresja danych

Cyfrowe przetwarzanie i kompresja danych Cyfrowe przetwarzanie i kompresja danych dr inż.. Wojciech Zając Wykład 5. Dyskretna transformata falkowa Schemat systemu transmisji danych wizyjnych Źródło danych Przetwarzanie Przesył Przetwarzanie Prezentacja

Bardziej szczegółowo

Przetwarzanie obrazów rastrowych macierzą konwolucji

Przetwarzanie obrazów rastrowych macierzą konwolucji Przetwarzanie obrazów rastrowych macierzą konwolucji 1 Wstęp Obrazy rastrowe są na ogół reprezentowane w dwuwymiarowych tablicach złożonych z pikseli, reprezentowanych przez liczby określające ich jasność

Bardziej szczegółowo

Spośród licznych filtrów nieliniowych najlepszymi właściwościami odznacza się filtr medianowy prosty i skuteczny.

Spośród licznych filtrów nieliniowych najlepszymi właściwościami odznacza się filtr medianowy prosty i skuteczny. Filtracja nieliniowa może być bardzo skuteczną metodą polepszania jakości obrazów Filtry nieliniowe Filtr medianowy Spośród licznych filtrów nieliniowych najlepszymi właściwościami odznacza się filtr medianowy

Bardziej szczegółowo

Cyfrowe przetwarzanie sygnałów Jacek Rezmer -1-

Cyfrowe przetwarzanie sygnałów Jacek Rezmer -1- Cyfrowe przetwarzanie sygnałów Jacek Rezmer -1- Filtry cyfrowe cz. Zastosowanie funkcji okien do projektowania filtrów SOI Nierównomierności charakterystyki amplitudowej filtru cyfrowego typu SOI można

Bardziej szczegółowo

Kompresja dźwięku w standardzie MPEG-1

Kompresja dźwięku w standardzie MPEG-1 mgr inż. Grzegorz Kraszewski SYSTEMY MULTIMEDIALNE wykład 7, strona 1. Kompresja dźwięku w standardzie MPEG-1 Ogólne założenia kompresji stratnej Zjawisko maskowania psychoakustycznego Schemat blokowy

Bardziej szczegółowo

Grafika Komputerowa Wykład 2. Przetwarzanie obrazów. mgr inż. Michał Chwesiuk 1/38

Grafika Komputerowa Wykład 2. Przetwarzanie obrazów. mgr inż. Michał Chwesiuk 1/38 Wykład 2 Przetwarzanie obrazów mgr inż. 1/38 Przetwarzanie obrazów rastrowych Jedna z dziedzin cyfrowego obrazów rastrowych. Celem przetworzenia obrazów rastrowych jest użycie edytujących piksele w celu

Bardziej szczegółowo

ANALIZA SYGNAŁÓ W JEDNÓWYMIARÓWYCH

ANALIZA SYGNAŁÓ W JEDNÓWYMIARÓWYCH ANALIZA SYGNAŁÓ W JEDNÓWYMIARÓWYCH Generowanie podstawowych przebiegów okresowych sawtooth() przebieg trójkątny (wierzhołki +/-1, okres 2 ) square() przebieg kwadratowy (okres 2 ) gauspuls()przebieg sinusoidalny

Bardziej szczegółowo

FILTRACJE W DZIEDZINIE CZĘSTOTLIWOŚCI

FILTRACJE W DZIEDZINIE CZĘSTOTLIWOŚCI FILTRACJE W DZIEDZINIE CZĘSTOTLIWOŚCI ( frequency domain filters) Każdy człon F(u,v) zawiera wszystkie wartości f(x,y) modyfikowane przez wartości członów wykładniczych Za wyjątkiem trywialnych przypadków

Bardziej szczegółowo

WYDZIAŁ FIZYKI I INFORMATYKI STOSOWANEJ

WYDZIAŁ FIZYKI I INFORMATYKI STOSOWANEJ WYDZIAŁ FIZYKI I INFORMATYKI STOSOWANEJ Hybrid Images Imię i nazwisko: Anna Konieczna Kierunek studiów: Informatyka Stosowana Rok studiów: 4 Przedmiot: Analiza i Przetwarzanie Obrazów Prowadzący przedmiot:

Bardziej szczegółowo

Ćwiczenie 3. Właściwości przekształcenia Fouriera

Ćwiczenie 3. Właściwości przekształcenia Fouriera Politechnika Wrocławska Wydział Elektroniki Mikrosystemów i Fotoniki Przetwarzanie sygnałów laboratorium ETD5067L Ćwiczenie 3. Właściwości przekształcenia Fouriera 1. Podstawowe właściwości przekształcenia

Bardziej szczegółowo

Transformacje Fouriera * podstawowe własności

Transformacje Fouriera * podstawowe własności Transformacje Fouriera * podstawowe własności * podejście mało formalne Funkcja w domenie czasowej Transformacja Fouriera - wstęp Ta sama funkcja w domenie częstości Transformacja Fouriera polega na rozkładzie

Bardziej szczegółowo

A3 : Wzmacniacze operacyjne w układach liniowych

A3 : Wzmacniacze operacyjne w układach liniowych A3 : Wzmacniacze operacyjne w układach liniowych Jacek Grela, Radosław Strzałka 2 kwietnia 29 1 Wstęp 1.1 Wzory Poniżej zamieszczamy podstawowe wzory i definicje, których używaliśmy w obliczeniach: 1.

Bardziej szczegółowo

DYSKRETNA TRANSFORMACJA FOURIERA

DYSKRETNA TRANSFORMACJA FOURIERA Laboratorium Teorii Sygnałów - DFT 1 DYSKRETNA TRANSFORMACJA FOURIERA Cel ćwiczenia Celem ćwiczenia jest przeprowadzenie analizy widmowej sygnałów okresowych za pomocą szybkiego przekształcenie Fouriera

Bardziej szczegółowo

Wprowadzenie. Spis treści. Analiza_sygnałów_-_ćwiczenia/Filtry

Wprowadzenie. Spis treści. Analiza_sygnałów_-_ćwiczenia/Filtry Analiza_sygnałów_-_ćwiczenia/Filtry Spis treści 1 Wprowadzenie 2 Filtry cyfrowe: powtórka z wykładu 2.1 Działanie filtra w dziedzinie czasu 2.2 Nazewnictwo 2.3 Przejście do dziedziny częstości 2.3.1 Działanie

Bardziej szczegółowo

Cyfrowe przetwarzanie obrazów i sygnałów Wykład 10 AiR III

Cyfrowe przetwarzanie obrazów i sygnałów Wykład 10 AiR III 1 Niniejszy dokument zawiera materiały do wykładu z przedmiotu Cyfrowe Przetwarzanie Obrazów i Sygnałów. Jest on udostępniony pod warunkiem wykorzystania wyłącznie do własnych, prywatnych potrzeb i może

Bardziej szczegółowo

Ćwiczenie 3,4. Analiza widmowa sygnałów czasowych: sinus, trójkąt, prostokąt, szum biały i szum różowy

Ćwiczenie 3,4. Analiza widmowa sygnałów czasowych: sinus, trójkąt, prostokąt, szum biały i szum różowy Ćwiczenie 3,4. Analiza widmowa sygnałów czasowych: sinus, trójkąt, prostokąt, szum biały i szum różowy Grupa: wtorek 18:3 Tomasz Niedziela I. CZĘŚĆ ĆWICZENIA 1. Cel i przebieg ćwiczenia. Celem ćwiczenia

Bardziej szczegółowo

Andrzej Leśnicki Laboratorium CPS Ćwiczenie 7 1/7 ĆWICZENIE 7. Splot liniowy i kołowy sygnałów

Andrzej Leśnicki Laboratorium CPS Ćwiczenie 7 1/7 ĆWICZENIE 7. Splot liniowy i kołowy sygnałów Andrzej Leśnicki Laboratorium CPS Ćwiczenie 7 1/7 ĆWICZEIE 7 Splot liniowy i kołowy sygnałów 1. Cel ćwiczenia Operacja splotu jest jedną z najczęściej wykonywanych operacji na sygnale. Każde przejście

Bardziej szczegółowo

Technika audio część 2

Technika audio część 2 Technika audio część 2 Wykład 12 Projektowanie cyfrowych układów elektronicznych Mgr inż. Łukasz Kirchner lukasz.kirchner@cs.put.poznan.pl http://www.cs.put.poznan.pl/lkirchner Wprowadzenie do filtracji

Bardziej szczegółowo

Zmiany fazy/okresu oscylacji Chandlera i rocznej we współrzędnych bieguna ziemskiego.

Zmiany fazy/okresu oscylacji Chandlera i rocznej we współrzędnych bieguna ziemskiego. Strona 1 z 38 Zmiany fazy/okresu oscylacji Chandlera i rocznej we współrzędnych bieguna ziemskiego. Alicja Rzeszótko alicja@cbk.waw.pl 2 czerwca 2006 1 Omówienie danych 3 Strona główna Strona 2 z 38 2

Bardziej szczegółowo

Parametryzacja obrazu na potrzeby algorytmów decyzyjnych

Parametryzacja obrazu na potrzeby algorytmów decyzyjnych Parametryzacja obrazu na potrzeby algorytmów decyzyjnych Piotr Dalka Wprowadzenie Z reguły nie stosuje się podawania na wejście algorytmów decyzyjnych bezpośrednio wartości pikseli obrazu Obraz jest przekształcany

Bardziej szczegółowo

PRZETWARZANIE SYGNAŁÓW

PRZETWARZANIE SYGNAŁÓW PRZETWARZANIE SYGNAŁÓW SEMESTR V Wykład VIII Podstawy przetwarzania obrazów Filtracja Przetwarzanie obrazu w dziedzinie próbek Przetwarzanie obrazu w dziedzinie częstotliwości (transformacje częstotliwościowe)

Bardziej szczegółowo

Cyfrowe przetwarzanie obrazów i sygnałów Wykład 7 AiR III

Cyfrowe przetwarzanie obrazów i sygnałów Wykład 7 AiR III 1 Niniejszy dokument zawiera materiały do wykładu z przedmiotu Cyfrowe Przetwarzanie Obrazów i Sygnałów. Jest on udostępniony pod warunkiem wykorzystania wyłącznie do własnych, prywatnych potrzeb i może

Bardziej szczegółowo

rezonansu rezonansem napięć rezonansem szeregowym rezonansem prądów rezonansem równoległym

rezonansu rezonansem napięć rezonansem szeregowym rezonansem prądów rezonansem równoległym Lekcja szósta poświęcona będzie analizie zjawisk rezonansowych w obwodzie RLC. Zjawiskiem rezonansu nazywamy taki stan obwodu RLC przy którym prąd i napięcie są ze sobą w fazie. W stanie rezonansu przesunięcie

Bardziej szczegółowo

2. Próbkowanie Sygnały okresowe (16). Trygonometryczny szereg Fouriera (17). Częstotliwość Nyquista (20).

2. Próbkowanie Sygnały okresowe (16). Trygonometryczny szereg Fouriera (17). Częstotliwość Nyquista (20). SPIS TREŚCI ROZDZIAŁ I SYGNAŁY CYFROWE 9 1. Pojęcia wstępne Wiadomości, informacje, dane, sygnały (9). Sygnał jako nośnik informacji (11). Sygnał jako funkcja (12). Sygnał analogowy (13). Sygnał cyfrowy

Bardziej szczegółowo

Przetwarzanie obrazów wykład 7. Adam Wojciechowski

Przetwarzanie obrazów wykład 7. Adam Wojciechowski Przetwarzanie obrazów wykład 7 Adam Wojciechowski Przekształcenia morfologiczne Przekształcenia podobne do filtrów, z tym że element obrazu nie jest modyfikowany zawsze lecz tylko jeśli spełniony jest

Bardziej szczegółowo

Cyfrowe Przetwarzanie Obrazów i Sygnałów

Cyfrowe Przetwarzanie Obrazów i Sygnałów Cyfrowe Przetwarzanie Obrazów i Sygnałów Laboratorium EX Lokalne transformacje obrazów Joanna Ratajczak, Wrocław, 28 Cel i zakres ćwiczenia Celem ćwiczenia jest zapoznanie się z własnościami lokalnych

Bardziej szczegółowo

Systemy akwizycji i przesyłania informacji

Systemy akwizycji i przesyłania informacji Politechnika Rzeszowska im. Ignacego Łukasiewicza w Rzeszowie Wydział Elektryczny Kierunek: Informatyka Systemy akwizycji i przesyłania informacji Projekt zaliczeniowy Temat pracy: Okna wygładzania ZUMFL

Bardziej szczegółowo

DYSKRETNE PRZEKSZTAŁCENIE FOURIERA C.D.

DYSKRETNE PRZEKSZTAŁCENIE FOURIERA C.D. CPS 6 DYSKRETE PRZEKSZTAŁCEIE FOURIERA C.D. Twierdzenie o przesunięciu Istnieje ważna właściwość DFT, znana jako twierdzenie o przesunięciu. Mówi ono, że: Przesunięcie w czasie okresowego ciągu wejściowego

Bardziej szczegółowo

Filtracja. Krzysztof Patan

Filtracja. Krzysztof Patan Filtracja Krzysztof Patan Wprowadzenie Działanie systemu polega na przetwarzaniu sygnału wejściowego x(t) na sygnał wyjściowy y(t) Równoważnie, system przetwarza widmo sygnału wejściowego X(jω) na widmo

Bardziej szczegółowo

Cyfrowe Przetwarzanie Obrazów i Sygnałów

Cyfrowe Przetwarzanie Obrazów i Sygnałów Cyfrowe Przetwarzanie Obrazów i Sygnałów Laboratorium EX3 Globalne transformacje obrazów Joanna Ratajczak, Wrocław, 2018 1 Cel i zakres ćwiczenia Celem ćwiczenia jest zapoznanie się z własnościami globalnych

Bardziej szczegółowo

Baltie 3. Podręcznik do nauki programowania dla klas I III gimnazjum. Tadeusz Sołtys, Bohumír Soukup

Baltie 3. Podręcznik do nauki programowania dla klas I III gimnazjum. Tadeusz Sołtys, Bohumír Soukup Baltie 3 Podręcznik do nauki programowania dla klas I III gimnazjum Tadeusz Sołtys, Bohumír Soukup Czytanie klawisza lub przycisku myszy Czytaj klawisz lub przycisk myszy - czekaj na naciśnięcie Polecenie

Bardziej szczegółowo

Metody komputerowego przekształcania obrazów

Metody komputerowego przekształcania obrazów Metody komputerowego przekształcania obrazów Przypomnienie usystematyzowanie informacji z przedmiotu Przetwarzanie obrazów w kontekście zastosowań w widzeniu komputerowym Wykorzystane materiały: R. Tadeusiewicz,

Bardziej szczegółowo

Przetwarzanie obrazów wykład 2

Przetwarzanie obrazów wykład 2 Przetwarzanie obrazów wykład 2 Adam Wojciechowski Wykład opracowany na podstawie Komputerowa analiza i przetwarzanie obrazów R. Tadeusiewicz, P. Korohoda Etapy obróbki pozyskanego obrazu Obróbka wstępna

Bardziej szczegółowo

Diagnostyka obrazowa

Diagnostyka obrazowa Diagnostyka obrazowa Ćwiczenie drugie Podstawowe przekształcenia obrazu 1 Cel ćwiczenia Ćwiczenie ma na celu zapoznanie uczestników kursu Diagnostyka obrazowa z podstawowymi przekształceniami obrazu wykonywanymi

Bardziej szczegółowo

Automatyczne tworzenie trójwymiarowego planu pomieszczenia z zastosowaniem metod stereowizyjnych

Automatyczne tworzenie trójwymiarowego planu pomieszczenia z zastosowaniem metod stereowizyjnych Automatyczne tworzenie trójwymiarowego planu pomieszczenia z zastosowaniem metod stereowizyjnych autor: Robert Drab opiekun naukowy: dr inż. Paweł Rotter 1. Wstęp Zagadnienie generowania trójwymiarowego

Bardziej szczegółowo

Zmiany fazy/okresu oscylacji Chandlera i rocznej we współrzędnych bieguna ziemskiego.

Zmiany fazy/okresu oscylacji Chandlera i rocznej we współrzędnych bieguna ziemskiego. Strona 1 z 27 Zmiany fazy/okresu oscylacji Chandlera i rocznej we współrzędnych bieguna ziemskiego. Alicja Rzeszótko Wiesław Kosek Waldemar Popiński Seminarium Sekcji Dynamiki Ziemi Komitetu Geodezji PAN

Bardziej szczegółowo

Kompresja Danych. Streszczenie Studia Dzienne Wykład 13, f(t) = c n e inω0t, T f(t)e inω 0t dt.

Kompresja Danych. Streszczenie Studia Dzienne Wykład 13, f(t) = c n e inω0t, T f(t)e inω 0t dt. 1 Kodowanie podpasmowe Kompresja Danych Streszczenie Studia Dzienne Wykład 13, 18.05.2006 1.1 Transformaty, próbkowanie i filtry Korzystamy z faktów: Każdą funkcję okresową można reprezentować w postaci

Bardziej szczegółowo

dr inż. Piotr Odya dr inż. Piotr Suchomski

dr inż. Piotr Odya dr inż. Piotr Suchomski dr inż. Piotr Odya dr inż. Piotr Suchomski Podział grafiki wektorowa; matematyczny opis rysunku; małe wymagania pamięciowe (i obliczeniowe); rasteryzacja konwersja do postaci rastrowej; rastrowa; tablica

Bardziej szczegółowo

Analiza obrazu. wykład 1. Marek Jan Kasprowicz Uniwersytet Rolniczy Marek Jan Kasprowicz Analiza obrazu komputerowego 2009 r.

Analiza obrazu. wykład 1. Marek Jan Kasprowicz Uniwersytet Rolniczy Marek Jan Kasprowicz Analiza obrazu komputerowego 2009 r. Analiza obrazu komputerowego wykład 1 Marek Jan Kasprowicz Uniwersytet Rolniczy 2009 Plan wykładu Wprowadzenie pojęcie obrazu cyfrowego i analogowego Geometryczne przekształcenia obrazu Przekształcenia

Bardziej szczegółowo

3. Przetwarzanie analogowo-cyfrowe i cyfrowo-analogowe... 43

3. Przetwarzanie analogowo-cyfrowe i cyfrowo-analogowe... 43 Spis treści 3 Przedmowa... 9 Cele książki i sposoby ich realizacji...9 Podziękowania...10 1. Rozległość zastosowań i głębia problematyki DSP... 11 Korzenie DSP...12 Telekomunikacja...14 Przetwarzanie sygnału

Bardziej szczegółowo

Spektroskopia modulacyjna

Spektroskopia modulacyjna Spektroskopia modulacyjna pozwala na otrzymanie energii przejść optycznych w strukturze z bardzo dużą dokładnością. Charakteryzuje się również wysoką czułością, co pozwala na obserwację słabych przejść,

Bardziej szczegółowo

Kodowanie podpasmowe. Plan 1. Zasada 2. Filtry cyfrowe 3. Podstawowy algorytm 4. Zastosowania

Kodowanie podpasmowe. Plan 1. Zasada 2. Filtry cyfrowe 3. Podstawowy algorytm 4. Zastosowania Kodowanie podpasmowe Plan 1. Zasada 2. Filtry cyfrowe 3. Podstawowy algorytm 4. Zastosowania Zasada ogólna Rozkład sygnału źródłowego na części składowe (jak w kodowaniu transformacyjnym) Wada kodowania

Bardziej szczegółowo

Algorytmy detekcji częstotliwości podstawowej

Algorytmy detekcji częstotliwości podstawowej Algorytmy detekcji częstotliwości podstawowej Plan Definicja częstotliwości podstawowej Wybór ramki sygnału do analizy Błędy oktawowe i dokładnej estymacji Metody detekcji częstotliwości podstawowej czasowe

Bardziej szczegółowo

Widmo akustyczne radia DAB i FM, porównanie okien czasowych Leszek Gorzelnik

Widmo akustyczne radia DAB i FM, porównanie okien czasowych Leszek Gorzelnik Widmo akustycznych sygnałów dla radia DAB i FM Pomiary widma z wykorzystaniem szybkiej transformacji Fouriera FFT sygnału mierzonego w dziedzinie czasu wykonywane są w skończonym czasie. Inaczej mówiąc

Bardziej szczegółowo

10. Demodulatory synchroniczne z fazową pętlą sprzężenia zwrotnego

10. Demodulatory synchroniczne z fazową pętlą sprzężenia zwrotnego 102 10. Demodulatory synchroniczne z fazową pętlą sprzężenia zwrotnego Cele ćwiczenia Badanie właściwości pętli fazowej. Badanie układu Costasa do odtwarzania nośnej sygnału AM-SC. Badanie układu Costasa

Bardziej szczegółowo

Politechnika Wrocławska Wydział Elektroniki Mikrosystemów i Fotoniki Przetwarzanie sygnałów laboratorium ETD5067L

Politechnika Wrocławska Wydział Elektroniki Mikrosystemów i Fotoniki Przetwarzanie sygnałów laboratorium ETD5067L Politechnika Wrocławska Wydział Elektroniki Mikrosystemów i Fotoniki Przetwarzanie sygnałów laboratorium ETD5067L Ćwiczenie 3. Właściwości przekształcenia Fouriera 1. Podstawowe właściwości przekształcenia

Bardziej szczegółowo

SYNTEZA obwodów. Zbigniew Leonowicz

SYNTEZA obwodów. Zbigniew Leonowicz SYNTEZA obwodów Zbigniew Leonowicz Literatura: [1]. S. Bolkowski Elektrotechnika teoretyczna. Tom I. WNT Warszawa 1982 (s.420-439) [2]. A. Cichocki, K.Mikołajuk, S. Osowski, Z. Trzaska: Zbiór zadań z elektrotechniki

Bardziej szczegółowo

CHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWE

CHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWE CHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWE Do opisu członów i układów automatyki stosuje się, oprócz transmitancji operatorowej (), tzw. transmitancję widmową. Transmitancję widmową () wyznaczyć można na podstawie

Bardziej szczegółowo

A-2. Filtry bierne. wersja

A-2. Filtry bierne. wersja wersja 04 2014 1. Zakres ćwiczenia Celem ćwiczenia jest zrozumienie propagacji sygnałów zmiennych w czasie przez układy filtracji oparte na elementach rezystancyjno-pojemnościowych. Wyznaczenie doświadczalne

Bardziej szczegółowo

Próbkowanie (ang. sampling) - kwantyzacja. Rastrowa reprezentacja obrazu 2D. Generowanie obrazu rastrowego 2D. Próbkowanie i integracja

Próbkowanie (ang. sampling) - kwantyzacja. Rastrowa reprezentacja obrazu 2D. Generowanie obrazu rastrowego 2D. Próbkowanie i integracja Próbkowanie (ang. sampling) - kwantyzacja Rastrowa reprezentacja obrazu 2D Próbkowanie - proces zamiany ciągłego sygnału f(x) na skończoną liczbę wartości opisujących ten sygnał. Kwantyzacja - proces zamiany

Bardziej szczegółowo

Cyfrowe przetwarzanie obrazów i sygnałów Wykład 2 AiR III

Cyfrowe przetwarzanie obrazów i sygnałów Wykład 2 AiR III 1 Niniejszy dokument zawiera materiały do wykładu z przedmiotu Cyfrowe Przetwarzanie Obrazów i Sygnałów. Jest on udostępniony pod warunkiem wykorzystania wyłącznie do własnych, prywatnych potrzeb i może

Bardziej szczegółowo

KARTA MODUŁU KSZTAŁCENIA

KARTA MODUŁU KSZTAŁCENIA KARTA MODUŁU KSZTAŁCENIA I. Informacje ogólne I. 1 Nazwa modułu kształcenia Analiza i przetwarzanie sygnałów 2 Nazwa jednostki prowadzącej moduł (należy wskazać nazwę zgodnie ze Statutem PSW Instytut,

Bardziej szczegółowo

uzyskany w wyniku próbkowania okresowego przebiegu czasowego x(t) ze stałym czasem próbkowania t takim, że T = t N 1 t

uzyskany w wyniku próbkowania okresowego przebiegu czasowego x(t) ze stałym czasem próbkowania t takim, że T = t N 1 t 4. 1 3. " P r ze c ie k " w idm ow y 1 0 2 4.13. "PRZECIEK" WIDMOWY Rozważmy szereg czasowy {x r } dla r = 0, 1,..., N 1 uzyskany w wyniku próbkowania okresowego przebiegu czasowego x(t) ze stałym czasem

Bardziej szczegółowo

Transformata Laplace a to przekształcenie całkowe funkcji f(t) opisane następującym wzorem:

Transformata Laplace a to przekształcenie całkowe funkcji f(t) opisane następującym wzorem: PPS 2 kartkówka 1 RÓWNANIE RÓŻNICOWE Jest to dyskretny odpowiednik równania różniczkowego. Równania różnicowe to pewne związki rekurencyjne określające w sposób niebezpośredni wartość danego wyrazu ciągu.

Bardziej szczegółowo

FFT i dyskretny splot. Aplikacje w DSP

FFT i dyskretny splot. Aplikacje w DSP i dyskretny splot. Aplikacje w DSP Marcin Jenczmyk m.jenczmyk@knm.katowice.pl Wydział Matematyki, Fizyki i Chemii 10 maja 2014 M. Jenczmyk Sesja wiosenna KNM 2014 i dyskretny splot 1 / 17 Transformata

Bardziej szczegółowo

Krój czcionki można wybrać na wstążce w zakładce Narzędzia główne w grupie przycisków Cz cionka.

Krój czcionki można wybrać na wstążce w zakładce Narzędzia główne w grupie przycisków Cz cionka. Podstawowe sposoby formatowania Procesory tekstu umożliwiają nie tylko wpisywanie i wykonywanie modyfikacji (edycję tekstu), ale również formatowanie, czyli określenie wyglądu tekstu Podstawowe możliwości

Bardziej szczegółowo

Laboratorium optycznego przetwarzania informacji i holografii. Ćwiczenie 6. Badanie właściwości hologramów

Laboratorium optycznego przetwarzania informacji i holografii. Ćwiczenie 6. Badanie właściwości hologramów Laboratorium optycznego przetwarzania informacji i holografii Ćwiczenie 6. Badanie właściwości hologramów Katedra Optoelektroniki i Systemów Elektronicznych, WETI, Politechnika Gdańska Gdańsk 2006 1. Cel

Bardziej szczegółowo

Transformata Fouriera i analiza spektralna

Transformata Fouriera i analiza spektralna Transformata Fouriera i analiza spektralna Z czego składają się sygnały? Sygnały jednowymiarowe, częstotliwość Liczby zespolone Transformata Fouriera Szybka Transformata Fouriera (FFT) FFT w 2D Przykłady

Bardziej szczegółowo

Przetwarzanie sygnałów

Przetwarzanie sygnałów Spis treści Przetwarzanie sygnałów Ćwiczenie 3 Właściwości przekształcenia Fouriera 1 Podstawowe właściwości przekształcenia Fouriera 1 1.1 Kompresja i ekspansja sygnału................... 2 1.2 Właściwości

Bardziej szczegółowo

Kodowanie podpasmowe

Kodowanie podpasmowe Kodowanie i kompresja informacji - Wykład 12 [10] 24 maja 2010 Wprowadzenie Rozłożenie informacji na części (pasma) i kodowanie ich oddzielnie. Wprowadzenie Rozłożenie informacji na części (pasma) i kodowanie

Bardziej szczegółowo

5 Filtry drugiego rzędu

5 Filtry drugiego rzędu 5 Filtry drugiego rzędu Cel ćwiczenia 1. Zrozumienie zasady działania i charakterystyk filtrów. 2. Poznanie zalet filtrów aktywnych. 3. Zastosowanie filtrów drugiego rzędu z układem całkującym Podstawy

Bardziej szczegółowo

ANALIZA SEMANTYCZNA OBRAZU I DŹWIĘKU

ANALIZA SEMANTYCZNA OBRAZU I DŹWIĘKU ANALIZA SEMANTYCZNA OBRAZU I DŹWIĘKU obraz dr inż. Jacek Naruniec Analiza Składowych Niezależnych (ICA) Independent Component Analysis Dąży do wyznaczenia zmiennych niezależnych z obserwacji Problem opiera

Bardziej szczegółowo

Rozdział 5. Przetwarzanie analogowo-cyfrowe (A C)

Rozdział 5. Przetwarzanie analogowo-cyfrowe (A C) 5. 0. W p r ow adzen ie 1 2 1 Rozdział 5 Przetwarzanie analogowo-cyfrowe (A C) sygnał przetwarzanie A/C sygnał analogowy cyfrowy ciągły dyskretny próbkowanie: zamiana sygnału ciągłego na dyskretny konwersja

Bardziej szczegółowo

Dyskretne przekształcenie Fouriera cz. 2

Dyskretne przekształcenie Fouriera cz. 2 Cyfrowe przetwarzanie sygnałów Jacek Rezmer -1- Dyskretne przekształcenie Fouriera cz. 2 Twierdzenie o przesunięciu Istnieje ważna właściwość DFT, znana jako twierdzenie o przesunięciu. Mówi ono, że: przesunięcie

Bardziej szczegółowo

Implementacja filtru Canny ego

Implementacja filtru Canny ego ANALIZA I PRZETWARZANIE OBRAZÓW Implementacja filtru Canny ego Autor: Katarzyna Piotrowicz Kraków,2015-06-11 Spis treści 1. Wstęp... 1 2. Implementacja... 2 3. Przykłady... 3 Porównanie wykrytych krawędzi

Bardziej szczegółowo

Politechnika Wrocławska Wydział Elektroniki Mikrosystemów i Fotoniki Przetwarzanie sygnałów laboratorium ETD5067L

Politechnika Wrocławska Wydział Elektroniki Mikrosystemów i Fotoniki Przetwarzanie sygnałów laboratorium ETD5067L Politechnika Wrocławska Wydział Elektroniki Mikrosystemów i Fotoniki Przetwarzanie sygnałów laboratorium ETD5067L Ćwiczenie 4. Filtry o skończonej odpowiedzi impulsowej (SOI) 1. Filtracja cyfrowa podstawowe

Bardziej szczegółowo

Przetwarzanie sygnałów

Przetwarzanie sygnałów Przetwarzanie sygnałów Ćwiczenie 3 Filtry o skończonej odpowiedzi impulsowej (SOI) Spis treści 1 Filtracja cyfrowa podstawowe wiadomości 1 1.1 Właściwości filtru w dziedzinie czasu............... 1 1.2

Bardziej szczegółowo

Waldemar Izdebski - Wykłady z przedmiotu SIT / Mapa zasadnicza 30

Waldemar Izdebski - Wykłady z przedmiotu SIT / Mapa zasadnicza 30 Waldemar Izdebski - Wykłady z przedmiotu SIT / Mapa zasadnicza 30 2.3. Model rastrowy Rastrowy model danych wykorzystywany jest dla gromadzenia i przetwarzania danych pochodzących ze skanowania istniejących

Bardziej szczegółowo

Komputerowe obrazowanie medyczne

Komputerowe obrazowanie medyczne Komputerowe obrazowanie medyczne Część II Przetwarzanie i analiza obrazów medycznych Grafika rastrowa i wektorowa W grafice wektorowej obrazy i rysunki składają się z szeregu punktów, przez które prowadzi

Bardziej szczegółowo

do instrukcja while (wyrażenie);

do instrukcja while (wyrażenie); Instrukcje pętli -ćwiczenia Instrukcja while Pętla while (póki) powoduje powtarzanie zawartej w niej sekwencji instrukcji tak długo, jak długo zaczynające pętlę wyrażenie pozostaje prawdziwe. while ( wyrażenie

Bardziej szczegółowo

Analiza obrazu. wykład 3. Marek Jan Kasprowicz Uniwersytet Rolniczy 2009

Analiza obrazu. wykład 3. Marek Jan Kasprowicz Uniwersytet Rolniczy 2009 Analiza obrazu komputerowego wykład 3 Marek Jan Kasprowicz Uniwersytet Rolniczy 2009 Binaryzacja Binaryzacja jest jedną z ważniejszych ż czynności punktowego przetwarzania obrazów. Poprzedza prawie zawsze

Bardziej szczegółowo

6. FUNKCJE. f: X Y, y = f(x).

6. FUNKCJE. f: X Y, y = f(x). 6. FUNKCJE Niech dane będą dwa niepuste zbiory X i Y. Funkcją f odwzorowującą zbiór X w zbiór Y nazywamy przyporządkowanie każdemu elementowi X dokładnie jednego elementu y Y. Zapisujemy to następująco

Bardziej szczegółowo

Przetwarzanie i transmisja danych multimedialnych. Wykład 8 Transformaty i kodowanie cz. 2. Przemysław Sękalski.

Przetwarzanie i transmisja danych multimedialnych. Wykład 8 Transformaty i kodowanie cz. 2. Przemysław Sękalski. Przetwarzanie i transmisja danych multimedialnych Wykład 8 Transformaty i kodowanie cz. 2 Przemysław Sękalski sekalski@dmcs.pl Politechnika Łódzka Katedra Mikroelektroniki i Technik Informatycznych DMCS

Bardziej szczegółowo

Cyfrowe przetwarzanie obrazów i sygnałów Wykład 8 AiR III

Cyfrowe przetwarzanie obrazów i sygnałów Wykład 8 AiR III 1 Niniejszy dokument zawiera materiały do wykładu z przedmiotu Cyfrowe Przetwarzanie Obrazów i Sygnałów. Jest on udostępniony pod warunkiem wykorzystania wyłącznie do własnych, prywatnych potrzeb i może

Bardziej szczegółowo

Metody numeryczne w przykładach

Metody numeryczne w przykładach Metody numeryczne w przykładach Bartosz Ziemkiewicz Wydział Matematyki i Informatyki UMK, Toruń Regionalne Koło Matematyczne 8 kwietnia 2010 r. Bartosz Ziemkiewicz (WMiI UMK) Metody numeryczne w przykładach

Bardziej szczegółowo

Cyfrowe przetwarzanie obrazów. Dr inż. Michał Kruk

Cyfrowe przetwarzanie obrazów. Dr inż. Michał Kruk Cyfrowe przetwarzanie obrazów Dr inż. Michał Kruk Przekształcenia morfologiczne Morfologia matematyczna została stworzona w latach sześddziesiątych w Wyższej Szkole Górniczej w Paryżu (Ecole de Mines de

Bardziej szczegółowo

Teoria sygnałów Signal Theory. Elektrotechnika I stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny)

Teoria sygnałów Signal Theory. Elektrotechnika I stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny) . KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2012/2013 Teoria sygnałów Signal Theory A. USYTUOWANIE MODUŁU W SYSTEMIE STUDIÓW

Bardziej szczegółowo

b n y k n T s Filtr cyfrowy opisuje się również za pomocą splotu dyskretnego przedstawionego poniżej:

b n y k n T s Filtr cyfrowy opisuje się również za pomocą splotu dyskretnego przedstawionego poniżej: 1. FILTRY CYFROWE 1.1 DEFIICJA FILTRU W sytuacji, kiedy chcemy przekształcić dany sygnał, w inny sygnał niezawierający pewnych składowych np.: szumów mówi się wtedy o filtracji sygnału. Ogólnie Filtracją

Bardziej szczegółowo

W celu obliczenia charakterystyki częstotliwościowej zastosujemy wzór 1. charakterystyka amplitudowa 0,

W celu obliczenia charakterystyki częstotliwościowej zastosujemy wzór 1. charakterystyka amplitudowa 0, Bierne obwody RC. Filtr dolnoprzepustowy. Filtr dolnoprzepustowy jest układem przenoszącym sygnały o małej częstotliwości bez zmian, a powodującym tłumienie i opóźnienie fazy sygnałów o większych częstotliwościach.

Bardziej szczegółowo

PROPAGACJA PROMIENIOWANIA PRZEZ UKŁAD OPTYCZNY W UJĘCIU FALOWYM. TRANSFORMACJE FAZOWE I SYGNAŁOWE

PROPAGACJA PROMIENIOWANIA PRZEZ UKŁAD OPTYCZNY W UJĘCIU FALOWYM. TRANSFORMACJE FAZOWE I SYGNAŁOWE PROPAGACJA PROMIENIOWANIA PRZEZ UKŁAD OPTYCZNY W UJĘCIU FALOWYM. TRANSFORMACJE FAZOWE I SYGNAŁOWE prof. dr hab. inż. Krzysztof Patorski Przedmiotem tej części wykładu są podstawowe transformacje fazowe

Bardziej szczegółowo

WSTĘP DO ELEKTRONIKI

WSTĘP DO ELEKTRONIKI WSTĘP DO ELEKTRONIKI Część IV Czwórniki Linia długa Janusz Brzychczyk IF UJ Czwórniki Czwórnik (dwuwrotnik) posiada cztery zaciski elektryczne. Dwa z tych zacisków uważamy za wejście czwórnika, a pozostałe

Bardziej szczegółowo

Politechnika Wrocławska Wydział Elektroniki Mikrosystemów i Fotoniki Przetwarzanie sygnałów laboratorium ETD5067L

Politechnika Wrocławska Wydział Elektroniki Mikrosystemów i Fotoniki Przetwarzanie sygnałów laboratorium ETD5067L Politechnika Wrocławska Wydział Elektroniki Mikrosystemów i Fotoniki Przetwarzanie sygnałów laboratorium ETD5067L Ćwiczenie 4. Filtry o skończonej odpowiedzi impulsowej (SOI) 1. Filtracja cyfrowa podstawowe

Bardziej szczegółowo

8. Analiza widmowa metodą szybkiej transformaty Fouriera (FFT)

8. Analiza widmowa metodą szybkiej transformaty Fouriera (FFT) 8. Analiza widmowa metodą szybkiej transformaty Fouriera (FFT) Ćwiczenie polega na wykonaniu analizy widmowej zadanych sygnałów metodą FFT, a następnie określeniu amplitud i częstotliwości głównych składowych

Bardziej szczegółowo

Przetwarzanie obrazów wykład 4

Przetwarzanie obrazów wykład 4 Przetwarzanie obrazów wykład 4 Adam Wojciechowski Wykład opracowany na podstawie Komputerowa analiza i przetwarzanie obrazów R. Tadeusiewicz, P. Korohoda Filtry nieliniowe Filtry nieliniowe (kombinowane)

Bardziej szczegółowo

Spis treści. Morfologia matematyczna. 1 Morfologia matematyczna 1.1 Dylacja 1.2 Erozja 1.3 Otwarcie i zamknięcie 1.

Spis treści. Morfologia matematyczna. 1 Morfologia matematyczna 1.1 Dylacja 1.2 Erozja 1.3 Otwarcie i zamknięcie 1. Spis treści 1 Morfologia matematyczna 1.1 Dylacja 1.2 Erozja 1.3 Otwarcie i zamknięcie 1.4 Filtr medianowy Morfologia matematyczna Morfologia matematyczna to bardzo przydatna metoda przetwarzania obrazów

Bardziej szczegółowo

Mikroskop teoria Abbego

Mikroskop teoria Abbego Zastosujmy teorię dyfrakcji do opisu sposobu powstawania obrazu w mikroskopie: Oświetlacz typu Köhlera tworzy równoległą wiązkę światła, padającą na obserwowany obiekt (płaszczyzna 0 ); Pole widzenia ograniczone

Bardziej szczegółowo