Zad. 3: Układ równań liniowych
|
|
- Angelika Witek
- 6 lat temu
- Przeglądów:
Transkrypt
1 1 Cel ćwiczenia Zad. 3: Układ równań liniowych Wykształcenie umiejętności modelowania kluczowych dla danego problemu pojęć. Definiowanie właściwego interfejsu klasy. Zwrócenie uwagi na dobór odpowiednich struktur danych w zależności od metody rozwiązywania problemu. Praktyczne zapoznanie się z problemem skończonej binarnej reprezentacji liczb oraz wynikającego stąd problemu niedokładności obliczeń. 2 Program zajęć Demonstracja przykładu problemu skończonej reprezentacji binarnej liczb Ocena realizacji zadania z poprzedniego laboratorium ocenie podlega poprawność realizacji zadania, styl pisania programu oraz opisy. Ocena przygotowania do zajęć ocenie podlega schemat blokowy działania programu (szczegóły wymagań patrz podrozdział 4) Modyfikacja programu wg wskazań osoby prowadzacej ocenie będzie podlegała poprawność realizacji modyfikacji. Pracę nad modyfikacją programu (wszystkie operacje należy wykonywać na kopii) należy rozpocząć już w trakcie pierwszej fazy laboratorium, gdyż prowadzący nie będzie w stanie ocenić wcześniejszego programu wszystkim jednocześnie. 3 Opis zadania programowego Należy napisać program, który umożliwia rozwiązanie układu równań liniowych z trzema niewiadomymi postaci: a 11 x 1 + a 12 x 2 + a 13 x 3 = b 1 a 21 x 1 + a 22 x 2 + a 23 x 3 = b 2 a 31 x 1 + a 32 x 2 + a 33 x 3 = b 3 Przedstawiony powyżej układ równań wygodnie jest reprezentować w postaci macierzowej jako a 11 a 12 a 13 x 1 b 1 a 21 a 22 a 23 x 2 = b 2 a 31 a 32 a 33 x 3 b 3 Tak więc można zapisać sformułowany problem w bardziej zwartej i ogólnej postaci: Ax = b gdzie A to macierz współczynników równania, x wektor nieznanych wartości, które należy wyliczyć, b wektor wyrazów wolnych. Ponadto program dla znalezionego rozwiązania powinien wyliczyć błąd wynikający z niedokładności obliczeń. Reprezentantem błędu będzie wektor różnic przedstawiony poniżej ε = Ax b. 1
2 Miarą błędu jest długość wektora ε, a więc ε = ε ε, gdzie ε ε jest iloczynem skalarnym wektorów ε. Należy zbadać, kiedy wspomniany błąd staje się znaczący. Aby móc to określić należy odwołać się do interpretacji geometrycznej wspomnianego układu równań. Nie przypadkiem został wybrany układ z trzema niewiadomymi. Dla układu z czterema (i więcej) niewiadomymi byłoby to już niemożliwe (dlaczego?). UWAGA: Definiowane w programie klasy muszą odzwierciedlać kluczowe pojęcia znajdujące się w opisie problemu. Do pojęć takich należy między innymi macierz współczynników, wektor wyrazów wolnych oraz układ równań liniowych. Pomimo tego, że program piszemy dla układu z trzema niewiadomymi, w programie jako rozmiaru nie można używać liczby 3. Należy zdefiniować poprzez dyrektywę preprocesora odpowiedni symbol, który będzie dalej wykorzystywany, np. #define ROZMIAR 3 Symbol ten powinien zostać wykorzystany później zarówno przy definiowaniu klasy Wektor, jak też Macierz. Musi on być wykorzystany we wszystkich miejscach, w których odwołujemy się do rozmiaru wektora lub macierzy (np. w pętlach typu for). Wspomniany wcześniej symbol powinien być zdefiniowany w osobnym pliku nagłówkowym. 3.1 Działanie programu Program nie ma udostępniać żadnego interfejsu użytkownika. Zakłada się, że kolumny macierzy współczynników równania oraz wektor wyrazów wolnych [A b] czytane są w postaci transponowanej, tzn [A b] T. Dla lepszego zrozumienia rozważmy układ równań: 2x 1 + 2x 2 + x 3 = 9 x 1 + 2x 2 + 1,5x 3 = 8,5 x 1 + 3x 2 + x 3 = 8 Połączony zapis macierzy współczynników i wektora wyrazów wolnych ma postać: [A b] = 1 2 1,5 8, Postać transponowana to: [A b] T = 1 1, ,5 8 Dla ułatwienia sobie pracy warto zapisać dane w pliku i później czytać dane z pliku poprzez przekierowanie go na wejście standardowe programu. Taki sposób postępowania przedstawiony jest poniżej. 2
3 rozwiazanie> cat rownanie_liniowe.dat jkowalsk@noxon: rozwiazanie>./uklad_rownan < rownanie_liniowe.dat Macierz A^T: Wektor wyrazow wolnych b: Rozwiazanie x = (x1, x2, x3): Wektor bledu: Ax-b = ( 4.768e-07, 2.33e-07, 0 ) Dlugosc wektora bledu: Ax-b = e-07 jkowalsk@noxon: rozwiazanie>_ Uwaga: Dane o błędzie mają jedynie charakter poglądowy. Nie są to faktycznie wyliczone wartości. Ułożenie znaków w linii w przypadku wyświetlania macierzy, nie musi być idealnie równe, aby jeden wiersz długością pasował do drugiego. 3.2 Materiały pomocnicze Zalążek programu wraz z plikiem zawierającym przykładowe dane znajduje się w katalogu bk/edu/kpo/zad/z Wymagania co do konstrukcji programu Oprócz wymagań sformułowanych w opisie zadania należy uwzględnić uwarunkowania przedstawione poniżej. Należy zdefiniować klasy Wektor, Macierz oraz UkladRownanLiniowych. Muszą one mieć tylko i wyłacznie niezbędne pola reprezentujace atrybuty danego pojęcia. Należy odpowiednio przeciążyć operator indeksujący dla klasy Wektor, operator funkcyjny dla klasy Macierz i odpowiednio posługiwać się nimi w programie. Możliwe są również również inne kombinacje tych operatorów. 3
4 Należy przeciążyć operator mnożenia, tak aby była możliwość przemnożenia macierzy przez wektor. Ponadto konieczne jest przeciążenie operatora dodawania i odejmowania wektorów oraz mnożenia i dzielenia przez liczbę. Program musi zachować strukturę modułową i odpowiednią strukturę kartotek. O ile będzie to konieczne, należy zmodyfikować plik Makefile (np. gdy dodany zostanie nowy moduł). Każda z klas powinna zostać zdefiniowana w oddzielnym pliku nagłówkowym. Metody tej klasy powinny być natomiast definiowane w osobnym module związanym z daną klasą, np. definicja klasy UkladRownanLiniowych powinna znaleźć się w pliku nagłówkowym UkladRownanLiniowych.hh, zaś metody w pliku UkladRownanLiniowych.cpp. Proste metody można definiować bezpośrednio w ciele klasy. Wszystkie metody, które nie zmieniają stanu obiektu, na którym działają, powinny być metodami typu const. Oprócz tego pozostają w mocy wszystkie wcześniejsze wymagania dotyczące struktury katalogów, pliku Makefile, modułowej struktury programu, jak też opisów. 3.4 Wersja uproszczona oceniana nie więcej niż na 4,0 W wersji uproszczonej można ograniczyć się do układu z dwoma zmiennymi. 3.5 Rozszerzenia nieobowiazkowe Proponuje się, aby równanie było wyświetlane przez program w postaci: x_ x_2 = x_3-1 Zamiast oddzielnie macierz A i wektor wyrazów wolnych b. Niniejszy sposób wyświetlenia musi być zrealizowany poprzez przeciażenie operatora << działajacego na strumieniu wyjściowym dla klasy modelujacej pojęcie układu równań liniowych. 4 Przygotowanie do zajęć 4.1 Tydzień 0 Przed zajęciami należy napisać diagram czynności reprezentujący ideę działania programu bez wchodzenia nadmiernie w detale, np. operacja wyświetlenia układu równań i jego rozwiązania, operacja czytania parametrów równania. Tym operacjom powinny odpowiadać pojedyncze czynności reprezentowane przez pojedyncze bloczki. Zaleca się wybranie metody rozwiązywania układu równań z wykorzystaniem wzorów Cramera. W takim przypadku operację liczenia wyznacznika należy również przedstawić w postaci pojedynczej czynności, jak też wstawianie odpowiedniej kolumny do macierzy. 4
5 4.2 Tydzień 1 Przed zajęciami muszą zostać przygotowane następujące elementy zadania. Wszystko co będzie ponad to będzie oceniane in plus. Należy przygotować możliwie szczegółowy schemat blokowy liczenia wyznacznika metodą eliminacji Gaussa (diagram musi mieć postać elektroniczną). Powinna być zdefiniowana klasa Wektor wraz z przeciążeniem operatorów zapisu do strumienia wyjściowego (cout, operator <<). czytania ze strumienia wejściowego (cin, operator >>). Należy również przeciążyć operację dodawania i odejmowania wektorów, mnożenie wektora przez wektor (iloczyn skalarny) oraz wektora przez liczbę, jak też dzielenia wektora przez liczbę. Klasa i metody muszą być opisane. Definicje klasy i metod powinny być zapisane w osobnym module. Należy również zdefiniować klasę Macierz. Należy przeciążyć operację zapisu macierzy do strumienia wyjściowego (cout, operator <<). Klasa i metody muszą być opisane. Definicja klasy powinna być w osobnym module. Oba moduły powinny zostać uzupełnione modułem main i kompilować się oraz konsolidować jako program. 4.3 Tydzień 2 Rozliczenie się z gotowego programu i rozpoczęcie następnego zadania (tydzień 0 dla zadania nr 3). 5
Zad. 3: Rotacje 2D. Demonstracja przykładu problemu skończonej reprezentacji binarnej liczb
Zad. 3: Rotacje 2D 1 Cel ćwiczenia Wykształcenie umiejętności modelowania kluczowych dla danego problemu pojęć. Definiowanie właściwego interfejsu klasy. Zwrócenie uwagi na dobór odpowiednich struktur
Zad. 5: Układ równań liniowych liczb zespolonych
Zad. 5: Układ równań liniowych liczb zespolonych 1 Cel ćwiczenia Wykształcenie zdolności abstrahowania operacji arytmetycznych od konkretnych typów. Unaocznienie problemów związanych z programowaniem uogólnionym
Zad. 4: Rotacje 2D. 1 Cel ćwiczenia. 2 Program zajęć. 3 Opis zadania programowego
Zad. 4: Rotacje 2D 1 Cel ćwiczenia Wykształcenie umiejętności modelowania kluczowych dla danego problemu pojęć. Definiowanie właściwego interfejsu klasy. Zwrócenie uwagi na dobór odpowiednich struktur
Układ równań liniowych
Układ równań liniowych 1 Cel zadania Wykształcenie umiejętności projektowania własnych klas modelujących pojęcia niezbędne do rozwiązania postawionego problemu. Rozwinięcie umiejętności przeciążania operatorów
Laboratorium nr 5: Mnożenie wektorów i macierzy
Laboratorium nr 5: Mnożenie wektorów i macierzy 1 Cel ćwiczenia Wykształcenie umiejętności definiowania przeciążeń operatorów indeksujących i funkcyjnych. Utrwalenie umiejętności definiowania przeciążeń
Zad. 4: Szablonu dla układu równań liniowych
Zad. 4: Szablonu dla układu równań liniowych 1 Cel ćwiczenia Wykształcenie zdolności definiowania szablonów funkcji i klas oraz abstrahowania operacji arytmetycznych od konkretnych typów. Unaocznienie
Zad. 6: Sterowanie robotem mobilnym
Zad. 6: Sterowanie robotem mobilnym 1 Cel ćwiczenia Utrwalenie umiejętności modelowania kluczowych dla danego problemu pojęć. Tworzenie diagramu klas, czynności oraz przypadków użycia. Wykorzystanie dziedziczenia
Zadanie nr 3: Sprawdzanie testu z arytmetyki
Zadanie nr 3: Sprawdzanie testu z arytmetyki 1 Cel zadania Zadanie wymusza praktyczne przećwiczenia dostosowania formatu i formy wyświetlania informacji dla własnych typów danych. Ma ono pokazać potencjalne
Zad. 5: Sterowanie robotem mobilnym
Zad. 5: Sterowanie robotem mobilnym 1 Cel ćwiczenia Wykształcenie umiejętności modelowania kluczowych dla danego problemu pojęć. Tworzenie diagramu klas, czynności oraz przypadków użycia. Wykorzystanie
Laboratorium nr 4: Arytmetyka liczb zespolonych
Laboratorium nr 4: Arytmetyka liczb zespolonych 1 Cel ćwiczenia Wykształcenie umiejętności definiowania przeciążeń operatorów arytmetycznych dwuargumentowych i jednoargumentowych dla własnych struktur
Zad. 5: Sterowanie dronem
1 Cel ćwiczenia Zad. 5: Sterowanie dronem Wykształcenie umiejętności modelowania kluczowych dla danego problemu pojęć. Tworzenie diagramu klas, czynności oraz przypadków użycia. Wykorzystanie dziedziczenia
Zad. 5: Rotacje 3D. 1 Cel ćwiczenia. 2 Program zajęć. 3 Opis zadania programowego
Zad. 5: Rotacje 3D 1 Cel ćwiczenia Wykształcenie umiejętności modelowania kluczowych dla danego problemu pojęć. Tworzenie diagramu klas. Praktyczne zweryfikowanie wcześniejszej konstrukcji programu. Jeśli
Zad. 7: Fabryka obiektów i singleton
Zad. 7: Fabryka obiektów i singleton 1 Cel ćwiczenia Praktyczna realizacja wzorca projektowego fabryki obiektów i singletona. Utrwalenie umiejętności posługiwania się wskaźnikami współdzielonymi i wykorzystanie
Zadanie nr 2: Arytmetyka liczb zespolonych
Zadanie nr 2: Arytmetyka liczb zespolonych 1 Cel ćwiczenia Wykształcenie umiejętności definiowania przeciążeń operatorów arytmetycznych dwuargumentowych i jednoargumentowych dla własnych struktur danych
Zad. 6: Sterowanie robotami mobilnymi w obecności przeszkód
Zad. 6: Sterowanie robotami mobilnymi w obecności przeszkód 1 Cel ćwiczenia Utrwalenie umiejętności modelowania kluczowych dla danego problemu pojęć. Tworzenie diagramu klas oraz czynności. Wykorzystanie
Zad. 7: Sterowanie robotami mobilnymi w obecności przeszkód
Zad. 7: Sterowanie robotami mobilnymi w obecności przeszkód 1 Cel ćwiczenia Utrwalenie umiejętności modelowania kluczowych dla danego problemu pojęć. Tworzenie diagramu klas oraz czynności. Wykorzystanie
Zad. 7: Fabryka obiektów i singleton
Zad. 7: Fabryka obiektów i singleton 1 Cel ćwiczenia Praktyczna realizacja wzorca projektowego fabryki obiektów i singletona. Utrwalenie umiejętności posługiwania się wskaźnikami współdzielonymi i wykorzystanie
Zadanie 2: Arytmetyka symboli
1 Cel ćwiczenia Zadanie 2: Arytmetyka symboli Wykształcenie umiejętności abstrahowania operacji arytmetycznych. Zapoznanie się i przećwiczenie mechanizmu tworzenia przeciążeń funkcji operatorowych. Utrwalenie
Zad. 4: Rotacje 3D. 1 Cel ćwiczenia. 2 Program zajęć. 3 Opis zadania programowego
Zad. 4: Rotacje 3D 1 Cel ćwiczenia Wykształcenie umiejętności modelowania kluczowych dla danego problemu pojęć. Generowanie dokumentacji z wykorzystaniem systemu doxygen. Praktyczne zweryfikowanie wcześniejszej
5. Rozwiązywanie układów równań liniowych
5. Rozwiązywanie układów równań liniowych Wprowadzenie (5.1) Układ n równań z n niewiadomymi: a 11 +a 12 x 2 +...+a 1n x n =a 10, a 21 +a 22 x 2 +...+a 2n x n =a 20,..., a n1 +a n2 x 2 +...+a nn x n =a
Układy równań liniowych i metody ich rozwiązywania
Układy równań liniowych i metody ich rozwiązywania Łukasz Wojciechowski marca 00 Dany jest układ m równań o n niewiadomych postaci: a x + a x + + a n x n = b a x + a x + + a n x n = b. a m x + a m x +
UKŁADY RÓWNAŃ LINIOWYCH - Metody dokładne
UKŁADY RÓWNAŃ LINIOWYCH - Metody dokładne Układy równań liniowych Rozpatruje się układ n równań liniowych zawierających n niewiadomych: a11x1 a12x2... a1nxn b1 a21x1 a22x2... a2nxn b2... an 1x1 an2x2...
Układy równań i nierówności liniowych
Układy równań i nierówności liniowych Wiesław Krakowiak 1 grudnia 2010 1 Układy równań liniowych DEFINICJA 11 Układem równań m liniowych o n niewiadomych X 1,, X n, nazywamy układ postaci: a 11 X 1 + +
Układy równań liniowych. Krzysztof Patan
Układy równań liniowych Krzysztof Patan Motywacje Zagadnienie kluczowe dla przetwarzania numerycznego Wiele innych zadań redukuje się do problemu rozwiązania układu równań liniowych, często o bardzo dużych
Zaawansowane metody numeryczne
Wykład 1 Zadanie Definicja 1.1. (zadanie) Zadaniem nazywamy zagadnienie znalezienia rozwiązania x spełniającego równanie F (x, d) = 0, gdzie d jest zbiorem danych (od których zależy rozwiązanie x), a F
Rozwiązywanie układów równań liniowych
Rozwiązywanie układów równań liniowych Marcin Orchel 1 Wstęp Jeśli znamy macierz odwrotną A 1, to możęmy znaleźć rozwiązanie układu Ax = b w wyniku mnożenia x = A 1 b (1) 1.1 Metoda eliminacji Gaussa Pierwszy
Programowanie celowe #1
Programowanie celowe #1 Problem programowania celowego (PC) jest przykładem problemu programowania matematycznego nieliniowego, który można skutecznie zlinearyzować, tzn. zapisać (i rozwiązać) jako problem
UKŁADY ALGEBRAICZNYCH RÓWNAŃ LINIOWYCH
Transport, studia niestacjonarne I stopnia, semestr I Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Ewa Pabisek Adam Wosatko Postać układu równań liniowych Układ liniowych równań algebraicznych
Lista. Algebra z Geometrią Analityczną. Zadanie 1 Przypomnij definicję grupy, które z podanych struktur są grupami:
Lista Algebra z Geometrią Analityczną Zadanie 1 Przypomnij definicję grupy, które z podanych struktur są grupami: (N, ), (Z, +) (Z, ), (R, ), (Q \ {}, ) czym jest element neutralny i przeciwny w grupie?,
Zad. 6: Sterowanie dronami w obecności przeszkód
Zad. 6: Sterowanie dronami w obecności przeszkód 1 Cel ćwiczenia Utrwalenie umiejętności modelowania kluczowych dla danego problemu pojęć. Tworzenie diagramu klas oraz czynności. Wykorzystanie dziedziczenia
MATEMATYKA I SEMESTR ALK (PwZ) 1. Sumy i sumy podwójne : Σ i ΣΣ
MATEMATYKA I SEMESTR ALK (PwZ). Sumy i sumy podwójne : Σ i ΣΣ.. OKREŚLENIE Ciąg liczbowy = Dowolna funkcja przypisująca liczby rzeczywiste pierwszym n (ciąg skończony), albo wszystkim (ciąg nieskończony)
a 11 a a 1n a 21 a a 2n... a m1 a m2... a mn x 1 x 2... x m ...
Wykład 15 Układy równań liniowych Niech K będzie ciałem i niech α 1, α 2,, α n, β K. Równanie: α 1 x 1 + α 2 x 2 + + α n x n = β z niewiadomymi x 1, x 2,, x n nazywamy równaniem liniowym. Układ: a 21 x
Wykład z Technologii Informacyjnych. Piotr Mika
Wykład z Technologii Informacyjnych Piotr Mika Uniwersalna forma graficznego zapisu algorytmów Schemat blokowy zbiór bloków, powiązanych ze sobą liniami zorientowanymi. Jest to rodzaj grafu, którego węzły
Zad. 7: Sterowanie manipulatorem przypadek 3D
Zad. 7: Sterowanie manipulatorem przypadek 3D 1 Cel ćwiczenia Wykorzystanie w praktyce mechanizmu dziedziczenia. Wykształcenie umiejętności korzystania z szablonu list oraz dalsze rozwijanie umiejętności
SIMR 2016/2017, Analiza 2, wykład 1, Przestrzeń wektorowa
SIMR 06/07, Analiza, wykład, 07-0- Przestrzeń wektorowa Przestrzeń wektorowa (liniowa) - przestrzeń (zbiór) w której określone są działania (funkcje) dodawania elementów i mnożenia elementów przez liczbę
Treść wykładu. Układy równań i ich macierze. Rząd macierzy. Twierdzenie Kroneckera-Capellego.
. Metoda eliminacji. Treść wykładu i ich macierze... . Metoda eliminacji. Ogólna postać układu Układ m równań liniowych o n niewiadomych x 1, x 2,..., x n : a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21
Ćwiczenie 3. MatLab: Algebra liniowa. Rozwiązywanie układów liniowych
Ćwiczenie 3. MatLab: Algebra liniowa. Rozwiązywanie układów liniowych Wszystko proszę zapisywać komendą diary do pliku o nazwie: imie_ nazwisko 1. Definiowanie macierzy i odwoływanie się do elementów:
UKŁADY RÓWNAŃ LINIOWYCH -Metody dokładne
UKŁADY RÓWNAŃ LINIOWYCH -Metody dokładne Układy równań liniowych Rozpatruje się układ n równań liniowych zawierających n niewiadomych: a + a +... + ann b a + a +... + ann b... an + an+... + annn bn który
15. Macierze. Definicja Macierzy. Definicja Delty Kroneckera. Definicja Macierzy Kwadratowej. Definicja Macierzy Jednostkowej
15. Macierze Definicja Macierzy. Dla danego ciała F i dla danych m, n IN funkcję A : {1,...,m} {1,...,n} F nazywamy macierzą m n ( macierzą o m wierszach i n kolumnach) o wyrazach z F. Wartość A(i, j)
= i Ponieważ pierwiastkami stopnia 3 z 1 są (jak łatwo wyliczyć) liczby 1, 1+i 3
ZESTAW I 1. Rozwiązać równanie. Pierwiastki zaznaczyć w płaszczyźnie zespolonej. z 3 8(1 + i) 3 0, Sposób 1. Korzystamy ze wzoru a 3 b 3 (a b)(a 2 + ab + b 2 ), co daje: (z 2 2i)(z 2 + 2(1 + i)z + (1 +
Układy równań liniowych
Układy równań liniowych Niech K będzie ciałem. Niech n, m N. Równanie liniowe nad ciałem K z niewiadomymi (lub zmiennymi) x 1, x 2,..., x n K definiujemy jako formę zdaniową zmiennej (x 1,..., x n ) K
dr Mariusz Grządziel 15,29 kwietnia 2014 Przestrzeń R k R k = R R... R k razy Elementy R k wektory;
Wykłady 8 i 9 Pojęcia przestrzeni wektorowej i macierzy Układy równań liniowych Elementy algebry macierzy dodawanie, odejmowanie, mnożenie macierzy; macierz odwrotna dr Mariusz Grządziel 15,29 kwietnia
Lista nr 1 - Liczby zespolone
Lista nr - Liczby zespolone Zadanie. Obliczyć: a) ( 3 i) 3 ( 6 i ) 8 c) (+ 3i) 8 (i ) 6 + 3 i + e) f*) g) ( 3 i ) 77 ( ( 3 i + ) 3i 3i h) ( + 3i) 5 ( i) 0 i) i ( 3 i ) 4 ) +... + ( 3 i ) 0 Zadanie. Przedstawić
Metody numeryczne Laboratorium 2
Metody numeryczne Laboratorium 2 1. Tworzenie i uruchamianie skryptów Środowisko MATLAB/GNU Octave daje nam możliwość tworzenia skryptów czyli zapisywania grup poleceń czy funkcji w osobnym pliku i uruchamiania
Wstęp do metod numerycznych Eliminacja Gaussa Równania macierzowe. P. F. Góra
Wstęp do metod numerycznych Eliminacja Gaussa Równania macierzowe P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2015 Co można zrobić z układem równań... tak, aby jego rozwiazania się nie zmieniły? Rozważam
Metody i analiza danych
2015/2016 Metody i analiza danych Macierze Laboratorium komputerowe 2 Anna Kiełbus Zakres tematyczny 1. Funkcje wspomagające konstruowanie macierzy 2. Dostęp do elementów macierzy. 3. Działania na macierzach
1. Liczby zespolone i
Zadania podstawowe Liczby zespolone Zadanie Podać część rzeczywistą i urojoną następujących liczb zespolonych: z = ( + 7i)( + i) + ( 5 i)( + 7i), z = + i, z = + i i, z 4 = i + i + i i Zadanie Dla jakich
2. Układy równań liniowych
2. Układy równań liniowych Grzegorz Kosiorowski Uniwersytet Ekonomiczny w Krakowie zima 2017/2018 rzegorz Kosiorowski (Uniwersytet Ekonomiczny w Krakowie) 2. Układy równań liniowych zima 2017/2018 1 /
1 Zbiory i działania na zbiorach.
Matematyka notatki do wykładu 1 Zbiory i działania na zbiorach Pojęcie zbioru jest to pojęcie pierwotne (nie definiuje się tego pojęcia) Pojęciami pierwotnymi są: element zbioru i przynależność elementu
Rozwiązywanie układów równań liniowych metody dokładne Materiały pomocnicze do ćwiczeń z metod numerycznych
Rozwiązywanie układów równań liniowych metody dokładne Materiały pomocnicze do ćwiczeń z metod numerycznych Piotr Modliński Wydział Geodezji i Kartografii PW 13 stycznia 2012 P. Modliński, GiK PW Rozw.
PRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: ALGEBRA LINIOWA I GEOMETRIA ANALITYCZNA Kierunek: Inżynieria biomedyczna Linear algebra and analytical geometry forma studiów: studia stacjonarne Kod przedmiotu: IB_mp_ Rodzaj przedmiotu:
1. PODSTAWY TEORETYCZNE
1. PODSTAWY TEORETYCZNE 1 1. 1. PODSTAWY TEORETYCZNE 1.1. Wprowadzenie W pierwszym wykładzie przypomnimy podstawowe działania na macierzach. Niektóre z nich zostały opisane bardziej szczegółowo w innych
"Bieda przeczy matematyce; gdy się ją podzieli na więcej ludzi, nie staje się mniejsza." Gabriel Laub
"Bieda przeczy matematyce; gdy się ją podzieli na więcej ludzi, nie staje się mniejsza." Gabriel Laub Def. Macierzą odwrotną do macierzy A M(n) i deta nazywamy macierz A - M(n) taką, że A A - A - A Tw.
Równania liniowe. Rozdział Przekształcenia liniowe. Niech X oraz Y będą dwiema niepustymi przestrzeniami wektorowymi nad ciałem
Rozdział 6 Równania liniowe 6 Przekształcenia liniowe Niech X oraz Y będą dwiema niepustymi przestrzeniami wektorowymi nad ciałem F Definicja 6 Funkcję f : X Y spełniającą warunki: a) dla dowolnych x,
UKŁADY RÓWNAŃ LINIOWYCH
Wykłady z matematyki inżynierskiej JJ, 08 DEFINICJA Układ m równań liniowych z n niewiadomymi to: ( ) a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a 2n x n = b 2 a m1 x 1 + a m2 x 2 +
ALGEBRA z GEOMETRIA, ANALITYCZNA,
ALGEBRA z GEOMETRIA, ANALITYCZNA, MAT00405 PRZEKSZTAL CANIE WYRAZ EN ALGEBRAICZNYCH, WZO R DWUMIANOWY NEWTONA Uprościć podane wyrażenia 7; (b) ( 6)( + ); (c) a 5 6 8a ; (d) ( 5 )( 5 + ); (e) ( 45x 4 y
Metody numeryczne Wykład 4
Metody numeryczne Wykład 4 Dr inż. Michał Łanczont Instytut Elektrotechniki i Elektrotechnologii E419, tel. 4293, m.lanczont@pollub.pl, http://m.lanczont.pollub.pl Zakres wykładu Metody skończone rozwiązywania
Układy równań liniowych
Układy równań liniowych ozważmy układ n równań liniowych o współczynnikach a ij z n niewiadomymi i : a + a +... + an n d a a an d a + a +... + a n n d a a a n d an + an +... + ann n d n an an a nn n d
Liczby zmiennoprzecinkowe i błędy
i błędy Elementy metod numerycznych i błędy Kontakt pokój B3-10 tel.: 829 53 62 http://golinski.faculty.wmi.amu.edu.pl/ golinski@amu.edu.pl i błędy Plan wykładu 1 i błędy Plan wykładu 1 2 i błędy Plan
Algebra liniowa z geometrią
Algebra liniowa z geometrią Maciej Czarnecki 15 stycznia 2013 Spis treści 1 Geometria płaszczyzny 2 1.1 Wektory i skalary........................... 2 1.2 Macierze, wyznaczniki, układy równań liniowych.........
Zadania z algebry liniowej - sem. I Przestrzenie liniowe, bazy, rząd macierzy
Zadania z algebry liniowej - sem I Przestrzenie liniowe bazy rząd macierzy Definicja 1 Niech (K + ) będzie ciałem (zwanym ciałem skalarów a jego elementy nazywać będziemy skalarami) Przestrzenią liniową
1. Pierwszy program. Kompilator ignoruje komentarze; zadaniem komentarza jest bowiem wyjaśnienie programu człowiekowi.
1. Pierwszy program // mój pierwszy program w C++ #include using namespace std; cout
04 Układy równań i rozkłady macierzy - Ćwiczenia. Przykład 1 A =
04 Układy równań i rozkłady macierzy - Ćwiczenia 1. Wstęp Środowisko Matlab można z powodzeniem wykorzystać do rozwiązywania układów równań z wykorzystaniem rozkładów macierzy m.in. Rozkładu Choleskiego,
Zestaw 12- Macierz odwrotna, układy równań liniowych
Zestaw - Macierz odwrotna, układy równań liniowych Przykładowe zadania z rozwiązaniami Załóżmy, że macierz jest macierzą kwadratową stopnia n. Mówimy, że macierz tego samego wymiaru jest macierzą odwrotną
3. Macierze i Układy Równań Liniowych
3. Macierze i Układy Równań Liniowych Rozważamy równanie macierzowe z końcówki ostatniego wykładu ( ) 3 1 X = 4 1 ( ) 2 5 Podstawiając X = ( ) x y i wymnażając, otrzymujemy układ 2 równań liniowych 3x
3. Wykład Układy równań liniowych.
31 Układy równań liniowych 3 Wykład 3 Definicja 31 Niech F będzie ciałem Układem m równań liniowych o niewiadomych x 1,, x n, m, n N, o współczynnikach z ciała F nazywamy układ równań postaci: x 1 + +
UKŁADY ALGEBRAICZNYCH RÓWNAŃ LINIOWYCH
Transport, studia I stopnia rok akademicki 2011/2012 Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Ewa Pabisek Adam Wosatko Uwagi wstępne Układ liniowych równań algebraicznych można
METODY NUMERYCZNE. wykład. konsultacje: wtorek 10:00-11:30 środa 10:00-11:30. dr inż. Grażyna Kałuża pokój
METODY NUMERYCZNE wykład dr inż. Grażyna Kałuża pokój 103 konsultacje: wtorek 10:00-11:30 środa 10:00-11:30 www.kwmimkm.polsl.pl Program przedmiotu wykład: 15 godzin w semestrze laboratorium: 30 godzin
, A T = A + B = [a ij + b ij ].
1 Macierze Jeżeli każdej uporządkowanej parze liczb naturalnych (i, j), 1 i m, 1 j n jest przyporządkowana dokładnie jedna liczba a ij, to mówimy, że jest określona macierz prostokątna A = a ij typu m
PRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: ALGEBRA LINIOWA I GEOMETRIA ANALITYCZNA Kierunek: Mechatronika Linear algebra and analytical geometry Kod przedmiotu: A01 Rodzaj przedmiotu: obowiązkowy dla wszystkich specjalności Poziom
PODSTAWY AUTOMATYKI. MATLAB - komputerowe środowisko obliczeń naukowoinżynierskich - podstawowe operacje na liczbach i macierzach.
WYDZIAŁ ELEKTROTECHNIKI I AUTOMATYKI Katedra Inżynierii Systemów Sterowania PODSTAWY AUTOMATYKI MATLAB - komputerowe środowisko obliczeń naukowoinżynierskich - podstawowe operacje na liczbach i macierzach.
W naukach technicznych większość rozpatrywanych wielkości możemy zapisać w jednej z trzech postaci: skalara, wektora oraz tensora.
1. Podstawy matematyki 1.1. Geometria analityczna W naukach technicznych większość rozpatrywanych wielkości możemy zapisać w jednej z trzech postaci: skalara, wektora oraz tensora. Skalarem w fizyce nazywamy
Zaawansowane metody numeryczne
Wykład 10 Rozkład LU i rozwiązywanie układów równań liniowych Niech będzie dany układ równań liniowych postaci Ax = b Załóżmy, że istnieją macierze L (trójkątna dolna) i U (trójkątna górna), takie że macierz
1 Podstawy c++ w pigułce.
1 Podstawy c++ w pigułce. 1.1 Struktura dokumentu. Kod programu c++ jest zwykłym tekstem napisanym w dowolnym edytorze. Plikowi takiemu nadaje się zwykle rozszerzenie.cpp i kompiluje za pomocą kompilatora,
Sylabus do programu kształcenia obowiązującego od roku akademickiego 2012/13
Sylabus do programu kształcenia obowiązującego od roku akademickiego 2012/13 (1) Nazwa Algebra liniowa z geometrią (2) Nazwa jednostki prowadzącej Instytut Matematyki przedmiot (3) Kod () Studia Kierunek
O MACIERZACH I UKŁADACH RÓWNAŃ
O MACIERZACH I UKŁADACH RÓWNAŃ Problem Jak rozwiązać podany układ równań? 2x + 5y 8z = 8 4x + 3y z = 2x + 3y 5z = 7 x + 8y 7z = Definicja Równanie postaci a x + a 2 x 2 + + a n x n = b gdzie a, a 2, a
MATLAB - laboratorium nr 1 wektory i macierze
MATLAB - laboratorium nr 1 wektory i macierze 1. a. Małe i wielkie litery nie są równoważne (MATLAB rozróżnia wielkość liter). b. Wpisanie nazwy zmiennej spowoduje wyświetlenie jej aktualnej wartości na
Wstęp do metod numerycznych Uwarunkowanie Eliminacja Gaussa. P. F. Góra
Wstęp do metod numerycznych Uwarunkowanie Eliminacja Gaussa P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2012 Uwarunkowanie zadania numerycznego Niech ϕ : R n R m będzie pewna funkcja odpowiednio wiele
Wprowadzenie do programu Mathcad 15 cz. 1
Wpisywanie tekstu Wprowadzenie do programu Mathcad 15 cz. 1 Domyślnie, Mathcad traktuje wpisywany tekst jako wyrażenia matematyczne. Do trybu tekstowego można przejść na dwa sposoby: Zaczynając wpisywanie
cx cx 1,cx 2,cx 3,...,cx n. Przykład 4, 5
Matematyka ZLic - 07 Wektory i macierze Wektorem rzeczywistym n-wymiarowym x x 1, x 2,,x n nazwiemy ciąg n liczb rzeczywistych (tzn odwzorowanie 1, 2,,n R) Zbiór wszystkich rzeczywistych n-wymiarowych
Wykład 5. Metoda eliminacji Gaussa
1 Wykład 5 Metoda eliminacji Gaussa Rozwiązywanie układów równań liniowych Układ równań liniowych może mieć dokładnie jedno rozwiązanie, nieskończenie wiele rozwiązań lub nie mieć rozwiązania. Metody dokładne
Metody numeryczne II. Układy równań liniowych
Metody numeryczne II. Układy równań liniowych Oleksandr Sokolov Wydział Fizyki, Astronomii i Informatyki Stosowanej UMK (2016/17) http://fizyka.umk.pl/~osokolov/mnii/ Układ równań liniowych Układem równań
Zad. 10: Sterowanie manipulatorem cz. 2 i 3
Zad. 10: Sterowanie manipulatorem cz. 2 i 3 1 Cel ćwiczenia Zapoznanie się dziedziczeniem klas oraz mechanizmami niejawnego rzutowania w górę. Przyswojenie pojęcia klasy abstrakcyjnej i praktyczne jej
Układy równań liniowych. Ax = b (1)
Układy równań liniowych Dany jest układ m równań z n niewiadomymi. Liczba równań m nie musi być równa liczbie niewiadomych n, tj. mn. a a... a b n n a a... a b n n... a a... a b m m mn n m
Podstawy Programowania
Podstawy Programowania Monika Wrzosek Instytut Matematyki Uniwersytet Gdański Matematyka 2017/18 Monika Wrzosek (IM UG) Podstawy Programowania 1 / 119 Sprawy organizacyjne E-mail: mwrzosek@mat.ug.edu.pl
Estymacja wektora stanu w prostym układzie elektroenergetycznym
Zakład Sieci i Systemów Elektroenergetycznych LABORATORIUM INFORMATYCZNE SYSTEMY WSPOMAGANIA DYSPOZYTORÓW Estymacja wektora stanu w prostym układzie elektroenergetycznym Autorzy: dr inż. Zbigniew Zdun
Algebra liniowa. Macierze i układy równań liniowych
Algebra liniowa Macierze i układy równań liniowych Własności wyznaczników det I = 1, det(ab) = det A det B, det(a T ) = det A. Macierz nieosobliwa Niech A będzie macierzą kwadratową wymiaru n n. Mówimy,
Wykład 6. Metoda eliminacji Gaussa: Eliminacja z wyborem częściowym Eliminacja z wyborem pełnym
1 Wykład 6 Metoda eliminacji Gaussa: Eliminacja z wyborem częściowym Eliminacja z wyborem pełnym ELIMINACJA GAUSSA Z WYBOREM CZĘŚCIOWYM ELEMENTÓW PODSTAWOWYCH 2 Przy pomocy klasycznego algorytmu eliminacji
Co to jest wektor? Jest to obiekt posiadający: moduł (długość), kierunek wraz ze zwrotem.
1 Wektory Co to jest wektor? Jest to obiekt posiadający: moduł (długość), kierunek wraz ze zwrotem. 1.1 Dodawanie wektorów graficzne i algebraiczne. Graficzne - metoda równoległoboku. Sprowadzamy wektory
DB Algebra liniowa semestr zimowy 2018
DB Algebra liniowa semestr zimowy 2018 SPIS TREŚCI Teoria oraz większość zadań w niniejszym skrypcie zostały opracowane na podstawie książek: 1 G Banaszak, W Gajda, Elementy algebry liniowej cz I, Wydawnictwo
III TUTORIAL Z METOD OBLICZENIOWYCH
III TUTORIAL Z METOD OBLICZENIOWYCH ALGORYTMY ROZWIĄZYWANIA UKŁADÓW RÓWNAŃ LINIOWYCH Opracowanie: Agata Smokowska Marcin Zmuda Trzebiatowski Koło Naukowe Mechaniki Budowli KOMBO Spis treści: 1. Wstęp do
Matematyka stosowana i metody numeryczne
Ewa Pabisek Adam Wosatko Piotr Pluciński Matematyka stosowana i metody numeryczne Konspekt z wykładów Błędy obliczeń Błędy można podzielić na: modelu, metody, wejściowe (początkowe), obcięcia, zaokrągleń..
Macierze. Rozdział Działania na macierzach
Rozdział 5 Macierze Funkcję, która każdej parze liczb naturalnych (i, j) (i 1,..., n; j 1,..., m) przyporządkowuje dokładnie jedną liczbę a ij F, gdzie F R lub F C, nazywamy macierzą (rzeczywistą, gdy
Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego
Materiały dydaktyczne na zajęcia wyrównawcze z matematyki dla studentów pierwszego roku kierunku zamawianego Biotechnologia w ramach projektu Era inżyniera pewna lokata na przyszłość Projekt Era inżyniera
Wykład Ćwiczenia Laboratorium Projekt Seminarium Liczba godzin zajęć zorganizowanych w Uczelni ,5 1
Zał. nr 4 do ZW WYDZIAŁ ***** KARTA PRZEDMIOTU Nazwa w języku polskim ALGEBRA Z GEOMETRIĄ ANALITYCZNĄ B Nazwa w języku angielskim Algebra and Analytic Geometry B Kierunek studiów (jeśli dotyczy): Specjalność
Mathcad c.d. - Macierze, wykresy 3D, rozwiązywanie równań, pochodne i całki, animacje
Mathcad c.d. - Macierze, wykresy 3D, rozwiązywanie równań, pochodne i całki, animacje Opracował: Zbigniew Rudnicki Powtórka z poprzedniego wykładu 2 1 Dokument, regiony, klawisze: Dokument Mathcada realizuje
WEKTORY I MACIERZE. Strona 1 z 11. Lekcja 7.
Strona z WEKTORY I MACIERZE Wektory i macierze ogólnie nazywamy tablicami. Wprowadzamy je:. W sposób jawny: - z menu Insert Matrix, - skrót klawiszowy: {ctrl}+m, - odpowiedni przycisk z menu paska narzędziowego
Krótkie wprowadzenie do macierzy i wyznaczników
Radosław Marczuk Krótkie wprowadzenie do macierzy i wyznaczników 12 listopada 2005 1. Macierze Macierzą nazywamy układ liczb(rzeczywistych, bądź zespolonych), funkcji, innych macierzy w postaci: A a 11
utworz tworzącą w pamięci dynamicznej tablicę dwuwymiarową liczb rzeczywistych, a następnie zerującą jej wszystkie elementy,
Lista 3 Zestaw I Zadanie 1. Zaprojektować i zaimplementować funkcje: utworz tworzącą w pamięci dynamicznej tablicę dwuwymiarową liczb rzeczywistych, a następnie zerującą jej wszystkie elementy, zapisz