Algorytmy i struktury danych. Co dziś? Tytułem przypomnienia metoda dziel i zwyciężaj. Wykład VIII Elementarne techniki algorytmiczne
|
|
- Dorota Maj
- 7 lat temu
- Przeglądów:
Transkrypt
1 Algorytmy i struktury danych Wykład VIII Elementarne techniki algorytmiczne Co dziś? Algorytmy zachłanne (greedyalgorithms) 2 Tytułem przypomnienia metoda dziel i zwyciężaj. Problem można podzielić na szereg podproblemów podobnych (identycznych co do meritum, mniejszych co do wielkości danych) 2. Podproblemysą rozwiązywane niezależnie (rekurencyjnie) 3. Rozwiązania wszystkich podproblemów są łączone Przykłady: # sortowanie przez scalanie # wyszukiwanie binarne (?) # quick sort # wyznaczanie przywódcy tablicy Przywódcą ciągu (tablicy) jest element, który występuje w ciągu więcej razy niż połowa długości tego ciągu. 3
2 Przywódca ciągu if( n == ) to jest to przywódca else podziel tablicę na dwie połowy rekurencyjnie znajdź przywódcę lewej i prawej połowy sprawdź który jest przywódcą całości O(n) int count = ; for( int i = ; i < n ; i++ ) { if ( count == ) { count++; j = i;} else if ( Tab[i] == Tab[j] ) count++; else count--; } return Tab[j]; 4 Algorytmy zachłanne Wykonuje zawsze takie działanie które w danej chwili jest najkorzystniejsze (optymalne: minimalne, maksymalne), w efekcie uzyskujemy rozwiązanie najkorzystniejsze (optymalne: minimalne, maksymalne). Zastosowanie gdy minimalizujemy (maksymalizujemy) jakąś wartość Nie zawsze otrzymujemy rozwiązanie optymalne! # dowód poprawności # kontrprzykład # niejednokrotnie znalezione rozwiązanie jest satysfakcjonujące (rozwiązania dokładniejsze są dużo kosztowniejsze) 5 Wieże na szachownicy #Problem: na szachownicy n * nsą porozstawiane monety; należy tak umieścić n wież, aby nie atakowały się i suma monet z pól na których stoją była największa. #Rozwiązanie: w każdym kroku wybieramy dopuszczalne pole z maksymalną monetą #Optymalność: algorytm nie jest optymalny, ale suma będzie zawsze większa od połowy maksymalnej sumy możliwej do uzyskania # Złożoność: O( N log(n) ) 6 2
3 Problem wyboru zajęć # Problem: mamy zbiór par opisujących zajęcia (początek, koniec) oraz zasób do którego dobieramy zajęcia (sala wykładowa); należy wybrać największy podzbiór zajęć tak, aby nie kolidowały ze sobą. # Rozwiązanie: ze zbioru zajęć wybieramy wg jakiegoś kryterium zajęcie które nie koliduje z już wybranymi: najdłuższe najkrótsze kolidujące z najmniejszą liczbą zajęć jeszcze nie wybranych wybór pierwszego z posortowanych wg początku wybór pierwszego z posortowanych wg końca # Które optymalne? 7 Wybór zajęć ID start end ID start end (?) Problem wyboru zajęć # Problem: mamy zbiór par opisujących zajęcia (początek, koniec) oraz zasób do którego dobieramy zajęcia (sala wykładowa); należy wybrać największy podzbiór zajęć tak, aby nie kolidowały ze sobą. # Rozwiązanie: z posortowanego po zakończeniu zajęć zbioru zajęć wybieramy pierwszy taki który nie przeszkadza już wybranym # Optymalność: tak, jak dowieść że jest to rozwiązanie optymalne? # Złożoność: O(n log (n)) 9 3
4 Minimalne sklejenie par #Problem: mamy ciąg n nieujemnych liczb, pobieramy dwie liczby i zastępujemy je sumą; jeśli koszt akcji to suma, to należy tak wyznaczyć kolejność dodawania, aby sumaryczny koszt był najmniejszy #Rozwiązanie: wybierz dwa najmniejsze elementy i zastąp je przez ich sumę #Optymalność: tak # Złożoność: O( n log(n) ) Minimalne sklejenie par Minimalne sklejenie sąsiadów #Problem: analogicznie do poprzedniego, wybieramy jednak tylko liczby sąsiednie # Rozwiązanie: również analogiczne #Optymalność: nie, kontrprzykład { 5, 4, 4, 5} 2 4
5 Problem doboru zajęć do sal #Problem: zajęcia i sale, jak najmniej sal, tak aby wszystkie zajęcia mogły się odbyć #Rozwiązanie: kolorowaniegrafu przedziałów, zajęcia to wierzchołki, krawędź jeśli zajęcia kolidują ze sobą; bierzemy najmniejszy kolor przyporządkowujemy wierzchołkowi jeśli można, jeśli nie to zwiększamy numer koloru #Optymalność: nie #Złożoność:O( (V + E) * V) 3 Problem plecakowy dyskretny i ciągły #Problem dyskretny: mamy przedmioty z ich wartością i wagą, chcemy mieć największy koszt, ale ogranicza nas waga # Problem ciągły: możemy ciąć przedmioty #Rozwiązanie: liczymy wartość masy jednostkowej i wybieramy największą możliwą ilość # Optymalność: dyskretny nie, ciągły tak #Złożoność:O( n log( n) ) /3=4 /2=5 6/=6 2 $6 $ $2 $22 $6 $8 $24 5 5
6 Wydawanie reszty (proste) #Problem: musimy wydać najmniejszą liczbę monet; nominały: PLN, 2PLN, 5PLN, PLN, itd. #Rozwiązanie: zawsze wybieramy największy dostępny nominał # Optymalność: tak, jaki warunek dla nominałów? # Złożoność: O( n ) [gdy nominały są posortowane] #dla takich działa: c, c, c 2,.., c k ; c > i k #dla takich nie:, 4, 9, 2 (9+++) (4+4+4) 6 Kody Huffmana metoda kompresji danych a b c d e f razem Częstość(tys.) *8 Ustalona dłu. 3 Zmienna dłu. 224 Czy ten kod jest optymalny? Jak dobrać kody? 7 Drzewo dla kodu o stałej długości a:45 b:3 c:2 d:6 e:9 f:5 8 6
7 Drzewo dla kodu o zmiennej długości a: c:2 b:3 e:9 4 3 f:5 d:6 9 Algorytm zachłanny: Kody Huffmana #łączymy w drzewo liście o najmniejszych wagach, powstaje nowa waga, prawy syn to, lewy to # złożoność budowy drzewa O( n log(n) ) Kody prefiksowe Kodowanie: zamiana liter na odpowiednie kody Rozkodowanie: wędrowaniepo drzewie 2 Kody Huffmana David A. Huffman, MIT, 952 Algorytm bezstratny Użycie: MP3, JPG, PNG, PKZIP (przeważnie jako jeden z ostatnich etapów) Warianty: # kodujemy nie pojedyncze litery ale zbitki liter #wersja dynamiczna 2 7
8 Algorytmy zachłanne Własność wybory zachłannego #za pomocą lokalnych optymalnych (zachłannych) wyborów można uzyskać globalne optymalne rozwiązanie #decyzja o lokalnym wyborze nie zależy od przyszłych wyborów, nie zależy również od rozwiązań podproblemów #w każdym kroku następuje redukcja problemu do problemu mniejszego # konieczność udowodnienia poprawności 22 Algorytmy zachłanne Optymalna podstruktura #problem wykazuje optymalną podstrukturę, jeśli jest funkcją optymalnych rozwiązań podproblemów 23 Pytania? KONIEC 24 8
Programowanie dynamiczne i algorytmy zachłanne
Programowanie dynamiczne i algorytmy zachłanne Tomasz Głowacki tglowacki@cs.put.poznan.pl Zajęcia finansowane z projektu "Rozwój i doskonalenie kształcenia na Politechnice Poznańskiej w zakresie technologii
Bardziej szczegółowoTemat: Algorytmy zachłanne
Temat: Algorytmy zachłanne Algorytm zachłanny ( ang. greedy algorithm) wykonuje zawsze działanie, które wydaje się w danej chwili najkorzystniejsze. Wybiera zatem lokalnie optymalną możliwość w nadziei,
Bardziej szczegółowoWstęp do programowania
Wstęp do programowania Algorytmy zachłanne, algoritme Dijkstry Paweł Daniluk Wydział Fizyki Jesień 2013 P. Daniluk(Wydział Fizyki) WP w. XI Jesień 2013 1 / 25 Algorytmy zachłanne Strategia polegająca na
Bardziej szczegółowoAlgorytmy zachłanne. dr inż. Urszula Gałązka
Algorytmy zachłanne dr inż. Urszula Gałązka Algorytm zachłanny O Dokonuje wyboru, który w danej chwili wydaje się najkorzystniejszy. O Mówimy, że jest to wybór lokalnie optymalny O W rzeczywistości nie
Bardziej szczegółowoStrategia "dziel i zwyciężaj"
Strategia "dziel i zwyciężaj" W tej metodzie problem dzielony jest na kilka mniejszych podproblemów podobnych do początkowego problemu. Problemy te rozwiązywane są rekurencyjnie, a następnie rozwiązania
Bardziej szczegółowoStruktury danych i złożoność obliczeniowa Wykład 2. Prof. dr hab. inż. Jan Magott
Struktury danych i złożoność obliczeniowa Wykład 2. Prof. dr hab. inż. Jan Magott Metody konstrukcji algorytmów: Siłowa (ang. brute force), Dziel i zwyciężaj (ang. divide-and-conquer), Zachłanna (ang.
Bardziej szczegółowoDefinicja. Ciąg wejściowy: Funkcja uporządkowująca: Sortowanie polega na: a 1, a 2,, a n-1, a n. f(a 1 ) f(a 2 ) f(a n )
SORTOWANIE 1 SORTOWANIE Proces ustawiania zbioru elementów w określonym porządku. Stosuje się w celu ułatwienia późniejszego wyszukiwania elementów sortowanego zbioru. 2 Definicja Ciąg wejściowy: a 1,
Bardziej szczegółowoEGZAMIN - Wersja A. ALGORYTMY I STRUKTURY DANYCH Lisek89 opracowanie kartki od Pani dr E. Koszelew
1. ( pkt) Dany jest algorytm, który dla dowolnej liczby naturalnej n, powinien wyznaczyd sumę kolejnych liczb naturalnych mniejszych od n. Wynik algorytmu jest zapisany w zmiennej suma. Algorytm i=1; suma=0;
Bardziej szczegółowoAlgorytmy Grafowe. dr hab. Bożena Woźna-Szcześniak, prof. UJD. Wykład 5 i 6. Uniwersytet Humanistyczno-Przyrodniczy im. Jana Długosza w Częstochowie
Algorytmy Grafowe dr hab. Bożena Woźna-Szcześniak, prof. UJD Uniwersytet Humanistyczno-Przyrodniczy im. Jana Długosza w Częstochowie b.wozna@ujd.edu.pl Wykład 5 i 6 B. Woźna-Szcześniak (UJD) Algorytmy
Bardziej szczegółowoTechniki konstruowania algorytmów. Metoda dziel i zwyciężaj
Techniki konstruowania algorytmów Metoda dziel i zwyciężaj Technika dziel i zwyciężaj Aby rozwiązać problem techniką dziel i zwyciężaj musi on wykazywać własność podstruktury rozwiązanie problemu można
Bardziej szczegółowoWykład 3. Metoda dziel i zwyciężaj
Wykład 3 Metoda dziel i zwyciężaj 1 Wprowadzenie Technika konstrukcji algorytmów dziel i zwyciężaj. przykładowe problemy: Wypełnianie planszy Poszukiwanie (binarne) Sortowanie (sortowanie przez łączenie
Bardziej szczegółowoWstęp do Programowania potok funkcyjny
Wstęp do Programowania potok funkcyjny Marcin Kubica 22/23 Outline Programowanie zachłanne Programowanie zachłanne Rodzaje kodów Programowanie zachłanne Kody stałej długości (np. ASCII). Kody zmiennej
Bardziej szczegółowoWstęp do programowania
Wstęp do programowania Algorytmy zachłanne, programowanie dynamiczne Paweł Daniluk Wydział Fizyki Jesień 2014 P. Daniluk(Wydział Fizyki) WP w. IX Jesień 2014 1 / 26 Algorytmy zachłanne Strategia polegająca
Bardziej szczegółowoProgramowanie dynamiczne cz. 2
Programowanie dynamiczne cz. 2 Wykład 7 16 kwietnia 2019 (Wykład 7) Programowanie dynamiczne cz. 2 16 kwietnia 2019 1 / 19 Outline 1 Mnożenie ciągu macierzy Konstruowanie optymalnego rozwiązania 2 Podstawy
Bardziej szczegółowoWstęp do programowania
Wstęp do programowania Rekurencja, metoda dziel i zwyciężaj Paweł Daniluk Wydział Fizyki Jesień 2014 P. Daniluk(Wydział Fizyki) WP w. VIII Jesień 2014 1 / 27 Rekurencja Recursion See Recursion. P. Daniluk(Wydział
Bardziej szczegółowoTEORETYCZNE PODSTAWY INFORMATYKI
1 TEORETYCZNE PODSTAWY INFORMATYKI WFAiS UJ, Informatyka Stosowana I rok studiów, I stopień Wykład 2 2 Problemy algorytmiczne Klasy problemów algorytmicznych Liczby Fibonacciego Przeszukiwanie tablic Największy
Bardziej szczegółowoZaawansowane algorytmy i struktury danych
Zaawansowane algorytmy i struktury danych u dr Barbary Marszał-Paszek Opracowanie pytań teoretycznych z egzaminów. Strona 1 z 12 Pytania teoretyczne z egzaminu pisemnego z 25 czerwca 2014 (studia dzienne)
Bardziej szczegółowoZASADY PROGRAMOWANIA KOMPUTERÓW ZAP zima 2014/2015. Drzewa BST c.d., równoważenie drzew, kopce.
POLITECHNIKA WARSZAWSKA Instytut Automatyki i Robotyki ZASADY PROGRAMOWANIA KOMPUTERÓW ZAP zima 204/205 Język programowania: Środowisko programistyczne: C/C++ Qt Wykład 2 : Drzewa BST c.d., równoważenie
Bardziej szczegółowoINFORMATYKA WYBRANE ALGORYTMY OPTYMALIZACYJNE KRYPTOLOGIA.
INFORMATYKA WYBRANE ALGORYTMY OPTYMALIZACYJNE KRYPTOLOGIA http://www.infoceram.agh.edu.pl Klasy metod algorytmicznych Metoda TOP-DOWN (zstępująca, analityczna) Metoda BOTTOM-UP (wstępująca, syntetyczna)
Bardziej szczegółowoPodstawowe algorytmy i ich implementacje w C. Wykład 9
Wstęp do programowania 1 Podstawowe algorytmy i ich implementacje w C Bożena Woźna-Szcześniak bwozna@gmail.com Jan Długosz University, Poland Wykład 9 Element minimalny i maksymalny zbioru Element minimalny
Bardziej szczegółowoSortowanie danych. Jolanta Bachan. Podstawy programowania
Sortowanie danych Podstawy programowania 2013-06-06 Sortowanie przez wybieranie 9 9 9 9 9 9 10 7 7 7 7 7 10 9 1 3 3 4 10 7 7 10 10 10 10 4 4 4 4 4 4 3 3 3 3 2 2 2 2 2 2 2 3 1 1 1 1 1 1 Gurbiel et al. 2000
Bardziej szczegółowoAlgorytmy i str ruktury danych. Metody algorytmiczne. Bartman Jacek
Algorytmy i str ruktury danych Metody algorytmiczne Bartman Jacek jbartman@univ.rzeszow.pl Metody algorytmiczne - wprowadzenia Znamy strukturę algorytmów Trudność tkwi natomiast w podaniu metod służących
Bardziej szczegółowoWstęp do programowania INP001213Wcl rok akademicki 2017/18 semestr zimowy. Wykład 9. Karol Tarnowski A-1 p.
Wstęp do programowania INP001213Wcl rok akademicki 2017/18 semestr zimowy Wykład 9 Karol Tarnowski karol.tarnowski@pwr.edu.pl A-1 p. 411B Plan prezentacji Zasada dziel i zwyciężaj Przykłady znajdowanie
Bardziej szczegółowoKODY SYMBOLI. Kod Shannona-Fano. Algorytm S-F. Przykład S-F
KODY SYMBOLI Kod Shannona-Fano KODOWANIE DANYCH, A.Przelaskowski Metoda S-F Kod Huffmana Adaptacyjne drzewo Huffmana Problemy implementacji Kod Golomba Podsumowanie Kod drzewa binarnego Na wejściu rozkład:
Bardziej szczegółowoAlgorytmy i Struktury Danych
Algorytmy i Struktury Danych Kopce Bożena Woźna-Szcześniak bwozna@gmail.com Jan Długosz University, Poland Wykład 11 Bożena Woźna-Szcześniak (AJD) Algorytmy i Struktury Danych Wykład 11 1 / 69 Plan wykładu
Bardziej szczegółowoTemat: Technika zachłanna. Przykłady zastosowania. Własno wyboru zachłannego i optymalnej podstruktury.
Temat: Technika zachłanna. Przykłady zastosowania. Własno wyboru zachłannego i optymalnej podstruktury. Algorytm zachłanny ( ang. greedy algorithm) wykonuje zawsze działanie, które wydaje si w danej chwili
Bardziej szczegółowoPROBLEM: SORTOWANIE PRZEZ ODWRÓCENIA METODA: ALGORYTMY ZACHŁANNE
D: PROBLEM: SORTOWANIE PRZEZ ODWRÓCENIA METODA: ALGORYTMY ZACHŁANNE I. Strategia zachłanna II. Problem przetasowań w genomie III. Sortowanie przez odwrócenia IV. Algorytmy przybliżone V. Algorytm zachłanny
Bardziej szczegółowoSortowanie przez scalanie
Sortowanie przez scalanie Wykład 2 12 marca 2019 (Wykład 2) Sortowanie przez scalanie 12 marca 2019 1 / 17 Outline 1 Metoda dziel i zwyciężaj 2 Scalanie Niezmiennik pętli - poprawność algorytmu 3 Sortowanie
Bardziej szczegółowoAnaliza algorytmów zadania podstawowe
Analiza algorytmów zadania podstawowe Zadanie 1 Zliczanie Zliczaj(n) 1 r 0 2 for i 1 to n 1 3 do for j i + 1 to n 4 do for k 1 to j 5 do r r + 1 6 return r 0 Jaka wartość zostanie zwrócona przez powyższą
Bardziej szczegółowoAlgorytmy Równoległe i Rozproszone Część V - Model PRAM II
Algorytmy Równoległe i Rozproszone Część V - Model PRAM II Łukasz Kuszner pokój 209, WETI http://www.sphere.pl/ kuszner/ kuszner@sphere.pl Oficjalna strona wykładu http://www.sphere.pl/ kuszner/arir/ 2005/06
Bardziej szczegółowoNierówność Krafta-McMillana, Kodowanie Huffmana
Nierówność Krafta-McMillana, Kodowanie Huffmana Kodowanie i kompresja informacji - Wykład 2 1 marca 2010 Test na jednoznaczna dekodowalność Kod a jest prefiksem kodu b jeśli b jest postaci ax. x nazywamy
Bardziej szczegółowoAlgorytmy sortujące i wyszukujące
Algorytmy sortujące i wyszukujące Zadaniem algorytmów sortujących jest ułożenie elementów danego zbioru w ściśle określonej kolejności. Najczęściej wykorzystywany jest porządek numeryczny lub leksykograficzny.
Bardziej szczegółowoProgramowanie dynamiczne
Programowanie dynamiczne Patryk Żywica 5 maja 2008 1 Spis treści 1 Problem wydawania reszty 3 1.1 Sformułowanie problemu...................... 3 1.2 Algorytm.............................. 3 1.2.1 Prosty
Bardziej szczegółowoProgramowanie w VB Proste algorytmy sortowania
Programowanie w VB Proste algorytmy sortowania Sortowanie bąbelkowe Algorytm sortowania bąbelkowego polega na porównywaniu par elementów leżących obok siebie i, jeśli jest to potrzebne, zmienianiu ich
Bardziej szczegółowoPodejście zachłanne, a programowanie dynamiczne
Podejście zachłanne, a programowanie dynamiczne Algorytm zachłanny pobiera po kolei elementy danych, za każdym razem wybierając taki, który wydaje się najlepszy w zakresie spełniania pewnych kryteriów
Bardziej szczegółowoKompresja bezstratna. Entropia. Kod Huffmana
Kompresja bezstratna. Entropia. Kod Huffmana Kodowanie i bezpieczeństwo informacji - Wykład 10 29 kwietnia 2013 Teoria informacji Jeśli P(A) jest prawdopodobieństwem wystapienia informacji A to niech i(a)
Bardziej szczegółowoSortowanie. Bartman Jacek Algorytmy i struktury
Sortowanie Bartman Jacek jbartman@univ.rzeszow.pl Algorytmy i struktury danych Sortowanie przez proste wstawianie przykład 41 56 17 39 88 24 03 72 41 56 17 39 88 24 03 72 17 41 56 39 88 24 03 72 17 39
Bardziej szczegółowoZadanie 1 Przygotuj algorytm programu - sortowanie przez wstawianie.
Sortowanie Dane wejściowe: ciąg n-liczb (kluczy) (a 1, a 2, a 3,..., a n 1, a n ) Dane wyjściowe: permutacja ciągu wejściowego (a 1, a 2, a 3,..., a n 1, a n) taka, że a 1 a 2 a 3... a n 1 a n. Będziemy
Bardziej szczegółowoKompresja danych Streszczenie Studia Dzienne Wykład 10,
1 Kwantyzacja wektorowa Kompresja danych Streszczenie Studia Dzienne Wykład 10, 28.04.2006 Kwantyzacja wektorowa: dane dzielone na bloki (wektory), każdy blok kwantyzowany jako jeden element danych. Ogólny
Bardziej szczegółowoAlgorytmy i Struktury Danych
POLITECHNIKA KRAKOWSKA - WIEiK KATEDRA AUTOMATYKI i TECHNIK INFORMACYJNYCH Algorytmy i Struktury Danych www.pk.edu.pl/~zk/aisd_hp.html Wykładowca: dr inż. Zbigniew Kokosiński zk@pk.edu.pl Wykład 9: Programowanie
Bardziej szczegółowoNiech x 1,..., x n będzie ciągiem zdarzeń. ---
Matematyczne podstawy kryptografii, Ćw2 TEMAT 7: Teoria Shannona. Kody Huffmana, entropia. BIBLIOGRAFIA: [] Cz. Bagiński, cez.wipb.pl, [2] T. H. Cormen, C. E. Leiserson, R. L Rivest, Wprowadzenie do algorytmów,
Bardziej szczegółowoALGORYTMY I STRUKTURY DANYCH
LGORTM I STRUKTUR DNH Temat 6: Drzewa ST, VL Wykładowca: dr inż. bigniew TRPT e-mail: bigniew.tarapata@isi.wat.edu.pl http://www.tarapata.strefa.pl/p_algorytmy_i_struktury_danych/ Współautorami wykładu
Bardziej szczegółowoSortowanie. LABORKA Piotr Ciskowski
Sortowanie LABORKA Piotr Ciskowski main Zaimplementuj metody sortowania przedstawione w następnych zadaniach Dla każdej metody osobna funkcja Nagłówek funkcji wg uznania ale wszystkie razem powinny być
Bardziej szczegółowoPodstawy programowania 2. Temat: Drzewa binarne. Przygotował: mgr inż. Tomasz Michno
Instrukcja laboratoryjna 5 Podstawy programowania 2 Temat: Drzewa binarne Przygotował: mgr inż. Tomasz Michno 1 Wstęp teoretyczny Drzewa są jedną z częściej wykorzystywanych struktur danych. Reprezentują
Bardziej szczegółowoSortowanie bąbelkowe
1/98 Sortowanie bąbelkowe (Bubble sort) prosty i nieefektywny algorytm sortowania wielokrotnie przeglądamy listę elementów, porównując dwa sąsiadujące i zamieniając je miejscami, jeśli znajdują się w złym
Bardziej szczegółowoLiteratura. 1) Pojęcia: złożoność czasowa, rząd funkcji. Aby wyznaczyć pesymistyczną złożoność czasową algorytmu należy:
Temat: Powtórzenie wiadomości z PODSTAW INFORMATYKI I: Pojęcia: złożoność czasowa algorytmu, rząd funkcji kosztu. Algorytmy. Metody programistyczne. Struktury danych. Literatura. A. V. Aho, J.E. Hopcroft,
Bardziej szczegółowoRekurencja. Dla rozwiązania danego problemu, algorytm wywołuje sam siebie przy rozwiązywaniu podobnych podproblemów. Przykład: silnia: n! = n(n-1)!
Rekurencja Dla rozwiązania danego problemu, algorytm wywołuje sam siebie przy rozwiązywaniu podobnych podproblemów. Przykład: silnia: n! = n(n-1)! Pseudokod: silnia(n): jeżeli n == 0 silnia = 1 w przeciwnym
Bardziej szczegółowoProgramowanie proceduralne INP001210WL rok akademicki 2017/18 semestr letni. Wykład 3. Karol Tarnowski A-1 p.
Programowanie proceduralne INP001210WL rok akademicki 2017/18 semestr letni Wykład 3 Karol Tarnowski karol.tarnowski@pwr.edu.pl A-1 p. 411B Plan prezentacji (1) Co to jest algorytm? Zapis algorytmów Algorytmy
Bardziej szczegółowo0-0000, 1-0001, 2-0010, 3-0011 itd... 9-1001.
KODOWANIE Jednym z problemów, z którymi spotykamy się w informatyce, jest problem właściwego wykorzystania pamięci. Konstruując algorytm staramy się zwykle nie tylko o zminimalizowanie kosztów czasowych
Bardziej szczegółowoZłożoność obliczeniowa zadania, zestaw 2
Złożoność obliczeniowa zadania, zestaw 2 Określanie złożoności obliczeniowej algorytmów, obliczanie pesymistycznej i oczekiwanej złożoności obliczeniowej 1. Dana jest tablica jednowymiarowa A o rozmiarze
Bardziej szczegółowoProjektowanie i analiza algorytmów
POLITECHNIKA KRAKOWSKA - WIEiK KATEDRA AUTOMATYKI i TECHNIK INFORMACYJNYCH Projektowanie i analiza algorytmów www.pk.edu.pl/~zk/piaa_hp.html Wykładowca: dr inż. Zbigniew Kokosiński zk@pk.edu.pl Wykład
Bardziej szczegółowoAlgorytmy i Struktury Danych.
Algorytmy i Struktury Danych. Metoda Dziel i zwyciężaj. Problem Sortowania, cd. Bożena Woźna-Szcześniak bwozna@gmail.com Jan Długosz University, Poland Wykład 2 Bożena Woźna-Szcześniak (AJD) Algorytmy
Bardziej szczegółowoWstęp do programowania
Wieczorowe Studia Licencjackie Wrocław, 28.11.2006 Wstęp do programowania Wykład nr 9 (w oparciu o notatki K. Lorysia z modyfikacjami) Sortowanie szybkie (Quicksort) Sortowanie przez scalanie opierało
Bardziej szczegółowoPodstawy algorytmiki i programowania - wykład 6 Sortowanie- algorytmy
1 Podstawy algorytmiki i programowania - wykład 6 Sortowanie- algorytmy Treści prezentowane w wykładzie zostały oparte o: S. Prata, Język C++. Szkoła programowania. Wydanie VI, Helion, 2012 www.cplusplus.com
Bardziej szczegółowoKompresja danych kodowanie Huffmana. Dariusz Sobczuk
Kompresja danych kodowanie Huffmana Dariusz Sobczuk Plan wykładu Kodowanie metodą Shannona-Fano Kodowanie metodą Huffmana Elementarny kod Golomba Kod Golomba Kod Rice a kompresja danych 2 Efektywny kod
Bardziej szczegółowoAlgorytmy równoległe. Rafał Walkowiak Politechnika Poznańska Studia inżynierskie Informatyka 2010
Algorytmy równoległe Rafał Walkowiak Politechnika Poznańska Studia inżynierskie Informatyka Znajdowanie maksimum w zbiorze n liczb węzły - maksimum liczb głębokość = 3 praca = 4++ = 7 (operacji) n - liczność
Bardziej szczegółowoLuty 2001 Algorytmy (4) 2000/2001
Mając dany zbiór elementów, chcemy znaleźć w nim element największy (maksimum), bądź najmniejszy (minimum). We wszystkich naturalnych metodach znajdywania najmniejszego i największego elementu obecne jest
Bardziej szczegółowoAlgorytmy i Struktury Danych, 2. ćwiczenia
Algorytmy i Struktury Danych, 2. ćwiczenia 2017-10-13 Spis treści 1 Optymalne sortowanie 5 ciu elementów 1 2 Sortowanie metodą Shella 2 3 Przesunięcie cykliczne tablicy 3 4 Scalanie w miejscu dla ciągów
Bardziej szczegółowoZłożoność obliczeniowa algorytmu ilość zasobów komputera jakiej potrzebuje dany algorytm. Pojęcie to
Złożoność obliczeniowa algorytmu ilość zasobów komputera jakiej potrzebuje dany algorytm. Pojęcie to wprowadzili J. Hartmanis i R. Stearns. Najczęściej przez zasób rozumie się czas oraz pamięć dlatego
Bardziej szczegółowoAlgorytmy i Struktury Danych, 2. ćwiczenia
Algorytmy i Struktury Danych, 2. ćwiczenia 2015-10-09 Spis treści 1 Szybkie potęgowanie 1 2 Liczby Fibonacciego 2 3 Dowód, że n 1 porównań jest potrzebne do znajdowania minimum 2 4 Optymalny algorytm do
Bardziej szczegółowoStruktury danych i złożoność obliczeniowa Wykład 5. Prof. dr hab. inż. Jan Magott
Struktury danych i złożoność obliczeniowa Wykład. Prof. dr hab. inż. Jan Magott Algorytmy grafowe: podstawowe pojęcia, reprezentacja grafów, metody przeszukiwania, minimalne drzewa rozpinające, problemy
Bardziej szczegółowoWstęp Statyczne kody Huffmana Dynamiczne kody Huffmana Praktyka. Kodowanie Huffmana. Dawid Duda. 4 marca 2004
4 marca 2004 Podstawowe oznaczenia i definicje Wymagania wobec kodu Podstawowa idea Podsumowanie Podstawowe oznaczenia i definicje Podstawowe oznaczenia i definicje: alfabet wejściowy: A = {a 1, a 2,...,
Bardziej szczegółowoPodstawy Informatyki. Sprawność algorytmów
Podstawy Informatyki Sprawność algorytmów Sprawność algorytmów Kryteria oceny oszczędności Miara złożoności rozmiaru pamięci (złożoność pamięciowa): Liczba zmiennych + liczba i rozmiar struktur danych
Bardziej szczegółowoTemat 7. Najlżejsze i najcięższe algorytmy sortowania
Temat 7 Najlżejsze i najcięższe algorytmy sortowania Streszczenie Komputery są często używane porządkowania różnych danych, na przykład nazwisk (w porządku alfabetycznym), terminów spotkań lub e-maili
Bardziej szczegółowoĆwiczenie 3 Programowanie dynamiczne
Ćwiczenie 3 Programowanie dynamiczne [źródło: Wprowadzenie do algorytmów, T.H. Cormen, Ch.E. Leiserson, R.L.Rivest, Wyd. Naukowo-Techniczne Warszawa, 2001; ZłoŜoność obliczeniowa problemów kombinatorycznych,
Bardziej szczegółowoDrzewa binarne. Drzewo binarne to dowolny obiekt powstały zgodnie z regułami: jest drzewem binarnym Jeśli T 0. jest drzewem binarnym Np.
Drzewa binarne Drzewo binarne to dowolny obiekt powstały zgodnie z regułami: jest drzewem binarnym Jeśli T 0 i T 1 są drzewami binarnymi to T 0 T 1 jest drzewem binarnym Np. ( ) ( ( )) Wielkość drzewa
Bardziej szczegółowoKody Huffmana. Konrad Wypyski. 11 lutego 2006 roku
Kody Huffmana Konrad Wypyski 11 lutego 2006 roku Spis treści 1 Rozdział 1 Kody Huffmana Kody Huffmana (ang. Huffman coding) to jedna z najprostszych i najłatwiejszych w implementacji metod kompresji bezstratnej;
Bardziej szczegółowoJeszcze o algorytmach
Jeszcze o algorytmach Przykłady różnych, podstawowych algorytmów 11.01.2018 M. Rad Plan Powtórka Znajdowanie najmniejszego elementu Segregowanie Poszukiwanie przez połowienie Wstawianie Inne algorytmy
Bardziej szczegółowoStruktury Danych i Złożoność Obliczeniowa
Struktury Danych i Złożoność Obliczeniowa Zajęcia 3 Struktury drzewiaste drzewo binarne szczególny przypadek drzewa, które jest szczególnym przypadkiem grafu skierowanego, stopień każdego wierzchołka jest
Bardziej szczegółowoAlgorytmy równoległe: prezentacja i ocena efektywności prostych algorytmów dla systemów równoległych
Algorytmy równoległe: prezentacja i ocena efektywności prostych algorytmów dla systemów równoległych Rafał Walkowiak Politechnika Poznańska Studia inżynierskie Informatyka 2018/19 Problem: znajdowanie
Bardziej szczegółowoZaawansowane algorytmy i struktury danych
Zaawansowane algorytmy i struktury danych u dr Barbary Marszał-Paszek Opracowanie pytań praktycznych z egzaminów. Strona 1 z 12 Pytania praktyczne z kolokwium zaliczeniowego z 19 czerwca 2014 (studia dzienne)
Bardziej szczegółowoKody Tunstalla. Kodowanie arytmetyczne
Kody Tunstalla. Kodowanie arytmetyczne Kodowanie i kompresja informacji - Wykład 3 8 marca 2010 Kody Tunstalla Wszystkie słowa kodowe maja ta sama długość ale jeden kod może kodować różna liczbę liter
Bardziej szczegółowoDrzewa BST i AVL. Drzewa poszukiwań binarnych (BST)
Drzewa ST i VL Drzewa poszukiwań binarnych (ST) Drzewo ST to dynamiczna struktura danych (w formie drzewa binarnego), która ma tą właściwość, że dla każdego elementu wszystkie elementy w jego prawym poddrzewie
Bardziej szczegółowo2 Arytmetyka. d r 2 r + d r 1 2 r 1...d d 0 2 0,
2 Arytmetyka Niech b = d r d r 1 d 1 d 0 będzie zapisem liczby w systemie dwójkowym Zamiana zapisu liczby b na system dziesiętny odbywa się poprzez wykonanie dodawania d r 2 r + d r 1 2 r 1 d 1 2 1 + d
Bardziej szczegółowoTeoretyczne podstawy informatyki
Teoretyczne podstawy informatyki Wykład 4a: Rozwiązywanie rekurencji http://kiwi.if.uj.edu.pl/~erichter/dydaktyka2010/tpi-2010 Prof. dr hab. Elżbieta Richter-Wąs 1 Czas działania programu Dla konkretnych
Bardziej szczegółowoAlgorytmy i struktury danych.
Algorytmy i struktury danych. Wykład 4 Krzysztof M. Ocetkiewicz Krzysztof.Ocetkiewicz@eti.pg.gda.pl Katedra Algorytmów i Modelowania Systemów, WETI, PG Problem plecakowy mamy plecak o określonej pojemności
Bardziej szczegółowoALGORYTMY I STRUKTURY DANYCH
ALGORYTMY I STRUKTURY DANYCH Temat : Drzewa zrównoważone, sortowanie drzewiaste Wykładowca: dr inż. Zbigniew TARAPATA e-mail: Zbigniew.Tarapata@isi.wat.edu.pl http://www.tarapata.strefa.pl/p_algorytmy_i_struktury_danych/
Bardziej szczegółowoZofia Kruczkiewicz, Algorytmu i struktury danych, Wykład 14, 1
Wykład Algorytmy grafowe metoda zachłanna. Właściwości algorytmu zachłannego:. W przeciwieństwie do metody programowania dynamicznego nie występuje etap dzielenia na mniejsze realizacje z wykorzystaniem
Bardziej szczegółowoWstęp do programowania. Dziel i rządź. Piotr Chrząstowski-Wachtel
Wstęp do programowania Dziel i rządź Piotr Chrząstowski-Wachtel Divide et impera Starożytni Rzymianie znali tę zasadę Łatwiej się rządzi, jeśli poddani są podzieleni Nie chodziło im jednak bynajmniej o
Bardziej szczegółowoAlgorytmy i. Wykład 5: Drzewa. Dr inż. Paweł Kasprowski
Algorytmy i struktury danych Wykład 5: Drzewa Dr inż. Paweł Kasprowski pawel@kasprowski.pl Drzewa Struktury przechowywania danych podobne do list ale z innymi zasadami wskazywania następników Szczególny
Bardziej szczegółowoEgzamin, AISDI, I termin, 18 czerwca 2015 r.
Egzamin, AISDI, I termin, 18 czerwca 2015 r. 1 W czasie niezależnym do danych wejściowych działają algorytmy A. sortowanie bąbelkowego i Shella B. sortowanie szybkiego i przez prosty wybór C. przez podział
Bardziej szczegółowoSylabus modułu: Matematyczne podstawy informatyki (kod modułu:03-mo2n-12-mpln)
Uniwersytet Śląski w Katowicach str. 1 Kierunek i poziom studiów: Matematyka, studia II stopnia, rok 1 Sylabus modułu: Matematyczne podstawy informatyki (kod modułu:03-mo2n-12-mpln) 1. Informacje ogólne
Bardziej szczegółowoDrzewa poszukiwań binarnych
1 Drzewa poszukiwań binarnych Kacper Pawłowski Streszczenie W tej pracy przedstawię zagadnienia związane z drzewami poszukiwań binarnych. Przytoczę poszczególne operacje na tej strukturze danych oraz ich
Bardziej szczegółowoDrzewa spinające MST dla grafów ważonych Maksymalne drzewo spinające Drzewo Steinera. Wykład 6. Drzewa cz. II
Wykład 6. Drzewa cz. II 1 / 65 drzewa spinające Drzewa spinające Zliczanie drzew spinających Drzewo T nazywamy drzewem rozpinającym (spinającym) (lub dendrytem) spójnego grafu G, jeżeli jest podgrafem
Bardziej szczegółowoAlgorytmy sortujące. sortowanie kubełkowe, sortowanie grzebieniowe
Algorytmy sortujące sortowanie kubełkowe, sortowanie grzebieniowe Sortowanie kubełkowe (bucket sort) Jest to jeden z najbardziej popularnych algorytmów sortowania. Został wynaleziony w 1956 r. przez E.J.
Bardziej szczegółowokoordynator modułu dr hab. Michał Baczyński rok akademicki 2012/2013
Uniwersytet Śląski w Katowicach str. 1 Kierunek i poziom studiów: Matematyka, studia II stopnia, rok 1 Sylabus modułu: Matematyczne podstawy informatyki (03-MO2S-12-MPIn) 1. Informacje ogólne koordynator
Bardziej szczegółowo1. Liczby i w zapisie zmiennoprzecinkowym przedstawia się następująco
1. Liczby 3456.0012 i 0.000076235 w zapisie zmiennoprzecinkowym przedstawia się następująco a) 0.34560012 10 4 i 0.76235 10 4 b) 3.4560012 10 3 i 7.6235 10 5 c) 3.4560012 10 3 i 7.6235 10 5 d) po prostu
Bardziej szczegółowoAlgorytmy kompresji. Kodowanie Huffmana, kodowanie arytmetyczne
Algorytmy kompresji Kodowanie Huffmana, kodowanie arytmetyczne Kodowanie arytmetyczne Peter Elias 1923-2001 Kodowanie arytmetyczne to metoda kodowania źródłowego dyskretnych źródeł sygnałów, stosowana
Bardziej szczegółowoWYKŁAD 9. Algorytmy sortowania elementów zbioru (tablic) Programy: c4_1.c... c4_3.c. Tomasz Zieliński
WYKŁAD 9 Algorytmy sortowania elementów zbioru (tablic) Programy: c4_1.c... c4_3.c Tomasz Zieliński /* Przyklad 4.1 - SORTOWANIE TABLIC - metoda najprostsza */ #include #define ROZMIAR 11 void
Bardziej szczegółowoInformacje wstępne #include <nazwa> - derektywa procesora umożliwiająca włączenie do programu pliku o podanej nazwie. Typy danych: char, signed char
Programowanie C++ Informacje wstępne #include - derektywa procesora umożliwiająca włączenie do programu pliku o podanej nazwie. Typy danych: char, signed char = -128 do 127, unsigned char = od
Bardziej szczegółowoREKURENCJA W JĘZYKU HASKELL. Autor: Walczak Michał
REKURENCJA W JĘZYKU HASKELL Autor: Walczak Michał CZYM JEST REKURENCJA? Rekurencja zwana rekursją, polega na wywołaniu przez funkcję samej siebie. Algorytmy rekurencyjne zastępują w pewnym sensie iteracje.
Bardziej szczegółowoDrzewo. Drzewo uporządkowane ma ponumerowanych (oznaczonych) następników. Drzewo uporządkowane składa się z węzłów, które zawierają następujące pola:
Drzewa Drzewa Drzewo (ang. tree) zbiór węzłów powiązanych wskaźnikami, spójny i bez cykli. Drzewo posiada wyróżniony węzeł początkowy nazywany korzeniem (ang. root). Drzewo ukorzenione jest strukturą hierarchiczną.
Bardziej szczegółowoTechnologie cyfrowe. Artur Kalinowski. Zakład Cząstek i Oddziaływań Fundamentalnych Pasteura 5, pokój 4.15
Technologie cyfrowe Artur Kalinowski Zakład Cząstek i Oddziaływań Fundamentalnych Pasteura 5, pokój 4.15 Artur.Kalinowski@fuw.edu.pl Semestr letni 2014/2015 Zadanie algorytmiczne: wyszukiwanie dane wejściowe:
Bardziej szczegółowoWstęp do programowania
Wstęp do programowania Algorytmy na tablicach Paweł Daniluk Wydział Fizyki Jesień 2013 P. Daniluk (Wydział Fizyki) WP w. III Jesień 2013 1 / 23 Dwadzieścia pytań Zasady 1 Osoba 1 wymyśla hasło z ustalonej
Bardziej szczegółowoStruktury Danych i Złożoność Obliczeniowa
Struktury Danych i Złożoność Obliczeniowa Zajęcia 2 Algorytmy wyszukiwania, sortowania i selekcji Sortowanie bąbelkowe Jedna z prostszych metod sortowania, sortowanie w miejscu? Sortowanie bąbelkowe Pierwsze
Bardziej szczegółowo[12] Metody projektowania algorytmów (dziel i rządź, programowanie dynamiczne i algorytmy zachłanne).
[12] Metody projektowania algorytmów (dziel i rządź, programowanie dynamiczne i algorytmy zachłanne). Tworzenie projektów informatycznych opiera się w dużej mierze na formułowaniu i implementacji algorytmów,
Bardziej szczegółowoWybrane algorytmy tablicowe
Wybrane algorytmy tablicowe Algorytmy i struktury danych Wykład 2. Rok akademicki: 2009/2010 Sortowanie przez wybieranie for (int i = 0; i < liczby.length - 1; i++) k = i; for (int j = i; j < liczby.length;
Bardziej szczegółowoRekurencja/rekursja. Iluzja istnienia wielu kopii tego samego algorytmu (aktywacji) Tylko jedna aktywacja jest aktywna w danej chwili
rekurencja 1 Rekurencja/rekursja Alternatywny dla pętli sposób powtarzania pewnych czynności; kolejny etap podzadanie poprzedniego Rekursja może być zamieniona na iteracje Cechy rekurencji Rozłożenie problemu
Bardziej szczegółowoAlgorytmy równoległe: ocena efektywności prostych algorytmów dla systemów wielokomputerowych
Algorytmy równoległe: ocena efektywności prostych algorytmów dla systemów wielokomputerowych Rafał Walkowiak Politechnika Poznańska Studia inżynierskie Informatyka 2014/15 Znajdowanie maksimum w zbiorze
Bardziej szczegółowo