Algorytmy równoległe. Rafał Walkowiak Politechnika Poznańska Studia inżynierskie Informatyka 2010

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "Algorytmy równoległe. Rafał Walkowiak Politechnika Poznańska Studia inżynierskie Informatyka 2010"

Transkrypt

1 Algorytmy równoległe Rafał Walkowiak Politechnika Poznańska Studia inżynierskie Informatyka

2 Znajdowanie maksimum w zbiorze n liczb węzły - maksimum liczb głębokość = 3 praca = 4++ = 7 (operacji) n - liczność zbioru W(n) = n- cykli f Ap (n) = O(log n) S p (n),e p (n) obliczenia w potoku Algorytmy równoległe

3 Znajdowanie maksimum w k zbiorach n liczb 3 k - krotne obliczenia w potoku n - liczność zbioru W(n) = k*(n-) f Ap (n) = O(k +log n) Algorytmy równoległe 3

4 Analiza efektywności - aglomeracja () Czy aglomeracja (połączenie zadań) jest możliwa bez spadku stopień równoległości? I II Zgrupowanie operacji realizowanych sekwencyjnie - możliwy przydział do jednego węzła przetwarzającego, mniej komunikacji, ten sam stopień równoległości. III I I I Przesłania poszczególnych etapów I II III II Algorytmy równoległe 4

5 Analiza efektywności - aglomeracja () Mniej przesłań między węzłami Niższa złożoność obliczeniowa Ta sama ilość pracy ( 7 porównań) Wzrost stopnia wierzchołka ( 3 do 5 ) Mniejsza liczba procesorów (4 zamiast 7) Algorytmy równoległe 5

6 Analiza efektywności -aglomeracja (3) wykres praca-czas Procesory A - 3*t por +7*t kom = (log n)t por +(log n+)t kom B - 3*t por +5*t kom = (log n)t por +(log n+)t kom Bez aglomeracji Po aglomeracji Algorytmy równoległe Czas 6

7 Sortowanie w łańcuchu procesorów Wejście: ciąg liczb (minimum jedna) zakończonych - Wyjście: posortowany ciąg zakończony - Kod dla wszystkich węzłów: pobierz a pobierz b while b > do { if a>b then wyślij b we pobierz b } wyślij a; wyślij b; else wyślij a; a:=b wy Algorytmy równoległe 7

8 Działanie algorytmu na wejście łańcucha podajemy kolejno wartości: 4,3,5,6,- krok I II III IV 4,3 t,p 4, 3 t 4,5 3 t,p 5 4,3 t,p 5,6 4 3 t,p 6 5,4 3 t,p 6,- 5 3,4 t,p - 6,5 4 3 t,p we 6,- 5,4 3 t,p - 6,5 3,4 t,p wy Algorytmy równoległe 8

9 Sortowanie liczb w łańcuchu wykres praca- czas t sortowanie na I czas t sortowanie na I-IV t 3 zbieranie wyników t = (n-)*t p +(n-)* t k n* t c t c = t p +t k t =t +(n-)*(t p +t k ) n*t c t 3 =(n+)*t c t +t 3 3n*t c f Am = 3n*t c = O(n) Algorytmy równoległe 9

10 Wyznaczanie sumy rozproszonych elementów - pierścień jednokierunkowy analogiczne do rozesłania N do N Węzeł centralny, całkowita liczba węzłów K Sekwencyjne sumowanie i przesyłanie sum częściowych do węzła centralnego; Rozsyłanie wyniku do wszystkich węzłów Liczba operacji praca: K- razy - dla każdego węzła oprócz węzła następnego po centralnym - odbiór komunikatu i sumowanie, K- razy dla każdego węzła oprócz węzła przed centralnym - wysłanie wyniku sumy RAZEM: (K-) * ( t kom + t sum ) + (K-) * t kom K t sum +K t kom Czas przetwarzania liczba kolejno realizowanych kroków algorytmu: Jak wyżej, gdyż wszystkie operacje realizowane sekwencyjnie. Uwagi : Liczba operacji sumowania równa minimalnej. Brak równoległości. Możliwość minimalizacji liczby przesłań w tej architekturze (uniknięcie rozsyłania wyniku) poprzez wyznaczanie sumy we wszystkich węzłach porównaj następny algorytm. Algorytmy równoległe

11 Wyznaczanie sumy rozproszonych elementów pierścień jednokierunkowy - komunikacja synchroniczna - analogiczne do rozesłania N do N (por. wykład komunikacja) a elementy sumowane; liczba_węzłów =n;n> k:=;s := a wyślij a; odbierz a s:= s + a while k < liczba_węzłów wyślij a; odbierz a; s:= s + a k:= k + Algorytmy równoległe

12 Wyznaczanie sumy rozproszonych elementów pierścień jednokierunkowy - komunikacja synchroniczna a elementy sumowane; liczba_węzłów =n;n> k:=;s := a wyślij a; odbierz b s:= s + b while k < liczba_węzłów wyślij a; odbierz b; s:= s + b k:= k + Algorytmy równoległe

13 Wyznaczanie sumy rozproszonych elementów pierścień jednokierunkowy - komunikacja synchroniczna a elementy sumowane; liczba_węzłów =n;n> k:=;s := a jeśli parzysty to odbierz b; wyślij a jeśli nieparzysty to wyślij a; odbierz b s:= s + b while k < liczba_węzłów jeśli parzysty to odbierz b; wyślij b;b:=b jeśli nieparzysty to wyślij b; odbierz b s:= s + b k:= k + Optymalizacja liczby przesłań kosztem nadmiarowych obliczeń (n sumowań, n (n) komunikacji - zamiast n sumowań, n komunikacji (zbieranie i wysyłanie) Algorytmy równoległe 3

14 Wyznaczanie sumy rozproszonych elementów pierścień () 4 3 Operacje węzła 3 (przechowuje wartość a). wyślij a;odbierz b; s = a+b;. wyślij b; odbierz b; s = s+b; 3. wyślij b;odbierz b; s = s +b; liczba węzłów n, liczba kroków przetwarzania n-, każdy krok przetwarzania to: nadanie, odbiór, sumowanie ilość pracy n*(n-) sumowań, n*(n-) przesłań zmniejszenie czasu przetwarzania do (n-)t s +(n-)t k Algorytmy równoległe 4

15 Wyznaczanie sumy rozproszonych elementów - podział węzeł - operacja dodawania łuk - operacja przesłania jednej liczby liczność zbioru n, W= 3*n, f Ap (n)= log n Algorytmy równoległe 5

16 Wyznaczanie sumy rozproszonych elementów - aglomeracja zadania-operacje realizowane sekwencyjnie połączone w jedno zadanie, minimalizacja komunikacji, wzrost lokalności danych Algorytmy równoległe 6

17 Wyznaczanie sumy rozproszonych elementów - aglomeracja 3 fazy wymiany wartości między parami zadań 3 fazy dodawania dodawanie wartości, wyznaczana lokalnie suma,4 lub 8 elementów Algorytmy równoległe 7

18 Wyznaczanie sumy rozproszonych elementów - struktura systemu Sumowanie danych rozproszonych w 6 węzłach log 6 = 4 kroki Algorytmy równoległe 8

19 Znajdowanie liczb pierwszych () Metody: dzielenie badanej liczby przez liczby pierwsze i badanie wartości reszty z dzielenia usuwanie ze zbioru badanych liczb liczb będących wielokrotnością liczb pierwszych Jakie liczby pierwsze uwzględniać dla badanej liczby (bądź górnego zakresu przedziału) n? Wystarczy znaleźć dla każdej liczby złożonej minimalny podzielnik: 35 5, 77 7,. Czy istnieje warunek ograniczający maksymalną wartość najmniejszego podzielnika liczby n? Algorytmy równoległe 9

20 Znajdowanie liczb pierwszych (3) Tak. Maksymalna wartość najmniejszego podzielnika liczby złożonej n wynosi n /. Aby znaleźć zatem liczby pierwsze x i <k,l> należy: usunąć liczby dzielące się bez reszty przez liczby pierwsze brane z przedziału <, x i / > lub usunąć liczby będące wielokrotnością liczb pierwszych z przedziału <, l / > Algorytmy równoległe

21 Sito Eratostenesa - podejście funkcjonalne do podziału,3,4,5,.., / /3 /5 /7,3,7,9,3,9,3,37,4,..., Pierwsza liczba odebrana przez każdy z procesów jest traktowana jako dzielnik i jako liczba pierwsza. Liczby dzielące się z resztą są przesyłane dalej. Wynik przetwarzania liczby pierwsze pojawiają się na wyjściu systemu oraz rezydują w procesach (należy je przesłać na wyjście). Liczba procesów niezbędbych dla zakresu <n,k> jest równa liczbie liczb pierwszych w zakresie od <, k / > k / /ln k Algorytmy równoległe

22 Wykreślanie z tablicy podejście domenowe do podziału Z badanego zbioru (tablicy) usuwamy wielokrotności (jakie?) liczb pierwszych z przedziału <,zakres górny / > Przykład dla zakresu : <,65> : 4,6,8, : 9,5,,7,33,39,45,5,57,63 5 : 5,35,55,65 7 : 49 nie jest konieczna do rozpoczęcia obliczeń znajomość wszystkich liczb-pierwszych z przedziału <,zakres górny / >; kolejno pojawiające się liczby pierwsze mogą być wykorzystane dopiero później, gdyż wyznaczanie wielokrotności mniejszych liczb pierwszych odbywa się dla całego badanego przedziału i zajmuje stosunkowo dużo czasu. Algorytmy równoległe

23 Znajdowanie składowych spójnych grafu wstęp Składowa spójna grafu G każdy największy (nie dający się powiększyć o dalsze krawędzie i wierzchołki) spójny, podgraf grafu G. Graf spójny zawiera co najmniej jedną drogę między dowolną parą tworzących go wierzchołków. Algorytm: Bada graf o n wierzchołkach, Wykorzystuje n - procesorów w strukturze drzewa binarnego; Graf jest reprezentowany przez macierz sąsiedztwa, Liść drzewa posiada wiersz macierzy odpowiadający przetwarzanemu wierzchołkowi i a[i,..n]. Po zakończeniu przetwarzania zmienna ss zawiera numer składowej do której należy wierzchołek, numer ten jest równy najmniejszemu spośród numerów wierzchołków należących do tej składowej. Super-wierzchołek graf spójny, dowolny podgraf, identyfikowany przez wierzchołek o najniższym numerze spośród należących do niego. Algorytmy równoległe 3

24 Znajdowanie składowych spójnych grafu - algorytm Dla każdego i węzła-liścia: ss[i] = i //należy do swojego sw W pętli po wierzchołkach j=..n : Dla każdego węzła-liścia: wybrany[i] = a[i,j] W korzeniu wyznacz: c=min {ss[i]:wybrany[i]=} Roześlij c do liści //wierzchołek i należy do sw c Dopóki istnieje i dla którego wybrany[i] = W korzeniu wybierz dowolne d = ss[i]: wybrany[i] = Roześlij d do liści W każdym z liści: Jeśli ss[i]= d to ss[i]=c i wybrany[i]= //propogacja do superwierzchołka c tych wierzchołków, które należą do superwierzchołków spójnych z wierzchołkiem i Algorytmy równoległe 4

25 Składowe spójne -rysunek / 3/ Stan po iteracjach 4/ / / 3/ 4/ / Stan po 3 iteracjach w 3 iteracji te wierzchołki, które należą do superwierzchołków i zostają przyporządkowane do superwierzchołka Algorytmy równoległe 5

26 Znajdowanie składowych spójnych grafu przykład obliczeniowy Macierz sąsiedztwa 4 3 Badany graf Wartości zmiennych w węzłach s składowa, w - wybrany i zmiennych globalnych c,d 5 s w s w s3 w3 s4 w4 s5 w5 c,d krok 3 4 5,, 3 4 5,4, ,, 3 5,3, 5,5,3, 3,, 3,, 3, Algorytmy równoległe 6

27 Znajdowanie składowych spójnych grafuomówienie W każdej iteracji j:. w wierszach 3-4 wyznaczamy (superwierzchołek) - NAJMNIEJSZY numer spośród numerów superwierchołków, do których należały dotychczas wierzchołki incydentne z wierzchołkiem j. w wierszach 7- każdemu wierzchołkowi, którego superwierzchołkiem jest wierzchołek incydentny z j zmieniamy jego superwierzchołek na wyznaczony w bieżącym kroku. Algorytmy równoległe 7

28 Znajdowanie składowych spójnych grafu - złożoność Każda iteracja pętli zewnętrznej wymaga czasu log n (wyznaczenie maksimum w drzewie), pętla ta jest powtarzana n razy. Pętla wewnętrzna może być powtórzona (globalnie) co najwyżej *n razy. Jej złożoność to koszt komunikacji między liściami a korzeniem. Dla każdego j jest realizowana jednokrotnie dla c=d gdyż jest tylko jedna wartość minimalna identyfikatorów superwierzchołków incydentnych w danej iteracji. Dla przypadku c<>d - łączenie superwierzchołków - może być realizowana globalnie co najwyżej n- razy. Tyle razy można powiększać superwierzchołki, na które składa się maksymalnie n elementów. Ostatecznie złożoność algorytmu wynosi O(n log n), gdyż liczba kroków o złożoności log n jest mniejsza od n. W przypadku algorytmu sekwencyjnego złożoność O(n+m) m-liczba krawędzi. Algorytmy równoległe 8

Algorytmy równoległe: ocena efektywności prostych algorytmów dla systemów wielokomputerowych

Algorytmy równoległe: ocena efektywności prostych algorytmów dla systemów wielokomputerowych Algorytmy równoległe: ocena efektywności prostych algorytmów dla systemów wielokomputerowych Rafał Walkowiak Politechnika Poznańska Studia inżynierskie Informatyka 2014/15 Znajdowanie maksimum w zbiorze

Bardziej szczegółowo

Algorytmy równoległe: ocena efektywności prostych algorytmów dla systemów wielokomputerowych

Algorytmy równoległe: ocena efektywności prostych algorytmów dla systemów wielokomputerowych Algorytmy równoległe: ocena efektywności prostych algorytmów dla systemów wielokomputerowych Rafał Walkowiak Politechnika Poznańska Studia inżynierskie Informatyka 2013/14 Znajdowanie maksimum w zbiorze

Bardziej szczegółowo

Sortowanie topologiczne skierowanych grafów acyklicznych

Sortowanie topologiczne skierowanych grafów acyklicznych Sortowanie topologiczne skierowanych grafów acyklicznych Metody boolowskie w informatyce Robert Sulkowski http://robert.brainusers.net 23 stycznia 2010 1 Definicja 1 (Cykl skierowany). Niech C = (V, A)

Bardziej szczegółowo

Zadanie 1 Przygotuj algorytm programu - sortowanie przez wstawianie.

Zadanie 1 Przygotuj algorytm programu - sortowanie przez wstawianie. Sortowanie Dane wejściowe: ciąg n-liczb (kluczy) (a 1, a 2, a 3,..., a n 1, a n ) Dane wyjściowe: permutacja ciągu wejściowego (a 1, a 2, a 3,..., a n 1, a n) taka, że a 1 a 2 a 3... a n 1 a n. Będziemy

Bardziej szczegółowo

Analiza algorytmów zadania podstawowe

Analiza algorytmów zadania podstawowe Analiza algorytmów zadania podstawowe Zadanie 1 Zliczanie Zliczaj(n) 1 r 0 2 for i 1 to n 1 3 do for j i + 1 to n 4 do for k 1 to j 5 do r r + 1 6 return r 0 Jaka wartość zostanie zwrócona przez powyższą

Bardziej szczegółowo

Plan wykładu. Przykład. Przykład 3/19/2011. Przykład zagadnienia transportowego. Optymalizacja w procesach biznesowych Wykład 2 DECYZJA?

Plan wykładu. Przykład. Przykład 3/19/2011. Przykład zagadnienia transportowego. Optymalizacja w procesach biznesowych Wykład 2 DECYZJA? /9/ Zagadnienie transportowe Optymalizacja w procesach biznesowych Wykład --9 Plan wykładu Przykład zagadnienia transportowego Sformułowanie problemu Własności zagadnienia transportowego Metoda potencjałów

Bardziej szczegółowo

Algorytmy i struktury danych. Co dziś? Tytułem przypomnienia metoda dziel i zwyciężaj. Wykład VIII Elementarne techniki algorytmiczne

Algorytmy i struktury danych. Co dziś? Tytułem przypomnienia metoda dziel i zwyciężaj. Wykład VIII Elementarne techniki algorytmiczne Algorytmy i struktury danych Wykład VIII Elementarne techniki algorytmiczne Co dziś? Algorytmy zachłanne (greedyalgorithms) 2 Tytułem przypomnienia metoda dziel i zwyciężaj. Problem można podzielić na

Bardziej szczegółowo

Algorytmy i Struktury Danych

Algorytmy i Struktury Danych Algorytmy i Struktury Danych Kopce Bożena Woźna-Szcześniak bwozna@gmail.com Jan Długosz University, Poland Wykład 11 Bożena Woźna-Szcześniak (AJD) Algorytmy i Struktury Danych Wykład 11 1 / 69 Plan wykładu

Bardziej szczegółowo

Matematyczne Podstawy Informatyki

Matematyczne Podstawy Informatyki Matematyczne Podstawy Informatyki dr inż. Andrzej Grosser Instytut Informatyki Teoretycznej i Stosowanej Politechnika Częstochowska Rok akademicki 2013/2014 Informacje podstawowe 1. Konsultacje: pokój

Bardziej szczegółowo

Projektowanie algorytmów równoległych. Zbigniew Koza Wrocław 2012

Projektowanie algorytmów równoległych. Zbigniew Koza Wrocław 2012 Projektowanie algorytmów równoległych Zbigniew Koza Wrocław 2012 Spis reści Zadniowo-kanałowy (task-channel) model algorytmów równoległych Projektowanie algorytmów równoległych metodą PACM Task-channel

Bardziej szczegółowo

Podstawowe algorytmy i ich implementacje w C. Wykład 9

Podstawowe algorytmy i ich implementacje w C. Wykład 9 Wstęp do programowania 1 Podstawowe algorytmy i ich implementacje w C Bożena Woźna-Szcześniak bwozna@gmail.com Jan Długosz University, Poland Wykład 9 Element minimalny i maksymalny zbioru Element minimalny

Bardziej szczegółowo

EGZAMIN MATURALNY Z INFORMATYKI. 10 maja 2017 POZIOM ROZSZERZONY. Godzina rozpoczęcia: 14:00 CZĘŚĆ I

EGZAMIN MATURALNY Z INFORMATYKI. 10 maja 2017 POZIOM ROZSZERZONY. Godzina rozpoczęcia: 14:00 CZĘŚĆ I Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 2013 KOD UZUPEŁNIA ZDAJĄCY PESEL miejsce na naklejkę EGZAMIN MATURALNY Z INFORMATYKI POZIOM ROZSZERZONY

Bardziej szczegółowo

Wykład 8. Drzewo rozpinające (minimum spanning tree)

Wykład 8. Drzewo rozpinające (minimum spanning tree) Wykład 8 Drzewo rozpinające (minimum spanning tree) 1 Minimalne drzewo rozpinające - przegląd Definicja problemu Własności minimalnych drzew rozpinających Algorytm Kruskala Algorytm Prima Literatura Cormen,

Bardziej szczegółowo

Wstęp do Informatyki zadania ze złożoności obliczeniowej z rozwiązaniami

Wstęp do Informatyki zadania ze złożoności obliczeniowej z rozwiązaniami Wstęp do Informatyki zadania ze złożoności obliczeniowej z rozwiązaniami Przykład 1. Napisz program, który dla podanej liczby n wypisze jej rozkład na czynniki pierwsze. Oblicz asymptotyczną złożoność

Bardziej szczegółowo

Zaawansowane algorytmy i struktury danych

Zaawansowane algorytmy i struktury danych Zaawansowane algorytmy i struktury danych u dr Barbary Marszał-Paszek Opracowanie pytań praktycznych z egzaminów. Strona 1 z 12 Pytania praktyczne z kolokwium zaliczeniowego z 19 czerwca 2014 (studia dzienne)

Bardziej szczegółowo

Podstawowe własności grafów. Wykład 3. Własności grafów

Podstawowe własności grafów. Wykład 3. Własności grafów Wykład 3. Własności grafów 1 / 87 Suma grafów Niech będą dane grafy proste G 1 = (V 1, E 1) oraz G 2 = (V 2, E 2). 2 / 87 Suma grafów Niech będą dane grafy proste G 1 = (V 1, E 1) oraz G 2 = (V 2, E 2).

Bardziej szczegółowo

Akademickie Mistrzostwa Polski w Programowaniu Zespołowym

Akademickie Mistrzostwa Polski w Programowaniu Zespołowym Akademickie Mistrzostwa Polski w Programowaniu Zespołowym Prezentacja rozwiązań zadań 30 października 2011 c h k f e j i a b d g Czy się zatrzyma? Autor zadania: Jakub Łącki Zgłoszenia: 104 z 914 (11%)

Bardziej szczegółowo

Reprezentacje grafów nieskierowanych Reprezentacje grafów skierowanych. Wykład 2. Reprezentacja komputerowa grafów

Reprezentacje grafów nieskierowanych Reprezentacje grafów skierowanych. Wykład 2. Reprezentacja komputerowa grafów Wykład 2. Reprezentacja komputerowa grafów 1 / 69 Macierz incydencji Niech graf G będzie grafem nieskierowanym bez pętli o n wierzchołkach (x 1, x 2,..., x n) i m krawędziach (e 1, e 2,..., e m). 2 / 69

Bardziej szczegółowo

Algorytmiczna teoria grafów

Algorytmiczna teoria grafów Przedmiot fakultatywny 20h wykładu + 20h ćwiczeń 21 lutego 2014 Zasady zaliczenia 1 ćwiczenia (ocena): kolokwium, zadania programistyczne (implementacje algorytmów), praca na ćwiczeniach. 2 Wykład (egzamin)

Bardziej szczegółowo

Zagadnienie transportowe

Zagadnienie transportowe 9//9 Zagadnienie transportowe Optymalizacja w procesach biznesowych Wykład Plan wykładu Przykład zagadnienia transportowego Sformułowanie problemu Własności zagadnienia transportowego Metoda potencjałów

Bardziej szczegółowo

Analiza efektywności przetwarzania współbieżnego

Analiza efektywności przetwarzania współbieżnego Analiza efektywności przetwarzania współbieżnego Wykład: Przetwarzanie Równoległe Politechnika Poznańska Rafał Walkowiak 1/4/2013 Analiza efektywności 1 Źródła kosztów przetwarzania współbieżnego interakcje

Bardziej szczegółowo

SPÓJNOŚĆ. ,...v k. }, E={v 1. v k. i v k. ,...,v k-1. }. Wierzchołki v 1. v 2. to końce ścieżki.

SPÓJNOŚĆ. ,...v k. }, E={v 1. v k. i v k. ,...,v k-1. }. Wierzchołki v 1. v 2. to końce ścieżki. SPÓJNOŚĆ Graf jest spójny, gdy dla każdego podziału V na dwa rozłączne podzbiory A i B istnieje krawędź z A do B. Definicja równoważna: Graf jest spójny, gdy każde dwa wierzchołki są połączone ścieżką

Bardziej szczegółowo

Podstawowe moduły układów cyfrowych układy sekwencyjne cz.2 Projektowanie automatów. Rafał Walkowiak Wersja /2015

Podstawowe moduły układów cyfrowych układy sekwencyjne cz.2 Projektowanie automatów. Rafał Walkowiak Wersja /2015 Podstawowe moduły układów cyfrowych układy sekwencyjne cz.2 Projektowanie automatów synchronicznych Rafał Walkowiak Wersja.2 24/25 UK Funkcje wzbudzeń UK Funkcje wzbudzeń Pamieć Pamieć UK Funkcje wyjściowe

Bardziej szczegółowo

Programowanie Równoległe i Rozproszone. Algorytm Kung a. Algorytm Kung a. Programowanie Równoległe i Rozproszone Wykład 8. Przygotował: Lucjan Stapp

Programowanie Równoległe i Rozproszone. Algorytm Kung a. Algorytm Kung a. Programowanie Równoległe i Rozproszone Wykład 8. Przygotował: Lucjan Stapp Programowanie Równoległe i Rozproszone Lucjan Stapp Wydział Matematyki i Nauk Informacyjnych Politechnika Warszawska (l.stapp@mini.pw.edu.pl) 1/34 PRiR Algorytm Kunga Dany jest odcinek [a,b] i ciągła funkcja

Bardziej szczegółowo

Wykład z Technologii Informacyjnych. Piotr Mika

Wykład z Technologii Informacyjnych. Piotr Mika Wykład z Technologii Informacyjnych Piotr Mika Uniwersalna forma graficznego zapisu algorytmów Schemat blokowy zbiór bloków, powiązanych ze sobą liniami zorientowanymi. Jest to rodzaj grafu, którego węzły

Bardziej szczegółowo

prowadzący dr ADRIAN HORZYK /~horzyk e-mail: horzyk@agh tel.: 012-617 Konsultacje paw. D-13/325

prowadzący dr ADRIAN HORZYK /~horzyk e-mail: horzyk@agh tel.: 012-617 Konsultacje paw. D-13/325 PODSTAWY INFORMATYKI WYKŁAD 8. prowadzący dr ADRIAN HORZYK http://home home.agh.edu.pl/~ /~horzyk e-mail: horzyk@agh agh.edu.pl tel.: 012-617 617-4319 Konsultacje paw. D-13/325 DRZEWA Drzewa to rodzaj

Bardziej szczegółowo

Matematyczne Podstawy Informatyki

Matematyczne Podstawy Informatyki Matematyczne Podstawy Informatyki dr inż. Andrzej Grosser Instytut Informatyki Teoretycznej i Stosowanej Politechnika Częstochowska Rok akademicki 2013/2014 Twierdzenie 2.1 Niech G będzie grafem prostym

Bardziej szczegółowo

KODY SYMBOLI. Kod Shannona-Fano. Algorytm S-F. Przykład S-F

KODY SYMBOLI. Kod Shannona-Fano. Algorytm S-F. Przykład S-F KODY SYMBOLI Kod Shannona-Fano KODOWANIE DANYCH, A.Przelaskowski Metoda S-F Kod Huffmana Adaptacyjne drzewo Huffmana Problemy implementacji Kod Golomba Podsumowanie Kod drzewa binarnego Na wejściu rozkład:

Bardziej szczegółowo

0-0000, 1-0001, 2-0010, 3-0011 itd... 9-1001.

0-0000, 1-0001, 2-0010, 3-0011 itd... 9-1001. KODOWANIE Jednym z problemów, z którymi spotykamy się w informatyce, jest problem właściwego wykorzystania pamięci. Konstruując algorytm staramy się zwykle nie tylko o zminimalizowanie kosztów czasowych

Bardziej szczegółowo

Dynamiczny przydział pamięci w języku C. Dynamiczne struktury danych. dr inż. Jarosław Forenc. Metoda 1 (wektor N M-elementowy)

Dynamiczny przydział pamięci w języku C. Dynamiczne struktury danych. dr inż. Jarosław Forenc. Metoda 1 (wektor N M-elementowy) Rok akademicki 2012/2013, Wykład nr 2 2/25 Plan wykładu nr 2 Informatyka 2 Politechnika Białostocka - Wydział Elektryczny Elektrotechnika, semestr III, studia niestacjonarne I stopnia Rok akademicki 2012/2013

Bardziej szczegółowo

ANALIZA EFEKTYWNOŚCI MNOŻENIA MACIERZY W SYSTEMACH Z PAMIĘCIĄ WSPÓŁDZIELONĄ

ANALIZA EFEKTYWNOŚCI MNOŻENIA MACIERZY W SYSTEMACH Z PAMIĘCIĄ WSPÓŁDZIELONĄ ANALIZA EFEKTYWNOŚCI MNOŻENIA MACIERZY W SYSTEMACH Z PAMIĘCIĄ WSPÓŁDZIELONĄ 1 Mnożenie macierzy dostęp do pamięci podręcznej [język C, kolejność - j,i,k][1] A,B,C są tablicami nxn for (int j = 0 ; j

Bardziej szczegółowo

PODSTAWY INFORMATYKI wykład 10.

PODSTAWY INFORMATYKI wykład 10. PODSTAWY INFORMATYKI wykład 10. Adrian Horzyk Web: http://home.agh.edu.pl/~horzyk/ E-mail: horzyk@agh.edu.pl Google: Adrian Horzyk Gabinet: paw. D13 p. 325 Akademia Górniczo-Hutniacza w Krakowie WEAIiE,

Bardziej szczegółowo

Wstęp do informatyki. Maszyna RAM. Schemat logiczny komputera. Maszyna RAM. RAM: szczegóły. Realizacja algorytmu przez komputer

Wstęp do informatyki. Maszyna RAM. Schemat logiczny komputera. Maszyna RAM. RAM: szczegóły. Realizacja algorytmu przez komputer Realizacja algorytmu przez komputer Wstęp do informatyki Wykład UniwersytetWrocławski 0 Tydzień temu: opis algorytmu w języku zrozumiałym dla człowieka: schemat blokowy, pseudokod. Dziś: schemat logiczny

Bardziej szczegółowo

Rekurencja. Dla rozwiązania danego problemu, algorytm wywołuje sam siebie przy rozwiązywaniu podobnych podproblemów. Przykład: silnia: n! = n(n-1)!

Rekurencja. Dla rozwiązania danego problemu, algorytm wywołuje sam siebie przy rozwiązywaniu podobnych podproblemów. Przykład: silnia: n! = n(n-1)! Rekurencja Dla rozwiązania danego problemu, algorytm wywołuje sam siebie przy rozwiązywaniu podobnych podproblemów. Przykład: silnia: n! = n(n-1)! Pseudokod: silnia(n): jeżeli n == 0 silnia = 1 w przeciwnym

Bardziej szczegółowo

Sortowanie. Bartman Jacek Algorytmy i struktury

Sortowanie. Bartman Jacek Algorytmy i struktury Sortowanie Bartman Jacek jbartman@univ.rzeszow.pl Algorytmy i struktury danych Sortowanie przez proste wstawianie przykład 41 56 17 39 88 24 03 72 41 56 17 39 88 24 03 72 17 41 56 39 88 24 03 72 17 39

Bardziej szczegółowo

MATEMATYKA DYSKRETNA - MATERIAŁY DO WYKŁADU GRAFY

MATEMATYKA DYSKRETNA - MATERIAŁY DO WYKŁADU GRAFY ERIAŁY DO WYKŁADU GRAFY Graf nieskierowany Grafem nieskierowanym nazywamy parę G = (V, E), gdzie V jest pewnym zbiorem skończonym (zwanym zbiorem wierzchołków grafu G), natomiast E jest zbiorem nieuporządkowanych

Bardziej szczegółowo

WYŻSZA SZKOŁA INFORMATYKI STOSOWANEJ I ZARZĄDZANIA

WYŻSZA SZKOŁA INFORMATYKI STOSOWANEJ I ZARZĄDZANIA DROGI i CYKLE w grafach Dla grafu (nieskierowanego) G = ( V, E ) drogą z wierzchołka v 0 V do v t V nazywamy ciąg (naprzemienny) wierzchołków i krawędzi grafu: ( v 0, e, v, e,..., v t, e t, v t ), spełniający

Bardziej szczegółowo

Matematyka dyskretna. Andrzej Łachwa, UJ, /14

Matematyka dyskretna. Andrzej Łachwa, UJ, /14 Matematyka dyskretna Andrzej Łachwa, UJ, 2012 andrzej.lachwa@uj.edu.pl 13/14 Grafy podstawowe definicje Graf to para G=(V, E), gdzie V to niepusty i skończony zbiór, którego elementy nazywamy wierzchołkami

Bardziej szczegółowo

Zagadnienie transportowe (badania operacyjne) Mgr inż. Aleksandra Radziejowska AGH Akademia Górniczo-Hutnicza w Krakowie

Zagadnienie transportowe (badania operacyjne) Mgr inż. Aleksandra Radziejowska AGH Akademia Górniczo-Hutnicza w Krakowie Zagadnienie transportowe (badania operacyjne) Mgr inż. Aleksandra Radziejowska AGH Akademia Górniczo-Hutnicza w Krakowie OPIS ZAGADNIENIA Zagadnienie transportowe służy głównie do obliczania najkorzystniejszego

Bardziej szczegółowo

Algorytmy i Struktury Danych

Algorytmy i Struktury Danych POLITECHNIKA KRAKOWSKA - WIEiK KATEDRA AUTOMATYKI i TECHNIK INFORMACYJNYCH Algorytmy i Struktury Danych www.pk.edu.pl/~zk/aisd_hp.html Wykładowca: dr inż. Zbigniew Kokosiński zk@pk.edu.pl Wykład 12: Wstęp

Bardziej szczegółowo

while (test) instrukcja; int i=0; while (i<10) i++; dopóki test prawdziwy wykonuj instrukcję Wykonano: 35% / \ fałsz test prawda instrukcja

while (test) instrukcja; int i=0; while (i<10) i++; dopóki test prawdziwy wykonuj instrukcję Wykonano: 35% / \ fałsz test prawda instrukcja Rok akademicki 2011/2012, Pracownia nr 9 2/24 Informatyka 1 Politechnika Białostocka - Wydział Elektryczny Elektrotechnika, semestr II, studia stacjonarne I stopnia Rok akademicki 2011/2012 Pracownia nr

Bardziej szczegółowo

EFEKTYWNOŚĆ MNOŻENIA MACIERZY W SYSTEMACH Z PAMIĘCIĄ WSPÓŁDZIELONĄ

EFEKTYWNOŚĆ MNOŻENIA MACIERZY W SYSTEMACH Z PAMIĘCIĄ WSPÓŁDZIELONĄ EFEKTYWNOŚĆ MNOŻENIA MACIERZY W SYSTEMACH Z PAMIĘCIĄ WSPÓŁDZIELONĄ 1 Mnożenie macierzy dostęp do pamięci podręcznej [język C, kolejność - j,i,k][1] A[i][*] lokalność przestrzenna danych rózne A,B,C są

Bardziej szczegółowo

Algorytmy i. Wykład 5: Drzewa. Dr inż. Paweł Kasprowski

Algorytmy i. Wykład 5: Drzewa. Dr inż. Paweł Kasprowski Algorytmy i struktury danych Wykład 5: Drzewa Dr inż. Paweł Kasprowski pawel@kasprowski.pl Drzewa Struktury przechowywania danych podobne do list ale z innymi zasadami wskazywania następników Szczególny

Bardziej szczegółowo

1. Napisz program, który wyświetli Twoje dane jako napis Witaj, Imię Nazwisko. 2. Napisz program, który wyświetli wizytówkę postaci:

1. Napisz program, który wyświetli Twoje dane jako napis Witaj, Imię Nazwisko. 2. Napisz program, który wyświetli wizytówkę postaci: 1. Napisz program, który wyświetli Twoje dane jako napis Witaj, Imię Nazwisko. 2. Napisz program, który wyświetli wizytówkę postaci: * Jan Kowalski * * ul. Zana 31 * 3. Zadeklaruj zmienne przechowujące

Bardziej szczegółowo

ALGORYTMY. 1. Podstawowe definicje Schemat blokowy

ALGORYTMY. 1. Podstawowe definicje Schemat blokowy ALGORYTMY 1. Podstawowe definicje Algorytm (definicja nieformalna) to sposób postępowania (przepis) umożliwiający rozwiązanie określonego zadania (klasy zadań), podany w postaci skończonego zestawu czynności

Bardziej szczegółowo

Algorytmy sortujące 1

Algorytmy sortujące 1 Algorytmy sortujące 1 Sortowanie Jeden z najczęściej występujących, rozwiązywanych i stosowanych problemów. Ułożyć elementy listy (przyjmujemy: tablicy) w rosnącym porządku Sortowanie może być oparte na

Bardziej szczegółowo

Wstęp do programowania. Drzewa. Piotr Chrząstowski-Wachtel

Wstęp do programowania. Drzewa. Piotr Chrząstowski-Wachtel Wstęp do programowania Drzewa Piotr Chrząstowski-Wachtel Drzewa Drzewa definiują matematycy, jako spójne nieskierowane grafy bez cykli. Równoważne określenia: Spójne grafy o n wierzchołkach i n-1 krawędziach

Bardziej szczegółowo

1. Liczby i w zapisie zmiennoprzecinkowym przedstawia się następująco

1. Liczby i w zapisie zmiennoprzecinkowym przedstawia się następująco 1. Liczby 3456.0012 i 0.000076235 w zapisie zmiennoprzecinkowym przedstawia się następująco a) 0.34560012 10 4 i 0.76235 10 4 b) 3.4560012 10 3 i 7.6235 10 5 c) 3.4560012 10 3 i 7.6235 10 5 d) po prostu

Bardziej szczegółowo

Metody uporządkowania

Metody uporządkowania Metody uporządkowania W trakcie faktoryzacji macierzy rzadkiej ilość zapełnień istotnie zależy od sposobu numeracji równań. Powstaje problem odnalezienia takiej numeracji, przy której: o ilość zapełnień

Bardziej szczegółowo

ALGORYTMY. 1. Podstawowe definicje Schemat blokowy

ALGORYTMY. 1. Podstawowe definicje Schemat blokowy ALGORYTMY 1. Podstawowe definicje Algorytm (definicja nieformalna) to sposób postępowania (przepis) umożliwiający rozwiązanie określonego zadania (klasy zadań), podany w postaci skończonego zestawu czynności

Bardziej szczegółowo

Teoretyczne podstawy informatyki

Teoretyczne podstawy informatyki Teoretyczne podstawy informatyki Wykład 3a: Złożoność obliczeniowa algorytmów http://kiwi.if.uj.edu.pl/~erichter/dydaktyka2010/tpi-2010 Prof. dr hab. Elżbieta Richter-Wąs 1 Złożoność obliczeniowa i asymptotyczna

Bardziej szczegółowo

Algorytmy i struktury danych

Algorytmy i struktury danych Algorytmy i struktury danych Zaawansowane algorytmy sortowania Witold Marańda maranda@dmcs.p.lodz.pl 1 Sortowanie za pomocą malejących przyrostów metoda Shella Metoda jest rozwinięciem metody sortowania

Bardziej szczegółowo

WYŻSZA SZKOŁA INFORMATYKI STOSOWANEJ I ZARZĄDZANIA

WYŻSZA SZKOŁA INFORMATYKI STOSOWANEJ I ZARZĄDZANIA DRZEWA i LASY Drzewem nazywamy graf spójny nie zawierający cykli elementarnych. Lasem nazywamy graf nie zawierający cykli elementarnych. Przykłady drzew i lasów takie krawędzie są wykluczone drzewo las

Bardziej szczegółowo

Wykład 1. Systemy przekazywania wiadomości z założeniem bezbłędności działania

Wykład 1. Systemy przekazywania wiadomości z założeniem bezbłędności działania Mariusz Juszczyk 16 marca 2010 Seminarium badawcze Wykład 1. Systemy przekazywania wiadomości z założeniem bezbłędności działania Wstęp Systemy przekazywania wiadomości wymagają wprowadzenia pewnych podstawowych

Bardziej szczegółowo

Drzewa binarne. Drzewo binarne to dowolny obiekt powstały zgodnie z regułami: jest drzewem binarnym Jeśli T 0. jest drzewem binarnym Np.

Drzewa binarne. Drzewo binarne to dowolny obiekt powstały zgodnie z regułami: jest drzewem binarnym Jeśli T 0. jest drzewem binarnym Np. Drzewa binarne Drzewo binarne to dowolny obiekt powstały zgodnie z regułami: jest drzewem binarnym Jeśli T 0 i T 1 są drzewami binarnymi to T 0 T 1 jest drzewem binarnym Np. ( ) ( ( )) Wielkość drzewa

Bardziej szczegółowo

Algorytm. a programowanie -

Algorytm. a programowanie - Algorytm a programowanie - Program komputerowy: Program komputerowy można rozumieć jako: kod źródłowy - program komputerowy zapisany w pewnym języku programowania, zestaw poszczególnych instrukcji, plik

Bardziej szczegółowo

Schematy blokowe I. 1. Dostępne bloki: 2. Prosty program drukujący tekst.

Schematy blokowe I. 1. Dostępne bloki: 2. Prosty program drukujący tekst. Schematy blokowe I Jeżeli po schematach blokowych będzie używany język C, to należy używać operatorów: '&&', ' ', '!=', '%' natomiast jeśli Ruby to 'and', 'or', '%', '!='. 1. Dostępne bloki: a) początek:

Bardziej szczegółowo

Treść wykładu. Pierścienie wielomianów. Dzielenie wielomianów i algorytm Euklidesa Pierścienie ilorazowe wielomianów

Treść wykładu. Pierścienie wielomianów. Dzielenie wielomianów i algorytm Euklidesa Pierścienie ilorazowe wielomianów Treść wykładu Pierścienie wielomianów. Definicja Niech P będzie pierścieniem. Wielomianem jednej zmiennej o współczynnikach z P nazywamy każdy ciąg f = (f 0, f 1, f 2,...), gdzie wyrazy ciągu f są prawie

Bardziej szczegółowo

INFORMATYKA Z MERMIDONEM. Programowanie. Moduł 5 / Notatki

INFORMATYKA Z MERMIDONEM. Programowanie. Moduł 5 / Notatki INFORMATYKA Z MERMIDONEM Programowanie Moduł 5 / Notatki Projekt współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego. Realizator projektu: Opracowano w ramach projektu

Bardziej szczegółowo

Drzewa poszukiwań binarnych

Drzewa poszukiwań binarnych 1 Drzewa poszukiwań binarnych Kacper Pawłowski Streszczenie W tej pracy przedstawię zagadnienia związane z drzewami poszukiwań binarnych. Przytoczę poszczególne operacje na tej strukturze danych oraz ich

Bardziej szczegółowo

Warunki logiczne instrukcja if

Warunki logiczne instrukcja if Warunki logiczne instrukcja if Prowadzący: Łukasz Dunaj, strona kółka: atinea.pl/kolko 1. Wejdź na stronę kółka, uruchom edytor i wpisz: use console; def test::main() { var y; y = 1; while (y

Bardziej szczegółowo

Suma dwóch grafów. Zespolenie dwóch grafów

Suma dwóch grafów. Zespolenie dwóch grafów Suma dwóch grafów G 1 = ((G 1 ), E(G 1 )) G 2 = ((G 2 ), E(G 2 )) (G 1 ) i (G 2 ) rozłączne Suma G 1 G 2 graf ze zbiorem wierzchołków (G 1 ) (G 2 ) i rodziną krawędzi E(G 1 ) E(G 2 ) G 1 G 2 G 1 G 2 Zespolenie

Bardziej szczegółowo

Wstęp do Informatyki

Wstęp do Informatyki Wstęp do Informatyki dr hab. Bożena Woźna-Szcześniak, prof. AJD bwozna@gmail.com Jan Długosz University, Poland Wykład 8 Bożena Woźna-Szcześniak (AJD) Wstęp do Informatyki Wykład 8 1 / 32 Instrukcje iteracyjne

Bardziej szczegółowo

liniowa - elementy następują jeden za drugim. Graficznie możemy przedstawić to tak:

liniowa - elementy następują jeden za drugim. Graficznie możemy przedstawić to tak: Sortowanie stogowe Drzewo binarne Binary Tree Dotychczas operowaliśmy na prostych strukturach danych, takich jak tablice. W tablicy elementy ułożone są zgodnie z ich numeracją, czyli indeksami. Jeśli za

Bardziej szczegółowo

Siedem cudów informatyki czyli o algorytmach zdumiewajacych

Siedem cudów informatyki czyli o algorytmach zdumiewajacych Siedem cudów informatyki czyli o algorytmach zdumiewajacych Łukasz Kowalik kowalik@mimuw.edu.pl Instytut Informatyki Uniwersytet Warszawski Łukasz Kowalik, Siedem cudów informatyki p. 1/25 Problem 1: mnożenie

Bardziej szczegółowo

Algorytmy i Struktury Danych.

Algorytmy i Struktury Danych. Algorytmy i Struktury Danych. Metoda Dziel i zwyciężaj. Problem Sortowania, cd. Bożena Woźna-Szcześniak bwozna@gmail.com Jan Długosz University, Poland Wykład 2 Bożena Woźna-Szcześniak (AJD) Algorytmy

Bardziej szczegółowo

EGZAMIN - Wersja A. ALGORYTMY I STRUKTURY DANYCH Lisek89 opracowanie kartki od Pani dr E. Koszelew

EGZAMIN - Wersja A. ALGORYTMY I STRUKTURY DANYCH Lisek89 opracowanie kartki od Pani dr E. Koszelew 1. ( pkt) Dany jest algorytm, który dla dowolnej liczby naturalnej n, powinien wyznaczyd sumę kolejnych liczb naturalnych mniejszych od n. Wynik algorytmu jest zapisany w zmiennej suma. Algorytm i=1; suma=0;

Bardziej szczegółowo

Losowość w rozproszonym modelu

Losowość w rozproszonym modelu Losowość w rozproszonym modelu Model: ALP520 - Wykład z Algorytmów Probabilistycznych p.2 Losowość w rozproszonym modelu Model: zbiór procesorów, które moga pracować jednocześnie, połaczonych w sieć ALP520

Bardziej szczegółowo

Matematyka dyskretna

Matematyka dyskretna Matematyka dyskretna Wykład 13: Teoria Grafów Gniewomir Sarbicki Literatura R.J. Wilson Wprowadzenie do teorii grafów Definicja: Grafem (skończonym, nieskierowanym) G nazywamy parę zbiorów (V (G), E(G)),

Bardziej szczegółowo

dodatkowe operacje dla kopca binarnego: typu min oraz typu max:

dodatkowe operacje dla kopca binarnego: typu min oraz typu max: ASD - ćwiczenia IX Kopce binarne własność porządku kopca gdzie dla każdej trójki wierzchołków kopca (X, Y, Z) porządek etykiet elem jest następujący X.elem Y.elem oraz Z.elem Y.elem w przypadku kopca typu

Bardziej szczegółowo

WSTĘP DO INFORMATYKI. Drzewa i struktury drzewiaste

WSTĘP DO INFORMATYKI. Drzewa i struktury drzewiaste Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej WSTĘP DO INFORMATYKI Adrian Horzyk Drzewa i struktury drzewiaste www.agh.edu.pl DEFINICJA DRZEWA Drzewo

Bardziej szczegółowo

Matematyka dyskretna

Matematyka dyskretna Matematyka dyskretna Wykład 4: Podzielność liczb całkowitych Gniewomir Sarbicki Dzielenie całkowitoliczbowe Twierdzenie: Dla każdej pary liczb całkowitych (a, b) istnieje dokładnie jedna para liczb całkowitych

Bardziej szczegółowo

Złożoność obliczeniowa algorytmu ilość zasobów komputera jakiej potrzebuje dany algorytm. Pojęcie to

Złożoność obliczeniowa algorytmu ilość zasobów komputera jakiej potrzebuje dany algorytm. Pojęcie to Złożoność obliczeniowa algorytmu ilość zasobów komputera jakiej potrzebuje dany algorytm. Pojęcie to wprowadzili J. Hartmanis i R. Stearns. Najczęściej przez zasób rozumie się czas oraz pamięć dlatego

Bardziej szczegółowo

Tworzenie programów równoległych. Krzysztof Banaś Obliczenia równoległe 1

Tworzenie programów równoległych. Krzysztof Banaś Obliczenia równoległe 1 Tworzenie programów równoległych Krzysztof Banaś Obliczenia równoległe 1 Tworzenie programów równoległych W procesie tworzenia programów równoległych istnieją dwa kroki o zasadniczym znaczeniu: wykrycie

Bardziej szczegółowo

Przetwarzanie równoległe

Przetwarzanie równoległe Przetwarzanie równoległe Kostka równoległe przesyłanie i przetwarzanie Rafał Malinowski, Marek Musielak 1. Cel projektu: Celem projektu było stworzenie i przetestowanie oprogramowania działającego na serwerze

Bardziej szczegółowo

Równoległe algorytmy sortowania. Krzysztof Banaś Obliczenia równoległe 1

Równoległe algorytmy sortowania. Krzysztof Banaś Obliczenia równoległe 1 Równoległe algorytmy sortowania Krzysztof Banaś Obliczenia równoległe 1 Algorytmy sortowania Algorytmy sortowania dzielą się na wewnętrzne (bez użycia pamięci dyskowej) zewnętrzne (dla danych nie mieszczących

Bardziej szczegółowo

a[1] a[2] a[3] a[4] a[5] a[6] a[7] a[8] a[9] a[10] 3-2 5 8 12-4 -26 12 45-76

a[1] a[2] a[3] a[4] a[5] a[6] a[7] a[8] a[9] a[10] 3-2 5 8 12-4 -26 12 45-76 . p. 1 Algorytmem nazywa się poddający się interpretacji skończony zbiór instrukcji wykonania zadania mającego określony stan końcowy dla każdego zestawu danych wejściowych W algorytmach mogą występować

Bardziej szczegółowo

Jarosław Wróblewski Matematyka Elementarna, lato 2012/13. W dniu 21 lutego 2013 r. omawiamy test kwalifikacyjny.

Jarosław Wróblewski Matematyka Elementarna, lato 2012/13. W dniu 21 lutego 2013 r. omawiamy test kwalifikacyjny. W dniu 21 lutego 2013 r. omawiamy test kwalifikacyjny. Uwaga: Przyjmujemy, że 0 nie jest liczbą naturalną, tzn. liczby naturalne są to liczby całkowite dodatnie. 1. Dane są liczby naturalne m, n. Wówczas

Bardziej szczegółowo

Tworzenie programów równoległych. Krzysztof Banaś Obliczenia równoległe 1

Tworzenie programów równoległych. Krzysztof Banaś Obliczenia równoległe 1 Tworzenie programów równoległych Krzysztof Banaś Obliczenia równoległe 1 Tworzenie programów równoległych W procesie tworzenia programów równoległych istnieją dwa kroki o zasadniczym znaczeniu: wykrycie

Bardziej szczegółowo

Badania operacyjne: Wykład Zastosowanie kolorowania grafów w planowaniu produkcji typu no-idle

Badania operacyjne: Wykład Zastosowanie kolorowania grafów w planowaniu produkcji typu no-idle Badania operacyjne: Wykład Zastosowanie kolorowania grafów w planowaniu produkcji typu no-idle Paweł Szołtysek 12 czerwca 2008 Streszczenie Planowanie produkcji jest jednym z problemów optymalizacji dyskretnej,

Bardziej szczegółowo

Programowanie równoległe

Programowanie równoległe Programowanie równoległe ELEMENTARNE ALGORYTMY (PODSTAWA: Z.CZECH. WPROWADZENIE DO OBLICZEŃ RÓWNOLEGŁYCH. PWN, 2010) Andrzej Baran baran@kft.umcs.lublin.pl Charakterystyka ilościowa algorytmów Przez algorytm

Bardziej szczegółowo

Algorytmy. Programowanie Proceduralne 1

Algorytmy. Programowanie Proceduralne 1 Algorytmy Programowanie Proceduralne 1 Przepis Warzenie piwa Brunświckiego Programowanie Proceduralne 2 Przepis Warzenie piwa Brunświckiego składniki (dane wejściowe): woda, słód, itd. wynik: beczka piwa

Bardziej szczegółowo

ZADANIE 1. Ważenie (14 pkt)

ZADANIE 1. Ważenie (14 pkt) ZADANIE 1. Ważenie (14 pkt) Danych jest n przedmiotów o niewielkich gabarytach i różnych wagach. Jest też do dyspozycji waga z dwiema szalkami, ale nie ma odważników. Kładąc na wadze przedmioty a i b,

Bardziej szczegółowo

Python: JPEG. Zadanie. 1. Wczytanie obrazka

Python: JPEG. Zadanie. 1. Wczytanie obrazka Python: JPEG Witajcie! Jest to kolejny z serii tutoriali uczący Pythona, a w przyszłości być może nawet Cythona i Numby Jeśli chcesz nauczyć się nowych, zaawansowanych konstrukcji to spróbuj rozwiązać

Bardziej szczegółowo

Algorytmy. Programowanie Proceduralne 1

Algorytmy. Programowanie Proceduralne 1 Algorytmy Programowanie Proceduralne 1 Przepis Warzenie piwa Brunświckiego Programowanie Proceduralne 2 Przepis Warzenie piwa Brunświckiego składniki (dane wejściowe): woda, słód, itd. wynik: beczka piwa

Bardziej szczegółowo

Programowanie obiektowe

Programowanie obiektowe Programowanie obiektowe Sieci powiązań Paweł Daniluk Wydział Fizyki Jesień 2015 P. Daniluk (Wydział Fizyki) PO w. IX Jesień 2015 1 / 21 Sieci powiązań Można (bardzo zgrubnie) wyróżnić dwa rodzaje powiązań

Bardziej szczegółowo

dr inż. Paweł Myszkowski Wykład nr 11 ( )

dr inż. Paweł Myszkowski Wykład nr 11 ( ) dr inż. Paweł Myszkowski Politechnika Białostocka Wydział Elektryczny Elektronika i Telekomunikacja, semestr II, studia stacjonarne I stopnia Rok akademicki 2015/2016 Wykład nr 11 (11.05.2016) Plan prezentacji:

Bardziej szczegółowo

Podstawy programowania 2. Temat: Drzewa binarne. Przygotował: mgr inż. Tomasz Michno

Podstawy programowania 2. Temat: Drzewa binarne. Przygotował: mgr inż. Tomasz Michno Instrukcja laboratoryjna 5 Podstawy programowania 2 Temat: Drzewa binarne Przygotował: mgr inż. Tomasz Michno 1 Wstęp teoretyczny Drzewa są jedną z częściej wykorzystywanych struktur danych. Reprezentują

Bardziej szczegółowo

PHP: bloki kodu, tablice, obiekty i formularze

PHP: bloki kodu, tablice, obiekty i formularze 1 PHP: bloki kodu, tablice, obiekty i formularze SYSTEMY SIECIOWE Michał Simiński 2 Bloki kodu Blok if-else Switch Pętle Funkcje Blok if-else 3 W PHP blok if i blok if-else wyglądają tak samo i funkcjonują

Bardziej szczegółowo

TEORETYCZNE PODSTAWY INFORMATYKI

TEORETYCZNE PODSTAWY INFORMATYKI 1 TEORETYCZNE PODSTAWY INFORMATYKI WFAiS UJ, Informatyka Stosowana I rok studiów, I stopień Wykład 3 2 Złożoność obliczeniowa algorytmów Notacja wielkie 0 Notacja Ω i Θ Algorytm Hornera Przykłady rzędów

Bardziej szczegółowo

Łyżwy - omówienie zadania

Łyżwy - omówienie zadania Komisja Regulaminowa XVI Olimpiady Informatycznej 1 UMK Toruń 12 luty 2009 1 Niniejsza prezentacja zawiera materiały dostarczone przez Komitet Główny Olimpiady Informatycznej. Treść zadania Wejście Wyjście

Bardziej szczegółowo

Matematyka dyskretna - 7.Drzewa

Matematyka dyskretna - 7.Drzewa Matematyka dyskretna - 7.Drzewa W tym rozdziale zajmiemy się drzewami: specjalnym przypadkiem grafów. Są one szczególnie przydatne do przechowywania informacji, umożliwiającego szybki dostęp do nich. Definicja

Bardziej szczegółowo

Gimnazjum w Tęgoborzy - Algorytmika Strona 1 z 22 mgr Zofia Czech

Gimnazjum w Tęgoborzy - Algorytmika Strona 1 z 22 mgr Zofia Czech ALGORYMY Algorytm to przepis; zestawienie kolejnych kroków prowadzących do wykonania określonego zadania; to uporządkowany sposób postępowania przy rozwiązywaniu zadania, problemu, z uwzględnieniem opisu

Bardziej szczegółowo

Programowanie dynamiczne i algorytmy zachłanne

Programowanie dynamiczne i algorytmy zachłanne Programowanie dynamiczne i algorytmy zachłanne Tomasz Głowacki tglowacki@cs.put.poznan.pl Zajęcia finansowane z projektu "Rozwój i doskonalenie kształcenia na Politechnice Poznańskiej w zakresie technologii

Bardziej szczegółowo

Wieczorowe Studia Licencjackie Wrocław, Wykład nr 6 (w oparciu o notatki K. Lorysia, z modyfikacjami) Sito Eratostenesa

Wieczorowe Studia Licencjackie Wrocław, Wykład nr 6 (w oparciu o notatki K. Lorysia, z modyfikacjami) Sito Eratostenesa Wieczorowe Studia Licencjackie Wrocław, 7.11.2006 Wstęp do programowania Wykład nr 6 (w oparciu o notatki K. Lorysia, z modyfikacjami) Sito Eratostenesa Zaprezentujemy teraz algorytm na wyznaczanie wszystkich

Bardziej szczegółowo

Piotr Chrząstowski-Wachtel Uniwersytet Warszawski. Al Chwarizmi i trzy algorytmy Euklidesa

Piotr Chrząstowski-Wachtel Uniwersytet Warszawski. Al Chwarizmi i trzy algorytmy Euklidesa Piotr Chrząstowski-Wachtel Uniwersytet Warszawski Al Chwarizmi i trzy algorytmy Euklidesa Algorytmika Najważniejsza część informatyki Opisuje jak rozwiązywać problemy algorytmiczne, jakie struktury danych

Bardziej szczegółowo

Porównanie algorytmów wyszukiwania najkrótszych ścieżek międz. grafu. Daniel Golubiewski. 22 listopada Instytut Informatyki

Porównanie algorytmów wyszukiwania najkrótszych ścieżek międz. grafu. Daniel Golubiewski. 22 listopada Instytut Informatyki Porównanie algorytmów wyszukiwania najkrótszych ścieżek między wierzchołkami grafu. Instytut Informatyki 22 listopada 2015 Algorytm DFS w głąb Algorytm przejścia/przeszukiwania w głąb (ang. Depth First

Bardziej szczegółowo

Informatyka wprowadzenie do algorytmów (II) dr hab. inż. Mikołaj Morzy

Informatyka wprowadzenie do algorytmów (II) dr hab. inż. Mikołaj Morzy Informatyka wprowadze do algorytmów (II) dr hab. inż. Mikołaj Morzy plan wykładu cechy algorytmów sposoby zapisu algorytmów klasyfikacja algorytmów przykłady algorytmów sumowa przeszukiwa ciągu liczb sortowa

Bardziej szczegółowo

Równoległość i współbieżność

Równoległość i współbieżność Równoległość i współbieżność Wykonanie sekwencyjne. Poszczególne akcje procesu są wykonywane jedna po drugiej. Dokładniej: kolejna akcja rozpoczyna się po całkowitym zakończeniu poprzedniej. Praca współbieżna

Bardziej szczegółowo

Równoległość i współbieżność

Równoległość i współbieżność Równoległość i współbieżność Wykonanie sekwencyjne. Poszczególne akcje procesu są wykonywane jedna po drugiej. Dokładniej: kolejna akcja rozpoczyna się po całkowitym zakończeniu poprzedniej. Praca współbieżna

Bardziej szczegółowo