Algorytmy równoległe. Rafał Walkowiak Politechnika Poznańska Studia inżynierskie Informatyka 2010
|
|
- Nadzieja Leśniak
- 7 lat temu
- Przeglądów:
Transkrypt
1 Algorytmy równoległe Rafał Walkowiak Politechnika Poznańska Studia inżynierskie Informatyka
2 Znajdowanie maksimum w zbiorze n liczb węzły - maksimum liczb głębokość = 3 praca = 4++ = 7 (operacji) n - liczność zbioru W(n) = n- cykli f Ap (n) = O(log n) S p (n),e p (n) obliczenia w potoku Algorytmy równoległe
3 Znajdowanie maksimum w k zbiorach n liczb 3 k - krotne obliczenia w potoku n - liczność zbioru W(n) = k*(n-) f Ap (n) = O(k +log n) Algorytmy równoległe 3
4 Analiza efektywności - aglomeracja () Czy aglomeracja (połączenie zadań) jest możliwa bez spadku stopień równoległości? I II Zgrupowanie operacji realizowanych sekwencyjnie - możliwy przydział do jednego węzła przetwarzającego, mniej komunikacji, ten sam stopień równoległości. III I I I Przesłania poszczególnych etapów I II III II Algorytmy równoległe 4
5 Analiza efektywności - aglomeracja () Mniej przesłań między węzłami Niższa złożoność obliczeniowa Ta sama ilość pracy ( 7 porównań) Wzrost stopnia wierzchołka ( 3 do 5 ) Mniejsza liczba procesorów (4 zamiast 7) Algorytmy równoległe 5
6 Analiza efektywności -aglomeracja (3) wykres praca-czas Procesory A - 3*t por +7*t kom = (log n)t por +(log n+)t kom B - 3*t por +5*t kom = (log n)t por +(log n+)t kom Bez aglomeracji Po aglomeracji Algorytmy równoległe Czas 6
7 Sortowanie w łańcuchu procesorów Wejście: ciąg liczb (minimum jedna) zakończonych - Wyjście: posortowany ciąg zakończony - Kod dla wszystkich węzłów: pobierz a pobierz b while b > do { if a>b then wyślij b we pobierz b } wyślij a; wyślij b; else wyślij a; a:=b wy Algorytmy równoległe 7
8 Działanie algorytmu na wejście łańcucha podajemy kolejno wartości: 4,3,5,6,- krok I II III IV 4,3 t,p 4, 3 t 4,5 3 t,p 5 4,3 t,p 5,6 4 3 t,p 6 5,4 3 t,p 6,- 5 3,4 t,p - 6,5 4 3 t,p we 6,- 5,4 3 t,p - 6,5 3,4 t,p wy Algorytmy równoległe 8
9 Sortowanie liczb w łańcuchu wykres praca- czas t sortowanie na I czas t sortowanie na I-IV t 3 zbieranie wyników t = (n-)*t p +(n-)* t k n* t c t c = t p +t k t =t +(n-)*(t p +t k ) n*t c t 3 =(n+)*t c t +t 3 3n*t c f Am = 3n*t c = O(n) Algorytmy równoległe 9
10 Wyznaczanie sumy rozproszonych elementów - pierścień jednokierunkowy analogiczne do rozesłania N do N Węzeł centralny, całkowita liczba węzłów K Sekwencyjne sumowanie i przesyłanie sum częściowych do węzła centralnego; Rozsyłanie wyniku do wszystkich węzłów Liczba operacji praca: K- razy - dla każdego węzła oprócz węzła następnego po centralnym - odbiór komunikatu i sumowanie, K- razy dla każdego węzła oprócz węzła przed centralnym - wysłanie wyniku sumy RAZEM: (K-) * ( t kom + t sum ) + (K-) * t kom K t sum +K t kom Czas przetwarzania liczba kolejno realizowanych kroków algorytmu: Jak wyżej, gdyż wszystkie operacje realizowane sekwencyjnie. Uwagi : Liczba operacji sumowania równa minimalnej. Brak równoległości. Możliwość minimalizacji liczby przesłań w tej architekturze (uniknięcie rozsyłania wyniku) poprzez wyznaczanie sumy we wszystkich węzłach porównaj następny algorytm. Algorytmy równoległe
11 Wyznaczanie sumy rozproszonych elementów pierścień jednokierunkowy - komunikacja synchroniczna - analogiczne do rozesłania N do N (por. wykład komunikacja) a elementy sumowane; liczba_węzłów =n;n> k:=;s := a wyślij a; odbierz a s:= s + a while k < liczba_węzłów wyślij a; odbierz a; s:= s + a k:= k + Algorytmy równoległe
12 Wyznaczanie sumy rozproszonych elementów pierścień jednokierunkowy - komunikacja synchroniczna a elementy sumowane; liczba_węzłów =n;n> k:=;s := a wyślij a; odbierz b s:= s + b while k < liczba_węzłów wyślij a; odbierz b; s:= s + b k:= k + Algorytmy równoległe
13 Wyznaczanie sumy rozproszonych elementów pierścień jednokierunkowy - komunikacja synchroniczna a elementy sumowane; liczba_węzłów =n;n> k:=;s := a jeśli parzysty to odbierz b; wyślij a jeśli nieparzysty to wyślij a; odbierz b s:= s + b while k < liczba_węzłów jeśli parzysty to odbierz b; wyślij b;b:=b jeśli nieparzysty to wyślij b; odbierz b s:= s + b k:= k + Optymalizacja liczby przesłań kosztem nadmiarowych obliczeń (n sumowań, n (n) komunikacji - zamiast n sumowań, n komunikacji (zbieranie i wysyłanie) Algorytmy równoległe 3
14 Wyznaczanie sumy rozproszonych elementów pierścień () 4 3 Operacje węzła 3 (przechowuje wartość a). wyślij a;odbierz b; s = a+b;. wyślij b; odbierz b; s = s+b; 3. wyślij b;odbierz b; s = s +b; liczba węzłów n, liczba kroków przetwarzania n-, każdy krok przetwarzania to: nadanie, odbiór, sumowanie ilość pracy n*(n-) sumowań, n*(n-) przesłań zmniejszenie czasu przetwarzania do (n-)t s +(n-)t k Algorytmy równoległe 4
15 Wyznaczanie sumy rozproszonych elementów - podział węzeł - operacja dodawania łuk - operacja przesłania jednej liczby liczność zbioru n, W= 3*n, f Ap (n)= log n Algorytmy równoległe 5
16 Wyznaczanie sumy rozproszonych elementów - aglomeracja zadania-operacje realizowane sekwencyjnie połączone w jedno zadanie, minimalizacja komunikacji, wzrost lokalności danych Algorytmy równoległe 6
17 Wyznaczanie sumy rozproszonych elementów - aglomeracja 3 fazy wymiany wartości między parami zadań 3 fazy dodawania dodawanie wartości, wyznaczana lokalnie suma,4 lub 8 elementów Algorytmy równoległe 7
18 Wyznaczanie sumy rozproszonych elementów - struktura systemu Sumowanie danych rozproszonych w 6 węzłach log 6 = 4 kroki Algorytmy równoległe 8
19 Znajdowanie liczb pierwszych () Metody: dzielenie badanej liczby przez liczby pierwsze i badanie wartości reszty z dzielenia usuwanie ze zbioru badanych liczb liczb będących wielokrotnością liczb pierwszych Jakie liczby pierwsze uwzględniać dla badanej liczby (bądź górnego zakresu przedziału) n? Wystarczy znaleźć dla każdej liczby złożonej minimalny podzielnik: 35 5, 77 7,. Czy istnieje warunek ograniczający maksymalną wartość najmniejszego podzielnika liczby n? Algorytmy równoległe 9
20 Znajdowanie liczb pierwszych (3) Tak. Maksymalna wartość najmniejszego podzielnika liczby złożonej n wynosi n /. Aby znaleźć zatem liczby pierwsze x i <k,l> należy: usunąć liczby dzielące się bez reszty przez liczby pierwsze brane z przedziału <, x i / > lub usunąć liczby będące wielokrotnością liczb pierwszych z przedziału <, l / > Algorytmy równoległe
21 Sito Eratostenesa - podejście funkcjonalne do podziału,3,4,5,.., / /3 /5 /7,3,7,9,3,9,3,37,4,..., Pierwsza liczba odebrana przez każdy z procesów jest traktowana jako dzielnik i jako liczba pierwsza. Liczby dzielące się z resztą są przesyłane dalej. Wynik przetwarzania liczby pierwsze pojawiają się na wyjściu systemu oraz rezydują w procesach (należy je przesłać na wyjście). Liczba procesów niezbędbych dla zakresu <n,k> jest równa liczbie liczb pierwszych w zakresie od <, k / > k / /ln k Algorytmy równoległe
22 Wykreślanie z tablicy podejście domenowe do podziału Z badanego zbioru (tablicy) usuwamy wielokrotności (jakie?) liczb pierwszych z przedziału <,zakres górny / > Przykład dla zakresu : <,65> : 4,6,8, : 9,5,,7,33,39,45,5,57,63 5 : 5,35,55,65 7 : 49 nie jest konieczna do rozpoczęcia obliczeń znajomość wszystkich liczb-pierwszych z przedziału <,zakres górny / >; kolejno pojawiające się liczby pierwsze mogą być wykorzystane dopiero później, gdyż wyznaczanie wielokrotności mniejszych liczb pierwszych odbywa się dla całego badanego przedziału i zajmuje stosunkowo dużo czasu. Algorytmy równoległe
23 Znajdowanie składowych spójnych grafu wstęp Składowa spójna grafu G każdy największy (nie dający się powiększyć o dalsze krawędzie i wierzchołki) spójny, podgraf grafu G. Graf spójny zawiera co najmniej jedną drogę między dowolną parą tworzących go wierzchołków. Algorytm: Bada graf o n wierzchołkach, Wykorzystuje n - procesorów w strukturze drzewa binarnego; Graf jest reprezentowany przez macierz sąsiedztwa, Liść drzewa posiada wiersz macierzy odpowiadający przetwarzanemu wierzchołkowi i a[i,..n]. Po zakończeniu przetwarzania zmienna ss zawiera numer składowej do której należy wierzchołek, numer ten jest równy najmniejszemu spośród numerów wierzchołków należących do tej składowej. Super-wierzchołek graf spójny, dowolny podgraf, identyfikowany przez wierzchołek o najniższym numerze spośród należących do niego. Algorytmy równoległe 3
24 Znajdowanie składowych spójnych grafu - algorytm Dla każdego i węzła-liścia: ss[i] = i //należy do swojego sw W pętli po wierzchołkach j=..n : Dla każdego węzła-liścia: wybrany[i] = a[i,j] W korzeniu wyznacz: c=min {ss[i]:wybrany[i]=} Roześlij c do liści //wierzchołek i należy do sw c Dopóki istnieje i dla którego wybrany[i] = W korzeniu wybierz dowolne d = ss[i]: wybrany[i] = Roześlij d do liści W każdym z liści: Jeśli ss[i]= d to ss[i]=c i wybrany[i]= //propogacja do superwierzchołka c tych wierzchołków, które należą do superwierzchołków spójnych z wierzchołkiem i Algorytmy równoległe 4
25 Składowe spójne -rysunek / 3/ Stan po iteracjach 4/ / / 3/ 4/ / Stan po 3 iteracjach w 3 iteracji te wierzchołki, które należą do superwierzchołków i zostają przyporządkowane do superwierzchołka Algorytmy równoległe 5
26 Znajdowanie składowych spójnych grafu przykład obliczeniowy Macierz sąsiedztwa 4 3 Badany graf Wartości zmiennych w węzłach s składowa, w - wybrany i zmiennych globalnych c,d 5 s w s w s3 w3 s4 w4 s5 w5 c,d krok 3 4 5,, 3 4 5,4, ,, 3 5,3, 5,5,3, 3,, 3,, 3, Algorytmy równoległe 6
27 Znajdowanie składowych spójnych grafuomówienie W każdej iteracji j:. w wierszach 3-4 wyznaczamy (superwierzchołek) - NAJMNIEJSZY numer spośród numerów superwierchołków, do których należały dotychczas wierzchołki incydentne z wierzchołkiem j. w wierszach 7- każdemu wierzchołkowi, którego superwierzchołkiem jest wierzchołek incydentny z j zmieniamy jego superwierzchołek na wyznaczony w bieżącym kroku. Algorytmy równoległe 7
28 Znajdowanie składowych spójnych grafu - złożoność Każda iteracja pętli zewnętrznej wymaga czasu log n (wyznaczenie maksimum w drzewie), pętla ta jest powtarzana n razy. Pętla wewnętrzna może być powtórzona (globalnie) co najwyżej *n razy. Jej złożoność to koszt komunikacji między liściami a korzeniem. Dla każdego j jest realizowana jednokrotnie dla c=d gdyż jest tylko jedna wartość minimalna identyfikatorów superwierzchołków incydentnych w danej iteracji. Dla przypadku c<>d - łączenie superwierzchołków - może być realizowana globalnie co najwyżej n- razy. Tyle razy można powiększać superwierzchołki, na które składa się maksymalnie n elementów. Ostatecznie złożoność algorytmu wynosi O(n log n), gdyż liczba kroków o złożoności log n jest mniejsza od n. W przypadku algorytmu sekwencyjnego złożoność O(n+m) m-liczba krawędzi. Algorytmy równoległe 8
Algorytmy równoległe: ocena efektywności prostych algorytmów dla systemów wielokomputerowych
Algorytmy równoległe: ocena efektywności prostych algorytmów dla systemów wielokomputerowych Rafał Walkowiak Politechnika Poznańska Studia inżynierskie Informatyka 2014/15 Znajdowanie maksimum w zbiorze
Bardziej szczegółowoAlgorytmy równoległe: prezentacja i ocena efektywności prostych algorytmów dla systemów równoległych
Algorytmy równoległe: prezentacja i ocena efektywności prostych algorytmów dla systemów równoległych Rafał Walkowiak Politechnika Poznańska Studia inżynierskie Informatyka 2018/19 Problem: znajdowanie
Bardziej szczegółowoAlgorytmy równoległe: ocena efektywności prostych algorytmów dla systemów wielokomputerowych
Algorytmy równoległe: ocena efektywności prostych algorytmów dla systemów wielokomputerowych Rafał Walkowiak Politechnika Poznańska Studia inżynierskie Informatyka 2013/14 Znajdowanie maksimum w zbiorze
Bardziej szczegółowoAlgorytmy Równoległe i Rozproszone Część V - Model PRAM II
Algorytmy Równoległe i Rozproszone Część V - Model PRAM II Łukasz Kuszner pokój 209, WETI http://www.sphere.pl/ kuszner/ kuszner@sphere.pl Oficjalna strona wykładu http://www.sphere.pl/ kuszner/arir/ 2005/06
Bardziej szczegółowoStruktury danych i złożoność obliczeniowa Wykład 5. Prof. dr hab. inż. Jan Magott
Struktury danych i złożoność obliczeniowa Wykład. Prof. dr hab. inż. Jan Magott Algorytmy grafowe: podstawowe pojęcia, reprezentacja grafów, metody przeszukiwania, minimalne drzewa rozpinające, problemy
Bardziej szczegółowoSortowanie topologiczne skierowanych grafów acyklicznych
Sortowanie topologiczne skierowanych grafów acyklicznych Metody boolowskie w informatyce Robert Sulkowski http://robert.brainusers.net 23 stycznia 2010 1 Definicja 1 (Cykl skierowany). Niech C = (V, A)
Bardziej szczegółowoZadania jednorodne 5.A.Modele przetwarzania równoległego. Rafał Walkowiak Przetwarzanie równoległe Politechnika Poznańska 2010/2011
Zadania jednorodne 5.A.Modele przetwarzania równoległego Rafał Walkowiak Przetwarzanie równoległe Politechnika Poznańska 2010/2011 Zadanie podzielne Zadanie podzielne (ang. divisible task) może zostać
Bardziej szczegółowoZofia Kruczkiewicz, Algorytmu i struktury danych, Wykład 14, 1
Wykład Algorytmy grafowe metoda zachłanna. Właściwości algorytmu zachłannego:. W przeciwieństwie do metody programowania dynamicznego nie występuje etap dzielenia na mniejsze realizacje z wykorzystaniem
Bardziej szczegółowoIteracje. Algorytm z iteracją to taki, w którym trzeba wielokrotnie powtarzać instrukcję, aby warunek został spełniony.
Iteracje Algorytm z iteracją to taki, w którym trzeba wielokrotnie powtarzać instrukcję, aby warunek został spełniony. Iteracja inaczej zwana jest pętlą i oznacza wielokrotne wykonywanie instrukcji. Iteracje
Bardziej szczegółowoZadanie 1 Przygotuj algorytm programu - sortowanie przez wstawianie.
Sortowanie Dane wejściowe: ciąg n-liczb (kluczy) (a 1, a 2, a 3,..., a n 1, a n ) Dane wyjściowe: permutacja ciągu wejściowego (a 1, a 2, a 3,..., a n 1, a n) taka, że a 1 a 2 a 3... a n 1 a n. Będziemy
Bardziej szczegółowoAnaliza algorytmów zadania podstawowe
Analiza algorytmów zadania podstawowe Zadanie 1 Zliczanie Zliczaj(n) 1 r 0 2 for i 1 to n 1 3 do for j i + 1 to n 4 do for k 1 to j 5 do r r + 1 6 return r 0 Jaka wartość zostanie zwrócona przez powyższą
Bardziej szczegółowoLista 0. Kamil Matuszewski 1 marca 2016
Lista 0 Kamil Matuszewski marca 206 2 3 4 5 6 7 8 0 0 Zadanie 4 Udowodnić poprawność mnożenia po rosyjsku Zastanówmy się co robi nasz algorytm Mamy podane liczby n i m W każdym kroku liczbę n dzielimy
Bardziej szczegółowoWykład 3. Złożoność i realizowalność algorytmów Elementarne struktury danych: stosy, kolejki, listy
Wykład 3 Złożoność i realizowalność algorytmów Elementarne struktury danych: stosy, kolejki, listy Dynamiczne struktury danych Lista jest to liniowo uporządkowany zbiór elementów, z których dowolny element
Bardziej szczegółowoGrafem nazywamy strukturę G = (V, E): V zbiór węzłów lub wierzchołków, Grafy dzielimy na grafy skierowane i nieskierowane:
Wykład 4 grafy Grafem nazywamy strukturę G = (V, E): V zbiór węzłów lub wierzchołków, E zbiór krawędzi, Grafy dzielimy na grafy skierowane i nieskierowane: Formalnie, w grafach skierowanych E jest podzbiorem
Bardziej szczegółowooperacje porównania, a jeśli jest to konieczne ze względu na złe uporządkowanie porównywanych liczb zmieniamy ich kolejność, czyli przestawiamy je.
Problem porządkowania zwanego również sortowaniem jest jednym z najważniejszych i najpopularniejszych zagadnień informatycznych. Dane: Liczba naturalna n i ciąg n liczb x 1, x 2,, x n. Wynik: Uporządkowanie
Bardziej szczegółowoRównoległy algorytm wyznaczania bloków dla cyklicznego problemu przepływowego z przezbrojeniami
Równoległy algorytm wyznaczania bloków dla cyklicznego problemu przepływowego z przezbrojeniami dr inż. Mariusz Uchroński Wrocławskie Centrum Sieciowo-Superkomputerowe Agenda Cykliczny problem przepływowy
Bardziej szczegółowoPlan wykładu. Przykład. Przykład 3/19/2011. Przykład zagadnienia transportowego. Optymalizacja w procesach biznesowych Wykład 2 DECYZJA?
/9/ Zagadnienie transportowe Optymalizacja w procesach biznesowych Wykład --9 Plan wykładu Przykład zagadnienia transportowego Sformułowanie problemu Własności zagadnienia transportowego Metoda potencjałów
Bardziej szczegółowoAlgorytmy i struktury danych. Co dziś? Tytułem przypomnienia metoda dziel i zwyciężaj. Wykład VIII Elementarne techniki algorytmiczne
Algorytmy i struktury danych Wykład VIII Elementarne techniki algorytmiczne Co dziś? Algorytmy zachłanne (greedyalgorithms) 2 Tytułem przypomnienia metoda dziel i zwyciężaj. Problem można podzielić na
Bardziej szczegółowoPrzykłady grafów. Graf prosty, to graf bez pętli i bez krawędzi wielokrotnych.
Grafy Graf Graf (ang. graph) to zbiór wierzchołków (ang. vertices), które mogą być połączone krawędziami (ang. edges) w taki sposób, że każda krawędź kończy się i zaczyna w którymś z wierzchołków. Graf
Bardziej szczegółowoMatematyczne Podstawy Informatyki
Matematyczne Podstawy Informatyki dr inż. Andrzej Grosser Instytut Informatyki Teoretycznej i Stosowanej Politechnika Częstochowska Rok akademicki 2013/2014 Informacje podstawowe 1. Konsultacje: pokój
Bardziej szczegółowoAlgorytmy i Struktury Danych
Algorytmy i Struktury Danych Kopce Bożena Woźna-Szcześniak bwozna@gmail.com Jan Długosz University, Poland Wykład 11 Bożena Woźna-Szcześniak (AJD) Algorytmy i Struktury Danych Wykład 11 1 / 69 Plan wykładu
Bardziej szczegółowoProjektowanie algorytmów równoległych. Zbigniew Koza Wrocław 2012
Projektowanie algorytmów równoległych Zbigniew Koza Wrocław 2012 Spis reści Zadniowo-kanałowy (task-channel) model algorytmów równoległych Projektowanie algorytmów równoległych metodą PACM Task-channel
Bardziej szczegółowoALGORYTMY Algorytm poprawny jednoznaczny szczegółowy uniwersalny skończoność efektywność (sprawność) zmiennych liniowy warunkowy iteracyjny
ALGORYMY Algorytm to przepis; zestawienie kolejnych kroków prowadzących do wykonania określonego zadania; to uporządkowany sposób postępowania przy rozwiązywaniu zadania, problemu, z uwzględnieniem opisu
Bardziej szczegółowoPodstawowe algorytmy i ich implementacje w C. Wykład 9
Wstęp do programowania 1 Podstawowe algorytmy i ich implementacje w C Bożena Woźna-Szcześniak bwozna@gmail.com Jan Długosz University, Poland Wykład 9 Element minimalny i maksymalny zbioru Element minimalny
Bardziej szczegółowoAnaliza efektywności przetwarzania współbieżnego. Wykład: Przetwarzanie Równoległe Politechnika Poznańska Rafał Walkowiak Grudzień 2015
Analiza efektywności przetwarzania współbieżnego Wykład: Przetwarzanie Równoległe Politechnika Poznańska Rafał Walkowiak Grudzień 2015 Źródła kosztów przetwarzania współbieżnego interakcje między procesami
Bardziej szczegółowoEGZAMIN MATURALNY Z INFORMATYKI. 10 maja 2017 POZIOM ROZSZERZONY. Godzina rozpoczęcia: 14:00 CZĘŚĆ I
Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 2013 KOD UZUPEŁNIA ZDAJĄCY PESEL miejsce na naklejkę EGZAMIN MATURALNY Z INFORMATYKI POZIOM ROZSZERZONY
Bardziej szczegółowoWykład 8. Drzewo rozpinające (minimum spanning tree)
Wykład 8 Drzewo rozpinające (minimum spanning tree) 1 Minimalne drzewo rozpinające - przegląd Definicja problemu Własności minimalnych drzew rozpinających Algorytm Kruskala Algorytm Prima Literatura Cormen,
Bardziej szczegółowoE: Rekonstrukcja ewolucji. Algorytmy filogenetyczne
E: Rekonstrukcja ewolucji. Algorytmy filogenetyczne Przypominajka: 152 drzewo filogenetyczne to drzewo, którego liśćmi są istniejące gatunki, a węzły wewnętrzne mają stopień większy niż jeden i reprezentują
Bardziej szczegółowoAkademickie Mistrzostwa Polski w Programowaniu Zespołowym
Akademickie Mistrzostwa Polski w Programowaniu Zespołowym Prezentacja rozwiązań zadań 30 października 2011 c h k f e j i a b d g Czy się zatrzyma? Autor zadania: Jakub Łącki Zgłoszenia: 104 z 914 (11%)
Bardziej szczegółowoPodstawy Informatyki. Inżynieria Ciepła, I rok. Iteracja warunkowadopóki(while) Blok instrukcji. Pascal: begin instrukcja1; C: { end;
Podstawy Informatyki Inżyria Ciepła, I rok Wykład 8 Algorytmy, cd Instrukcja decyzyjna wybierz Zda wybierz służy do wyboru jednej z kilku możliwości Ma ono postać: wybierz przełącznik z wartość_1: zda_1
Bardziej szczegółowoGraf. Definicja marca / 1
Graf 25 marca 2018 Graf Definicja 1 Graf ogólny to para G = (V, E), gdzie V jest zbiorem wierzchołków (węzłów, punktów grafu), E jest rodziną krawędzi, które mogą być wielokrotne, dokładniej jednoelementowych
Bardziej szczegółowoWHILE (wyrażenie) instrukcja;
INSTRUKCJE ITERACYJNE WHILE, DO WHILE, FOR Instrukcje iteracyjne pozwalają powtarzać daną instrukcję programu określoną liczbę razy lub do momentu osiągnięcia określonego skutku. Pętla iteracyjna while
Bardziej szczegółowoMateriały pomocnicze do laboratorium. 1. Miary oceny efektywności 2. Mnożenie macierzy 3. Znajdowanie liczb pierwszych
Materiały pomocnicze do laboratorium 1. Miary oceny efektywności 2. Mnożenie macierzy 3. Znajdowanie liczb pierwszych 4. Optymalizacja dostępu do pamięci Miary efektywności systemów współbieżnych System
Bardziej szczegółowoZaawansowane algorytmy i struktury danych
Zaawansowane algorytmy i struktury danych u dr Barbary Marszał-Paszek Opracowanie pytań praktycznych z egzaminów. Strona 1 z 12 Pytania praktyczne z kolokwium zaliczeniowego z 19 czerwca 2014 (studia dzienne)
Bardziej szczegółowoPodstawowe własności grafów. Wykład 3. Własności grafów
Wykład 3. Własności grafów 1 / 87 Suma grafów Niech będą dane grafy proste G 1 = (V 1, E 1) oraz G 2 = (V 2, E 2). 2 / 87 Suma grafów Niech będą dane grafy proste G 1 = (V 1, E 1) oraz G 2 = (V 2, E 2).
Bardziej szczegółowoWHILE (wyrażenie) instrukcja;
INSTRUKCJE ITERACYJNE WHILE, DO WHILE, FOR Instrukcje iteracyjne pozwalają powtarzać daną instrukcję programu określoną liczbę razy lub do momentu osiągnięcia określonego skutku. Pętla iteracyjna while
Bardziej szczegółowoAlgorytmiczna teoria grafów
Przedmiot fakultatywny 20h wykładu + 20h ćwiczeń 21 lutego 2014 Zasady zaliczenia 1 ćwiczenia (ocena): kolokwium, zadania programistyczne (implementacje algorytmów), praca na ćwiczeniach. 2 Wykład (egzamin)
Bardziej szczegółowoLuty 2001 Algorytmy (4) 2000/2001
Mając dany zbiór elementów, chcemy znaleźć w nim element największy (maksimum), bądź najmniejszy (minimum). We wszystkich naturalnych metodach znajdywania najmniejszego i największego elementu obecne jest
Bardziej szczegółowoTEORETYCZNE PODSTAWY INFORMATYKI
1 TEORETYCZNE PODSTAWY INFORMATYKI WFAiS UJ, Informatyka Stosowana I rok studiów, I stopień Wykład 14c 2 Definicje indukcyjne Twierdzenia dowodzone przez indukcje Definicje indukcyjne Definicja drzewa
Bardziej szczegółowoWstęp do Informatyki zadania ze złożoności obliczeniowej z rozwiązaniami
Wstęp do Informatyki zadania ze złożoności obliczeniowej z rozwiązaniami Przykład 1. Napisz program, który dla podanej liczby n wypisze jej rozkład na czynniki pierwsze. Oblicz asymptotyczną złożoność
Bardziej szczegółowoPodstawy Informatyki. Sprawność algorytmów
Podstawy Informatyki Sprawność algorytmów Sprawność algorytmów Kryteria oceny oszczędności Miara złożoności rozmiaru pamięci (złożoność pamięciowa): Liczba zmiennych + liczba i rozmiar struktur danych
Bardziej szczegółowoAlgorytmiczna teoria grafów
Podstawowe pojęcia i klasy grafów Wykład 1 Grafy nieskierowane Definicja Graf nieskierowany (graf) G = (V,E) jest to uporządkowana para składająca się z niepustego skończonego zbioru wierzchołków V oraz
Bardziej szczegółowoReprezentacje grafów nieskierowanych Reprezentacje grafów skierowanych. Wykład 2. Reprezentacja komputerowa grafów
Wykład 2. Reprezentacja komputerowa grafów 1 / 69 Macierz incydencji Niech graf G będzie grafem nieskierowanym bez pętli o n wierzchołkach (x 1, x 2,..., x n) i m krawędziach (e 1, e 2,..., e m). 2 / 69
Bardziej szczegółowoDrzewa. Jeżeli graf G jest lasem, który ma n wierzchołków i k składowych, to G ma n k krawędzi. Własności drzew
Drzewa Las - graf, który nie zawiera cykli Drzewo - las spójny Jeżeli graf G jest lasem, który ma n wierzchołków i k składowych, to G ma n k krawędzi. Własności drzew Niech T graf o n wierzchołkach będący
Bardziej szczegółowoZagadnienie transportowe
9//9 Zagadnienie transportowe Optymalizacja w procesach biznesowych Wykład Plan wykładu Przykład zagadnienia transportowego Sformułowanie problemu Własności zagadnienia transportowego Metoda potencjałów
Bardziej szczegółowoTeoria grafów podstawy. Materiały pomocnicze do wykładu. wykładowca: dr Magdalena Kacprzak
Teoria grafów podstawy Materiały pomocnicze do wykładu wykładowca: dr Magdalena Kacprzak Grafy zorientowane i niezorientowane Przykład 1 Dwa pociągi i jeden most problem wzajemnego wykluczania się Dwa
Bardziej szczegółowoInformacje wstępne #include <nazwa> - derektywa procesora umożliwiająca włączenie do programu pliku o podanej nazwie. Typy danych: char, signed char
Programowanie C++ Informacje wstępne #include - derektywa procesora umożliwiająca włączenie do programu pliku o podanej nazwie. Typy danych: char, signed char = -128 do 127, unsigned char = od
Bardziej szczegółowoZnajdowanie skojarzeń na maszynie równoległej
11 grudnia 2008 Spis treści 1 Skojarzenia w różnych klasach grafów Drzewa Grafy gęste Grafy regularne dwudzielne Claw-free graphs 2 Drzewa Skojarzenia w drzewach Fakt Wybierajac krawędź do skojarzenia
Bardziej szczegółowoJeszcze o algorytmach
Jeszcze o algorytmach Przykłady różnych, podstawowych algorytmów 11.01.2018 M. Rad Plan Powtórka Znajdowanie najmniejszego elementu Segregowanie Poszukiwanie przez połowienie Wstawianie Inne algorytmy
Bardziej szczegółowoPodstawowe moduły układów cyfrowych układy sekwencyjne cz.2 Projektowanie automatów. Rafał Walkowiak Wersja /2015
Podstawowe moduły układów cyfrowych układy sekwencyjne cz.2 Projektowanie automatów synchronicznych Rafał Walkowiak Wersja.2 24/25 UK Funkcje wzbudzeń UK Funkcje wzbudzeń Pamieć Pamieć UK Funkcje wyjściowe
Bardziej szczegółowoSPÓJNOŚĆ. ,...v k. }, E={v 1. v k. i v k. ,...,v k-1. }. Wierzchołki v 1. v 2. to końce ścieżki.
SPÓJNOŚĆ Graf jest spójny, gdy dla każdego podziału V na dwa rozłączne podzbiory A i B istnieje krawędź z A do B. Definicja równoważna: Graf jest spójny, gdy każde dwa wierzchołki są połączone ścieżką
Bardziej szczegółowoAnaliza efektywności przetwarzania współbieżnego
Analiza efektywności przetwarzania współbieżnego Wykład: Przetwarzanie Równoległe Politechnika Poznańska Rafał Walkowiak 1/4/2013 Analiza efektywności 1 Źródła kosztów przetwarzania współbieżnego interakcje
Bardziej szczegółowoAlgorytm poprawny jednoznaczny szczegółowy uniwersalny skończoność efektywność (sprawność) zmiennych liniowy warunkowy iteracyjny
Algorytm to przepis; zestawienie kolejnych kroków prowadzących do wykonania określonego zadania; to uporządkowany sposób postępowania przy rozwiązywaniu zadania, problemu, z uwzględnieniem opisu danych
Bardziej szczegółowoMatematyka dyskretna. Andrzej Łachwa, UJ, /14
Matematyka dyskretna Andrzej Łachwa, UJ, 2016 andrzej.lachwa@uj.edu.pl 13/14 Grafy podstawowe definicje Graf to para G=(V, E), gdzie V to niepusty i skończony zbiór, którego elementy nazywamy wierzchołkami
Bardziej szczegółowoDefinicja. Ciąg wejściowy: Funkcja uporządkowująca: Sortowanie polega na: a 1, a 2,, a n-1, a n. f(a 1 ) f(a 2 ) f(a n )
SORTOWANIE 1 SORTOWANIE Proces ustawiania zbioru elementów w określonym porządku. Stosuje się w celu ułatwienia późniejszego wyszukiwania elementów sortowanego zbioru. 2 Definicja Ciąg wejściowy: a 1,
Bardziej szczegółowoWykład z Technologii Informacyjnych. Piotr Mika
Wykład z Technologii Informacyjnych Piotr Mika Uniwersalna forma graficznego zapisu algorytmów Schemat blokowy zbiór bloków, powiązanych ze sobą liniami zorientowanymi. Jest to rodzaj grafu, którego węzły
Bardziej szczegółowoprowadzący dr ADRIAN HORZYK /~horzyk e-mail: horzyk@agh tel.: 012-617 Konsultacje paw. D-13/325
PODSTAWY INFORMATYKI WYKŁAD 8. prowadzący dr ADRIAN HORZYK http://home home.agh.edu.pl/~ /~horzyk e-mail: horzyk@agh agh.edu.pl tel.: 012-617 617-4319 Konsultacje paw. D-13/325 DRZEWA Drzewa to rodzaj
Bardziej szczegółowoAlgorytmy Grafowe. dr hab. Bożena Woźna-Szcześniak, prof. UJD. Wykład 5 i 6. Uniwersytet Humanistyczno-Przyrodniczy im. Jana Długosza w Częstochowie
Algorytmy Grafowe dr hab. Bożena Woźna-Szcześniak, prof. UJD Uniwersytet Humanistyczno-Przyrodniczy im. Jana Długosza w Częstochowie b.wozna@ujd.edu.pl Wykład 5 i 6 B. Woźna-Szcześniak (UJD) Algorytmy
Bardziej szczegółowoMatematyczne Podstawy Informatyki
Matematyczne Podstawy Informatyki dr inż. Andrzej Grosser Instytut Informatyki Teoretycznej i Stosowanej Politechnika Częstochowska Rok akademicki 2013/2014 Twierdzenie 2.1 Niech G będzie grafem prostym
Bardziej szczegółowoKODY SYMBOLI. Kod Shannona-Fano. Algorytm S-F. Przykład S-F
KODY SYMBOLI Kod Shannona-Fano KODOWANIE DANYCH, A.Przelaskowski Metoda S-F Kod Huffmana Adaptacyjne drzewo Huffmana Problemy implementacji Kod Golomba Podsumowanie Kod drzewa binarnego Na wejściu rozkład:
Bardziej szczegółowoDynamiczny przydział pamięci w języku C. Dynamiczne struktury danych. dr inż. Jarosław Forenc. Metoda 1 (wektor N M-elementowy)
Rok akademicki 2012/2013, Wykład nr 2 2/25 Plan wykładu nr 2 Informatyka 2 Politechnika Białostocka - Wydział Elektryczny Elektrotechnika, semestr III, studia niestacjonarne I stopnia Rok akademicki 2012/2013
Bardziej szczegółowoANALIZA EFEKTYWNOŚCI MNOŻENIA MACIERZY W SYSTEMACH Z PAMIĘCIĄ WSPÓŁDZIELONĄ
ANALIZA EFEKTYWNOŚCI MNOŻENIA MACIERZY W SYSTEMACH Z PAMIĘCIĄ WSPÓŁDZIELONĄ 1 Mnożenie macierzy dostęp do pamięci podręcznej [język C, kolejność - j,i,k][1] A,B,C są tablicami nxn for (int j = 0 ; j
Bardziej szczegółowoProgramowanie Równoległe i Rozproszone. Algorytm Kung a. Algorytm Kung a. Programowanie Równoległe i Rozproszone Wykład 8. Przygotował: Lucjan Stapp
Programowanie Równoległe i Rozproszone Lucjan Stapp Wydział Matematyki i Nauk Informacyjnych Politechnika Warszawska (l.stapp@mini.pw.edu.pl) 1/34 PRiR Algorytm Kunga Dany jest odcinek [a,b] i ciągła funkcja
Bardziej szczegółowoAlgorytm i złożoność obliczeniowa algorytmu
Algorytm i złożoność obliczeniowa algorytmu Algorytm - przepis postępowania, którego wykonanie prowadzi do rozwiązania określonego problemu określa czynności, jakie należy wykonać wyszczególnia wszystkie
Bardziej szczegółowoPODSTAWY INFORMATYKI wykład 10.
PODSTAWY INFORMATYKI wykład 10. Adrian Horzyk Web: http://home.agh.edu.pl/~horzyk/ E-mail: horzyk@agh.edu.pl Google: Adrian Horzyk Gabinet: paw. D13 p. 325 Akademia Górniczo-Hutniacza w Krakowie WEAIiE,
Bardziej szczegółowoPodstawy informatyki. Informatyka stosowana - studia niestacjonarne. Grzegorz Smyk
Podstawy informatyki Informatyka stosowana - studia niestacjonarne Grzegorz Smyk Wydział Inżynierii Metali i Informatyki Przemysłowej Akademia Górniczo Hutnicza im. Stanisława Staszica w Krakowie, Materiał
Bardziej szczegółowoPrzygotowanie kilku wersji kodu zgodnie z wymogami wersji zadania,
Przetwarzanie równoległe PROJEKT OMP i CUDA Temat projektu dotyczy analizy efektywności przetwarzania równoległego realizowanego przy użyciu komputera równoległego z procesorem wielordzeniowym z pamięcią
Bardziej szczegółowoWykład 1_2 Algorytmy sortowania tablic Sortowanie bąbelkowe
I. Struktury sterujące.bezpośrednie następstwo (A,B-czynności) Wykład _2 Algorytmy sortowania tablic Sortowanie bąbelkowe Elementy języka stosowanego do opisu algorytmu Elementy Poziom koncepcji Poziom
Bardziej szczegółowoAlgorytmy i struktury danych
Algorytmy i struktury danych ĆWICZENIE 2 - WYBRANE ZŁOŻONE STRUKTURY DANYCH - (12.3.212) Prowadząca: dr hab. inż. Małgorzata Sterna Informatyka i3, poniedziałek godz. 11:45 Adam Matuszewski, nr 1655 Oliver
Bardziej szczegółowoWstęp do informatyki. Maszyna RAM. Schemat logiczny komputera. Maszyna RAM. RAM: szczegóły. Realizacja algorytmu przez komputer
Realizacja algorytmu przez komputer Wstęp do informatyki Wykład UniwersytetWrocławski 0 Tydzień temu: opis algorytmu w języku zrozumiałym dla człowieka: schemat blokowy, pseudokod. Dziś: schemat logiczny
Bardziej szczegółowoRekurencja. Dla rozwiązania danego problemu, algorytm wywołuje sam siebie przy rozwiązywaniu podobnych podproblemów. Przykład: silnia: n! = n(n-1)!
Rekurencja Dla rozwiązania danego problemu, algorytm wywołuje sam siebie przy rozwiązywaniu podobnych podproblemów. Przykład: silnia: n! = n(n-1)! Pseudokod: silnia(n): jeżeli n == 0 silnia = 1 w przeciwnym
Bardziej szczegółowoOpracowanie prof. J. Domsta 1
Opracowanie prof. J. Domsta 1 Algorytm FLEURY'ego: Twierdzenie 6.5 G-graf eulerowski. Wtedy cykl Eulera otrzymujemy nastepująco: a) Start w dowolnym wierzchołku b) Krawędzie w dowolnej kolejności po przebyciu
Bardziej szczegółowoMATEMATYKA DYSKRETNA - MATERIAŁY DO WYKŁADU GRAFY
ERIAŁY DO WYKŁADU GRAFY Graf nieskierowany Grafem nieskierowanym nazywamy parę G = (V, E), gdzie V jest pewnym zbiorem skończonym (zwanym zbiorem wierzchołków grafu G), natomiast E jest zbiorem nieuporządkowanych
Bardziej szczegółowoAlgorytmy i Struktury Danych
POLITECHNIKA KRAKOWSKA - WIEiK KATEDRA AUTOMATYKI i TECHNIK INFORMACYJNYCH Algorytmy i Struktury Danych www.pk.edu.pl/~zk/aisd_hp.html Wykładowca: dr inż. Zbigniew Kokosiński zk@pk.edu.pl Wykład 12: Wstęp
Bardziej szczegółowoSortowanie. Bartman Jacek Algorytmy i struktury
Sortowanie Bartman Jacek jbartman@univ.rzeszow.pl Algorytmy i struktury danych Sortowanie przez proste wstawianie przykład 41 56 17 39 88 24 03 72 41 56 17 39 88 24 03 72 17 41 56 39 88 24 03 72 17 39
Bardziej szczegółowoMatematyka dyskretna. Andrzej Łachwa, UJ, /14
Matematyka dyskretna Andrzej Łachwa, UJ, 2012 andrzej.lachwa@uj.edu.pl 13/14 Grafy podstawowe definicje Graf to para G=(V, E), gdzie V to niepusty i skończony zbiór, którego elementy nazywamy wierzchołkami
Bardziej szczegółowowhile (test) instrukcja; int i=0; while (i<10) i++; dopóki test prawdziwy wykonuj instrukcję Wykonano: 35% / \ fałsz test prawda instrukcja
Rok akademicki 2011/2012, Pracownia nr 9 2/24 Informatyka 1 Politechnika Białostocka - Wydział Elektryczny Elektrotechnika, semestr II, studia stacjonarne I stopnia Rok akademicki 2011/2012 Pracownia nr
Bardziej szczegółowoSzczegółowy program kursów szkoły programowania Halpress
Szczegółowy program kursów szkoły programowania Halpress Lekcja A - Bezpłatna lekcja pokazowa w LCB Leszno "Godzina kodowania - Hour of Code (11-16 lat) Kurs (B) - Indywidualne przygotowanie do matury
Bardziej szczegółowoWYŻSZA SZKOŁA INFORMATYKI STOSOWANEJ I ZARZĄDZANIA
DROGI i CYKLE w grafach Dla grafu (nieskierowanego) G = ( V, E ) drogą z wierzchołka v 0 V do v t V nazywamy ciąg (naprzemienny) wierzchołków i krawędzi grafu: ( v 0, e, v, e,..., v t, e t, v t ), spełniający
Bardziej szczegółowoZagadnienie transportowe (badania operacyjne) Mgr inż. Aleksandra Radziejowska AGH Akademia Górniczo-Hutnicza w Krakowie
Zagadnienie transportowe (badania operacyjne) Mgr inż. Aleksandra Radziejowska AGH Akademia Górniczo-Hutnicza w Krakowie OPIS ZAGADNIENIA Zagadnienie transportowe służy głównie do obliczania najkorzystniejszego
Bardziej szczegółowoHarmonogramowanie przedsięwzięć
Harmonogramowanie przedsięwzięć Mariusz Kaleta Instytut Automatyki i Informatyki Stosowanej Politechnika Warszawska luty 2014, Warszawa Politechnika Warszawska Harmonogramowanie przedsięwzięć 1 / 25 Wstęp
Bardziej szczegółowoOgólne wiadomości o grafach
Ogólne wiadomości o grafach Algorytmy i struktury danych Wykład 5. Rok akademicki: / Pojęcie grafu Graf zbiór wierzchołków połączonych za pomocą krawędzi. Podstawowe rodzaje grafów: grafy nieskierowane,
Bardziej szczegółowoEFEKTYWNOŚĆ MNOŻENIA MACIERZY W SYSTEMACH Z PAMIĘCIĄ WSPÓŁDZIELONĄ
EFEKTYWNOŚĆ MNOŻENIA MACIERZY W SYSTEMACH Z PAMIĘCIĄ WSPÓŁDZIELONĄ 1 Mnożenie macierzy dostęp do pamięci podręcznej [język C, kolejność - j,i,k][1] A[i][*] lokalność przestrzenna danych rózne A,B,C są
Bardziej szczegółowoMatematyczne Podstawy Informatyki
Matematyczne Podstawy Informatyki dr inż. Andrzej Grosser Instytut Informatyki Teoretycznej i Stosowanej Politechnika Częstochowska Rok akademicki 03/0 Przeszukiwanie w głąb i wszerz I Przeszukiwanie metodą
Bardziej szczegółowoTEORETYCZNE PODSTAWY INFORMATYKI
1 TEORETYCZNE PODSTAWY INFORMATYKI WFAiS UJ, Informatyka Stosowana I rok studiów, I stopień Wykład 2 2 Problemy algorytmiczne Klasy problemów algorytmicznych Liczby Fibonacciego Przeszukiwanie tablic Największy
Bardziej szczegółowo1. Napisz program, który wyświetli Twoje dane jako napis Witaj, Imię Nazwisko. 2. Napisz program, który wyświetli wizytówkę postaci:
1. Napisz program, który wyświetli Twoje dane jako napis Witaj, Imię Nazwisko. 2. Napisz program, który wyświetli wizytówkę postaci: * Jan Kowalski * * ul. Zana 31 * 3. Zadeklaruj zmienne przechowujące
Bardziej szczegółowoTworzenie programów równoległych cd. Krzysztof Banaś Obliczenia równoległe 1
Tworzenie programów równoległych cd. Krzysztof Banaś Obliczenia równoległe 1 Metodologia programowania równoległego Przykłady podziałów zadania na podzadania: Podział ze względu na funkcje (functional
Bardziej szczegółowoMatematyka dyskretna. Andrzej Łachwa, UJ, /15
Matematyka dyskretna Andrzej Łachwa, UJ, 2013 andrzej.lachwa@uj.edu.pl 14/15 Grafy podstawowe definicje Graf to para G=(V, E), gdzie V to niepusty i skończony zbiór, którego elementy nazywamy wierzchołkami
Bardziej szczegółowoAlgorytmy i struktury danych. Wykład 6 Tablice rozproszone cz. 2
Algorytmy i struktury danych Wykład 6 Tablice rozproszone cz. 2 Na poprzednim wykładzie Wiele problemów wymaga dynamicznych zbiorów danych, na których można wykonywać operacje: wstawiania (Insert) szukania
Bardziej szczegółowoStruktury danych i złożoność obliczeniowa Wykład 7. Prof. dr hab. inż. Jan Magott
Struktury danych i złożoność obliczeniowa Wykład 7 Prof. dr hab. inż. Jan Magott Problemy NP-zupełne Transformacją wielomianową problemu π 2 do problemu π 1 (π 2 π 1 ) jest funkcja f: D π2 D π1 spełniająca
Bardziej szczegółowoIndukcja. Materiały pomocnicze do wykładu. wykładowca: dr Magdalena Kacprzak
Indukcja Materiały pomocnicze do wykładu wykładowca: dr Magdalena Kacprzak Charakteryzacja zbioru liczb naturalnych Arytmetyka liczb naturalnych Jedną z najważniejszych teorii matematycznych jest arytmetyka
Bardziej szczegółowoAlgorytmy sortujące 1
Algorytmy sortujące 1 Sortowanie Jeden z najczęściej występujących, rozwiązywanych i stosowanych problemów. Ułożyć elementy listy (przyjmujemy: tablicy) w rosnącym porządku Sortowanie może być oparte na
Bardziej szczegółowoMetody uporządkowania
Metody uporządkowania W trakcie faktoryzacji macierzy rzadkiej ilość zapełnień istotnie zależy od sposobu numeracji równań. Powstaje problem odnalezienia takiej numeracji, przy której: o ilość zapełnień
Bardziej szczegółowoAlgorytmy i Struktury Danych, 2. ćwiczenia
Algorytmy i Struktury Danych, 2. ćwiczenia 2017-10-13 Spis treści 1 Optymalne sortowanie 5 ciu elementów 1 2 Sortowanie metodą Shella 2 3 Przesunięcie cykliczne tablicy 3 4 Scalanie w miejscu dla ciągów
Bardziej szczegółowo1. Liczby i w zapisie zmiennoprzecinkowym przedstawia się następująco
1. Liczby 3456.0012 i 0.000076235 w zapisie zmiennoprzecinkowym przedstawia się następująco a) 0.34560012 10 4 i 0.76235 10 4 b) 3.4560012 10 3 i 7.6235 10 5 c) 3.4560012 10 3 i 7.6235 10 5 d) po prostu
Bardziej szczegółowoALGORYTMY. 1. Podstawowe definicje Schemat blokowy
ALGORYTMY 1. Podstawowe definicje Algorytm (definicja nieformalna) to sposób postępowania (przepis) umożliwiający rozwiązanie określonego zadania (klasy zadań), podany w postaci skończonego zestawu czynności
Bardziej szczegółowoWstęp do programowania. Drzewa. Piotr Chrząstowski-Wachtel
Wstęp do programowania Drzewa Piotr Chrząstowski-Wachtel Drzewa Drzewa definiują matematycy, jako spójne nieskierowane grafy bez cykli. Równoważne określenia: Spójne grafy o n wierzchołkach i n-1 krawędziach
Bardziej szczegółowoAlgorytmy i struktury danych
Algorytmy i struktury danych Zaawansowane algorytmy sortowania Witold Marańda maranda@dmcs.p.lodz.pl 1 Sortowanie za pomocą malejących przyrostów metoda Shella Metoda jest rozwinięciem metody sortowania
Bardziej szczegółowoALGORYTMY. 1. Podstawowe definicje Schemat blokowy
ALGORYTMY 1. Podstawowe definicje Algorytm (definicja nieformalna) to sposób postępowania (przepis) umożliwiający rozwiązanie określonego zadania (klasy zadań), podany w postaci skończonego zestawu czynności
Bardziej szczegółowo