KORELACJE I REGRESJA LINIOWA

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "KORELACJE I REGRESJA LINIOWA"

Transkrypt

1 KORELACJE I REGRESJA LINIOWA

2 Korelacje i regresja liniowa Analiza korelacji: Badanie, czy pomiędzy dwoma zmiennymi istnieje zależność Obie analizy się wzajemnie przeplatają Analiza regresji: Opisanie modelem matematycznym zależności pomiędzy dwoma zmiennymi

3 Korelacje i regresja liniowa Badamy [%] wyciek soków tkankowych z tkanki mięśniowej ryb w czasie chłodniczego przechowywania przez 2, 4, 6, 8 i 10 dni. Chcemy określić wpływ długości przechowywania na wielkość wycieku. X Zmienna niezależna Y Zmienna zależna Czas Wyciek 2 1,7 4 2,2 6 3,2 8 3,6 10 4,5 n=5 L-ba par zmiennych X i Y

4 Korelacje i regresja liniowa ,5 3 2,5 2 1,5 1 0, ,5 4, ,5 3 1,5 2, ,5 1 0,5 0,

5 Korelacje i regresja liniowa ,5 3 2,5 2 1,5 1 0, ,5 4, ,5 3 1,5 2, ,5 1 0,5 0,

6 Korelacje i regresja liniowa 5 4,5 4 3,5 3 2,5 2 1,5 1 0,

7 Analiza korelacji Metoda graficzna Kowariancja Współczynnik korelacji rang Spearmana Współczynnik korelacji liniowej Pearsona

8 Analiza korelacji Metoda graficzna Kowariancja Współczynnik korelacji rang Spearmana Współczynnik korelacji liniowej Pearsona

9 Metoda graficzna Do wykrycia zależności (korelacji) służą wykresy rozrzutu Wyniki układają się wzdłuż linii Jest zależność! Wyniki układają się w rozmytą chmurę punktów Brak zależności!

10 Metoda graficzna Do wykrycia zależności (korelacji) służą wykresy rozrzutu Zależność wprosproporcjonalna Zależność odwrotnie proporcjonalna

11 Analiza korelacji Metoda graficzna Kowariancja Współczynnik korelacji rang Spearmana Współczynnik korelacji liniowej Pearsona

12 Kowariancja Liczbowa miara zależności dwóch zmiennych X i Y cov X, Y = 1 n n i=1 x i x 2 y i y Zmienne X i Y są niezależne jeśli cov(x,y)=0

13 Kowariancja Cov(X,Y) > 0 Cov(X,Y) < 0 zależność wprostproporcjonalna (ze wzrostem x rośnie y) zależność odwrotnie proporcjonalna (ze wzrostem x maleje y) Możemy ocenić kierunek zależności, ale nie możemy ocenić jej siły!

14 Analiza korelacji Metoda graficzna Kowariancja Współczynnik korelacji rang Spearmana Współczynnik korelacji liniowej Pearsona

15 Współczynnik korelacji liniowej Pearsona Między zmiennymi X i Y istnieje zależność liniowa, jeżeli najlepszym przybliżeniem obserwowanego związku jest linia prosta obliczając r Pearsona mierzymy, jak blisko linii prostej najlepiej opisującej ich związek liniowy leżą punkty

16 Współczynnik korelacji liniowej Pearsona Dla populacji generalnej: r = r cov(x, Y) σ X σ(y)

17 Dla próby: Współczynnik korelacji liniowej Pearsona r = n i=1 n i=1 x i x y i y n i=1 x i x 2 y i y 2

18 Współczynnik korelacji liniowej Pearsona Właściwości: r przyjmuje wartości z przedziału od -1 do +1 Znak r wskazuje, czy zależność jest wprostproporcjonalna (dodatni r) czy odwrotnie proporcjonalna (ujemny r) Wielkość r wskazuje, jak blisko linii prostej znajdują się punkty X i Y można zamieniać miejscami bez wpływu na wartość r Korelacja między X i Y niekoniecznie oznacza związek przyczynowy

19 Współczynnik korelacji liniowej Pearsona r = 1 Idealna zależność liniowa wprostproporcjonalna r = -1 Idealna zależność liniowa odwrotnie proporcjonalna

20 Współczynnik korelacji liniowej Pearsona r = 0,90 r = -0,90 Silna zależność liniowa wprostproporcjonalna Silna zależność liniowa odwrotnie proporcjonalna

21 Współczynnik korelacji liniowej Pearsona r = 0 r = -0,5 Brak zależności Umiarkowana zależność liniowa odwrotnie proporcjonalna

22 Współczynnik korelacji liniowej Pearsona Na podstawie wartości r oceniamy siłę zależności: r = 0 zmienne nieskorelowane 0 < r 0,3 korelacja niska 0,3 < r 0,5 korelacja przeciętna (średnia) 0,5 < r 0,7 korelacja wysoka 0,7 < r 0,9 korelacja bardzo wysoka 0,9 < r < 1 korelacja prawie pełna

23 Współczynnik korelacji liniowej Pearsona Aby ocenić korelację pomiędzy zmiennymi należy znać: poziom istotności p współczynnika r (określa, czy korelacje jest/nie jest statystycznie istotna) wartość r (siła korelacji) znak +/- przy r (zależność wprost/odwrotnie proporcjonalna)

24 Współczynnik korelacji liniowej Pearsona Jak ocenić czy r jest istotny? Hipoteza zerowa: Hipoteza alternatywna: H 0 : r =0 H 1 : r 0 1) Korzystamy z tablic wartości krytycznych r kr ( =0,05, n) 2) Wykorzystujemy funkcję testową t-studenta

25 Współczynnik korelacji liniowej Pearsona Jak ocenić czy r jest istotny? Hipoteza zerowa: Hipoteza alternatywna: H 0 : r =0 H 1 : r 0 1) Korzystamy z tablic wartości krytycznych r kr ( =0,05, n)

26

27 Współczynnik korelacji liniowej Pearsona Jak ocenić czy r jest istotny? Hipoteza zerowa: Hipoteza alternatywna: H 0 : r =0 H 1 : r 0 1) Korzystamy z tablic wartości krytycznych r kr ( =0,05, n) r<r kr - przyjmujemy hipotezę H 0 r>r kr - przyjmujemy hipotezę H 1

28 Współczynnik korelacji liniowej Pearsona Jak ocenić czy r jest istotny? Hipoteza zerowa: H 0 : r =0 Hipoteza alternatywna: H 1 : r 0 2) Wykorzystujemy funkcję testową t-studenta t = r (1 r 2 ) n 2 t kr (, f=n-2) Z tablic rozkładu t-studenta

29 Współczynnik korelacji liniowej Pearsona Jak ocenić czy r jest istotny? Hipoteza zerowa: H 0 : r =0 Hipoteza alternatywna: H 1 : r 0 2) Wykorzystujemy funkcję testową t-studenta t<t kr - przyjmujemy hipotezę H 0 t>t kr - przyjmujemy hipotezę H 1

30 Współczynnik korelacji liniowej Pearsona Stosujemy gdy: zmienne mają rozkład normalny ORAZ zależność ma charakter liniowy

31 Współczynnik korelacji liniowej Pearsona Kiedy nie należy obliczać r: istnieje nieliniowy związek między dwoma zmiennymi (np. związek kwadratowy

32 Współczynnik korelacji liniowej Pearsona Kiedy nie należy obliczać r: występuje jedna lub więcej wartości odstających

33 Współczynnik korelacji liniowej Pearsona Kiedy nie należy obliczać r: dane zawierają podgrupy, dla których średnie poziomy wartości dla co najmniej jednej zmiennej są różne

34 Analiza korelacji Metoda graficzna Kowariancja Współczynnik korelacji rang Spearmana Współczynnik korelacji liniowej Pearsona

35 Współczynnik korelacji rang Spearmana Alternatywa dla współczynnika korelacji liniowej Pearsona. Nadaje się również do analizy zależności nieliniowych. Stosujemy, gdy: zmienne nie mają rozkładu normalnego ORAZ/LUB zależność ma charakter nieliniowy

36 Współczynnik korelacji rang Spearmana Uporządkowanym od najmniejszej do największej wartości zmiennym nadaje się rangi i wylicza R Spearmana: R = 1 6 n i=1 D 2 n(n 2 1) n ilość pomiarów D - różnica rang Przyjmuje wartości od -1 do +1 interpretacja taka jaka dla r Pearsona

37 Współczynnik korelacji rang Spearmana R = 1 6 n i=1 D 2 n(n 2 1) X Y ranga X ranga Y D D^ ,5 1 1,5 2, ,5 4, ,5 1,5 2,25 suma 11,5

38 Współczynnik korelacji rang Spearmana Jak ocenić czy R jest istotny? Hipoteza zerowa: Hipoteza alternatywna: H 0 : R =0 H 1 : R 0 Korzystamy z tablic wartości krytycznych R kr ( =0,05, n)

39

40 Współczynnik korelacji rang Spearmana Jak ocenić czy R jest istotny? Hipoteza zerowa: Hipoteza alternatywna: H 0 : R =0 H 1 : R 0 Korzystamy z tablic wartości krytycznych R kr ( =0,05, n) R<R kr - przyjmujemy hipotezę H 0 R>R kr - przyjmujemy hipotezę H 1

41 Istotność różnic między wsp. korelacji Gdy wykonujemy dwie serie niezależnych pomiarów (dwie pary zmiennych X i Y), dla każdej pary możemy uzyskać różny współczynnik korelacji. Aby ocenić, czy istotnie się między sobą różnią, wykorzystujemy funkcję t-studenta.

42 Istotność różnic między wsp. korelacji Hipoteza zerowa: H 0 : r 1 = r 2 Hipoteza alternatywna: H 1 : r 1 r 2 t r = 1 2 ln 1 + r 1 (1 r 2 ) 1 r 1 (1 + r 2 ) n 1 3 (n 2 3) n 1 + n 2 6 t kr ( =0,05, f=n 1 +n 2-4) t r <t kr - przyjmujemy hipotezę H 0 t r >t kr - przyjmujemy hipotezę H 1

43 Analiza regresji liniowej

44 Analiza regresji liniowej Regresja liniowa jest rozszerzeniem korelacji liniowej i pozwala na: graficzną prezentację linii prostej dopasowanej do wykresu rozrzutu określenie równania opisujące zależność dwóch zmiennych w postaci y = a + b* x zmienna zależna wyraz wolny współczynnik kierunkowy prostej zmienna niezależna

45 Wynik testu Analiza regresji liniowej Iloraz inteligencji

46 Wynik testu Analiza regresji liniowej y = a + b* x Iloraz inteligencji

47 Analiza regresji liniowej W jaki sposób wyznaczana jest linia regresji liniowej? przez minimalizację sumy kwadratów odchyleń punktów doświadczalnych od linii regresji tzw. metoda najmniejszych kwadratów (y i y i obl ) 2 = min y i wartości doświadczalne y i obl wartości obliczone z równania regresji

48 Analiza regresji liniowej

49 Analiza regresji liniowej W jaki sposób wyznaczana jest linia regresji liniowej y=a+b*x? Sprowadza się to do obliczenia współczynników a i b b = n x i y i x i y i n x i 2 x i 2 a = y i b x i n = y b x

50 Analiza regresji liniowej y = a + b*x a i b wyznaczamy na podstawie danych empirycznych ; a i b pewnym oszacowaniem rzeczywistych wartości i b a i b obarczone są błędem! Obliczamy go na podstawie wariancji resztowej σ r 2 = y i y i obl 2 n 2

51 Analiza regresji liniowej Dla współczynnika b: σ b 2 = n σ r 2 n x i 2 x i 2 Dla współczynnika a: σ a 2 = σ b 2 n x i 2

52 Analiza regresji liniowej Dokładność wyznaczenia współczynników: = a t(p, f=n-2) a b = b t(p, f=n-2) b

53 Analiza regresji liniowej Sprawdzamy, czy a i b istotnie różnią się od 0: Hipoteza zerowa: H 0 : a=0 H 0 : b=0 Hipoteza alternatywna: H 1 : a 0 H 1 : b 0 t a = a 0 σ a = a σ a t b = b 0 σ b = b σ b t kr (, f=n-2) t a (t b ) <t kr - przyjmujemy hipotezę H 0 t a (t b ) >t kr - przyjmujemy hipotezę H 1

54 Analiza regresji liniowej y = a+ b*x Współczynniki a i b muszą istotnie różnić się od 0 aby były uwzględnione w równaniu. Jeśli b=0 wartości y są stałe (równe a) Jeśli a=0 równanie upraszcza się do y=b*x

55 Analiza regresji liniowej Jeśli chcemy sprawdzić, czy a i b są zgodne z wartościami literaturowymi (sens fizyko-chem): Hipoteza zerowa: H 0 : a=a 0 H 0 : b=b 0 Hipoteza alternatywna: H 1 : a a 0 H 1 : b b 0 t a = a a 0 σ a t b = b b 0 σ b t kr (, f=n-2) t a (t b ) <t kr - przyjmujemy hipotezę H 0 t a (t b ) >t kr - przyjmujemy hipotezę H 1

56 Analiza regresji liniowej Do czego służy wyznaczone równanie? 1) Na podstawie znanych x obliczamy y 2) Na podstawie znanych y obliczamy x

57 Analiza regresji liniowej Do czego służy wyznaczone równanie? 1) Na podstawie znanych x obliczamy y y k =a+b*x k Błąd wyznaczenia y k σ yk = σ r 2 n + x k x 2 σ b 2 y = y k t(,f=n-2) yk Im x k jest bardziej oddalony od wartości średniej, tym większy błąd oszacowania

58 Analiza regresji liniowej Wynik testu Im x k jest bardziej oddalony od wartości średniej, tym przedział ufności jest szerszy x IQ

59 Analiza regresji liniowej Do czego służy wyznaczone równanie? 2) Na podstawie znanych y obliczamy x Błąd wyznaczenia x k x k =(y k -a)/b σ xk = 1 b σ r 2 n + y k y 2 b 2 σ b 2 x = x k t(,f=n-2) xk Im y k jest bardziej oddalony od wartości średniej, tym większy błąd oszacowania

60 Analiza regresji liniowej Wynik testu 60 y Im y k jest bardziej oddalony od wartości średniej, tym przedział ufności jest szerszy IQ

61 Analiza regresji liniowej Ocena dobroci dopasowania Współczynnik korelacji liniowej Pearsona Współczynnik determinacji Współczynnik indeterminacji Analiza reszt

62 Analiza regresji liniowej Ocena dobroci dopasowania Współczynnik korelacji liniowej Pearsona Współczynnik determinacji Współczynnik indeterminacji Analiza reszt

63 Analiza regresji liniowej Ocena dobroci dopasowania Współczynnik korelacji liniowej Pearsona Im r bliższy 1 tym lepsza jakość modelu

64 Analiza regresji liniowej Ocena dobroci dopasowania Współczynnik korelacji liniowej Pearsona Współczynnik determinacji Współczynnik indeterminacji Analiza reszt

65 Analiza regresji liniowej Ocena dobroci dopasowania Współczynnik determinacji r 2 współczynnik korelacji liniowej Pearsona podniesiony do kwadratu Podawany w postaci: - ułamkowej [0,1] - procentowej 0-100% Im bliższy 1 tym lepsza jakość modelu

66 Analiza regresji liniowej Ocena dobroci dopasowania Współczynnik korelacji liniowej Pearsona Współczynnik determinacji Współczynnik indeterminacji Analiza reszt

67 Analiza regresji liniowej Ocena dobroci dopasowania Współczynnik indeterminacji 2 = 1- r 2 tzw. współczynnik rozbieżności Podawany w postaci: - ułamkowej [0,1] - procentowej 0-100% Im bliższy 0 tym lepsza jakość modelu

68 Analiza regresji liniowej Ocena dobroci dopasowania Współczynnik korelacji liniowej Pearsona Współczynnik determinacji Współczynnik indeterminacji Analiza reszt

69 Analiza regresji liniowej Ocena dobroci dopasowania Analiza reszt e i e i = y i y i obl Reszty powinny spełniać rozkład normalny, mieć charakter losowy i nie wykazywać autokorelacji Normalność reszt badamy testem chi-kwadrat lub testem Kołmogorowa-Smirnowa Losowość reszt oceniamy na wykresie

70 reszty Analiza regresji liniowej Reszty losowo znajdują się powyżej i poniżej 0

STATYSTYKA I DOŚWIADCZALNICTWO Wykład 7

STATYSTYKA I DOŚWIADCZALNICTWO Wykład 7 STATYSTYKA I DOŚWIADCZALNICTWO Wykład 7 Analiza korelacji - współczynnik korelacji Pearsona Cel: ocena współzależności między dwiema zmiennymi ilościowymi Ocenia jedynie zależność liniową. r = cov(x,y

Bardziej szczegółowo

PDF created with FinePrint pdffactory Pro trial version http://www.fineprint.com

PDF created with FinePrint pdffactory Pro trial version http://www.fineprint.com Analiza korelacji i regresji KORELACJA zależność liniowa Obserwujemy parę cech ilościowych (X,Y). Doświadczenie jest tak pomyślane, aby obserwowane pary cech X i Y (tzn i ta para x i i y i dla różnych

Bardziej szczegółowo

Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności. dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl

Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności. dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl Statystyczna teoria korelacji i regresji (1) Jest to dział statystyki zajmujący

Bardziej szczegółowo

WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI REGRESJA LINIOWA

WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI REGRESJA LINIOWA WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI REGRESJA LINIOWA Powtórka Powtórki Kowiariancja cov xy lub c xy - kierunek zależności Współczynnik korelacji liniowej Pearsona r siła liniowej zależności Istotność

Bardziej szczegółowo

Regresja wieloraka Ogólny problem obliczeniowy: dopasowanie linii prostej do zbioru punktów. Najprostszy przypadek - jedna zmienna zależna i jedna

Regresja wieloraka Ogólny problem obliczeniowy: dopasowanie linii prostej do zbioru punktów. Najprostszy przypadek - jedna zmienna zależna i jedna Regresja wieloraka Regresja wieloraka Ogólny problem obliczeniowy: dopasowanie linii prostej do zbioru punktów. Najprostszy przypadek - jedna zmienna zależna i jedna zmienna niezależna (można zobrazować

Bardziej szczegółowo

Analiza Współzależności

Analiza Współzależności Statystyka Opisowa z Demografią oraz Biostatystyka Analiza Współzależności Aleksander Denisiuk denisjuk@euh-e.edu.pl Elblaska Uczelnia Humanistyczno-Ekonomiczna ul. Lotnicza 2 82-300 Elblag oraz Biostatystyka

Bardziej szczegółowo

X WYKŁAD STATYSTYKA. 14/05/2014 B8 sala 0.10B Godz. 15:15

X WYKŁAD STATYSTYKA. 14/05/2014 B8 sala 0.10B Godz. 15:15 X WYKŁAD STATYSTYKA 14/05/2014 B8 sala 0.10B Godz. 15:15 WYKŁAD 10 ANALIZA KORELACJI Korelacja 1. Współczynnik korelacji 2. Kowariancja 3. Współczynnik korelacji liniowej definicja 4. Estymacja współczynnika

Bardziej szczegółowo

Współczynnik korelacji. Współczynnik korelacji jest miernikiem zależności między dwiema cechami Oznaczenie: ϱ

Współczynnik korelacji. Współczynnik korelacji jest miernikiem zależności między dwiema cechami Oznaczenie: ϱ Współczynnik korelacji Współczynnik korelacji jest miernikiem zależności między dwiema cechami Oznaczenie: ϱ Własności współczynnika korelacji 1. Współczynnik korelacji jest liczbą niemianowaną 2. ϱ 1,

Bardziej szczegółowo

ĆWICZENIE 11 ANALIZA KORELACJI I REGRESJI

ĆWICZENIE 11 ANALIZA KORELACJI I REGRESJI ĆWICZENIE 11 ANALIZA KORELACJI I REGRESJI Korelacja 1. Współczynnik korelacji 2. Współczynnik korelacji liniowej definicja 3. Estymacja współczynnika korelacji 4. Testy istotności współczynnika korelacji

Bardziej szczegółowo

Statystyka. Wykład 8. Magdalena Alama-Bućko. 10 kwietnia Magdalena Alama-Bućko Statystyka 10 kwietnia / 31

Statystyka. Wykład 8. Magdalena Alama-Bućko. 10 kwietnia Magdalena Alama-Bućko Statystyka 10 kwietnia / 31 Statystyka Wykład 8 Magdalena Alama-Bućko 10 kwietnia 2017 Magdalena Alama-Bućko Statystyka 10 kwietnia 2017 1 / 31 Tematyka zajęć: Wprowadzenie do statystyki. Analiza struktury zbiorowości miary położenia

Bardziej szczegółowo

Wprowadzenie do analizy korelacji i regresji

Wprowadzenie do analizy korelacji i regresji Statystyka dla jakości produktów i usług Six sigma i inne strategie Wprowadzenie do analizy korelacji i regresji StatSoft Polska Wybrane zagadnienia analizy korelacji Przy analizie zjawisk i procesów stanowiących

Bardziej szczegółowo

Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć)

Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć) Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć) 1. Populacja generalna a losowa próba, parametr rozkładu cechy a jego ocena z losowej próby, miary opisu statystycznego

Bardziej szczegółowo

Weryfikacja hipotez statystycznych za pomocą testów statystycznych

Weryfikacja hipotez statystycznych za pomocą testów statystycznych Weryfikacja hipotez statystycznych za pomocą testów statystycznych Weryfikacja hipotez statystycznych za pomocą testów stat. Hipoteza statystyczna Dowolne przypuszczenie co do rozkładu populacji generalnej

Bardziej szczegółowo

POLITECHNIKA OPOLSKA

POLITECHNIKA OPOLSKA POLITECHNIKA OPOLSKA WYDZIAŁ MECHANICZNY Katedra Technologii Maszyn i Automatyzacji Produkcji Laboratorium Podstaw Inżynierii Jakości Ćwiczenie nr 4 Temat: Analiza korelacji i regresji dwóch zmiennych

Bardziej szczegółowo

Spis treści. Przedmowa... XI. Rozdział 1. Pomiar: jednostki miar... 1. Rozdział 2. Pomiar: liczby i obliczenia liczbowe... 16

Spis treści. Przedmowa... XI. Rozdział 1. Pomiar: jednostki miar... 1. Rozdział 2. Pomiar: liczby i obliczenia liczbowe... 16 Spis treści Przedmowa.......................... XI Rozdział 1. Pomiar: jednostki miar................. 1 1.1. Wielkości fizyczne i pozafizyczne.................. 1 1.2. Spójne układy miar. Układ SI i jego

Bardziej szczegółowo

Statystyczna analiza danych w programie STATISTICA 7.1 PL (wykład 3) Dariusz Gozdowski

Statystyczna analiza danych w programie STATISTICA 7.1 PL (wykład 3) Dariusz Gozdowski Statystyczna analiza danych w programie STATISTICA 7.1 PL (wykład 3) Dariusz Gozdowski Katedra Doświadczalnictwa i Bioinformatyki Wydział Rolnictwa i Biologii SGGW Dwuczynnikowa analiza wariancji (2-way

Bardziej szczegółowo

Metodologia badań psychologicznych. Wykład 12. Korelacje

Metodologia badań psychologicznych. Wykład 12. Korelacje Metodologia badań psychologicznych Lucyna Golińska SPOŁECZNA AKADEMIA NAUK Wykład 12. Korelacje Korelacja Korelacja występuje wtedy gdy dwie różne miary dotyczące tych samych osób, zdarzeń lub obiektów

Bardziej szczegółowo

Zadanie 1 Zakładając liniową relację między wydatkami na obuwie a dochodem oszacować MNK parametry modelu: y t. X 1 t. Tabela 1.

Zadanie 1 Zakładając liniową relację między wydatkami na obuwie a dochodem oszacować MNK parametry modelu: y t. X 1 t. Tabela 1. tel. 44 683 1 55 tel. kom. 64 566 811 e-mail: biuro@wszechwiedza.pl Zadanie 1 Zakładając liniową relację między wydatkami na obuwie a dochodem oszacować MNK parametry modelu: gdzie: y t X t y t = 1 X 1

Bardziej szczegółowo

( x) Równanie regresji liniowej ma postać. By obliczyć współczynniki a i b należy posłużyć się następującymi wzorami 1 : Gdzie:

( x) Równanie regresji liniowej ma postać. By obliczyć współczynniki a i b należy posłużyć się następującymi wzorami 1 : Gdzie: ma postać y = ax + b Równanie regresji liniowej By obliczyć współczynniki a i b należy posłużyć się następującymi wzorami 1 : xy b = a = b lub x Gdzie: xy = też a = x = ( b ) i to dane empiryczne, a ilość

Bardziej szczegółowo

R-PEARSONA Zależność liniowa

R-PEARSONA Zależność liniowa R-PEARSONA Zależność liniowa Interpretacja wyników: wraz ze wzrostem wartości jednej zmiennej (np. zarobków) liniowo rosną wartości drugiej zmiennej (np. kwoty przeznaczanej na wakacje) czyli np. im wyższe

Bardziej szczegółowo

Statystyka. Wykład 9. Magdalena Alama-Bućko. 24 kwietnia Magdalena Alama-Bućko Statystyka 24 kwietnia / 34

Statystyka. Wykład 9. Magdalena Alama-Bućko. 24 kwietnia Magdalena Alama-Bućko Statystyka 24 kwietnia / 34 Statystyka Wykład 9 Magdalena Alama-Bućko 24 kwietnia 2017 Magdalena Alama-Bućko Statystyka 24 kwietnia 2017 1 / 34 Tematyka zajęć: Wprowadzenie do statystyki. Analiza struktury zbiorowości miary położenia

Bardziej szczegółowo

Tablica Wzorów Rachunek Prawdopodobieństwa i Statystyki

Tablica Wzorów Rachunek Prawdopodobieństwa i Statystyki Tablica Wzorów Rachunek Prawdopodobieństwa i Statystyki Spis treści I. Wzory ogólne... 2 1. Średnia arytmetyczna:... 2 2. Rozstęp:... 2 3. Kwantyle:... 2 4. Wariancja:... 2 5. Odchylenie standardowe:...

Bardziej szczegółowo

Analiza współzależności zjawisk

Analiza współzależności zjawisk Analiza współzależności zjawisk Informacje ogólne Jednostki tworzące zbiorowość statystyczną charakteryzowane są zazwyczaj za pomocą wielu cech zmiennych, które nierzadko pozostają ze sobą w pewnym związku.

Bardziej szczegółowo

Analiza korelacji

Analiza korelacji Analiza korelacji Zakres szkolenia Wstęp Podstawowe pojęcia korelacji Współczynnik korelacji liniowej Pearsona Współczynnik korelacji rang Spearmana Test istotności Zadania 2 Wstęp Do czego służy korelacja:

Bardziej szczegółowo

Wielkość dziennego obrotu w tys. zł. (y) Liczba ekspedientek (x) 6 2 4 5,5 6,6

Wielkość dziennego obrotu w tys. zł. (y) Liczba ekspedientek (x) 6 2 4 5,5 6,6 Zad. 1. Zbadano wydajność odmiany pomidorów na 100 poletkach doświadczalnych. W wyniku przeliczeń otrzymano przeciętną wydajność na w tonach na hektar x=30 i s 2 x =7. Przyjmując, że rozkład plonów pomidora

Bardziej szczegółowo

MODELE LINIOWE. Dr Wioleta Drobik

MODELE LINIOWE. Dr Wioleta Drobik MODELE LINIOWE Dr Wioleta Drobik MODELE LINIOWE Jedna z najstarszych i najpopularniejszych metod modelowania Zależność między zbiorem zmiennych objaśniających, a zmienną ilościową nazywaną zmienną objaśnianą

Bardziej szczegółowo

Testy nieparametryczne

Testy nieparametryczne Testy nieparametryczne Testy nieparametryczne możemy stosować, gdy nie są spełnione założenia wymagane dla testów parametrycznych. Stosujemy je również, gdy dane można uporządkować według określonych kryteriów

Bardziej szczegółowo

Wykład 3 Hipotezy statystyczne

Wykład 3 Hipotezy statystyczne Wykład 3 Hipotezy statystyczne Hipotezą statystyczną nazywamy każde przypuszczenie dotyczące nieznanego rozkładu obserwowanej zmiennej losowej (cechy populacji generalnej) Hipoteza zerowa (H 0 ) jest hipoteza

Bardziej szczegółowo

OBLICZENIE PRZEPŁYWÓW MAKSYMALNYCH ROCZNYCH O OKREŚLONYM PRAWDOPODOBIEŃSTWIE PRZEWYŻSZENIA. z wykorzystaniem programu obliczeniowego Q maxp

OBLICZENIE PRZEPŁYWÓW MAKSYMALNYCH ROCZNYCH O OKREŚLONYM PRAWDOPODOBIEŃSTWIE PRZEWYŻSZENIA. z wykorzystaniem programu obliczeniowego Q maxp tel.: +48 662 635 712 Liczba stron: 15 Data: 20.07.2010r OBLICZENIE PRZEPŁYWÓW MAKSYMALNYCH ROCZNYCH O OKREŚLONYM PRAWDOPODOBIEŃSTWIE PRZEWYŻSZENIA z wykorzystaniem programu obliczeniowego Q maxp DŁUGIE

Bardziej szczegółowo

STATYSTYKA. Rafał Kucharski. Uniwersytet Ekonomiczny w Katowicach 2015/16 ROND, Finanse i Rachunkowość, rok 2

STATYSTYKA. Rafał Kucharski. Uniwersytet Ekonomiczny w Katowicach 2015/16 ROND, Finanse i Rachunkowość, rok 2 STATYSTYKA Rafał Kucharski Uniwersytet Ekonomiczny w Katowicach 2015/16 ROND, Finanse i Rachunkowość, rok 2 Zależność przyczynowo-skutkowa, symptomatyczna, pozorna (iluzoryczna), funkcyjna stochastyczna

Bardziej szczegółowo

Załóżmy, że obserwujemy nie jedną lecz dwie cechy, które oznaczymy symbolami X i Y. Wyniki obserwacji obu cech w i-tym obiekcie oznaczymy parą liczb

Załóżmy, że obserwujemy nie jedną lecz dwie cechy, które oznaczymy symbolami X i Y. Wyniki obserwacji obu cech w i-tym obiekcie oznaczymy parą liczb Współzależność Załóżmy, że obserwujemy nie jedną lecz dwie cechy, które oznaczymy symbolami X i Y. Wyniki obserwacji obu cech w i-tym obiekcie oznaczymy parą liczb (x i, y i ). Geometrycznie taką parę

Bardziej szczegółowo

Estymacja parametrów modeli liniowych oraz ocena jakości dopasowania modeli do danych empirycznych

Estymacja parametrów modeli liniowych oraz ocena jakości dopasowania modeli do danych empirycznych Estymacja parametrów modeli liniowych oraz ocena jakości dopasowania modeli do danych empirycznych 3.1. Estymacja parametrów i ocena dopasowania modeli z jedną zmienną 23. Właściciel komisu w celu zbadania

Bardziej szczegółowo

STATYSTYKA OPISOWA. Dr Alina Gleska. 12 listopada Instytut Matematyki WE PP

STATYSTYKA OPISOWA. Dr Alina Gleska. 12 listopada Instytut Matematyki WE PP STATYSTYKA OPISOWA Dr Alina Gleska Instytut Matematyki WE PP 12 listopada 2017 1 Analiza współzależności dwóch cech 2 Jednostka zbiorowości - para (X,Y ). Przy badaniu korelacji nie ma znaczenia, która

Bardziej szczegółowo

Cechy X, Y są dowolnego typu: Test Chi Kwadrat niezależności. Łączny rozkład cech X, Y jest normalny: Test współczynnika korelacji Pearsona

Cechy X, Y są dowolnego typu: Test Chi Kwadrat niezależności. Łączny rozkład cech X, Y jest normalny: Test współczynnika korelacji Pearsona Badanie zależności między cechami Obserwujemy dwie cechy: X oraz Y Obiekt (X, Y ) H 0 : Cechy X oraz Y są niezależne Próba: (X 1, Y 1 ),..., (X n, Y n ) Cechy X, Y są dowolnego typu: Test Chi Kwadrat niezależności

Bardziej szczegółowo

Weryfikacja hipotez statystycznych za pomocą testów statystycznych

Weryfikacja hipotez statystycznych za pomocą testów statystycznych Weryfikacja hipotez statystycznych za pomocą testów statystycznych Weryfikacja hipotez statystycznych za pomocą testów stat. Hipoteza statystyczna Dowolne przypuszczenie co do rozkładu populacji generalnej

Bardziej szczegółowo

Elementy Modelowania Matematycznego Wykład 4 Regresja i dyskryminacja liniowa

Elementy Modelowania Matematycznego Wykład 4 Regresja i dyskryminacja liniowa Spis treści Elementy Modelowania Matematycznego Wykład 4 Regresja i dyskryminacja liniowa Romuald Kotowski Katedra Informatyki Stosowanej PJWSTK 2009 Spis treści Spis treści 1 Wstęp Bardzo często interesujący

Bardziej szczegółowo

STATYSTYKA I DOŚWIADCZALNICTWO Wykład 4

STATYSTYKA I DOŚWIADCZALNICTWO Wykład 4 STATYSTYKA I DOŚWIADCZALNICTWO Wykład 4 Inne układy doświadczalne 1) Układ losowanych bloków Stosujemy, gdy podejrzewamy, że może występować systematyczna zmienność między powtórzeniami np. - zmienność

Bardziej szczegółowo

Korelacja krzywoliniowa i współzależność cech niemierzalnych

Korelacja krzywoliniowa i współzależność cech niemierzalnych Korelacja krzywoliniowa i współzależność cech niemierzalnych Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych Wydział Informatyki Politechniki Szczecińskiej

Bardziej szczegółowo

WYKŁAD 8 ANALIZA REGRESJI

WYKŁAD 8 ANALIZA REGRESJI WYKŁAD 8 ANALIZA REGRESJI Regresja 1. Metoda najmniejszych kwadratów-regresja prostoliniowa 2. Regresja krzywoliniowa 3. Estymacja liniowej funkcji regresji 4. Testy istotności współczynnika regresji liniowej

Bardziej szczegółowo

STATYSTYKA I DOŚWIADCZALNICTWO Wykład 6

STATYSTYKA I DOŚWIADCZALNICTWO Wykład 6 STATYSTYKA I DOŚWIADCZALNICTWO Wykład 6 Metody sprawdzania założeń w analizie wariancji: -Sprawdzanie równości (jednorodności) wariancji testy: - Cochrana - Hartleya - Bartletta -Sprawdzanie zgodności

Bardziej szczegółowo

REGRESJA (postać liniowa funkcji) - ROZWIĄZANIA Komentarze kursywą, rozwiązania oraz treści zadań pismem prostym.

REGRESJA (postać liniowa funkcji) - ROZWIĄZANIA Komentarze kursywą, rozwiązania oraz treści zadań pismem prostym. REGRESJA (postać liniowa funkcji) - ROZWIĄZANIA Komentarze kursywą, rozwiązania oraz treści zadań pismem prostym. Zadanie 1 W celu ustalenia zależności między liczbą braków a wielkością produkcji części

Bardziej szczegółowo

Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji

Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych Wydział Informatyki Politechniki

Bardziej szczegółowo

RÓWNOWAŻNOŚĆ METOD BADAWCZYCH

RÓWNOWAŻNOŚĆ METOD BADAWCZYCH RÓWNOWAŻNOŚĆ METOD BADAWCZYCH Piotr Konieczka Katedra Chemii Analitycznej Wydział Chemiczny Politechnika Gdańska Równoważność metod??? 2 Zgodność wyników analitycznych otrzymanych z wykorzystaniem porównywanych

Bardziej szczegółowo

Statystyka od podstaw Janina Jóźwiak, Jarosław Podgórski

Statystyka od podstaw Janina Jóźwiak, Jarosław Podgórski Statystyka od podstaw Janina Jóźwiak, Jarosław Podgórski Książka jest nowoczesnym podręcznikiem przeznaczonym dla studentów uczelni i wydziałów ekonomicznych. Wykład podzielono na cztery części. W pierwszej

Bardziej szczegółowo

Adam Kirpsza Zastosowanie regresji logistycznej w studiach nad Unią Europejska. Anna Stankiewicz Izabela Słomska

Adam Kirpsza Zastosowanie regresji logistycznej w studiach nad Unią Europejska. Anna Stankiewicz Izabela Słomska Adam Kirpsza Zastosowanie regresji logistycznej w studiach nad Unią Europejska Anna Stankiewicz Izabela Słomska Wstęp- statystyka w politologii Rzadkie stosowanie narzędzi statystycznych Pisma Karla Poppera

Bardziej szczegółowo

Odchudzamy serię danych, czyli jak wykryć i usunąć wyniki obarczone błędami grubymi

Odchudzamy serię danych, czyli jak wykryć i usunąć wyniki obarczone błędami grubymi Odchudzamy serię danych, czyli jak wykryć i usunąć wyniki obarczone błędami grubymi Piotr Konieczka Katedra Chemii Analitycznej Wydział Chemiczny Politechnika Gdańska D syst D śr m 1 3 5 2 4 6 śr j D 1

Bardziej szczegółowo

Regresja i Korelacja

Regresja i Korelacja Regresja i Korelacja Regresja i Korelacja W przyrodzie często obserwujemy związek między kilkoma cechami, np.: drzewa grubsze są z reguły wyższe, drewno iglaste o węższych słojach ma większą gęstość, impregnowane

Bardziej szczegółowo

Spis treści. LaboratoriumV: Podstawy korelacji i regresji. Inżynieria biomedyczna, I rok, semestr letni 2014/2015 Analiza danych pomiarowych

Spis treści. LaboratoriumV: Podstawy korelacji i regresji. Inżynieria biomedyczna, I rok, semestr letni 2014/2015 Analiza danych pomiarowych 1 LaboratoriumV: Podstawy korelacji i regresji Spis treści Laboratorium V: Podstawy korelacji i regresji...1 Wiadomości ogólne...2 1. Wstęp teoretyczny....2 1.1 Korelacja....2 1.2 Funkcja regresji....5

Bardziej szczegółowo

parametrów strukturalnych modelu = Y zmienna objaśniana, X 1,X 2,,X k zmienne objaśniające, k zmiennych objaśniających,

parametrów strukturalnych modelu = Y zmienna objaśniana, X 1,X 2,,X k zmienne objaśniające, k zmiennych objaśniających, 诲 瞴瞶 瞶 ƭ0 ƭ 瞰 parametrów strukturalnych modelu Y zmienna objaśniana, = + + + + + X 1,X 2,,X k zmienne objaśniające, k zmiennych objaśniających, α 0, α 1, α 2,,α k parametry strukturalne modelu, k+1 parametrów

Bardziej szczegółowo

Spis treści 3 SPIS TREŚCI

Spis treści 3 SPIS TREŚCI Spis treści 3 SPIS TREŚCI PRZEDMOWA... 1. WNIOSKOWANIE STATYSTYCZNE JAKO DYSCYPLINA MATEMATYCZNA... Metody statystyczne w analizie i prognozowaniu zjawisk ekonomicznych... Badania statystyczne podstawowe

Bardziej szczegółowo

Teoria błędów. Wszystkie wartości wielkości fizycznych obarczone są pewnym błędem.

Teoria błędów. Wszystkie wartości wielkości fizycznych obarczone są pewnym błędem. Teoria błędów Wskutek niedoskonałości przyrządów, jak również niedoskonałości organów zmysłów wszystkie pomiary są dokonywane z określonym stopniem dokładności. Nie otrzymujemy prawidłowych wartości mierzonej

Bardziej szczegółowo

Analiza Danych Sprawozdanie regresja Marek Lewandowski Inf 59817

Analiza Danych Sprawozdanie regresja Marek Lewandowski Inf 59817 Analiza Danych Sprawozdanie regresja Marek Lewandowski Inf 59817 Zadanie 1: wiek 7 8 9 1 11 11,5 12 13 14 14 15 16 17 18 18,5 19 wzrost 12 122 125 131 135 14 142 145 15 1 154 159 162 164 168 17 Wykres

Bardziej szczegółowo

Analizy wariancji ANOVA (analysis of variance)

Analizy wariancji ANOVA (analysis of variance) ANOVA Analizy wariancji ANOVA (analysis of variance) jest to metoda równoczesnego badania istotności różnic między wieloma średnimi z prób pochodzących z wielu populacji (grup). Model jednoczynnikowy analiza

Bardziej szczegółowo

REGRESJA I KORELACJA MODEL REGRESJI LINIOWEJ

REGRESJA I KORELACJA MODEL REGRESJI LINIOWEJ REGRESJA I KORELACJA MODEL REGRESJI LINIOWEJ Korelacja oznacza fakt współzależności zmiennych, czyli istnienie powiązania pomiędzy nimi. Siłę i kierunek powiązania określa się za pomocą współczynnika korelacji

Bardziej szczegółowo

Spis treści. Księgarnia PWN: Bruce M. King, Edward W. Minium - Statystyka dla psychologów i pedagogów. Wstęp Wprowadzenie...

Spis treści. Księgarnia PWN: Bruce M. King, Edward W. Minium - Statystyka dla psychologów i pedagogów. Wstęp Wprowadzenie... Księgarnia PWN: Bruce M. King, Edward W. Minium - Statystyka dla psychologów i pedagogów Wstęp... 13 1. Wprowadzenie... 19 1.1. Statystyka opisowa.................................. 21 1.2. Wnioskowanie

Bardziej szczegółowo

Statystyka i opracowanie danych- W 8 Wnioskowanie statystyczne. Testy statystyczne. Weryfikacja hipotez statystycznych.

Statystyka i opracowanie danych- W 8 Wnioskowanie statystyczne. Testy statystyczne. Weryfikacja hipotez statystycznych. Statystyka i opracowanie danych- W 8 Wnioskowanie statystyczne. Testy statystyczne. Weryfikacja hipotez statystycznych. Dr Anna ADRIAN Paw B5, pok407 adan@agh.edu.pl Hipotezy i Testy statystyczne Każde

Bardziej szczegółowo

WNIOSKOWANIE STATYSTYCZNE

WNIOSKOWANIE STATYSTYCZNE STATYSTYKA WNIOSKOWANIE STATYSTYCZNE ESTYMACJA oszacowanie z pewną dokładnością wartości opisującej rozkład badanej cechy statystycznej. WERYFIKACJA HIPOTEZ sprawdzanie słuszności przypuszczeń dotyczących

Bardziej szczegółowo

Projekt zaliczeniowy z przedmiotu Statystyka i eksploracja danych (nr 3) Kamil Krzysztof Derkowski

Projekt zaliczeniowy z przedmiotu Statystyka i eksploracja danych (nr 3) Kamil Krzysztof Derkowski Projekt zaliczeniowy z przedmiotu Statystyka i eksploracja danych (nr 3) Kamil Krzysztof Derkowski Zadanie 1 Eksploracja (EXAMINE) Informacja o analizowanych danych Obserwacje Uwzględnione Wykluczone Ogółem

Bardziej szczegółowo

Zawartość. Zawartość

Zawartość. Zawartość Opr. dr inż. Grzegorz Biesok. Wer. 2.05 2011 Zawartość Zawartość 1. Rozkład normalny... 3 2. Rozkład normalny standardowy... 5 3. Obliczanie prawdopodobieństw dla zmiennych o rozkładzie norm. z parametrami

Bardziej szczegółowo

Wielowymiarowa analiza regresji. Regresja wieloraka, wielokrotna

Wielowymiarowa analiza regresji. Regresja wieloraka, wielokrotna Wielowymiarowa analiza regresji. Regresja wieloraka, wielokrotna Badanie współzależności zmiennych Uwzględniając ilość zmiennych otrzymamy 4 odmiany zależności: Zmienna zależna jednowymiarowa oraz jedna

Bardziej szczegółowo

Ćwiczenie: Wybrane zagadnienia z korelacji i regresji.

Ćwiczenie: Wybrane zagadnienia z korelacji i regresji. Ćwiczenie: Wybrane zagadnienia z korelacji i regresji. W statystyce stopień zależności między cechami można wyrazić wg następującej skali: Skala Guillforda Przedział Zależność Współczynnik [0,00±0,20)

Bardziej szczegółowo

Weryfikacja hipotez statystycznych

Weryfikacja hipotez statystycznych Weryfikacja hipotez statystycznych Hipoteza Test statystyczny Poziom istotności Testy jednostronne i dwustronne Testowanie równości wariancji test F-Fishera Testowanie równości wartości średnich test t-studenta

Bardziej szczegółowo

Przedmowa Wykaz symboli Litery alfabetu greckiego wykorzystywane w podręczniku Symbole wykorzystywane w zagadnieniach teorii

Przedmowa Wykaz symboli Litery alfabetu greckiego wykorzystywane w podręczniku Symbole wykorzystywane w zagadnieniach teorii SPIS TREŚCI Przedmowa... 11 Wykaz symboli... 15 Litery alfabetu greckiego wykorzystywane w podręczniku... 15 Symbole wykorzystywane w zagadnieniach teorii mnogości (rachunku zbiorów)... 16 Symbole stosowane

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA, LISTA 3

STATYSTYKA MATEMATYCZNA, LISTA 3 STATYSTYKA MATEMATYCZNA, LISTA 3 1. Aby zweryfikować hipotezę o symetryczności monety; H: p = 0.5 przeciwko K: p 0.5 wykonano nią n = 100 rzutów. Wyznaczyć obszar krytyczny i zweryfikować hipotezę H gdy

Bardziej szczegółowo

2. Założenie niezależności zakłóceń modelu - autokorelacja składnika losowego - test Durbina - Watsona

2. Założenie niezależności zakłóceń modelu - autokorelacja składnika losowego - test Durbina - Watsona Sprawdzanie założeń przyjętych o modelu (etap IIIC przyjętego schematu modelowania regresyjnego) 1. Szum 2. Założenie niezależności zakłóceń modelu - autokorelacja składnika losowego - test Durbina - Watsona

Bardziej szczegółowo

Kolokwium ze statystyki matematycznej

Kolokwium ze statystyki matematycznej Kolokwium ze statystyki matematycznej 28.05.2011 Zadanie 1 Niech X będzie zmienną losową z rozkładu o gęstości dla, gdzie 0 jest nieznanym parametrem. Na podstawie pojedynczej obserwacji weryfikujemy hipotezę

Bardziej szczegółowo

WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI. Test zgodności i analiza wariancji Analiza wariancji

WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI. Test zgodności i analiza wariancji Analiza wariancji WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI Test zgodności i analiza wariancji Analiza wariancji Test zgodności Chi-kwadrat Sprawdza się za jego pomocą ZGODNOŚĆ ROZKŁADU EMPIRYCZNEGO Z PRÓBY Z ROZKŁADEM HIPOTETYCZNYM

Bardziej szczegółowo

STATYSTYKA I DOŚWIADCZALNICTWO. Wykład 2

STATYSTYKA I DOŚWIADCZALNICTWO. Wykład 2 STATYSTYKA I DOŚWIADCZALNICTWO Wykład Parametry przedziałowe rozkładów ciągłych określane na podstawie próby (przedziały ufności) Przedział ufności dla średniej s X t( α;n 1),X + t( α;n 1) n s n t (α;

Bardziej szczegółowo

Niepewności pomiarów

Niepewności pomiarów Niepewności pomiarów Międzynarodowa Organizacja Normalizacyjna (ISO) w roku 1995 opublikowała normy dotyczące terminologii i sposobu określania niepewności pomiarów [1]. W roku 1999 normy zostały opublikowane

Bardziej szczegółowo

Analiza regresji - weryfikacja założeń

Analiza regresji - weryfikacja założeń Medycyna Praktyczna - portal dla lekarzy Analiza regresji - weryfikacja założeń mgr Andrzej Stanisz z Zakładu Biostatystyki i Informatyki Medycznej Collegium Medicum UJ w Krakowie (Kierownik Zakładu: prof.

Bardziej szczegółowo

STATYSTYKA I DOŚWIADCZALNICTWO Wykład 8

STATYSTYKA I DOŚWIADCZALNICTWO Wykład 8 STATYSTYKA I DOŚWIADCZALNICTWO Wykład 8 Regresja wielokrotna Regresja wielokrotna jest metodą statystyczną, w której oceniamy wpływ wielu zmiennych niezależnych (X 1, X 2, X 3,...) na zmienną zależną (Y).

Bardziej szczegółowo

b) Niech: - wśród trzech wylosowanych opakowań jest co najwyżej jedno o dawce 15 mg. Wówczas:

b) Niech: - wśród trzech wylosowanych opakowań jest co najwyżej jedno o dawce 15 mg. Wówczas: ROZWIĄZANIA I ODPOWIEDZI Zadanie A1. Można założyć, że przy losowaniu trzech kul jednocześnie kolejność ich wylosowania nie jest istotna. A więc: Ω = 20 3. a) Niech: - wśród trzech wylosowanych opakowań

Bardziej szczegółowo

Recenzenci: prof. dr hab. Henryk Domański dr hab. Jarosław Górniak

Recenzenci: prof. dr hab. Henryk Domański dr hab. Jarosław Górniak Recenzenci: prof. dr hab. Henryk Domański dr hab. Jarosław Górniak Redakcja i korekta Bogdan Baran Projekt graficzny okładki Katarzyna Juras Copyright by Wydawnictwo Naukowe Scholar, Warszawa 2011 ISBN

Bardziej szczegółowo

Narzędzia statystyczne i ekonometryczne. Wykład 1. dr Paweł Baranowski

Narzędzia statystyczne i ekonometryczne. Wykład 1. dr Paweł Baranowski Narzędzia statystyczne i ekonometryczne Wykład 1 dr Paweł Baranowski Informacje organizacyjne Wydział Ek-Soc, pok. B-109 pawel@baranowski.edu.pl Strona: baranowski.edu.pl (w tym materiały) Konsultacje:

Bardziej szczegółowo

Księgarnia PWN: George A. Ferguson, Yoshio Takane - Analiza statystyczna w psychologii i pedagogice

Księgarnia PWN: George A. Ferguson, Yoshio Takane - Analiza statystyczna w psychologii i pedagogice Księgarnia PWN: George A. Ferguson, Yoshio Takane - Analiza statystyczna w psychologii i pedagogice Przedmowa do wydania polskiego Przedmowa CZĘŚĆ I. PODSTAWY STATYSTYKI Rozdział 1 Podstawowe pojęcia statystyki

Bardziej szczegółowo

Analiza autokorelacji

Analiza autokorelacji Analiza autokorelacji Oblicza się wartości współczynników korelacji między y t oraz y t-i (dla i=1,2,...,k), czyli współczynniki autokorelacji różnych rzędów. Bada się statystyczną istotność tych współczynników.

Bardziej szczegółowo

Rozkład normalny. Marcin Zajenkowski. Marcin Zajenkowski () Rozkład normalny 1 / 26

Rozkład normalny. Marcin Zajenkowski. Marcin Zajenkowski () Rozkład normalny 1 / 26 Rozkład normalny Marcin Zajenkowski Marcin Zajenkowski () Rozkład normalny 1 / 26 Rozkład normalny Krzywa normalna, krzywa Gaussa, rozkład normalny Rozkłady liczebności wielu pomiarów fizycznych, biologicznych

Bardziej szczegółowo

Przykład 1 ceny mieszkań

Przykład 1 ceny mieszkań Przykład ceny mieszkań Przykład ceny mieszkań Model ekonometryczny zaleŝności ceny mieszkań od metraŝu - naleŝy do klasy modeli nieliniowych. - weryfikację empiryczną modelu przeprowadzono na przykładzie

Bardziej szczegółowo

ALGORYTMICZNA I STATYSTYCZNA ANALIZA DANYCH

ALGORYTMICZNA I STATYSTYCZNA ANALIZA DANYCH 1 ALGORYTMICZNA I STATYSTYCZNA ANALIZA DANYCH WFAiS UJ, Informatyka Stosowana II stopień studiów 2 Regresja liniowa Korelacja Modelowanie Analiza modelu Wnioskowanie Korelacja 3 Korelacja R: charakteryzuje

Bardziej szczegółowo

Stanisław Cichocki Natalia Nehrebecka. Zajęcia 8

Stanisław Cichocki Natalia Nehrebecka. Zajęcia 8 Stanisław Cichocki Natalia Nehrebecka Zajęcia 8 1. Testy diagnostyczne 2. Testowanie prawidłowości formy funkcyjnej modelu 3. Testowanie normalności składników losowych 4. Testowanie stabilności parametrów

Bardziej szczegółowo

Wnioskowanie statystyczne i weryfikacja hipotez statystycznych

Wnioskowanie statystyczne i weryfikacja hipotez statystycznych Wnioskowanie statystyczne i weryfikacja hipotez statystycznych Wnioskowanie statystyczne Wnioskowanie statystyczne obejmuje następujące czynności: Sformułowanie hipotezy zerowej i hipotezy alternatywnej.

Bardziej szczegółowo

Zaawansowana eksploracja danych - sprawozdanie nr 1 Rafał Kwiatkowski 89777, Poznań

Zaawansowana eksploracja danych - sprawozdanie nr 1 Rafał Kwiatkowski 89777, Poznań Zaawansowana eksploracja danych - sprawozdanie nr 1 Rafał Kwiatkowski 89777, Poznań 6.11.1 1 Badanie współzależności atrybutów jakościowych w wielowymiarowych tabelach danych. 1.1 Analiza współzależności

Bardziej szczegółowo

zestaw zadań nr 7 Cel: analiza regresji regresja prosta i wieloraka MODELE

zestaw zadań nr 7 Cel: analiza regresji regresja prosta i wieloraka MODELE zestaw zadań nr 7 Cel: analiza regresji regresja prosta i wieloraka Przebieg regresji liniowej: 1. Znaleźć funkcję y=f(x) (dopasowanie modelu) 2. Sprawdzić: a) Wsp. determinacji R 2 b) Test istotności

Bardziej szczegółowo

Regresja wielokrotna. PDF created with FinePrint pdffactory Pro trial version http://www.fineprint.com

Regresja wielokrotna. PDF created with FinePrint pdffactory Pro trial version http://www.fineprint.com Regresja wielokrotna Model dla zależności liniowej: Y=a+b 1 X 1 +b 2 X 2 +...+b n X n Cząstkowe współczynniki regresji wielokrotnej: b 1,..., b n Zmienne niezależne (przyczynowe): X 1,..., X n Zmienna

Bardziej szczegółowo

ANALIZA REGRESJI SPSS

ANALIZA REGRESJI SPSS NLIZ REGRESJI SPSS Metody badań geografii społeczno-ekonomicznej KORELCJ REGRESJ O ile celem korelacji jest zmierzenie siły związku liniowego między (najczęściej dwoma) zmiennymi, o tyle w regresji związek

Bardziej szczegółowo

Pojęcie korelacji. Korelacja (współzależność cech) określa wzajemne powiązania pomiędzy wybranymi zmiennymi.

Pojęcie korelacji. Korelacja (współzależność cech) określa wzajemne powiązania pomiędzy wybranymi zmiennymi. Pojęcie korelacji Korelacja (współzależność cech) określa wzajemne powiązania pomiędzy wybranymi zmiennymi. Charakteryzując korelację dwóch cech podajemy dwa czynniki: kierunek oraz siłę. Korelacyjne wykresy

Bardziej szczegółowo

Komputerowa Analiza Danych Doświadczalnych

Komputerowa Analiza Danych Doświadczalnych Komputerowa Analiza Danych Doświadczalnych Prowadząca: dr inż. Hanna Zbroszczyk e-mail: gos@if.pw.edu.pl tel: +48 22 234 58 51 konsultacje: poniedziałek, 10-11; środa: 11-12 www: http://www.if.pw.edu.pl/~gos/students/kadd

Bardziej szczegółowo

Testowanie hipotez statystycznych związanych ą z szacowaniem i oceną ą modelu ekonometrycznego

Testowanie hipotez statystycznych związanych ą z szacowaniem i oceną ą modelu ekonometrycznego Testowanie hipotez statystycznych związanych ą z szacowaniem i oceną ą modelu ekonometrycznego Ze względu na jakość uzyskiwanych ocen parametrów strukturalnych modelu oraz weryfikację modelu, metoda najmniejszych

Bardziej szczegółowo

Przykład 2. Na podstawie książki J. Kowal: Metody statystyczne w badaniach sondażowych rynku

Przykład 2. Na podstawie książki J. Kowal: Metody statystyczne w badaniach sondażowych rynku Przykład 2 Na podstawie książki J. Kowal: Metody statystyczne w badaniach sondażowych rynku Sondaż sieciowy analiza wyników badania sondażowego dotyczącego motywacji w drodze do sukcesu Cel badania: uzyskanie

Bardziej szczegółowo

Testowanie hipotez statystycznych

Testowanie hipotez statystycznych Testowanie hipotez statystycznych Hipotezą statystyczną jest dowolne przypuszczenie co do rozkładu populacji generalnej (jego postaci funkcyjnej lub wartości parametrów). Prawdziwość tego przypuszczenia

Bardziej szczegółowo

HISTOGRAM. Dr Adam Michczyński - METODY ANALIZY DANYCH POMIAROWYCH Liczba pomiarów - n. Liczba pomiarów - n k 0.5 N = N =

HISTOGRAM. Dr Adam Michczyński - METODY ANALIZY DANYCH POMIAROWYCH Liczba pomiarów - n. Liczba pomiarów - n k 0.5 N = N = HISTOGRAM W pewnych przypadkach interesuje nas nie tylko określenie prawdziwej wartości mierzonej wielkości, ale także zbadanie całego rozkład prawdopodobieństwa wyników pomiarów. W takim przypadku wyniki

Bardziej szczegółowo

3. Modele tendencji czasowej w prognozowaniu

3. Modele tendencji czasowej w prognozowaniu II Modele tendencji czasowej w prognozowaniu 1 Składniki szeregu czasowego W teorii szeregów czasowych wyróżnia się zwykle następujące składowe szeregu czasowego: a) składowa systematyczna; b) składowa

Bardziej szczegółowo

Analiza niepewności pomiarów

Analiza niepewności pomiarów Teoria pomiarów Analiza niepewności pomiarów Zagadnienia statystyki matematycznej Dr hab. inż. Paweł Majda www.pmajda.zut.edu.pl Podstawy statystyki matematycznej Histogram oraz wielobok liczebności zmiennej

Bardziej szczegółowo

JEDNORÓWNANIOWY LINIOWY MODEL EKONOMETRYCZNY

JEDNORÓWNANIOWY LINIOWY MODEL EKONOMETRYCZNY JEDNORÓWNANIOWY LINIOWY MODEL EKONOMETRYCZNY Będziemy zapisywać wektory w postaci (,, ) albo traktując go jak macierz jednokolumnową (dzięki temu nie będzie kontrowersji przy transponowaniu wektora ) Model

Bardziej szczegółowo

Analiza składowych głównych. Wprowadzenie

Analiza składowych głównych. Wprowadzenie Wprowadzenie jest techniką redukcji wymiaru. Składowe główne zostały po raz pierwszy zaproponowane przez Pearsona(1901), a następnie rozwinięte przez Hotellinga (1933). jest zaliczana do systemów uczących

Bardziej szczegółowo

Analiza zależności cech ilościowych regresja liniowa (Wykład 13)

Analiza zależności cech ilościowych regresja liniowa (Wykład 13) Analiza zależności cech ilościowych regresja liniowa (Wykład 13) dr Mariusz Grządziel semestr letni 2012 Przykład wprowadzajacy W zbiorze danych homedata (z pakietu R-owskiego UsingR) można znaleźć ceny

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA ZESTAW 0 (POWT. RACH. PRAWDOPODOBIEŃSTWA) ZADANIA

STATYSTYKA MATEMATYCZNA ZESTAW 0 (POWT. RACH. PRAWDOPODOBIEŃSTWA) ZADANIA STATYSTYKA MATEMATYCZNA ZESTAW 0 (POWT. RACH. PRAWDOPODOBIEŃSTWA) ZADANIA Zadanie 0.1 Zmienna losowa X ma rozkład określony funkcją prawdopodobieństwa: x k 0 4 p k 1/3 1/6 1/ obliczyć EX, D X. (odp. 4/3;

Bardziej szczegółowo

Testowanie hipotez statystycznych. Wnioskowanie statystyczne

Testowanie hipotez statystycznych. Wnioskowanie statystyczne Testowanie hipotez statystycznych Wnioskowanie statystyczne Hipoteza statystyczna to dowolne przypuszczenie co do rozkładu populacji generalnej (jego postaci funkcyjnej lub wartości parametrów). Hipotezy

Bardziej szczegółowo

Psychometria PLAN NAJBLIŻSZYCH WYKŁADÓW. Co wyniki testu mówią nam o samym teście? A. Rzetelność pomiaru testem. TEN SLAJD JUŻ ZNAMY

Psychometria PLAN NAJBLIŻSZYCH WYKŁADÓW. Co wyniki testu mówią nam o samym teście? A. Rzetelność pomiaru testem. TEN SLAJD JUŻ ZNAMY definicja rzetelności błąd pomiaru: systematyczny i losowy Psychometria Co wyniki testu mówią nam o samym teście? A. Rzetelność pomiaru testem. rozkład X + błąd losowy rozkład X rozkład X + błąd systematyczny

Bardziej szczegółowo