STUDIA I STOPNIA EGZAMIN Z EKONOMETRII

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "STUDIA I STOPNIA EGZAMIN Z EKONOMETRII"

Transkrypt

1 NAZWISKO IMIĘ Nr albumu Nr zestawu Zadanie 1. Dana jest macierz Leontiefa pewnego zamkniętego trzygałęziowego układu gospodarczego: 0,64 0,3 0,3 0,6 0,88 0,. 0,4 0,8 0,85 W okresie t stosunek zuŝycia środków trwałych do wartości dodanej kaŝdej z gałęzi wynosił dla gałęzi pierwszej 1, dla drugiej 0,5, dla trzeciej 0,5. a. (1 pkt) Oblicz, dla której gałęzi udział wartości dodanej w wartości jej produktu globalnego w okresie t jest najmniejszy. XX b. (1 pkt) W pewnym wariancie planistycznym na okres t+1 przewiduje się wytworzenie produktu globalnego w gałęzi pierwszej o wartości 500 j.p., w gałęzi drugiej 600 j.p. oraz w gałęzi trzeciej 700 j.p. We wszystkich gałęziach relacje nakładów materiałowych do produkcji pozostaną na poziomie okresu t. Czy wprowadzenie tego wariantu jest moŝliwe? c. (1 pkt) Jeśli w okresie t wartość produktu globalnego gałęzi pierwszej wyniosła 800 j.p., gałęzi drugiej 500 j.p., a gałęzi trzeciej 600 j.p., ile wyniósł dochód narodowy netto? d. (1 pkt) Jak w roku t+1 w stosunku do roku t zmienią się koszty materiałowe układu, jeśli w roku t+1 spodziewany jest wzrost produkcji końcowej kaŝdej gałęzi o %? Instytut Ekonometrii, Szkoła Główna Handlowa w Warszawie strona 1

2 Zadanie. Dane jest zadanie programowania liniowego x1 + 6x 6 max przy warunkach (1) 4x1 + x 8, () x1 + 3x 7, (3) x 1 8, (4) 0, x 0. x1 a. (1,5 pkt) RozwiąŜ zadanie metodą graficzną. Podaj zbiór rozwiązań optymalnych zadania i maksymalną wartość funkcji celu. b. (1 pkt) Podaj zbiór wszystkich wartości współczynnika funkcji celu przy zmiennej x, dla których punkt ( x 1; x ) = (4; 1) jest rozwiązaniem optymalnym tego zadania. c. (1 pkt) Podaj zbiór wszystkich wartości wyrazu wolnego w warunku ograniczającym (), dla których zadanie ma nieskończenie wiele rozwiązań optymalnych. d. (0,5 pkt) Jakie będzie rozwiązanie optymalne zadania po wyeliminowaniu ze zbioru warunków ograniczających warunku ()? Instytut Ekonometrii, Szkoła Główna Handlowa w Warszawie strona

3 Zadanie 3. Dany jest raport dla rozwiązania optymalnego pewnego zadania PL, w którym maksymalizowano funkcję celu postaci f ( x ) = c1x1 + c x + c3x 3, dla nieujemnych zmiennych decyzyjnych: Komórki decyzyjne Wartość Przyrost Współczynnik Dopuszczalny Dopuszczalny Komórka Nazwa końcowa krańcowy funkcji celu wzrost spadek $C$3 x E+30 $C$4 x 0-1,8 4 1,8 1E+30 $C$5 x E+30 1, Warunki ograniczające Wartość Cena Prawa strona Dopuszczalny Dopuszczalny Komórka Nazwa końcowa dualna w. o. wzrost spadek $J$3 warunek 1 1 0, , $J$4 warunek E+30 6 $J$5 warunek 3 8-0, 8 4, a) (1 pkt) Oblicz wartość funkcji celu dla rozwiązania optymalnego zadania. b) (1 pkt) Oblicz o ile zmieni się wartość funkcji celu, jeŝeli współczynnik funkcji celu przy zmiennej x 1 wzrośnie o 1. c) (1 pkt) Oblicz o ile zmieni się wartość funkcji celu, jeŝeli wyraz wolny trzeciego warunku ograniczającego spadnie o 5? d) (1 pkt) Czy rozwiązanie optymalne ulegnie zmianie, jeŝeli wyraz wolny drugiego warunku ograniczającego wzrośnie o? (Odpowiedź uzasadnij) Instytut Ekonometrii, Szkoła Główna Handlowa w Warszawie strona 3

4 Zadanie 4. Oszacowano model Koycka i otrzymano następujące wyniki (M_1 oznacza zmienną M opóźnioną o 1 okres): Model 1: Estymacja KMNK z wykorzystaniem 109 obserwacji 1964:-1991: Zmienna zaleŝna: M współczynnik błąd standardowy t-studenta wartość p const 110,48 1,359 5,00 9,77e-07 *** D 0, , ,91 3,17e-06 *** M_1 0, , ,16 8,8e-09 *** Średn.aryt.zm.zaleŜnej,145 Odch.stand.zm.zaleŜnej 418,0867 Suma kwadratów reszt 6475,74 Błąd standardowy reszt 4,71073 Wsp. determ. R-kwadrat 0, Skorygowany R-kwadrat 0, F(, 106) 15405,07 Wartość p dla testu F,3e-131 Logarytm wiarygodności -50,73 Kryt. inform. Akaike'a 1011,464 Kryt. bayes. Schwarza 1019,538 Kryt. Hannana-Quinna 1014,739 Autokorel.reszt - rho1 0, Statystyka Durbina h 5, Test na normalność rozkładu reszt - Hipoteza zerowa: składnik losowy ma rozkład normalny Statystyka testu: Chi-kwadrat() = 5,695 z wartością p = 0, Rozszerzony test Dickeya-Fullera dla procesu M dla opóźnienia pierwszego rzędu procesu (1-L)M liczebność próby 108 Hipoteza zerowa: występuje pierwiastek jednostkowy a = 1; proces I(1) test z wyrazem wolnym (const) model: (1-L)y = b0 + (a-1)*y(-1) e Autokorelacja reszt rzędu pierwszego: 0,0 estymowana wartość (a-1) wynosi: -0, Statystyka testu: tau_c(1) = -0,95333 asymptotyczna wartość p = 0,7719 Rozszerzony test Dickeya-Fullera dla procesu d_m dla opóźnienia pierwszego rzędu procesu (1-L)d_M liczebność próby 107 Hipoteza zerowa: występuje pierwiastek jednostkowy a = 1; proces I(1) test z wyrazem wolnym (const) model: (1-L)y = b0 + (a-1)*y(-1) e Autokorelacja reszt rzędu pierwszego: 0,004 estymowana wartość (a-1) wynosi: -0, Statystyka testu: tau_c(1) = -4,51467 asymptotyczna wartość p = 0,0001 Instytut Ekonometrii, Szkoła Główna Handlowa w Warszawie strona 4

5 a) (1 pkt) Oblicz i zinterpretuj mnoŝnik długookresowy. b) (1 pkt) Zapisz oszacowany model przed transformacją uwzględniając przynajmniej dwa pierwsze opóźnienia zmiennej objaśniającej. c) (1 pkt) Określ stopień integracji szeregu M t. d) (1 pkt) Zbadaj istotność zmiennych objaśniających (przyjmij poziom istotności 0,05). Instytut Ekonometrii, Szkoła Główna Handlowa w Warszawie strona 5

6 Zadanie 5. Oszacowano model logitowy, który uzaleŝniał przyznanie kredytu konsumpcyjnego od zmiennych AGE (wiek) i MDR (liczba naruszeń harmonogramu spłaty wcześniejszych kredytów). Zmienne zdefiniowano w następujący sposób: ACC zmienna binarna (1- gdy przyznano kredyt, 0 gdy nie przyznano kredytu), AGE wiek kredytobiorcy w latach, MDR - zmienna przyjmująca wartości 0, 1,,, zaleŝnie od liczby naruszeń harmonogramu spłaty. Model 1: Estymacja Logit z wykorzystaniem 100 obserwacji Zmienna zaleŝna: ACC współczynnik błąd standardowy t-studenta efekt krańcowy Const 3,0858 1,0991,804 AGE -0, , ,57-0, MDR -1,1563 0, ,99-0,35069 Średn.aryt.zm.zaleŜnej 0, Odch.stand.zm.zaleŜnej 0,19337 McFadden R-kwadrat 0,1774 Skorygowany R-kwadrat 0,1189 Logarytm wiarygodności -48,5159 Kryt. inform. Akaike'a 10,503 Kryt. bayes. Schwarza 110,3187 Kryt. Hannana-Quinna 105,6663 Liczba przypadków 'poprawnej predykcji' = 79 (79,0%) f(beta'x) do średnich niezaleŝnych zmiennych = 0,193 Test ilorazu wiarygodności: Chi-kwadrat() = 0,1486 [0,0000] a. (1 pkt) Jaki był procent osób, którym przyznano kredyt? b. (1 pkt) Zinterpretuj efekt krańcowy dla zmiennej AGE. c. (1 pkt) Zinterpretuj ocenę parametru przy zmiennej MDR. d. (1 pkt) Oblicz prawdopodobieństwo uzyskania kredytu dla osoby w wieku 40 lat, która raz naruszyła harmonogram spłaty kredytu. Instytut Ekonometrii, Szkoła Główna Handlowa w Warszawie strona 6

Niestacjonarne zmienne czasowe własności i testowanie

Niestacjonarne zmienne czasowe własności i testowanie Materiał dla studentów Niestacjonarne zmienne czasowe własności i testowanie (studium przypadku) Część 3: Przykłady testowania niestacjonarności Nazwa przedmiotu: ekonometria finansowa I (22204), analiza

Bardziej szczegółowo

Zadanie 3 Na podstawie danych kwartalnych z lat oszacowano następujący model (w nawiasie podano błąd standardowy oszacowania):

Zadanie 3 Na podstawie danych kwartalnych z lat oszacowano następujący model (w nawiasie podano błąd standardowy oszacowania): Zadanie 1 Fabryka Dolce Vita do produkcji czekolady potrzebuje nakładów kapitału i siły roboczej. Na podstawie historycznych danych o wielkości produkcji oraz nakładów czynników produkcji w tej fabryce

Bardziej szczegółowo

4. Średnia i autoregresja zmiennej prognozowanej

4. Średnia i autoregresja zmiennej prognozowanej 4. Średnia i autoregresja zmiennej prognozowanej 1. Średnia w próbie uczącej Własności: y = y = 1 N y = y t = 1, 2, T s = s = 1 N 1 y y R = 0 v = s 1 +, 2. Przykład. Miesięczna sprzedaż żelazek (szt.)

Bardziej szczegółowo

Proces modelowania zjawiska handlu zagranicznego towarami

Proces modelowania zjawiska handlu zagranicznego towarami Załącznik nr 1 do raportu końcowego z wykonania pracy badawczej pt. Handel zagraniczny w województwach (NTS2) realizowanej przez Centrum Badań i Edukacji Statystycznej z siedzibą w Jachrance na podstawie

Bardziej szczegółowo

Zadanie 1 1. Czy wykresy zmiennych sugerują, że zmienne są stacjonarne. Czy występuje sezonowość?

Zadanie 1 1. Czy wykresy zmiennych sugerują, że zmienne są stacjonarne. Czy występuje sezonowość? Zadanie 1 1. Czy wykresy zmiennych sugerują, że zmienne są stacjonarne. Czy występuje sezonowość? Wykres stopy bezrobocia rejestrowanego w okresie 01.1998 12.2008, dane Polskie 22 20 18 16 stopa 14 12

Bardziej szczegółowo

Model 1: Estymacja KMNK z wykorzystaniem 32 obserwacji 1964-1995 Zmienna zależna: st_g

Model 1: Estymacja KMNK z wykorzystaniem 32 obserwacji 1964-1995 Zmienna zależna: st_g Zadanie 1 Dla modelu DL dla zależności stopy wzrostu konsumpcji benzyny od stopy wzrostu dochodu oraz od stopy wzrostu cen benzyny w latach 1960 i 1995 otrzymaliśmy następujące oszacowanie parametrów.

Bardziej szczegółowo

EKONOMETRIA STOSOWANA PRZYKŁADOWE ZADANIA EGZAMINACYJNE

EKONOMETRIA STOSOWANA PRZYKŁADOWE ZADANIA EGZAMINACYJNE EKONOMETRIA STOSOWANA PRZYKŁADOWE ZADANIA EGZAMINACYJNE ZADANIE 1 Oszacowano zależność między luką popytowa a stopą inflacji dla gospodarki niemieckiej. Wyniki estymacji są następujące: Estymacja KMNK,

Bardziej szczegółowo

Outsourcing a produktywność pracy w polskich przedsiębiorstwach. Anna Grześ Zakład Zarządzania Uniwersytet w Białymstoku

Outsourcing a produktywność pracy w polskich przedsiębiorstwach. Anna Grześ Zakład Zarządzania Uniwersytet w Białymstoku Outsourcing a produktywność pracy w polskich przedsiębiorstwach Anna Grześ Zakład Zarządzania Uniwersytet w Białymstoku Cele : pomiar produktywności pracy w polskich przedsiębiorstwach na poziomie sekcji

Bardziej szczegółowo

Niestacjonarne zmienne czasowe własności i testowanie

Niestacjonarne zmienne czasowe własności i testowanie Materiał dla studentów Niestacjonarne zmienne czasowe własności i testowanie (studium przypadku) Część 1: Opis ogólny i plan pracy Nazwa przedmiotu: ekonometria finansowa I (22204), analiza szeregów czasowych

Bardziej szczegółowo

1. Stacjonarnośd i niestacjonarnośd szeregów czasowych 2. Test ADF i test KPSS 3. Budowa modeli ARMA dla zmiennych niestacjonarnych 4.

1. Stacjonarnośd i niestacjonarnośd szeregów czasowych 2. Test ADF i test KPSS 3. Budowa modeli ARMA dla zmiennych niestacjonarnych 4. 1. Stacjonarnośd i niestacjonarnośd szeregów czasowych 2. Test ADF i test KPSS 3. Budowa modeli ARMA dla zmiennych niestacjonarnych 4. Prognozowanie stóp zwrotu na podstawie modeli ARMA 5. Relacje kointegrujące

Bardziej szczegółowo

Metoda Johansena objaśnienia i przykłady

Metoda Johansena objaśnienia i przykłady Metoda Johansena objaśnienia i przykłady Model wektorowej autoregresji rzędu p, VAR(p), ma postad gdzie oznacza wektor zmiennych endogenicznych modelu. Model VAR jest stabilny, jeżeli dla, tzn. wielomian

Bardziej szczegółowo

Zadanie 1. a) Przeprowadzono test RESET. Czy model ma poprawną formę funkcyjną? 1

Zadanie 1. a) Przeprowadzono test RESET. Czy model ma poprawną formę funkcyjną? 1 Zadanie 1 a) Przeprowadzono test RESET. Czy model ma poprawną formę funkcyjną? 1 b) W naszym przypadku populacja są inżynierowie w Tajlandii. Czy można jednak przypuszczać, że na zarobki kobiet-inżynierów

Bardziej szczegółowo

K wartość kapitału zaangażowanego w proces produkcji, w tys. jp.

K wartość kapitału zaangażowanego w proces produkcji, w tys. jp. Sprawdzian 2. Zadanie 1. Za pomocą KMNK oszacowano następującą funkcję produkcji: Gdzie: P wartość produkcji, w tys. jp (jednostek pieniężnych) K wartość kapitału zaangażowanego w proces produkcji, w tys.

Bardziej szczegółowo

Ćwiczenia IV

Ćwiczenia IV Ćwiczenia IV - 17.10.2007 1. Spośród podanych macierzy X wskaż te, których nie można wykorzystać do estymacji MNK parametrów modelu ekonometrycznego postaci y = β 0 + β 1 x 1 + β 2 x 2 + ε 2. Na podstawie

Bardziej szczegółowo

Na podstawie danych dotyczacych rocznych wydatków na pizze oszacowano parametry poniższego modelu:

Na podstawie danych dotyczacych rocznych wydatków na pizze oszacowano parametry poniższego modelu: Zadanie 1. Oszacowano model ekonometryczny liczby narodzin dzieci (w tys.) w Polsce w latach 2000 2010 w zależnosci od średniego rocznego wynagrodzenia (w ujęciu realnym, PLN), stopy bezrobocia (w punktach

Bardziej szczegółowo

Projekt zaliczeniowy z Ekonometrii i prognozowania Wyższa Szkoła Bankowa w Toruniu 2014/2015

Projekt zaliczeniowy z Ekonometrii i prognozowania Wyższa Szkoła Bankowa w Toruniu 2014/2015 Projekt zaliczeniowy z Ekonometrii i prognozowania Wyższa Szkoła Bankowa w Toruniu 2014/2015 Nr indeksu... Imię i Nazwisko... Nr grupy ćwiczeniowej... Imię i Nazwisko prowadzącego... 1. Specyfikacja modelu

Bardziej szczegółowo

3. Modele tendencji czasowej w prognozowaniu

3. Modele tendencji czasowej w prognozowaniu II Modele tendencji czasowej w prognozowaniu 1 Składniki szeregu czasowego W teorii szeregów czasowych wyróżnia się zwykle następujące składowe szeregu czasowego: a) składowa systematyczna; b) składowa

Bardziej szczegółowo

Zadanie 1 Zakładając liniową relację między wydatkami na obuwie a dochodem oszacować MNK parametry modelu: y t. X 1 t. Tabela 1.

Zadanie 1 Zakładając liniową relację między wydatkami na obuwie a dochodem oszacować MNK parametry modelu: y t. X 1 t. Tabela 1. tel. 44 683 1 55 tel. kom. 64 566 811 e-mail: biuro@wszechwiedza.pl Zadanie 1 Zakładając liniową relację między wydatkami na obuwie a dochodem oszacować MNK parametry modelu: gdzie: y t X t y t = 1 X 1

Bardziej szczegółowo

TEST STATYSTYCZNY. Jeżeli hipotezę zerową odrzucimy na danym poziomie istotności, to odrzucimy ją na każdym większym poziomie istotności.

TEST STATYSTYCZNY. Jeżeli hipotezę zerową odrzucimy na danym poziomie istotności, to odrzucimy ją na każdym większym poziomie istotności. TEST STATYSTYCZNY Testem statystycznym nazywamy regułę postępowania rozstrzygająca, przy jakich wynikach z próby hipotezę sprawdzaną H 0 należy odrzucić, a przy jakich nie ma podstaw do jej odrzucenia.

Bardziej szczegółowo

MODELE LINIOWE. Dr Wioleta Drobik

MODELE LINIOWE. Dr Wioleta Drobik MODELE LINIOWE Dr Wioleta Drobik MODELE LINIOWE Jedna z najstarszych i najpopularniejszych metod modelowania Zależność między zbiorem zmiennych objaśniających, a zmienną ilościową nazywaną zmienną objaśnianą

Bardziej szczegółowo

Stanisław Cichocki. Natalia Nehrebecka. Zajęcia 15-16

Stanisław Cichocki. Natalia Nehrebecka. Zajęcia 15-16 Stanisław Cichocki Natalia Nehrebecka Zajęcia 15-16 1 1. Sezonowość 2. Zmienne stacjonarne 3. Zmienne zintegrowane 4. Test Dickey-Fullera 5. Rozszerzony test Dickey-Fullera 6. Test KPSS 7. Regresja pozorna

Bardziej szczegółowo

Przyjazdy turystów zagranicznych do Polski miesięcznie od 2005 roku do 2009 roku modelowanie ekonometryczne

Przyjazdy turystów zagranicznych do Polski miesięcznie od 2005 roku do 2009 roku modelowanie ekonometryczne Dawid Twardowski Wrocław, dnia 6 czerwca 2010 Przyjazdy turystów zagranicznych do Polski miesięcznie od 2005 roku do 2009 roku modelowanie ekonometryczne Spis treści Spis treści... 1 Struktura projektu...

Bardziej szczegółowo

Narzędzia statystyczne i ekonometryczne. Wykład 1. dr Paweł Baranowski

Narzędzia statystyczne i ekonometryczne. Wykład 1. dr Paweł Baranowski Narzędzia statystyczne i ekonometryczne Wykład 1 dr Paweł Baranowski Informacje organizacyjne Wydział Ek-Soc, pok. B-109 pawel@baranowski.edu.pl Strona: baranowski.edu.pl (w tym materiały) Konsultacje:

Bardziej szczegółowo

parametrów strukturalnych modelu = Y zmienna objaśniana, X 1,X 2,,X k zmienne objaśniające, k zmiennych objaśniających,

parametrów strukturalnych modelu = Y zmienna objaśniana, X 1,X 2,,X k zmienne objaśniające, k zmiennych objaśniających, 诲 瞴瞶 瞶 ƭ0 ƭ 瞰 parametrów strukturalnych modelu Y zmienna objaśniana, = + + + + + X 1,X 2,,X k zmienne objaśniające, k zmiennych objaśniających, α 0, α 1, α 2,,α k parametry strukturalne modelu, k+1 parametrów

Bardziej szczegółowo

Ekonometria. Modelowanie zmiennej jakościowej. Jakub Mućk. Katedra Ekonomii Ilościowej

Ekonometria. Modelowanie zmiennej jakościowej. Jakub Mućk. Katedra Ekonomii Ilościowej Ekonometria Modelowanie zmiennej jakościowej Jakub Mućk Katedra Ekonomii Ilościowej Jakub Mućk Ekonometria Ćwiczenia 8 Zmienna jakościowa 1 / 25 Zmienna jakościowa Zmienna ilościowa może zostać zmierzona

Bardziej szczegółowo

Ekonometria ćwiczenia 3. Prowadzący: Sebastian Czarnota

Ekonometria ćwiczenia 3. Prowadzący: Sebastian Czarnota Ekonometria ćwiczenia 3 Prowadzący: Sebastian Czarnota Strona - niezbędnik http://sebastianczarnota.com/sgh/ Normalność rozkładu składnika losowego Brak normalności rozkładu nie odbija się na jakości otrzymywanych

Bardziej szczegółowo

Ekonometria. Model nieliniowe i funkcja produkcji. Jakub Mućk. Katedra Ekonomii Ilościowej. Modele nieliniowe Funkcja produkcji

Ekonometria. Model nieliniowe i funkcja produkcji. Jakub Mućk. Katedra Ekonomii Ilościowej. Modele nieliniowe Funkcja produkcji Ekonometria Model nieliniowe i funkcja produkcji Jakub Mućk Katedra Ekonomii Ilościowej Jakub Mućk Ekonometria Ćwiczenia 7 Modele nieliniowe i funkcja produkcji 1 / 19 Agenda Modele nieliniowe 1 Modele

Bardziej szczegółowo

Projekt z Ekonometrii Dynamicznej

Projekt z Ekonometrii Dynamicznej Projekt z Ekonometrii Dynamicznej Tomasz Tymecki L.p. Nazwa 1 KGHM 2 ORBIS 3 FERRUM 4 VISTULA 5 BORYSZEW 6 MOSTOSTALZAB 7 BYTOM 8 FORTE 9 PRÓCHNIK 1 ŻYWIEC 11 Indeks WIG 12 Indeks WIG2 Spis treści I. Analiza

Bardziej szczegółowo

Stanisław Cichocki Natalia Nehrebecka. Zajęcia 8

Stanisław Cichocki Natalia Nehrebecka. Zajęcia 8 Stanisław Cichocki Natalia Nehrebecka Zajęcia 8 1. Testy diagnostyczne 2. Testowanie prawidłowości formy funkcyjnej modelu 3. Testowanie normalności składników losowych 4. Testowanie stabilności parametrów

Bardziej szczegółowo

Stanisław Cichocki. Natalia Neherbecka. Zajęcia 13

Stanisław Cichocki. Natalia Neherbecka. Zajęcia 13 Stanisław Cichocki Natalia Neherbecka Zajęcia 13 1 1. Kryteria informacyjne 2. Testowanie autokorelacji 3. Modele dynamiczne: modele o rozłożonych opóźnieniach (DL) modele autoregresyjne o rozłożonych

Bardziej szczegółowo

Szymon Bargłowski, sb39345 MODEL. 1. Równania rozpatrywanego modelu: 1 PKB t = a 1 a 2 E t a 3 Invest t 1

Szymon Bargłowski, sb39345 MODEL. 1. Równania rozpatrywanego modelu: 1 PKB t = a 1 a 2 E t a 3 Invest t 1 Szymon Bargłowski, sb39345 MODEL 1. Równania rozpatrywanego modelu: 1 PKB t = a 1 a 2 E t a 3 Invest t 1 2 C t = b 1 b 2 PKB t b 3 Invest t 1 b 4 G t 2 3 Invest t = d 1 d 2 C t d 3 R t 3 gdzie: G - wydatki

Bardziej szczegółowo

Przykład 1 ceny mieszkań

Przykład 1 ceny mieszkań Przykład ceny mieszkań Przykład ceny mieszkań Model ekonometryczny zaleŝności ceny mieszkań od metraŝu - naleŝy do klasy modeli nieliniowych. - weryfikację empiryczną modelu przeprowadzono na przykładzie

Bardziej szczegółowo

Spis treści. Przedmowa... XI. Rozdział 1. Pomiar: jednostki miar... 1. Rozdział 2. Pomiar: liczby i obliczenia liczbowe... 16

Spis treści. Przedmowa... XI. Rozdział 1. Pomiar: jednostki miar... 1. Rozdział 2. Pomiar: liczby i obliczenia liczbowe... 16 Spis treści Przedmowa.......................... XI Rozdział 1. Pomiar: jednostki miar................. 1 1.1. Wielkości fizyczne i pozafizyczne.................. 1 1.2. Spójne układy miar. Układ SI i jego

Bardziej szczegółowo

Ekonometria. Prognozowanie ekonometryczne, ocena stabilności oszacowań parametrów strukturalnych. Jakub Mućk. Katedra Ekonomii Ilościowej

Ekonometria. Prognozowanie ekonometryczne, ocena stabilności oszacowań parametrów strukturalnych. Jakub Mućk. Katedra Ekonomii Ilościowej Ekonometria Prognozowanie ekonometryczne, ocena stabilności oszacowań parametrów strukturalnych Jakub Mućk Katedra Ekonomii Ilościowej Jakub Mućk Ekonometria Wykład 4 Prognozowanie, stabilność 1 / 17 Agenda

Bardziej szczegółowo

Adam Kirpsza Zastosowanie regresji logistycznej w studiach nad Unią Europejska. Anna Stankiewicz Izabela Słomska

Adam Kirpsza Zastosowanie regresji logistycznej w studiach nad Unią Europejska. Anna Stankiewicz Izabela Słomska Adam Kirpsza Zastosowanie regresji logistycznej w studiach nad Unią Europejska Anna Stankiewicz Izabela Słomska Wstęp- statystyka w politologii Rzadkie stosowanie narzędzi statystycznych Pisma Karla Poppera

Bardziej szczegółowo

Analiza autokorelacji

Analiza autokorelacji Analiza autokorelacji Oblicza się wartości współczynników korelacji między y t oraz y t-i (dla i=1,2,...,k), czyli współczynniki autokorelacji różnych rzędów. Bada się statystyczną istotność tych współczynników.

Bardziej szczegółowo

Ekonometria. Ćwiczenia nr 3. Jakub Mućk. Katedra Ekonomii Ilościowej

Ekonometria. Ćwiczenia nr 3. Jakub Mućk. Katedra Ekonomii Ilościowej Ekonometria Ćwiczenia nr 3 Jakub Mućk Katedra Ekonomii Ilościowej Jakub Mućk Ekonometria Ćwiczenia 3 Własności składnika losowego 1 / 18 Agenda KMNK przypomnienie 1 KMNK przypomnienie 2 3 4 Jakub Mućk

Bardziej szczegółowo

Przykład 2. Stopa bezrobocia

Przykład 2. Stopa bezrobocia Przykład 2 Stopa bezrobocia Stopa bezrobocia. Komentarz: model ekonometryczny stopy bezrobocia w Polsce jest modelem nieliniowym autoregresyjnym. Podobnie jak model podaŝy pieniądza zbudowany został w

Bardziej szczegółowo

Testowanie hipotez statystycznych.

Testowanie hipotez statystycznych. Bioinformatyka Wykład 9 Wrocław, 5 grudnia 2011 Temat. Test zgodności χ 2 Pearsona. Statystyka χ 2 Pearsona Rozpatrzmy ciąg niezależnych zmiennych losowych X 1,..., X n o jednakowym dyskretnym rozkładzie

Bardziej szczegółowo

(LMP-Liniowy model prawdopodobieństwa)

(LMP-Liniowy model prawdopodobieństwa) OGÓLNY MODEL REGRESJI BINARNEJ (LMP-Liniowy model prawdopodobieństwa) Dla k3 y α α α α + x + x + x 2 2 3 3 + α x x α x x + α x x + α x x + ε + x 4 2 5 3 6 2 3 7 2 3 Zał.: Wszystkie zmienne interakcyjne

Bardziej szczegółowo

Mikroekonometria 13. Mikołaj Czajkowski Wiktor Budziński

Mikroekonometria 13. Mikołaj Czajkowski Wiktor Budziński Mikroekonometria 13 Mikołaj Czajkowski Wiktor Budziński Endogeniczność regresja liniowa W regresji liniowej estymujemy następujące równanie: i i i Metoda Najmniejszych Kwadratów zakłada, że wszystkie zmienne

Bardziej szczegółowo

( x) Równanie regresji liniowej ma postać. By obliczyć współczynniki a i b należy posłużyć się następującymi wzorami 1 : Gdzie:

( x) Równanie regresji liniowej ma postać. By obliczyć współczynniki a i b należy posłużyć się następującymi wzorami 1 : Gdzie: ma postać y = ax + b Równanie regresji liniowej By obliczyć współczynniki a i b należy posłużyć się następującymi wzorami 1 : xy b = a = b lub x Gdzie: xy = też a = x = ( b ) i to dane empiryczne, a ilość

Bardziej szczegółowo

log Ôi = 1, , 0014P i + 0, 0561C i 0, 4050R i se = (0, 0009) (0, 0227) (0, 1568)

log Ôi = 1, , 0014P i + 0, 0561C i 0, 4050R i se = (0, 0009) (0, 0227) (0, 1568) 1. Na podstawie danych zawartych w pliku [zgony niemowlat.xls] oszacuj (przy pomocy pakietu gretl lub arkusza kalkulacyjnego) parametry MNK następującego liniowego modelu ekonometrycznego: ZN t = a 0 +

Bardziej szczegółowo

Analiza regresji - weryfikacja założeń

Analiza regresji - weryfikacja założeń Medycyna Praktyczna - portal dla lekarzy Analiza regresji - weryfikacja założeń mgr Andrzej Stanisz z Zakładu Biostatystyki i Informatyki Medycznej Collegium Medicum UJ w Krakowie (Kierownik Zakładu: prof.

Bardziej szczegółowo

Estymacja parametrów modeli liniowych oraz ocena jakości dopasowania modeli do danych empirycznych

Estymacja parametrów modeli liniowych oraz ocena jakości dopasowania modeli do danych empirycznych Estymacja parametrów modeli liniowych oraz ocena jakości dopasowania modeli do danych empirycznych 3.1. Estymacja parametrów i ocena dopasowania modeli z jedną zmienną 23. Właściciel komisu w celu zbadania

Bardziej szczegółowo

STATYSTYKA I DOŚWIADCZALNICTWO Wykład 8

STATYSTYKA I DOŚWIADCZALNICTWO Wykład 8 STATYSTYKA I DOŚWIADCZALNICTWO Wykład 8 Regresja wielokrotna Regresja wielokrotna jest metodą statystyczną, w której oceniamy wpływ wielu zmiennych niezależnych (X 1, X 2, X 3,...) na zmienną zależną (Y).

Bardziej szczegółowo

Kolokwium ze statystyki matematycznej

Kolokwium ze statystyki matematycznej Kolokwium ze statystyki matematycznej 28.05.2011 Zadanie 1 Niech X będzie zmienną losową z rozkładu o gęstości dla, gdzie 0 jest nieznanym parametrem. Na podstawie pojedynczej obserwacji weryfikujemy hipotezę

Bardziej szczegółowo

Metoda największej wiarogodności

Metoda największej wiarogodności Wprowadzenie Założenia Logarytm funkcji wiarogodności Metoda Największej Wiarogodności (MNW) jest bardziej uniwersalną niż MNK metodą szacowania wartości nieznanych parametrów Wprowadzenie Założenia Logarytm

Bardziej szczegółowo

KORELACJE I REGRESJA LINIOWA

KORELACJE I REGRESJA LINIOWA KORELACJE I REGRESJA LINIOWA Korelacje i regresja liniowa Analiza korelacji: Badanie, czy pomiędzy dwoma zmiennymi istnieje zależność Obie analizy się wzajemnie przeplatają Analiza regresji: Opisanie modelem

Bardziej szczegółowo

Prognozowanie na podstawie modelu ekonometrycznego

Prognozowanie na podstawie modelu ekonometrycznego Prognozowanie na podstawie modelu ekonometrycznego Przykład. Firma usługowa świadcząca usługi doradcze w ostatnich kwartałach (t) odnotowała wynik finansowy (yt - tys. zł), obsługując liczbę klientów (x1t)

Bardziej szczegółowo

Podstawy ekonometrii. Opracował: dr hab. Eugeniusz Gatnar prof. WSBiF

Podstawy ekonometrii. Opracował: dr hab. Eugeniusz Gatnar prof. WSBiF Podstawy ekonometrii Opracował: dr hab. Eugeniusz Gatnar prof. WSBiF Cele przedmiotu: I. Ogólne informacje o przedmiocie. - Opanowanie podstaw teoretycznych, poznanie przykładów zastosowań metod modelowania

Bardziej szczegółowo

Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności. dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl

Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności. dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl Statystyczna teoria korelacji i regresji (1) Jest to dział statystyki zajmujący

Bardziej szczegółowo

Inżynieria biomedyczna, I rok, semestr letni 2014/2015 Analiza danych pomiarowych. Laboratorium VII: Regresja logistyczna

Inżynieria biomedyczna, I rok, semestr letni 2014/2015 Analiza danych pomiarowych. Laboratorium VII: Regresja logistyczna 1 Laboratorium VII: Regresja logistyczna Spis treści Laboratorium VII: Regresja logistyczna... 1 Wiadomości ogólne... 2 1. Wstęp teoretyczny.... 2 1.1. Wprowadzenie.... 2 2. Regresja logistyczna w STATISTICE...

Bardziej szczegółowo

Budowa praktycznego modelu regresji opisującego zależności występujące na rynku nieruchomości mieszkaniowych

Budowa praktycznego modelu regresji opisującego zależności występujące na rynku nieruchomości mieszkaniowych 291 Zeszyty Naukowe Wyższej Szkoły Bankowej we Wrocławiu Nr 20/2011 Politechnika Opolska Budowa praktycznego modelu regresji opisującego zależności występujące na rynku nieruchomości mieszkaniowych Streszczenie.

Bardziej szczegółowo

Egzamin ze Statystyki, Studia Licencjackie Stacjonarne czerwiec 2007 Temat A

Egzamin ze Statystyki, Studia Licencjackie Stacjonarne czerwiec 2007 Temat A (imię, nazwisko, nr albumu).. Przy rozwiązywaniu zadań, jeśli to konieczne, naleŝy przyjąć poziom istotności 0,01 i współczynnik ufności 0,95. Zadanie 1 W 005 roku przeprowadzono badanie ankietowe, którego

Bardziej szczegółowo

Regresja wieloraka Ogólny problem obliczeniowy: dopasowanie linii prostej do zbioru punktów. Najprostszy przypadek - jedna zmienna zależna i jedna

Regresja wieloraka Ogólny problem obliczeniowy: dopasowanie linii prostej do zbioru punktów. Najprostszy przypadek - jedna zmienna zależna i jedna Regresja wieloraka Regresja wieloraka Ogólny problem obliczeniowy: dopasowanie linii prostej do zbioru punktów. Najprostszy przypadek - jedna zmienna zależna i jedna zmienna niezależna (można zobrazować

Bardziej szczegółowo

Wielowymiarowa analiza regresji. Regresja wieloraka, wielokrotna

Wielowymiarowa analiza regresji. Regresja wieloraka, wielokrotna Wielowymiarowa analiza regresji. Regresja wieloraka, wielokrotna Badanie współzależności zmiennych Uwzględniając ilość zmiennych otrzymamy 4 odmiany zależności: Zmienna zależna jednowymiarowa oraz jedna

Bardziej szczegółowo

Analiza wariancji w analizie regresji - weryfikacja prawdziwości przyjętego układu ograniczeń Problem Przykłady

Analiza wariancji w analizie regresji - weryfikacja prawdziwości przyjętego układu ograniczeń Problem Przykłady Analiza wariancji w analizie regresji - weryfikacja prawdziwości przyjętego układu ograniczeń 1. Problem ozwaŝamy zjawisko (model): Y = β 1 X 1 X +...+ β k X k +Z Ηβ = w r Hipoteza alternatywna: Ηβ w r

Bardziej szczegółowo

Egzamin z ekonometrii wersja IiE, MSEMAT

Egzamin z ekonometrii wersja IiE, MSEMAT Egzamin z ekonometrii wersja IiE, MSEMAT 04-02-2016 Pytania teoretyczne 1. Za pomocą jakiego testu weryfikowana jest normalność składnika losowego? Jakiemu założeniu KMRL odpowiada w tym teście? Jakie

Bardziej szczegółowo

Ekonometria / G. S. Maddala ; red. nauk. przekł. Marek Gruszczyński. wyd. 2, dodr. 1. Warszawa, Spis treści

Ekonometria / G. S. Maddala ; red. nauk. przekł. Marek Gruszczyński. wyd. 2, dodr. 1. Warszawa, Spis treści Ekonometria / G. S. Maddala ; red. nauk. przekł. Marek Gruszczyński. wyd. 2, dodr. 1. Warszawa, 2013 Spis treści Przedsłowie 15 Przedmowa do drugiego wydania 17 Przedmowa do trzeciego wydania 21 Nekrolog

Bardziej szczegółowo

Standardowe zadanie programowania liniowego. Gliwice 1

Standardowe zadanie programowania liniowego. Gliwice 1 Standardowe zadanie programowania liniowego 1 Standardowe zadanie programowania liniowego Rozważamy proces, w którym zmiennymi są x 1, x 2,, x n. Proces poddany jest m ograniczeniom, zapisanymi w postaci

Bardziej szczegółowo

3. Analiza własności szeregu czasowego i wybór typu modelu

3. Analiza własności szeregu czasowego i wybór typu modelu 3. Analiza własności szeregu czasowego i wybór typu modelu 1. Metody analizy własności szeregu czasowego obserwacji 1.1. Analiza wykresu szeregu czasowego 1.2. Analiza statystyk opisowych zmiennej prognozowanej

Bardziej szczegółowo

Ekonometria - ćwiczenia 11

Ekonometria - ćwiczenia 11 Ekonometria - ćwiczenia 11 Mateusz Myśliwski Zakład Ekonometrii Stosowanej Instytut Ekonometrii Kolegium Analiz Ekonomicznych Szkoła Główna Handlowa 21 grudnia 2012 Na poprzednich zajęciach zajmowaliśmy

Bardziej szczegółowo

Programowanie liniowe

Programowanie liniowe Programowanie liniowe Schemat postępowania w badaniach operacyjnych decydent sytuacja decyzyjna decyzje decyzje dopuszczalne niedopuszczalne kryterium wyboru zadanie decyzyjne zmienne decyzyjne warunki

Bardziej szczegółowo

gdzie. Dla funkcja ma własności:

gdzie. Dla funkcja ma własności: Ekonometria, 21 listopada 2011 r. Modele ściśle nieliniowe Funkcja logistyczna należy do modeli ściśle nieliniowych względem parametrów. Jest to funkcja jednej zmiennej, zwykle czasu (t). Dla t>0 wartośd

Bardziej szczegółowo

Regresja liniowa wprowadzenie

Regresja liniowa wprowadzenie Regresja liniowa wprowadzenie a) Model regresji liniowej ma postać: gdzie jest zmienną objaśnianą (zależną); są zmiennymi objaśniającymi (niezależnymi); natomiast są parametrami modelu. jest składnikiem

Bardziej szczegółowo

Testowanie hipotez statystycznych związanych ą z szacowaniem i oceną ą modelu ekonometrycznego

Testowanie hipotez statystycznych związanych ą z szacowaniem i oceną ą modelu ekonometrycznego Testowanie hipotez statystycznych związanych ą z szacowaniem i oceną ą modelu ekonometrycznego Ze względu na jakość uzyskiwanych ocen parametrów strukturalnych modelu oraz weryfikację modelu, metoda najmniejszych

Bardziej szczegółowo

Uniwersytet w Białymstoku Wydział Ekonomiczno-Informatyczny w Wilnie SYLLABUS na rok akademicki 2010/2011

Uniwersytet w Białymstoku Wydział Ekonomiczno-Informatyczny w Wilnie SYLLABUS na rok akademicki 2010/2011 SYLLABUS na rok akademicki 00/0 Tryb studiów Stacjonarne Nazwa kierunku studiów EKONOMIA Poziom studiów Stopień pierwszy Rok studiów/ semestr III; semestr 5 Specjalność Bez specjalności Kod przedmiotu

Bardziej szczegółowo

OBLICZENIE PRZEPŁYWÓW MAKSYMALNYCH ROCZNYCH O OKREŚLONYM PRAWDOPODOBIEŃSTWIE PRZEWYŻSZENIA. z wykorzystaniem programu obliczeniowego Q maxp

OBLICZENIE PRZEPŁYWÓW MAKSYMALNYCH ROCZNYCH O OKREŚLONYM PRAWDOPODOBIEŃSTWIE PRZEWYŻSZENIA. z wykorzystaniem programu obliczeniowego Q maxp tel.: +48 662 635 712 Liczba stron: 15 Data: 20.07.2010r OBLICZENIE PRZEPŁYWÓW MAKSYMALNYCH ROCZNYCH O OKREŚLONYM PRAWDOPODOBIEŃSTWIE PRZEWYŻSZENIA z wykorzystaniem programu obliczeniowego Q maxp DŁUGIE

Bardziej szczegółowo

Ekonometria. Własności składnika losowego. Jakub Mućk. Katedra Ekonomii Ilościowej

Ekonometria. Własności składnika losowego. Jakub Mućk. Katedra Ekonomii Ilościowej Ekonometria Własności składnika losowego Jakub Mućk Katedra Ekonomii Ilościowej Jakub Mućk Ekonometria Wykład 3 Własności składnika losowego 1 / 31 Agenda KMNK przypomnienie 1 KMNK przypomnienie 2 3 4

Bardziej szczegółowo

Stanisław Cichocki. Natalia Nehrebecka

Stanisław Cichocki. Natalia Nehrebecka Stanisław Cichocki Natalia Nehrebecka - adres mailowy: scichocki@o2.pl - strona internetowa: www.wne.uw.edu.pl/scichocki - dyżur: po zajęciach lub po umówieniu mailowo - 80% oceny: egzaminy - 20% oceny:

Bardziej szczegółowo

JEDNORÓWNANIOWY LINIOWY MODEL EKONOMETRYCZNY

JEDNORÓWNANIOWY LINIOWY MODEL EKONOMETRYCZNY JEDNORÓWNANIOWY LINIOWY MODEL EKONOMETRYCZNY Będziemy zapisywać wektory w postaci (,, ) albo traktując go jak macierz jednokolumnową (dzięki temu nie będzie kontrowersji przy transponowaniu wektora ) Model

Bardziej szczegółowo

Testowanie hipotez. Hipoteza prosta zawiera jeden element, np. H 0 : θ = 2, hipoteza złożona zawiera więcej niż jeden element, np. H 0 : θ > 4.

Testowanie hipotez. Hipoteza prosta zawiera jeden element, np. H 0 : θ = 2, hipoteza złożona zawiera więcej niż jeden element, np. H 0 : θ > 4. Testowanie hipotez Niech X = (X 1... X n ) będzie próbą losową na przestrzeni X zaś P = {P θ θ Θ} rodziną rozkładów prawdopodobieństwa określonych na przestrzeni próby X. Definicja 1. Hipotezą zerową Θ

Bardziej szczegółowo

Tablica Wzorów Rachunek Prawdopodobieństwa i Statystyki

Tablica Wzorów Rachunek Prawdopodobieństwa i Statystyki Tablica Wzorów Rachunek Prawdopodobieństwa i Statystyki Spis treści I. Wzory ogólne... 2 1. Średnia arytmetyczna:... 2 2. Rozstęp:... 2 3. Kwantyle:... 2 4. Wariancja:... 2 5. Odchylenie standardowe:...

Bardziej szczegółowo

Wprowadzenie do teorii ekonometrii. Wykład 1 Warunkowa wartość oczekiwana i odwzorowanie liniowe

Wprowadzenie do teorii ekonometrii. Wykład 1 Warunkowa wartość oczekiwana i odwzorowanie liniowe Wprowadzenie do teorii ekonometrii Wykład 1 Warunkowa wartość oczekiwana i odwzorowanie liniowe Zajęcia Wykład Laboratorium komputerowe 2 Zaliczenie EGZAMIN (50%) Na egzaminie obowiązują wszystkie informacje

Bardziej szczegółowo

Badania Operacyjne Ćwiczenia nr 4 (Materiały)

Badania Operacyjne Ćwiczenia nr 4 (Materiały) Analiza wrażliwości Rozwiązanie programu liniowego jest dopiero początkiem analizy. Z punktu widzenia decydenta (menadżera) jest istotne, żeby wiedzieć jak na rozwiązanie optymalne wpływają zmiany parametrów

Bardziej szczegółowo

Statystyka matematyczna Testowanie hipotez i estymacja parametrów. Wrocław, r

Statystyka matematyczna Testowanie hipotez i estymacja parametrów. Wrocław, r Statystyka matematyczna Testowanie hipotez i estymacja parametrów Wrocław, 18.03.2016r Plan wykładu: 1. Testowanie hipotez 2. Etapy testowania hipotez 3. Błędy 4. Testowanie wielokrotne 5. Estymacja parametrów

Bardziej szczegółowo

Błędy przy testowaniu hipotez statystycznych. Decyzja H 0 jest prawdziwa H 0 jest faszywa

Błędy przy testowaniu hipotez statystycznych. Decyzja H 0 jest prawdziwa H 0 jest faszywa Weryfikacja hipotez statystycznych Hipotezą statystyczną nazywamy każde przypuszczenie dotyczące nieznanego rozkładu badanej cechy populacji, o prawdziwości lub fałszywości którego wnioskuje się na podstawie

Bardziej szczegółowo

i EKSPLOATACJI TAbORU AUTObUSOWEGO

i EKSPLOATACJI TAbORU AUTObUSOWEGO PTiL 3/2016 (35) ISSN: 1644-275X www.wnus.edu.pl/ptil DOI: 10.18276/ptl.2016.35-02 19 28 Prognozowanie KOSZTów UTRZYmANIA i EKSPLOATACJI TAbORU AUTObUSOWEGO Data przesłania: 30.06.2016 Data akceptacji:

Bardziej szczegółowo

Programowanie liniowe

Programowanie liniowe Badania operacyjne Ćwiczenia 4 Programowanie liniowe Dualizm w programowaniu liniowym Plan zajęć Dualizm w programowaniu liniowym Projektowanie programu dualnego Postać programu dualnego Przykład 1 Rozwiązania

Bardziej szczegółowo

WSPÓŁZALEŻNOŚCI MIĘDZY OSZCZĘDNOŚCIAMI I WZROSTEM GOSPODARCZYM W KRAJACH O RÓŻNYM POZIOMIE ROZWOJU GOSPODARCZEGO

WSPÓŁZALEŻNOŚCI MIĘDZY OSZCZĘDNOŚCIAMI I WZROSTEM GOSPODARCZYM W KRAJACH O RÓŻNYM POZIOMIE ROZWOJU GOSPODARCZEGO WSPÓŁZALEŻNOŚCI MIĘDZY OSZCZĘDNOŚCIAMI I WZROSTEM GOSPODARCZYM W KRAJACH O RÓŻNYM POZIOMIE ROZWOJU GOSPODARCZEGO Piotr Misztal 1 Streszczenie Celem niniejszego opracowania jest analiza związku przyczynowo-skutkowego

Bardziej szczegółowo

Zastosowanie modelu regresji logistycznej w ocenie ryzyka ubezpieczeniowego. Łukasz Kończyk WMS AGH

Zastosowanie modelu regresji logistycznej w ocenie ryzyka ubezpieczeniowego. Łukasz Kończyk WMS AGH Zastosowanie modelu regresji logistycznej w ocenie ryzyka ubezpieczeniowego Łukasz Kończyk WMS AGH Plan prezentacji Model regresji liniowej Uogólniony model liniowy (GLM) Ryzyko ubezpieczeniowe Przykład

Bardziej szczegółowo

Estymator jest nieobciążony, jeśli jego wartośd oczekiwana pokrywa się z wartością szacowanego parametru.

Estymator jest nieobciążony, jeśli jego wartośd oczekiwana pokrywa się z wartością szacowanego parametru. ZAŁOŻENIA ESYMAORA MNK. E(u) średnia wartośd oczekiwana równa Zakłócenia (składniki losowe, reszty) nie wykazują żadnej tendencji do odchylania wartości empirycznych zmiennej objaśnianej od wartości teoretycznych

Bardziej szczegółowo

Ekonometria egzamin 02/02/ W trakcie egzaminu wolno używać jedynie długopisu o innym kolorze atramentu niż czerwony oraz kalkulatora.

Ekonometria egzamin 02/02/ W trakcie egzaminu wolno używać jedynie długopisu o innym kolorze atramentu niż czerwony oraz kalkulatora. imię, nazwisko, nr indeksu: Ekonometria egzamin 0/0/0. Egzamin trwa 90 minut.. Rozwiązywanie zadań należy rozpocząć po ogłoszeniu początku egzaminu a skończyć wraz z ogłoszeniem końca egzaminu. Złamanie

Bardziej szczegółowo

Ćwiczenia 10. Analiza regresji. Część I.

Ćwiczenia 10. Analiza regresji. Część I. Ćwiczenia 10. Analiza regresji. Część I. Zadania obowiązkowe UWAGA! Elementy zadań oznaczone kolorem czerwonym należy przygotować lub wypełnić. Zadanie 10.1. (R/STATISTICA) Twoim zadaniem jest możliwie

Bardziej szczegółowo

Weryfikacja hipotez statystycznych

Weryfikacja hipotez statystycznych Weryfikacja hipotez statystycznych Hipoteza Test statystyczny Poziom istotności Testy jednostronne i dwustronne Testowanie równości wariancji test F-Fishera Testowanie równości wartości średnich test t-studenta

Bardziej szczegółowo

1 Modele ADL - interpretacja współczynników

1 Modele ADL - interpretacja współczynników 1 Modele ADL - interpretacja współczynników ZADANIE 1.1 Dany jest proces DL następującej postaci: y t = µ + β 0 x t + β 1 x t 1 + ε t. 1. Wyjaśnić, jaka jest intepretacja współczynników β 0 i β 1. 2. Pokazać

Bardziej szczegółowo

Państwowa Wyższa Szkoła Zawodowa w Suwałkach SYLLABUS na rok akademicki 2014/2015

Państwowa Wyższa Szkoła Zawodowa w Suwałkach SYLLABUS na rok akademicki 2014/2015 Tryb studiów Niestacjonarne Nazwa kierunku studiów Finanse i Rachunkowość Poziom studiów Stopień pierwszy Rok studiów/ semestr II/4 Państwowa Wyższa Szkoła Zawodowa w Suwałkach SYLLABUS na rok akademicki

Bardziej szczegółowo

Instytut Matematyczny Uniwersytet Wrocławski. Zakres egzaminu magisterskiego. Wybrane rozdziały anazlizy i topologii 1 i 2

Instytut Matematyczny Uniwersytet Wrocławski. Zakres egzaminu magisterskiego. Wybrane rozdziały anazlizy i topologii 1 i 2 Instytut Matematyczny Uniwersytet Wrocławski Zakres egzaminu magisterskiego Wybrane rozdziały anazlizy i topologii 1 i 2 Pojęcia, fakty: Definicje i pojęcia: metryka, iloczyn skalarny, norma supremum,

Bardziej szczegółowo

Niech X i Y będą niezależnymi zmiennymi losowymi o rozkładach wykładniczych, przy czym Y EX = 4 i EY = 6. Rozważamy zmienną losową Z =.

Niech X i Y będą niezależnymi zmiennymi losowymi o rozkładach wykładniczych, przy czym Y EX = 4 i EY = 6. Rozważamy zmienną losową Z =. Prawdopodobieństwo i statystyka 3..00 r. Zadanie Niech X i Y będą niezależnymi zmiennymi losowymi o rozkładach wykładniczych, przy czym Y EX 4 i EY 6. Rozważamy zmienną losową Z. X + Y Wtedy (A) EZ 0,

Bardziej szczegółowo

Przykład: frytki i puree Analiza wrażliwości współczynników funkcji celu

Przykład: frytki i puree Analiza wrażliwości współczynników funkcji celu Analiza wrażliwości: współczynników funkcji celu analiza wrażliwości pozwala odpowiedzieć na pytanie, w jakich granicach mogą się zmieniać te parametry, aby dotychczasowe rozwiązanie było optymalne, wyrazów

Bardziej szczegółowo

Ekonometria. Modele regresji wielorakiej - dobór zmiennych, szacowanie. Paweł Cibis pawel@cibis.pl. 1 kwietnia 2007

Ekonometria. Modele regresji wielorakiej - dobór zmiennych, szacowanie. Paweł Cibis pawel@cibis.pl. 1 kwietnia 2007 Modele regresji wielorakiej - dobór zmiennych, szacowanie Paweł Cibis pawel@cibis.pl 1 kwietnia 2007 1 Współczynnik zmienności Współczynnik zmienności wzory Współczynnik zmienności funkcje 2 Korelacja

Bardziej szczegółowo

BADANIE WPŁYWU ZMIAN STOPY REFERENCYJNEJ NBP I PRZECIĘTNEGO WYNAGRODZENIA W GOSPODARCE NARODOWEJ NA WARTOŚĆ TRANSAKCJI DOKONANYCH KARTAMI PŁATNICZYMI

BADANIE WPŁYWU ZMIAN STOPY REFERENCYJNEJ NBP I PRZECIĘTNEGO WYNAGRODZENIA W GOSPODARCE NARODOWEJ NA WARTOŚĆ TRANSAKCJI DOKONANYCH KARTAMI PŁATNICZYMI NAUKI O FINANSACH FINANCIAL SCIENCES 1(18) 2014 ISSN 2080-5993 Mateusz Staszczyk Uniwersytet Łódzki BADANIE WPŁYWU ZMIAN STOPY REFERENCYJNEJ NBP I PRZECIĘTNEGO WYNAGRODZENIA W GOSPODARCE NARODOWEJ NA WARTOŚĆ

Bardziej szczegółowo

Stanisław Cichocki. Natalia Nehrebecka Katarzyna Rosiak-Lada

Stanisław Cichocki. Natalia Nehrebecka Katarzyna Rosiak-Lada Stanisław Cichocki Natalia Nehrebecka Katarzyna Rosiak-Lada 1. Sprawy organizacyjne Zasady zaliczenia 2. Czym zajmuje się ekonometria? 3. Formy danych statystycznych 4. Model ekonometryczny 2 1. Sprawy

Bardziej szczegółowo

Współczynnik korelacji. Współczynnik korelacji jest miernikiem zależności między dwiema cechami Oznaczenie: ϱ

Współczynnik korelacji. Współczynnik korelacji jest miernikiem zależności między dwiema cechami Oznaczenie: ϱ Współczynnik korelacji Współczynnik korelacji jest miernikiem zależności między dwiema cechami Oznaczenie: ϱ Własności współczynnika korelacji 1. Współczynnik korelacji jest liczbą niemianowaną 2. ϱ 1,

Bardziej szczegółowo

przedmiotu Nazwa Pierwsza studia drugiego stopnia

przedmiotu Nazwa Pierwsza studia drugiego stopnia Nazwa przedmiotu K A R T A P R Z E D M I O T U ( S Y L L A B U S ) O p i s p r z e d m i o t u Kod przedmiotu EKONOMETRIA UTH/I/O/MT/zmi/ /C 1/ST/2(m)/1Z/C1.1.5 Język wykładowy ECONOMETRICS JĘZYK POLSKI

Bardziej szczegółowo

Egzamin z ekonometrii wersja ogolna

Egzamin z ekonometrii wersja ogolna Egzamin z ekonometrii wersja ogolna 04-02-2016 Pytania teoretyczne 1. Wymienić założenia Klasycznego Modelu Regresji Liniowej (KMRL). 2. Wyprowadzić estymator MNK dla modelu z wieloma zmiennymi objaśniającymi.

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA, LISTA 3

STATYSTYKA MATEMATYCZNA, LISTA 3 STATYSTYKA MATEMATYCZNA, LISTA 3 1. Aby zweryfikować hipotezę o symetryczności monety; H: p = 0.5 przeciwko K: p 0.5 wykonano nią n = 100 rzutów. Wyznaczyć obszar krytyczny i zweryfikować hipotezę H gdy

Bardziej szczegółowo

EGZAMIN MAGISTERSKI, czerwiec 2016 Matematyka w ekonomii i ubezpieczeniach

EGZAMIN MAGISTERSKI, czerwiec 2016 Matematyka w ekonomii i ubezpieczeniach Matematyka w ekonomii i ubezpieczeniach Dana jest następująca macierz wypłat gry o sumie zero: Podaj rozwiązanie tej gry. M = 3 2 2 2 3 4 5 2 3 3 2 2 4 2 0 3 3 3 Kredyt ma być spłacany na początku roku

Bardziej szczegółowo

STATYSTYKA I DOŚWIADCZALNICTWO. Wykład 2

STATYSTYKA I DOŚWIADCZALNICTWO. Wykład 2 STATYSTYKA I DOŚWIADCZALNICTWO Wykład Parametry przedziałowe rozkładów ciągłych określane na podstawie próby (przedziały ufności) Przedział ufności dla średniej s X t( α;n 1),X + t( α;n 1) n s n t (α;

Bardziej szczegółowo