heteroskedasticitě Radim Navrátil, Jana Jurečková Katedra pravděpodobnosti a matematické statistiky, MFF UK, Praha

Wielkość: px
Rozpocząć pokaz od strony:

Download "heteroskedasticitě Radim Navrátil, Jana Jurečková Katedra pravděpodobnosti a matematické statistiky, MFF UK, Praha"

Transkrypt

1 Pořadové testy v regresi při rušivé heteroskedasticitě Radim Navrátil, Jana Jurečková Katedra pravděpodobnosti a matematické statistiky, MFF UK, Praha Robust 2014, Jetřichovice Radim Navrátil, Jana Jurečková (KPMS UK) Pořadové testy v regresi při rušivé heteroskedasticitě Robust / 24

2 Úvod Úvod Homoskedasticita je často předpokládána při klasické analýze lineárního modelu. Heteroskedasticita: Cíl: Můžeme testovat její přítomnost před statistickou inferencí. Najít přístup, který je invariantní vůči heteroskedasticitě. Testy o regresi za přítomnosti rušivé heteroskedasticity. Testy homoskedasticity za přítomnosti rušivé regrese. Oba typy testů jsou založeny na vhodných ancilárních statistikách, není tedy nutné odhadovat rušivé parametry modelu. Radim Navrátil, Jana Jurečková (KPMS UK) Pořadové testy v regresi při rušivé heteroskedasticitě Robust / 24

3 Úvod Historie Lineární model s možnou heteroskedasticitou Y i = β 0 + x i β + σ i U i, i = 1,..., n. Požadavky na znalost struktury σ i mnoho modelů. Testy heteroskedasticity: Breusch and Pagan (1979), Carroll and Ruppert (1981), Koenker and Bassett (1982), Dette and Munk (1999). Pořadové testy: Akritas and Albers (1993), Gutenbrunner (1994). Odhady parametrů: Dixon and McKean (1996). Radim Navrátil, Jana Jurečková (KPMS UK) Pořadové testy v regresi při rušivé heteroskedasticitě Robust / 24

4 Úvod Model Y i = β 0 + x i β + exp{z i γ}u i, i = 1,..., n, β 0 R, β R p, γ R q, x i je p-rozměrný vektor regresorů. z i je q-rozměrný vektor regresorů. U i jsou i.i.d. náhodné veličiny s distribuční funkcí F, resp. absolutně spojitou hustotou f a konečnými nenulovými Fisherovými informacemi vzhledem k posunutí i měřítku. H 1 : γ = 0, proti alternativě K 1 : γ 0, H 2 : β = 0, proti alternativě K 2 : β 0. Radim Navrátil, Jana Jurečková (KPMS UK) Pořadové testy v regresi při rušivé heteroskedasticitě Robust / 24

5 Test H 1 Test H 1 Za H 1 : γ = 0 máme model Y i = β 0 + x i β + U i, i = 1,..., n. Zkonstruujeme vektor regresních pořadových skórů â n (α) = (â n,1 (α),..., â n,n (α)), optimální řešení úlohy lineárního programování: â n (α) = arg max{yn a X n a = (1 α)x n 1 n, a [0, 1] n }, 0 < α < 1, kde Y n = (Y 1,..., Y n ), 1 n = (1,..., 1) R n a X n = (x 1,..., x n ), X n = (1 n, X n ). Radim Navrátil, Jana Jurečková (KPMS UK) Pořadové testy v regresi při rušivé heteroskedasticitě Robust / 24

6 Test H 1 Regresní kvantily Koenker and Bassett (1978) zobecnili pojem kvantilu pro lineární regresní model, α-regresní kvantil: { n ( β n (α) = argmin ρ α Yi x i t ) }, t R p+1, i=1 kde ρ α (x) = x (αi{x > 0} + (1 α)i{x < 0}). Koenker and Bassett (1978): β n (α) lze počítat jako komponentu β optimálního řešení (β, r +, r ) úlohy lineárního programování vzhledem k min α1 n r + + (1 α)1 n r X nβ + r + r = Y n (β, r +, r ) R p+1 R 2n +, kde Y n = (Y 1,..., Y n ), 1 n = (1,..., 1) R n a X n = (x 1,..., x n ), X n = (1 n, X n ). Radim Navrátil, Jana Jurečková (KPMS UK) Pořadové testy v regresi při rušivé heteroskedasticitě Robust / 24

7 Test H 1 Regresní pořadové skóry Regresní kvantily úloha lineárního programování: vzhledem k min α1 n r + + (1 α)1 n r X nβ + r + r = Y n (β, r +, r ) R p+1 R 2n +. Vektor regresních pořadových skórů â n (α) je optimálním řešením duální úlohy: â n (α) = arg max{yn a X n a = (1 α)x n 1 n, a [0, 1] n }, 0 < α < 1. Kĺıčová vlastnost: â n (α) je invariantní vůči regresi X n, t.j. â n (α) se nezmění pokud místo Y n pozorujeme Y n + X nδ pro všechna δ R p+1. Radim Navrátil, Jana Jurečková (KPMS UK) Pořadové testy v regresi při rušivé heteroskedasticitě Robust / 24

8 Test H 1 Testová statistika Zvoĺıme funkci ϕ : (0, 1) R, integrovatelnou se čtvercem, tvaru U. S n = n 1/2 A 2 (ϕ) = ˆb n,i = n i= (ϕ(t) ϕ)dâ n,i (t). (z i ẑ i )ˆb n,i, T 2 n = 1 A 2 (ϕ) S n (ϕ(t) ϕ) 2 dt, ϕ = 1 D n = n 1 (Z n Ẑn) (Z n Ẑn) 0 D 1 n S n, ϕ(t)dt. a Ẑn = X n(x n X n) 1 X n Z n je projekce Z n na prostor sloupců matice X n, resp. ẑ i je i-tý řádek matice Ẑn. Radim Navrátil, Jana Jurečková (KPMS UK) Pořadové testy v regresi při rušivé heteroskedasticitě Robust / 24

9 Test H 1 Předpoklady (F.1) f (x) f (x) c x, pro x K 0, c > 0. (F.2) f (x) > 0 na (A, B) a absolutně spojitá, omezená a klesající pro x A+ a x B, kde A = sup{x : F (x) = 0}, B = inf{x : F (x) = 1}, sup u(1 u) f (F 1 (u)) 0<u<1 f 2 (F 1 (u)) = α pro 1 α ε, ε > 0. Necht existují pozitivně definitní matice D, M takové, že max 1 i n x i = o lim D n = D, n lim n n 1 X n X n = M. ( n 1 4 η) pro nějaké η > 0, pro n. Radim Navrátil, Jana Jurečková (KPMS UK) Pořadové testy v regresi při rušivé heteroskedasticitě Robust / 24

10 Test H 1 Asymptotické rozdělení Věta Za výše uvedených předpokladů T 2 n má za hypotézy H 1 asymptoticky χ 2 rozdělení o q stupních volnosti a za lokální alternativy K 1,n : γ = γ n = n 1/2 γ, γ R q pevné má asymptoticky χ 2 rozdělení o q stupních volnosti a parametrem necentrality η 2 = τ 1 2(ϕ, f ) A 2 (ϕ) γ Dγ, 1 ( τ 1 (ϕ, f ) = ϕ(t) 1 F 1 (t) f (F 1 ) (t)) f (F 1 dt. (t)) 0 Radim Navrátil, Jana Jurečková (KPMS UK) Pořadové testy v regresi při rušivé heteroskedasticitě Robust / 24

11 Test H 1 Poznámky Asymptotické rozdělení za H 1 nezávisí na rozdělení chyb modelu. Asymptotické rozdělení za K 1 nezávisí na hodnotě rušivého parametru β. Asymptotická síla testu je stejná jako u klasického pořadového testu, kde parametr β je známý. Test nerozliší alternativy s chybami exp{x i γ}u i kvůli ancilaritě regresních pořadových skórů. Radim Navrátil, Jana Jurečková (KPMS UK) Pořadové testy v regresi při rušivé heteroskedasticitě Robust / 24

12 Test H 2 Test H 2 Model: Y i = β 0 + x i β + exp{z i γ}u i, i = 1,..., n. Necht F splňuje všechny předpoklady z minulého odstavce a navíc je symetrická a β 0 = 0. Za platnosti H 2 : β = 0 můžeme psát: kde W i = ln Y i, V i = ln U i, i = 1,..., n. W i = z i γ + V i, i = 1,..., n, (1) Radim Navrátil, Jana Jurečková (KPMS UK) Pořadové testy v regresi při rušivé heteroskedasticitě Robust / 24

13 Test H 2 Test H 2 Zkonstruujeme vektor regresních pořadových skórů â n (α) = (â n,1 (α),..., â n,n (α)) v modelu W i = z i γ + V i, i = 1,..., n, t.j. optimální řešení úlohy lineárního programování: â n (α) = arg max{w n a Z n a = (1 α)z n 1 n, a [0, 1] n }, 0 < α < 1, kde W n = (W 1,..., W n ), 1 n = (1,..., 1) R n a Z n = (z 1,..., z n ). Radim Navrátil, Jana Jurečková (KPMS UK) Pořadové testy v regresi při rušivé heteroskedasticitě Robust / 24

14 Test H 2 Předpoklady Necht F je symetrická s konečnými nenulovými Fisherovými informacemi vzhledem k posunutí i měřítku a splňuje (F.1) a (F.2). z i,1 = 1, i = 1,..., n a max 1 i n z i = O(1). D n = 1 n n i=1 z iz i D kde D je pozitivně definitní. Q n (γ) = n 1 n i=1 e z i γ (x i x i )(x i x i ) Q(γ), γ R q, kde Q(γ) je pozitivně definitní a x i je i-tý řádek X n = Z n (Z n Z n ) 1 Z n X n. Dále pro jednoduchost označme Q n (0) Q n and Q(0) Q. Radim Navrátil, Jana Jurečková (KPMS UK) Pořadové testy v regresi při rušivé heteroskedasticitě Robust / 24

15 Test H 2 Testová statistika Zvoĺıme funkci ϕ : (0, 1) R, integrovatelnou se čtvercem, neklesající a nekonstantní, pro jejíž derivaci platí, že pro všechna 0 < u < α 0, 1 α 0 < u < 1 je ϕ (u) c(u(1 u)) 1 δ pro nějaké δ > 0. ˆb + n,i = 1 0 ( u + 1 ) (ϕ + (t) ϕ + ) dâ n,i (t), ϕ + (u) = ϕ, 0 < u < 1. 2 S n = n 1/2 n (x i x i ) sign Y i ˆb+ n,i, i=1 T 2 n = 1 A 2 (ϕ) S n 1 Q S n n Radim Navrátil, Jana Jurečková (KPMS UK) Pořadové testy v regresi při rušivé heteroskedasticitě Robust / 24

16 Test H 2 Asymptotické rozdělení Věta Za výše uvedených předpokladů T 2 n má za hypotézy H 2 asymptoticky χ 2 rozdělení o p stupních volnosti a za lokální alternativy K 2,n : β = β n = n 1/2 β, β R p pevné má asymptoticky χ 2 rozdělení o p stupních volnosti a parametrem necentrality η 2 (γ) = τ 2 1 (ϕ, f ) A 2 (ϕ) β Q (γ) Q 1 Q(γ)β. Radim Navrátil, Jana Jurečková (KPMS UK) Pořadové testy v regresi při rušivé heteroskedasticitě Robust / 24

17 Test H 2 Poznámky Asymptotické rozdělení za H 2 nezávisí na rozdělení chyb modelu. Asymptotické rozdělení za K 2 závisí na hodnotě rušivého parametru γ. Asymptotická síla testu je stejná jako u klasického pořadového testu, kde parametr γ je známý. Předpoklad symetrie. Radim Navrátil, Jana Jurečková (KPMS UK) Pořadové testy v regresi při rušivé heteroskedasticitě Robust / 24

18 Aplikace Příklad Data: M. Ezekiel, K. A. Fox (1959). Methods of correlation and regression analysis. Wiley, New York. Údaje o n = 63 autech. Y i brzdná dráha (ft) i-tého auta. z i rychlost (mph) i-tého auta. Uvažovaný model kvadratické závislosti: Y i = βz 2 i + e i, i = 1,..., 63. Radim Navrátil, Jana Jurečková (KPMS UK) Pořadové testy v regresi při rušivé heteroskedasticitě Robust / 24

19 Data Aplikace brzdná dráha [ft] rychlost [mph] Radim Navrátil, Jana Jurečková (KPMS UK) Pořadové testy v regresi při rušivé heteroskedasticitě Robust / 24

20 Aplikace Data s odhadnutou kvadratickou závislostí brzdná dráha [ft] rychlost [mph] Radim Navrátil, Jana Jurečková (KPMS UK) Pořadové testy v regresi při rušivé heteroskedasticitě Robust / 24

21 Aplikace Závislost reziduí na rychlosti rychlost rezidua Radim Navrátil, Jana Jurečková (KPMS UK) Pořadové testy v regresi při rušivé heteroskedasticitě Robust / 24

22 Příklad - obecnější model Aplikace Možná heteroskedasticita v datech. Obecnější model: Test H 1 : γ = 0 proti γ > 0: Y i = βz 2 i + exp{γz i }U i, i = 1,..., 63. Testová statistika Tn 2 s Wilcoxonovými skóry pro měřítko, t.j. generovaná skórovou funkcí ϕ(t) = 1 + (2t 1) log t 1 t. Odpovídající p-hodnota je = heteroskedasticitu musíme připustit. Test H 2 : β = 0 proti β > 0: T 2 n s Wilcoxonovými skóry generovanými funkcí ϕ(t) = t 1 2. Odpovídající p-hodnota je = regrese je skutečně přítomná. Radim Navrátil, Jana Jurečková (KPMS UK) Pořadové testy v regresi při rušivé heteroskedasticitě Robust / 24

23 Závěr Závěr Testy homoskedasticity za přítomnosti rušivé regrese a testy významnosti regrese za přítomnosti rušivé heteroskedasticity. Konstruovány bez nutnosti odhadu rušivých odhadů. Výpočetně nenáročné, odpadá riziko užití špatného odhadu. Rozšíření klasických pořadových testů (regresní pořadové skóry místo pořadí). Asymptoticky ekvivalentní odpovídajícím testům v modelu bez rušivých parametrů, kde jejich hodnoty jsou známé. Bĺızkost potvrzena i numericky pro konečný počet pozorování. Testy homoskedasticity s rušivou regresí Xβ nerozliší alternativy s chybami exp{x i γ}u i kvůli ancilaritě regresních pořadových skórů. Testy o regresi s rušivou heteroskedasticitou - předpoklad symetrie rozdělení chyb modelu. Radim Navrátil, Jana Jurečková (KPMS UK) Pořadové testy v regresi při rušivé heteroskedasticitě Robust / 24

24 Poděkování Poděkování Děkuji za pozornost. Práce byla spolufinancována grantem SVV a projektem Klimatext reg.číslo CZ.1.07/2.3.00/ Radim Navrátil, Jana Jurečková (KPMS UK) Pořadové testy v regresi při rušivé heteroskedasticitě Robust / 24

Stochastické modelování v ekonomii a financích Konzistence odhadu LWS. konzistence OLS odhadu. Předpoklady pro konzistenci LWS

Stochastické modelování v ekonomii a financích Konzistence odhadu LWS. konzistence OLS odhadu. Předpoklady pro konzistenci LWS Whitův pro heteroskedasticitě pro heteroskedasticitě Stochastické modelování v ekonomii a financích 7. 12. 2009 Obsah Whitův pro heteroskedasticitě pro heteroskedasticitě 1 Whitův 2 pro 3 heteroskedasticitě

Bardziej szczegółowo

Kristýna Kuncová. Matematika B2 18/19

Kristýna Kuncová. Matematika B2 18/19 (6) Určitý integrál Kristýna Kuncová Matematika B2 18/19 Kristýna Kuncová (6) Určitý integrál 1 / 28 Newtonův integrál Zdroj: https://kwcalculus.wikispaces.com/integral+applications Kristýna Kuncová (6)

Bardziej szczegółowo

MATEMATIKA 3. Katedra matematiky a didaktiky matematiky Technická univerzita v Liberci

MATEMATIKA 3.   Katedra matematiky a didaktiky matematiky Technická univerzita v Liberci MATEMATIKA 3 Dana Černá http://www.fp.tul.cz/kmd/ Katedra matematiky a didaktiky matematiky Technická univerzita v Liberci Osnova: Komplexní funkce - definice, posloupnosti, řady Vybrané komplexní funkce

Bardziej szczegółowo

Funkce zadané implicitně. 4. března 2019

Funkce zadané implicitně. 4. března 2019 Funkce zadané implicitně 4. března 2019 Parciální derivace druhého řádu Parciální derivace druhého řádu funkce z = f (x, y) jsou definovány: Parciální derivace 2 f 2 = ( ) f 2 f 2 = ( ) f 2 f a 2 f 2 f

Bardziej szczegółowo

Kristýna Kuncová. Matematika B3

Kristýna Kuncová. Matematika B3 (10) Vícerozměrný integrál II Kristýna Kuncová Matematika B3 Kristýna Kuncová (10) Vícerozměrný integrál II 1 / 30 Transformace Otázka Jaký obrázek znázorňuje čtverec vpravo po transformaci u = x + y a

Bardziej szczegółowo

Necht je funkce f spojitá v intervalu a, b a má derivaci v (a, b). Pak existuje bod ξ (a, b) tak, že f(b) f(a) b a. Geometricky

Necht je funkce f spojitá v intervalu a, b a má derivaci v (a, b). Pak existuje bod ξ (a, b) tak, že f(b) f(a) b a. Geometricky Monotónie a extrémy funkce Diferenciální počet - průběh funkce Věta o střední hodnotě (Lagrange) Necht je funkce f spojitá v intervalu a, b a má derivaci v (a, b). Pak existuje bod ξ (a, b) tak, že f (ξ)

Bardziej szczegółowo

Co nám prozradí derivace? 21. listopadu 2018

Co nám prozradí derivace? 21. listopadu 2018 Co nám prozradí derivace? Seminář sedmý 21. listopadu 2018 Derivace základních funkcí Tečna a normála Tečna ke grafu funkce f v bodě dotyku T = [x 0, f (x 0 )]: y f (x 0 ) = f (x 0 )(x x 0 ) Normála: y

Bardziej szczegółowo

Numerické metody minimalizace

Numerické metody minimalizace Numerické metody minimalizace Než vám klesnou víčka - Stříbrnice 2011 12.2. 16.2.2011 Emu (Brkos 2011) Numerické metody minimalizace 12.2. 16.2.2011 1 / 19 Obsah 1 Úvod 2 Základní pojmy 3 Princip minimalizace

Bardziej szczegółowo

(1) Derivace. Kristýna Kuncová. Matematika B2 17/18. Kristýna Kuncová (1) Derivace 1 / 35

(1) Derivace. Kristýna Kuncová. Matematika B2 17/18. Kristýna Kuncová (1) Derivace 1 / 35 (1) Derivace Kristýna Kuncová Matematika B2 17/18 Kristýna Kuncová (1) Derivace 1 / 35 Růst populací Zdroj : https://www.tes.com/lessons/ yjzt-cmnwtvsq/noah-s-ark Kristýna Kuncová (1) Derivace 2 / 35 Růst

Bardziej szczegółowo

Linea rnı (ne)za vislost

Linea rnı (ne)za vislost [1] Lineární (ne)závislost Skupiny, resp. množiny, vektorů mohou být lineárně závislé nebo lineárně nezávislé... a) zavislost, 3, b) P. Olšák, FEL ČVUT, c) P. Olšák 2010, d) BI-LIN, e) L, f) 2009/2010,

Bardziej szczegółowo

Matematika pro ekonomiku

Matematika pro ekonomiku Statistika, regresní analýza, náhodné procesy 7.10.2011 1 I. STATISTIKA Úlohy statistiky 2 1 Sestavit model 2 Odhadnout parametr(y) 1 Bodově 2 Intervalově 3 Testovat hypotézy Častá rozdělení ve statistice:

Bardziej szczegółowo

Komplexní analýza. Martin Bohata. Katedra matematiky FEL ČVUT v Praze Martin Bohata Komplexní analýza Mocninné řady 1 / 18

Komplexní analýza. Martin Bohata. Katedra matematiky FEL ČVUT v Praze Martin Bohata Komplexní analýza Mocninné řady 1 / 18 Komplexní analýza Mocninné řady Martin Bohata Katedra matematiky FEL ČVUT v Praze bohata@math.feld.cvut.cz Martin Bohata Komplexní analýza Mocninné řady 1 / 18 Posloupnosti komplexních čísel opakování

Bardziej szczegółowo

Numerické metody 8. května FJFI ČVUT v Praze

Numerické metody 8. května FJFI ČVUT v Praze Obyčejné diferenciální rovnice Numerické metody 8. května 2018 FJFI ČVUT v Praze 1 Úvod Úvod Základní metody Pokročilejší metody Soustava Vyšší řád Program 1 Úvod Úvod - Úloha Základní úloha, kterou řešíme

Bardziej szczegółowo

Co to znamená pro vztah mezi simultánní a marginální hustotou pravděpodobnosti f (x) (pravděpodobnostní funkci p(x))?

Co to znamená pro vztah mezi simultánní a marginální hustotou pravděpodobnosti f (x) (pravděpodobnostní funkci p(x))? Ondřej Pokora M5120 Lineární statistické modely I poznámky do cvičení podzim 2011 1 / 36 12.12.2011 Maximálně věrohodné odhady Náhodný výběr X 1,..., X n rosahu n z rozdělení pravděpodobnosti P: X i P

Bardziej szczegółowo

Matematika (KMI/PMATE)

Matematika (KMI/PMATE) Matematika (KMI/PMATE) Úvod do matematické analýzy Limita a spojitost funkce Matematika (KMI/PMATE) Osnova přednášky lineární funkce y = kx + q definice lineární funkce význam (smysl) koeficientů lineární

Bardziej szczegółowo

1 Soustava lineárních rovnic

1 Soustava lineárních rovnic Soustavy lineárních rovnic Aplikovaná matematika I Dana Říhová Mendelu Brno Obsah 1 Soustava lineárních rovnic 2 Řešitelnost soustavy lineárních rovnic 3 Gaussova eliminační metoda 4 Jordanova eliminační

Bardziej szczegółowo

Určitý (Riemannův) integrál a aplikace. Nevlastní integrál. 19. prosince 2018

Určitý (Riemannův) integrál a aplikace. Nevlastní integrál. 19. prosince 2018 Určitý (Riemnnův) integrál plikce. Nevlstní integrál Seminář 9. prosince 28 Určitý integrál Existence: Necht funkce f (x) je definovná n uzvřeném intervlu, b. Necht je splněn n tomto intervlu kterákoliv

Bardziej szczegółowo

Katedra aplikované matematiky FEI VŠB Technická univerzita Ostrava

Katedra aplikované matematiky FEI VŠB Technická univerzita Ostrava Lineární algebra 8. přednáška: Kvadratické formy Dalibor Lukáš Katedra aplikované matematiky FEI VŠB Technická univerzita Ostrava email: dalibor.lukas@vsb.cz http://www.am.vsb.cz/lukas/la Text byl vytvořen

Bardziej szczegółowo

Katedra aplikované matematiky FEI VŠB Technická univerzita Ostrava

Katedra aplikované matematiky FEI VŠB Technická univerzita Ostrava Lineární algebra 5. přednáška: Báze a řešitelnost soustav Dalibor Lukáš Katedra aplikované matematiky FEI VŠB Technická univerzita Ostrava email: dalibor.lukas@vsb.cz http://www.am.vsb.cz/lukas/la1 Text

Bardziej szczegółowo

Geometrická nelinearita: úvod

Geometrická nelinearita: úvod Geometrická nelinearita: úvod Opakování: stabilita prutů Eulerovo řešení s využitím teorie 2. řádu) Stabilita prutů Ritzovou metodou Stabilita tenkých desek 1 Geometrická nelinearita Velké deformace průhyby,

Bardziej szczegółowo

Kristýna Kuncová. Matematika B2

Kristýna Kuncová. Matematika B2 (3) Průběh funkce Kristýna Kuncová Matematika B2 Kristýna Kuncová (3) Průběh funkce 1 / 26 Monotonie (x 2 ) = 2x (sin x) = cos x Jak souvisí derivace funkce a fakt, zda je funkce rostoucí nebo klesající?

Bardziej szczegółowo

Edita Pelantová, katedra matematiky / 16

Edita Pelantová, katedra matematiky / 16 Edita Pelantová, katedra matematiky seminář současné matematiky, září 2010 Axiomy reálných čísel Axiomy tělesa Axiom 1. x + y = y + x a xy = yx (komutativní zákon). Axiom 2. x + (y + z) = (x + y) + z a

Bardziej szczegółowo

Vybrané kapitoly z matematiky

Vybrané kapitoly z matematiky Vybrané kapitoly z matematiky VŠB-TU Ostrava 2018-2019 Vybrané kapitoly z matematiky 2018-2019 1 / 11 Křivkový integrál Vybrané kapitoly z matematiky 2018-2019 2 / 11 Parametricky zadaná křivka v R 3 :

Bardziej szczegółowo

5. a 12. prosince 2018

5. a 12. prosince 2018 Integrální počet Neurčitý integrál Seminář 9, 0 5. a. prosince 08 Neurčitý integrál Definice. Necht funkce f (x) je definovaná na intervalu I. Funkce F (x) se nazývá primitivní k funkci f (x) na I, jestliže

Bardziej szczegółowo

Elementární funkce. Edita Pelantová. únor FJFI, ČVUT v Praze. katedra matematiky, FJFI, ČVUT v Praze

Elementární funkce. Edita Pelantová. únor FJFI, ČVUT v Praze. katedra matematiky, FJFI, ČVUT v Praze Elementární funkce Edita Pelantová FJFI, ČVUT v Praze Seminář současné matematiky katedra matematiky, FJFI, ČVUT v Praze únor 2013 c Edita Pelantová (FJFI) Elementární funkce únor 2013 1 / 19 Polynomiální

Bardziej szczegółowo

ROBUST January 19, Zdeněk Fabián Ústav informatiky AVČR Praha

ROBUST January 19, Zdeněk Fabián Ústav informatiky AVČR Praha ROBUST 2014 Zdeněk Fabián Ústav informatiky AVČR Praha January 19, 2014 Starověk x 1,..., x n data průměry Starověk x 1,..., x n data průměry aritm., geom., harm. Novověk Model F a skórová funkce Ψ F inferenční

Bardziej szczegółowo

Martin Branda. Univerzita Karlova v Praze Matematicko-fyzikální fakulta Katedra pravděpodobnosti a matematické statistiky

Martin Branda. Univerzita Karlova v Praze Matematicko-fyzikální fakulta Katedra pravděpodobnosti a matematické statistiky Tvorba optimálních sazeb v neživotním pojištění Martin Branda Univerzita Karlova v Praze Matematicko-fyzikální fakulta Katedra pravděpodobnosti a matematické statistiky Seminář z aktuárských věd 2013 M.Branda

Bardziej szczegółowo

(a). Pak f. (a) pro i j a 2 f

(a). Pak f. (a) pro i j a 2 f Připomeň: 1. Necht K R n. Pak 1. Funkce více proměnných II 1.1. Parciální derivace vyšších řádů K je kompaktní K je omezená a uzavřená. 2. Necht K R n je kompaktní a f : K R je spojitá. Pak f nabývá na

Bardziej szczegółowo

Poslední úprava dokumentu: 7. května 2019

Poslední úprava dokumentu: 7. května 2019 Poslední úprava dokumentu: 7. května 2019 Budu velmi vděčný za upozornění na případné chyby a překlepy. 1 Podmíněné hustoty, podmíněné momenty Z teorie pravděpodobnosti (NMSA 333 víme, že podmíněná střední

Bardziej szczegółowo

Teorie plasticity. Varianty teorie plasticity. Pružnoplastická matice tuhosti materiálu

Teorie plasticity. Varianty teorie plasticity. Pružnoplastická matice tuhosti materiálu Teorie plasticity Varianty teorie plasticity Teorie plastického tečení Přehled základních vztahů Pružnoplastická matice tuhosti materiálu 1 Pružnoplastické chování materiálu (1) Pracovní diagram pro případ

Bardziej szczegółowo

Aproximace funkcí 1,00 0,841 1,10 0,864 1,20 0,885. Body proložíme lomenou čarou.

Aproximace funkcí 1,00 0,841 1,10 0,864 1,20 0,885. Body proložíme lomenou čarou. Příklad Známe následující hodnoty funkce Φ: u Φ(u) 1,00 0,841 1,10 0,864 1,20 0,885 Odhadněte přibližně hodnoty Φ(1,02) a Φ(1,16). Možnosti: Vezmeme hodnotu v nejbližším bodě. Body proložíme lomenou čarou.

Bardziej szczegółowo

Inverzní Z-transformace

Inverzní Z-transformace Modelování systémů a procesů (11MSP) Bohumil Kovář, Jan Přikryl, Miroslav Vlček Ústav aplikované matematiky ČVUT v Praze, Fakulta dopravní 9. přednáška 11MSP úterý 16. dubna 2019 verze: 2019-04-15 12:25

Bardziej szczegółowo

Kapitola 4: Soustavy diferenciálních rovnic 1. řádu

Kapitola 4: Soustavy diferenciálních rovnic 1. řádu Sbírka příkladů Matematika II pro strukturované studium Kapitola 4: Soustavy diferenciálních rovnic 1 řádu Chcete-li ukončit prohlížení stiskněte klávesu Esc Chcete-li pokračovat stiskněte klávesu Enter

Bardziej szczegółowo

MATEMATIKA 1 ALEŠ NEKVINDA. + + pokud x < 0; x. Supremum a infimum množiny.

MATEMATIKA 1 ALEŠ NEKVINDA. + + pokud x < 0; x. Supremum a infimum množiny. MATEMATIKA ALEŠ NEKVINDA DIFERENCIÁLNÍ POČET Přednáška Označíme jako na střední škole N, Z, Q, R a C postupně množinu přirozených, celých, racionálních, reálných a komplexních čísel R = R { } { } Platí:

Bardziej szczegółowo

Cauchyova úloha pro obyčejnou diferenciální rovnici

Cauchyova úloha pro obyčejnou diferenciální rovnici Řešení ODR v MATLABu Přednáška 3 15. října 2018 Cauchyova úloha pro obyčejnou diferenciální rovnici y = f (x, y), y(x 0 ) = y 0 Víme, že v intervalu a, b existuje jediné řešení. (f (x, y) a f y jsou spojité

Bardziej szczegółowo

TGH01 - Algoritmizace

TGH01 - Algoritmizace TGH01 - Algoritmizace Jan Březina Technical University of Liberec 31. března 2015 Metainformace materiály: jan.brezina.matfyz.cz/vyuka/tgh (./materialy/crls8.pdf - Introduction to algorithms) SPOX: tgh.spox.spoj.pl

Bardziej szczegółowo

(13) Fourierovy řady

(13) Fourierovy řady (13) Fourierovy řady Kristýna Kuncová Matematika B3 Kristýna Kuncová (13) Fourierovy řady 1 / 22 O sinech a kosinech Lemma (O sinech a kosinech) Pro m, n N 0 : 2π 0 2π 0 2π 0 sin nx dx = sin nx cos mx

Bardziej szczegółowo

PROGRAMECH JOSEF TVRDÍK ČÍSLO OBLASTI PODPORY: STUDIJNÍCH PROGRAMECH OSTRAVSKÉ UNIVERZITY REGISTRAČNÍ ČÍSLO PROJEKTU: CZ.1.07/2.2.00/28.

PROGRAMECH JOSEF TVRDÍK ČÍSLO OBLASTI PODPORY: STUDIJNÍCH PROGRAMECH OSTRAVSKÉ UNIVERZITY REGISTRAČNÍ ČÍSLO PROJEKTU: CZ.1.07/2.2.00/28. ANALÝZA VÍCEROZMĚRNÝCH DAT URČENO PRO VZDĚLÁVÁNÍ V AKREDITOVANÝCH STUDIJNÍCH PROGRAMECH JOSEF TVRDÍK ČÍSLO OPERAČNÍHO PROGRAMU: CZ.1.07 NÁZEV OPERAČNÍHO PROGRAMU: VZDĚLÁVÁNÍ PRO KONKURENCESCHOPNOST OPATŘENÍ:

Bardziej szczegółowo

Kristýna Kuncová. Matematika B2 18/19. Kristýna Kuncová (1) Vzorové otázky 1 / 36

Kristýna Kuncová. Matematika B2 18/19. Kristýna Kuncová (1) Vzorové otázky 1 / 36 (1) Vzorové otázky Kristýna Kuncová Matematika B2 18/19 Kristýna Kuncová (1) Vzorové otázky 1 / 36 Limity - úlohy Otázka Určete lim x 0 f (x) A -3 B 0 C 5 D 7 E D Zdroj: Calculus: Single and Multivariable,

Bardziej szczegółowo

prof. RNDr. Roman Kotecký DrSc., Dr. Rudolf Blažek, PhD Pravděpodobnost a statistika Katedra teoretické informatiky Fakulta informačních technologií

prof. RNDr. Roman Kotecký DrSc., Dr. Rudolf Blažek, PhD Pravděpodobnost a statistika Katedra teoretické informatiky Fakulta informačních technologií Náhodné vektory prof. RNDr. Roman Kotecký DrSc., Dr. Rudolf Blažek, PhD Katedra teoretické informatiky Fakulta informačních technologií České vysoké učení technické v Praze c Rudolf Blažek, Roman Kotecký,

Bardziej szczegółowo

Lineární algebra - iterační metody

Lineární algebra - iterační metody Lineární algebra - iterační metody Numerické metody 7. dubna 2018 FJFI ČVUT v Praze 1 Úvod Úvod Rozdělení Metody Zastavení SOR Programy 1 Úvod Úvod - LAR Mějme základní úlohu A x = b, (1) kde A R n,n je

Bardziej szczegółowo

ż ż ż ż ż ż ż Ś ż ń ż ż Ę ż ż ż ż ń ż ż Ś ż ż ż ż ń Ł

ż ż ż ż ż ż ż Ś ż ń ż ż Ę ż ż ż ż ń ż ż Ś ż ż ż ż ń Ł Ś ż Ś Ą ż ż Ą ńż ń ż ż ż ż ż ż Ą ż żń ź Ś ż Ę ż ń ź ń ż Ę ź ń ż ż Ś ż ń ż ż ż ż ż ż ż Ś ż ń ż ż Ę ż ż ż ż ń ż ż Ś ż ż ż ż ń Ł Ś ż ż ż ż ż ż ż ń ń żń ż ż Ę ż Ś ż ż ż ż ć ń Ą ż ż ń ż ż ż ń ż ż ż ż ć Ł ż

Bardziej szczegółowo

Lucie Mazurová AS

Lucie Mazurová AS Dynamické modelování úmrtnosti Lucie Mazurová AS 18.3.2016 Riziko úmrtnosti a) volatilita - odchylky od očekáváných hodnot způsobené náhodným charakterem délky života, b) katastrofické riziko - krátkodobé

Bardziej szczegółowo

GEM a soustavy lineárních rovnic, část 2

GEM a soustavy lineárních rovnic, část 2 GEM a soustavy lineárních rovnic, část Odpřednesenou látku naleznete v kapitole 6 skript Abstraktní a konkrétní lineární algebra. Jiří Velebil: B6B0LAG 8.3.09: GEM a soustavy, část / Minulá přednáška Gaussova

Bardziej szczegółowo

Tvarová optimalizace pro 3D kontaktní problém

Tvarová optimalizace pro 3D kontaktní problém Tvarová optimalizace pro 3D kontaktní problém s Coulombovým třením Petr Beremlijski, Jaroslav Haslinger, Michal Kočvara, Radek Kučera a Jiří V. Outrata Katedra aplikované matematik Fakulta elektrotechnik

Bardziej szczegółowo

Matematika III Stechiometrie stručný

Matematika III Stechiometrie stručný Matematika III Stechiometrie stručný matematický úvod Miroslava Dubcová, Drahoslava Janovská, Daniel Turzík Ústav matematiky Přednášky LS 2015-2016 Obsah 1 Zápis chemické reakce 2 umožňuje jednotný přístup

Bardziej szczegółowo

Univerzita Karlova v Praze Matematicko-fyzikální fakulta. bankovnictví. Katedra pravděpodobnosti a matematické statistiky

Univerzita Karlova v Praze Matematicko-fyzikální fakulta. bankovnictví. Katedra pravděpodobnosti a matematické statistiky Univerzita Karlova v Praze Matematicko-fyzikální fakulta BAKALÁŘSKÁ PRÁCE Barbora Janečková Aplikace 2-dimenzionálních rozdělení v bankovnictví Katedra pravděpodobnosti a matematické statistiky Vedoucí

Bardziej szczegółowo

Matematická analýza 2. Kubr Milan

Matematická analýza 2. Kubr Milan Matematická analýza. Kubr Milan. února 008 Obsah Vektorové funkce jedné reálné proměnné. 3. Základní pojmy...................................... 3. Křivky v R n........................................

Bardziej szczegółowo

Paradoxy geometrické pravděpodobnosti

Paradoxy geometrické pravděpodobnosti Katedra aplikované matematiky 1. června 2009 Úvod Cíle práce : Analýza Bertrandova paradoxu. Tvorba simulačního softwaru. Osnova 1 2 3 4 Osnova 1 2 3 4 Osnova 1 2 3 4 Osnova 1 2 3 4 V rovině je zadán kruh

Bardziej szczegółowo

Lineární algebra II, přednáška Mgr. Milana Hladíka, Ph.D.

Lineární algebra II, přednáška Mgr. Milana Hladíka, Ph.D. Lineární algebra II, přednáška Mgr. Milana Hladíka, Ph.D. Poznámky sepsal Robert Husák Letní semestr 29/21 Obsah 1 Permutace 1 2 Determinant 3 3 Polynomy 7 4 Vlastní čísla 9 5 Positivně definitní matice

Bardziej szczegółowo

Petr Hasil. c Petr Hasil (MUNI) Nekonečné řady MA III (M3100) 1 / 187

Petr Hasil. c Petr Hasil (MUNI) Nekonečné řady MA III (M3100) 1 / 187 Nekonečné řady Petr Hasil Přednáška z Matematické analýzy III c Petr Hasil (MUNI) Nekonečné řady MA III (M3100) 1 / 187 Obsah 1 Nekonečné číselné řady Základní pojmy Řady s nezápornými členy Řady s libovolnými

Bardziej szczegółowo

(2) Funkce. Kristýna Kuncová. Matematika B2. Kristýna Kuncová (2) Funkce 1 / 25

(2) Funkce. Kristýna Kuncová. Matematika B2. Kristýna Kuncová (2) Funkce 1 / 25 (2) Funkce Kristýna Kuncová Matematika B2 Kristýna Kuncová (2) Funkce 1 / 25 Sudá a lichá funkce Určete, které funkce jsou sudé a které liché: liché: A, D, E sudé: B Kristýna Kuncová (2) Funkce 2 / 25

Bardziej szczegółowo

Obsah. Limita posloupnosti a funkce. Petr Hasil. Limita posloupnosti. Pro a R definujeme: Je-li a < 0, pak a =, a ( ) =. vlastní body.

Obsah. Limita posloupnosti a funkce. Petr Hasil. Limita posloupnosti. Pro a R definujeme: Je-li a < 0, pak a =, a ( ) =. vlastní body. Obsah a funkce Petr Hasil Přednáška z Matematické analýzy I Úvod 2 c Petr Hasil (MUNI) a funkce Matematická analýza / 90 c Petr Hasil (MUNI) a funkce Matematická analýza 2 / 90 Úvod Úvod Pro a R definujeme:

Bardziej szczegółowo

Teorie. kuncova/ Definice 1. Necht f je reálná funkce a a R. Jestliže existuje.

Teorie.   kuncova/ Definice 1. Necht f je reálná funkce a a R. Jestliže existuje. 8. cvičení http://www.karlin.mff.cuni.cz/ kuncova/ kytaristka@gmail.com Teorie Definice. Necht f je reálná funkce a a R. Jestliže eistuje h 0 fa + h) fa), h pak tuto itu nazýváme derivací funkce f v bodě

Bardziej szczegółowo

Rovnice proudění Slapový model

Rovnice proudění Slapový model do oceánského proudění Obsah 1 2 3 Co způsobuje proudění v oceánech? vyrovnávání rozdílů v teplotě, salinitě, tlaku, ρ = ρ(p, T, S) vítr - wind stress F wind = ρ air C D AU 2 10 slapy produkují silné proudy,

Bardziej szczegółowo

Lucie Mazurová. AS a

Lucie Mazurová. AS a Dynamické modelování úmrtnosti Lucie Mazurová AS 13.10. a 27.10.2017 Riziko úmrtnosti a) volatilita - odchylky od očekáváných hodnot způsobené náhodným charakterem délky života b) katastrofické riziko

Bardziej szczegółowo

Průvodce studiem V této kapitole se budeme zabývat diferenciálním počtem pro funkce více

Průvodce studiem V této kapitole se budeme zabývat diferenciálním počtem pro funkce více 5 Diferenciální počet funkcí více proměnných Průvodce studiem V této kapitole se budeme zabývat diferenciálním počtem pro funkce více proměnných, především budeme pracovat s funkcemi dvou proměnných Ukážeme

Bardziej szczegółowo

Granica i ciągłość funkcji. 1 Granica funkcji rzeczywistej jednej zmiennej rzeczywsitej

Granica i ciągłość funkcji. 1 Granica funkcji rzeczywistej jednej zmiennej rzeczywsitej Wydział Matematyki Stosowanej Zestaw zadań nr 3 Akademia Górniczo-Hutnicza w Krakowie WEiP, energetyka, I rok Elżbieta Adamus listopada 07r. Granica i ciągłość funkcji Granica funkcji rzeczywistej jednej

Bardziej szczegółowo

Slabá formulace rovnic proudění tekutin

Slabá formulace rovnic proudění tekutin Univerzita Karlova v Praze Matematicko-fyzikální fakulta BAKALÁŘSKÁ PRÁC Mark Dostalík Slabá formulace rovnic proudění tekutin Matematický ústav UK Vedoucí bakalářské práce: Studijní program: Studijní

Bardziej szczegółowo

Numeryczne metody optymalizacji Optymalizacja w kierunku. informacje dodatkowe

Numeryczne metody optymalizacji Optymalizacja w kierunku. informacje dodatkowe Numeryczne metody optymalizacji Optymalizacja w kierunku informacje dodatkowe Numeryczne metody optymalizacji x F x = min x D x F(x) Problemy analityczne: 1. Nieliniowa złożona funkcja celu F i ograniczeń

Bardziej szczegółowo

Diferenciální rovnice základní pojmy. Rovnice se

Diferenciální rovnice základní pojmy. Rovnice se Diferenciální rovnice základní pojmy. Rovnice se separovanými proměnnými. Vyšší matematika, Inženýrská matematika LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské

Bardziej szczegółowo

kontaktní modely (Winklerův, Pasternakův)

kontaktní modely (Winklerův, Pasternakův) TÉMA 7: Pružný poloprostor, modely podloží pružný poloprostor základní předpoklady pružný poloprostor Boussinesqueovo řešení kontaktní modely (Winklerův, Pasternakův) 1 Pružný poloprostor (1) vychází z

Bardziej szczegółowo

Ś Ś Ś Ś Ś Ś Ę Ą Ę ŚĘ Ę Ś ń Ę Ę Ą Ł Ż Ń Ł ć Ą ć Ł Ę Ó ć Ź ć ź ń Ń ń Ś Ą Ę Ł Ę Ą Ę ń ć ń Ź ć ń ć ń Ś ń ŚĆ ć ź Ł Ę Ę Ś Ę Ę Ę ń ŚĘ Ń Ę Ę ń ŚĘ Ę Ę Ś Ś ć ń Ę ń Ś Ę ć ć Ę Ę ć ź ć ń Ę Ń ń ć Ł Ę Ę Ę Ę ć Ę ć ć ź

Bardziej szczegółowo

ć ż ź ć ć Ń ć ż ż ż ż ż ć ż ż ć ż Ź ż ż ż ż ź ź ż ż ń ż ćż ż ź ć ń ć Ń Ą ż ń ż ż ż ż ć ż ć ż ż Ń ż ż ń ż ć ż ń ż ń ż Ź ż ż ń ż ć ć ź ż ż ż ź ż ń ź ż ń ż Ń ć Ą Ę ż ż ć ń ć ż ż ń ż ż ż ć ć ć ń ż Ź ć ż ć

Bardziej szczegółowo

Ś ź ź Ś Ś Ź ć ź Ń ź Ś Ś ć ć Ź Ś ź Ź Ź Ń ź Ś ć Ł ź ź ć Ś ć ć ć ć Ś ź ź Ź Ń ź ź Ś ć Ś ź ć ź ź ć ź ź ć Ł Ź ź ź ź ź ź ć ź ź ć ź ć ć Ź ź ź Ń ź ź ć ź ź ć Ń Ś Ś Ź Ń Ś ź ć Ś ź ź ź ć Ś Ź Ń ź ź Ś ć Ź ź ć ć ź Ł ć

Bardziej szczegółowo

1. Liczby zespolone Zadanie 1.1. Przedstawić w postaci a + ib, a, b R, następujące liczby zespolone (1) 1 i (2) (5)

1. Liczby zespolone Zadanie 1.1. Przedstawić w postaci a + ib, a, b R, następujące liczby zespolone (1) 1 i (2) (5) . Liczby zespolone Zadanie.. Przedstawić w postaci a + ib, a, b R, następujące liczby zespolone () i +i, () 3i, (3) ( + i 3) 6, (4) (5) ( +i ( i) 5, +i 3 i ) 4. Zadanie.. Znaleźć moduł i argument główny

Bardziej szczegółowo

Statistika (KMI/PSTAT)

Statistika (KMI/PSTAT) Statistika (KMI/PSTAT) Cvičení deváté aneb Důležitá rozdělení pravděpodobnosti spojité náhodné veličiny Statistika (KMI/PSTAT) 1 / 15 Spojitá náhodná veličina Spojitá náhodná veličina Spojitá náhodná veličina

Bardziej szczegółowo

TGH01 - Algoritmizace

TGH01 - Algoritmizace TGH01 - Algoritmizace Jan Březina Technical University of Liberec 28. února 2017 Co je to algoritmus? Porovnávání algoritmů Porovnávání algoritmů Co je to algoritmus? Který algoritmus je lepší? Záleží

Bardziej szczegółowo

Operace s funkcemi [MA1-18:P2.1] funkční hodnota... y = f(x) (x argument)

Operace s funkcemi [MA1-18:P2.1] funkční hodnota... y = f(x) (x argument) KAPITOLA : Funkce - úvod [MA-8:P.] reálná funkce (jedné) reálné proměnné... f : A R...... zobrazení množin A R do množin reálných čísel R funkční hodnota... = f() ( argument) ( tj. reálná funkce f : A

Bardziej szczegółowo

Granica i ciągłość funkcji. 1 Granica funkcji rzeczywistej jednej zmiennej rzeczywistej

Granica i ciągłość funkcji. 1 Granica funkcji rzeczywistej jednej zmiennej rzeczywistej Wydział Matematyki Stosowanej Zestaw zadań nr 3 Akademia Górniczo-Hutnicza w Krakowie WEiP, energetyka, I rok Elżbieta Adamus 3 listopada 06r. Granica i ciągłość funkcji Granica funkcji rzeczywistej jednej

Bardziej szczegółowo

Komplexní analýza. Martin Bohata. Katedra matematiky FEL ČVUT v Praze Martin Bohata Komplexní analýza Úvod 1 / 32

Komplexní analýza. Martin Bohata. Katedra matematiky FEL ČVUT v Praze Martin Bohata Komplexní analýza Úvod 1 / 32 Komplexní analýza Úvod Martin Bohata Katedra matematiky FEL ČVUT v Praze bohata@math.feld.cvut.cz Martin Bohata Komplexní analýza Úvod 1 / 32 Základní informace Stránky předmětu: http://math.feld.cvut.cz/bohata/kan.html

Bardziej szczegółowo

Obsah. 1.2 Integrály typu ( ) R x, s αx+β

Obsah. 1.2 Integrály typu ( ) R x, s αx+β Sbírka úloh z matematické analýzy. Čížek Jiří Kubr Milan. prosince 006 Obsah Neurčitý integrál.. Základní integrály...................................... Integrály typu ) R, s α+β γ+δ d...........................

Bardziej szczegółowo

Sb ırka pˇr ıklad u z matematick e anal yzy II Petr Tomiczek

Sb ırka pˇr ıklad u z matematick e anal yzy II Petr Tomiczek Sbírka příkladů z matematické analýzy II Petr Tomiczek Obsah 0 Diferenciální rovnice. řádu 0. Separace proměnných Příklad : Najděte obecné řešení (obecný integrál) diferenciální rovnice y = tg x tg y.

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA WYKŁAD listopada 2009

STATYSTYKA MATEMATYCZNA WYKŁAD listopada 2009 STATYSTYKA MATEMATYCZNA WYKŁAD 7 23 listopada 2009 Wykład 6 (16.XI.2009) zakończył się zdefiniowaniem współczynnika korelacji: E X µ x σ x Y µ y σ y = T WSPÓŁCZYNNIK KORELACJI ρ X,Y = ρ Y,X (!) WSPÓŁCZYNNIK

Bardziej szczegółowo

Kombinatorika a grafy I

Kombinatorika a grafy I Kombinatorika a grafy I Martin Balko 1. přednáška 19. února 2019 Základní informace Základní informace úvodní kurs, kde jsou probrány základy kombinatoriky a teorie grafů ( pokračování diskrétní matematiky

Bardziej szczegółowo

1 Definice. A B A B vlastní podmnožina. 4. Relace R mezi množinami A a B libovolná R A B. Je-li A = B relace na A

1 Definice. A B A B vlastní podmnožina. 4. Relace R mezi množinami A a B libovolná R A B. Je-li A = B relace na A 1 Definice 1. Množiny: podmnožina: A B x(x A x B) průnik: A B = {x A x B} sjednocení: A B = {x x A x B} rozdíl: A B = {x A x B} A B A B vlastní podmnožina 2. uspořádaná dvojice: (x, y) = {{x}, {x, y}}

Bardziej szczegółowo

Anna Kratochvílová Anna Kratochvílová (FJFI ČVUT) PDR ve zpracování obrazu / 17

Anna Kratochvílová Anna Kratochvílová (FJFI ČVUT) PDR ve zpracování obrazu / 17 Parciální diferenciální rovnice ve zpracování obrazu Anna Kratochvílová FJFI ČVUT 10. 6. 2009 Anna Kratochvílová (FJFI ČVUT) PDR ve zpracování obrazu 10. 6. 2009 1 / 17 Obsah 1 Motivace 2 Vyšetření pomocí

Bardziej szczegółowo

Kvalitativní analýza nelineárních rovnic typu reakce-difuze

Kvalitativní analýza nelineárních rovnic typu reakce-difuze Západočeská univerzita v Plzni Fakulta aplikovaných věd Katedra matematiky Diplomová práce Kvalitativní analýza nelineárních rovnic typu reakce-difuze Plzeň, 2018 Bc. Martin Kaisler cistylist listzadani1

Bardziej szczegółowo

Okrajový problém podmínky nejsou zadány v jednom bodu nejčastěji jsou podmínky zadány ve 2 bodech na okrajích, ale mohou být

Okrajový problém podmínky nejsou zadány v jednom bodu nejčastěji jsou podmínky zadány ve 2 bodech na okrajích, ale mohou být Obyčejné diferenciální rovnice 1 Úvod Obyčejnou diferenciální rovnici N-tého řádu f ( x,y,y,y,...,y (N)) = g(x) převádíme na soustavu N diferenciálních rovnic 1. řádu. Provedeme substituce y z 1 y z 2...

Bardziej szczegółowo

ń ń Ś Ż Ś ń

ń ń Ś Ż Ś ń ń ń Ś Ż Ś ń ć Ż Ś Ż ń Ś Ż Ż ń Ś Ó ń ć ć ć ć ć Ść Ę ź Ó ć ć źń ć Ś Ć Ż Ś Ć ŚĆ ń ć ź Ś ń ń Ż ć ń ć ń Ś ź ń ź ć ź ć Ę ń ć ć ć Ę ć Ó ń ć ź Ó ŻÓ ź ń ń Ć ć ź ć ń ź ń ć ń Ą ń ć Ż ń Ś Ś ź Ą ć ŚĆ ń ć źć ć Ę Ż ć

Bardziej szczegółowo

Numerické metody a statistika

Numerické metody a statistika Numerické metody a statistika Radek Kučera VŠB-TU Ostrava 2016-2017 ( ) Numerické metody a statistika 2016-2017 1 / 17 Číslo předmětu: 714-0781/02 Rozsah: 2+2 Hodnocení: 6 kreditů Přednáší: Radek Kučera

Bardziej szczegółowo

B. Patzák verze 01. Direct Approach to FEM

B. Patzák verze 01. Direct Approach to FEM B. Patzák (borek.patzak@fsv.cvut.cz), verze 0 Úvodní přednáška Direct Approach to FEM Úvod do Metody Konečných Prvků (MKP) Většina fyzikálních jevů může být popsána systémem parciálních diferenciálních

Bardziej szczegółowo

Úvodní informace. 18. února 2019

Úvodní informace. 18. února 2019 Úvodní informace Funkce více proměnných Cvičení první 18. února 2019 Obsah 1 Úvodní informace. 2 Funkce více proměnných Definiční obor Úvodní informace. Komunikace: e-mail: olga@majling.eu nebo olga.majlingova@fs.cvut.cz

Bardziej szczegółowo

nejsou citlivé na monotónní transformace vstupů, dost dobře se vyrovnají s nerelevantními vstupy.

nejsou citlivé na monotónní transformace vstupů, dost dobře se vyrovnají s nerelevantními vstupy. Přednosti rozhodovacích stromů Přirozeně pracují s kategoriálními i spojitými veličinami, přirozeně pracují s chybějícími hodnotami, jsou robustní vzhledem k outliers vybočujícím pozorováním, nejsou citlivé

Bardziej szczegółowo

Metody, s nimiž se seznámíme v této kapitole, lze použít pro libovolnou

Metody, s nimiž se seznámíme v této kapitole, lze použít pro libovolnou 2. Řešení nelineárních rovnic Průvodce studiem Budeme se zabývat výpočtem reálných kořenů nelineární rovnice f(x) =0, (2.0.1) kde f je v jistém smyslu rozumná reálná funkce. Pro některé funkce (kvadratické,

Bardziej szczegółowo

Katedra kybernetiky laboratoř Inteligentní Datové Analýzy (IDA) Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti

Katedra kybernetiky laboratoř Inteligentní Datové Analýzy (IDA) Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Vytěžování dat: klasifikace Filip Železný Katedra kybernetiky laboratoř Inteligentní Datové Analýzy (IDA) Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Filip Železný (ČVUT) Vytěžování

Bardziej szczegółowo

Západočeská univerzita v Plzni Fakulta aplikovaných věd. Katedra matematiky. Semestrální práce - matematika a byznys

Západočeská univerzita v Plzni Fakulta aplikovaných věd. Katedra matematiky. Semestrální práce - matematika a byznys Západočeská univerzita v Plzni Fakulta aplikovaných věd Katedra matematiky Obor: Matematické inženýrství Optimální výrobní program Semestrální práce - matematika a byznys Vypracovala: Radka Zahradníková

Bardziej szczegółowo

Zadání: Vypočítejte hlavní momenty setrvačnosti a vykreslete elipsu setrvačnosti na zadaných

Zadání: Vypočítejte hlavní momenty setrvačnosti a vykreslete elipsu setrvačnosti na zadaných Příklad k procvičení : Průřeové charakteristik Zadání: Vpočítejte hlavní moment setrvačnosti a vkreslete elipsu setrvačnosti na adaných obracích. Příklad. Zadání: Rokreslení na jednoduché obrace: 500 T

Bardziej szczegółowo

Funkce více proměnných: limita, spojitost, parciální a směrové derivace, diferenciál

Funkce více proměnných: limita, spojitost, parciální a směrové derivace, diferenciál Matematika III 2. přednáška Funkce více proměnných: limita, spojitost, parciální a směrové derivace, diferenciál Michal Bulant Masarykova univerzita Fakulta informatiky 29. 9. 2010 Obsah přednášky 1 Literatura

Bardziej szczegółowo

Výzvy, které před matematiku staví

Výzvy, které před matematiku staví 1 / 21 Výzvy, které před matematiku staví výpočetní technika Edita Pelantová Katedra matematiky, FJFI, České vysoké učení technické v Praze 25. pledna 2018 Praha Zápisy čísel v minulosti 2 / 21 Římský

Bardziej szczegółowo

podle přednášky doc. Eduarda Fuchse 16. prosince 2010

podle přednášky doc. Eduarda Fuchse 16. prosince 2010 Jak souvisí plochá dráha a konečná geometrie? L ubomíra Balková podle přednášky doc. Eduarda Fuchse Trendy současné matematiky 16. prosince 2010 (FJFI ČVUT v Praze) Konečná geometrie 16. prosince 2010

Bardziej szczegółowo

Lineární regrese. Skutečné regresní funkce nejsou nikdy lineární! regrese extrémně užitečná jak svou koncepcí, tak prakticky.

Lineární regrese. Skutečné regresní funkce nejsou nikdy lineární! regrese extrémně užitečná jak svou koncepcí, tak prakticky. Lineární regrese Lineární regrese je jednoduchý přístup k učení s učitelem (supervizovanému učení). Předpokládá, že závislost Y na X 1, X 2,..., X p je lineární. Skutečné regresní funkce nejsou nikdy lineární!

Bardziej szczegółowo

1 Relacje i odwzorowania

1 Relacje i odwzorowania Relacje i odwzorowania Relacje Jacek Kłopotowski Zadania z analizy matematycznej I Wykazać, że jeśli relacja ρ X X jest przeciwzwrotna i przechodnia, to jest przeciwsymetryczna Zbadać czy relacja ρ X X

Bardziej szczegółowo

Stavový popis Stabilita spojitých systémů (K611MSAP) Katedra aplikované matematiky Fakulta dopravní ČVUT. čtvrtek 20. dubna 2006

Stavový popis Stabilita spojitých systémů (K611MSAP) Katedra aplikované matematiky Fakulta dopravní ČVUT. čtvrtek 20. dubna 2006 Modelování systémů a procesů (K611MSAP) Přednáška 4 Katedra aplikované matematiky Fakulta dopravní ČVUT Pravidelná přednáška K611MSAP čtvrtek 20. dubna 2006 Obsah 1 Laplaceova transformace Přenosová funkce

Bardziej szczegółowo

Funkce více proměnných: limita, spojitost, derivace

Funkce více proměnných: limita, spojitost, derivace Matematika III 2. přednáška Funkce více proměnných: limita, spojitost, derivace Michal Bulant Masarykova univerzita Fakulta informatiky 22. 9. 2014 Obsah přednášky 1 Literatura 2 Zobrazení a funkce více

Bardziej szczegółowo

(např. ve Weka) vycházejí z tzv. matice záměn (confusion matrix): + TP true positive FN false negative - FP false positive TN true negative

(např. ve Weka) vycházejí z tzv. matice záměn (confusion matrix): + TP true positive FN false negative - FP false positive TN true negative Ohodnocení úspěšnosti klasifikace Základní statistiky uváděné při ohodnocování modelů pro klasifikaci (např. ve Weka) vycházejí z tzv. matice záměn (confusion matrix): správná třída \ klasifikace + - +

Bardziej szczegółowo