Fizyka 2 wykład 14 Janusz Andrzejewski
Atom wodoru Wczesne modele atomu -W czasach Newtona atom uważany była za małą twardą kulkę co dość dobrze sprawdzało się w rozważaniach dotyczących kinetycznej teorii gazów, ale nie uwzględniało elektrycznej natury atomu. -W 1897 J.J. Thomson zaproponował model zatopionych w pozytywnie naładowanej kuli ładunków ujemnych. Janusz Andrzejewski 2
Atom wodoru Wczesne modele atomu doświadczenie Rutherforda rozproszenie: cząstka naładowana odpychające oddziaływanie kulombowskie silne wsteczne rozprosz. silne oddz. silne pola ładunek ~ punktowy brak odrzutu atomów folii ładunki rozpraszające w ciężkich obiektach Janusz Andrzejewski 3
Atom wodoru Planetarny model atomu Rutherforda Skoro masa elektronu jest znacznie mniejsza (ok. 1820 razy) od masy protonu a przyciągająca siła kulombowska jest podobna do siły grawitacji, to elektron powinien poruszać się dookoła jądra jak planeta wokół Słońca. Janusz Andrzejewski 4
Atom wodoru Planetarny model atomu wodoru -z powyższego nie wynikają żadne ograniczenia ani na promień orbity ani na prędkość elektronu na orbicie -na energię całkowitą elektronu, -elektron krążący dookoła jądra powinien, według klasycznej elektrodynamiki, wypromieniowywać swoją energię spadając ostatecznie na jądro -atomy (wszystkie, nie tylko wodoru) w ogóle nie mogłyby istnieć! Janusz Andrzejewski 5
Atom wodoru Widma emisyjne atomów Model planetarny nie tłumaczył jednak powstawania widm emisyjnych atomów. Janusz Andrzejewski 6
Atom wodoru Widma emisyjne atomów Zrobił to Bohr!!! Janusz Andrzejewski 7
Atom wodoru postulaty Bohra Janusz Andrzejewski 8
Atom wodoru Bohra Janusz Andrzejewski 9
Atom wodoru Bohra Janusz Andrzejewski 10
Atom wodoru Janusz Andrzejewski 11
Atom wodoru Janusz Andrzejewski 12
Janusz Andrzejewski 13
Równanie Schrödingeradla atomu wodoru Janusz Andrzejewski 14
Równanie Schrödingeradla atomu wodoru ),, ( ),, ( ) ( 2 2 2 z y x E z y x r U m Ψ = Ψ + r h Układ kartezjański (x, y, z) układ sferyczny (r, φ, ϑ) Janusz Andrzejewski 15 ) ( ) ( ) ( ),, ( ),, ( ϕ ϑ ϑ φ Φ Θ = = Ψ Ψ r R r z y x podstawiając tą funkcję do równania Schrödingeraotrzymujemy trzy równania z których każde opisuje zachowanie się funkcji falowej w zależności od r, ϕ, ϑ -równanie radialne, biegunowe i azymutalne
Dokładne rozwiązanie równania Schrödingera Janusz Andrzejewski 16
Liczby kwantowe Janusz Andrzejewski 17
Orbital atomowy Janusz Andrzejewski 18
Orbital s i p Janusz Andrzejewski 19
Orbitale d Janusz Andrzejewski 20
Orbitalny moment magnetyczny Z ruchem orbitalnym elektronu związany jest moment magnetyczny elektronu. Moment magnetyczny zamkniętego, płaskiego obwodu z prądem wynosi r r µ = I S Cząstka o ładunku q poruszająca się po orbicie kołowej z prędkością v, wytwarza prąd o natężeniu v I = q 2πr Orbitalny moment magnetyczny qv 2 qvr µ l = πr = 2πr 2 a w zapisie wektorowym r µ = l q r r q r v = 2 2m e eh µ l µ B 2m 2m r q r p = L 2m Dla elektronu: = L = l( l + 1) = l( l + 1) Janusz Andrzejewski 21
Zjawisko Zeemana Janusz Andrzejewski 22
Doświadczenie Sterna-Gerlacha Janusz Andrzejewski 23
Spin elektronu elektron charakteryzuje się własnym magnetycznym momentem dipolowym, który związany jest z jego spinowym momentem pędu (spinem) choć słowo spin oznacza wirowanie elektron w rzeczywistości nie wiruje spin jest wewnętrzną własnością elektronu, tak jak jego masa, czy ładunek elektryczny wartość spinu jest skwantowana i zależy od spinowej liczby kwantowej s = ½ rzut spinowego momentu pędu na wyróżniony kierunek jest skwantowany Janusz Andrzejewski 24
Zakaz Pauliego1925 Janusz Andrzejewski 25
Atomy wieloelektronowe Janusz Andrzejewski 26
Atomy wieloelektronowe Janusz Andrzejewski 27
Atomy wieloelektronowe Janusz Andrzejewski 28
Układ okresowy pierwiastków Janusz Andrzejewski 29
Konfiguracja elektronowa, a właściwości fizyczne atomów Janusz Andrzejewski 30
Energia jonizacji atomów - jest to energia oderwania najsłabiej związanego elektronu. Janusz Andrzejewski 31
Okresy zmian właściwości fizycznych i chemicznych pierwiastków tworzą kolejność liczb 2, 8, 8, 18, 18, 32. Janusz Andrzejewski 32
Promieniowanie rentgenowskie Elektrony emitowane przez żarzoną katodę są przyspieszane różnicą potencjału rzędu 10 5 V; uderzając w anodę są hamowane w wyniku oddziaływania kulombowskiego z jądrami atomów anody. Elektron poruszający się z opóźnieniem a emituje falę elektromagnetyczną o mocy proporcjonalnej do a 2. Ponieważ a = F/m Z/m, więc moc promieniowania jest proporcjonalna do Z 2 /m 2. Dlatego do wytwarzania promieniowania rentgenowskiego stosuje się elektrony (o małej masie m) oraz anody o dużym Z. Janusz Andrzejewski 33
Promieniowanie X Jeśli całkowita energia elektronu zmienia się na skutek hamowania w anodzie na energię promieniowania, to wówczas energia kwantu promieniowania c h ν max = h = ev λ gdzie V jest napięciem między katodą i anodą. Widmo promieniowania wytwarzane przez hamowane elektrony jest widmem ciągłym, odciętym od strony krótkich fal. Maksimum natężenia widma hamowania odpowiada najbardziej prawdopodobnemu stopniowi przemiany energii elektronu w energię promieniowania. Długość fali λ max dla której występuje maksimum natężenia λ max =1. 5λmin min Anoda rentgenowska emituje również widmo liniowe, zwane także charakterystycznym, gdyż zależy ono od materiału anody. Janusz Andrzejewski 34
Promienie X widmo charakterystyczne Seria K powstaje, jeżeli elektron przechodzi na opróżnione miejsce w powłoce K. Przy symbolu serii podaje się jeszcze indeksy α, β, χ..., dla zaznaczenia powłok z których następuje przeskok (z L na K linia K α, z M na K linia K β ). Janusz Andrzejewski 35
Prawo Moseleya Prawo Moseleyastwierdza, że pierwiastki kwadratowe z częstości linii widm rentgenowskiego ν pierwiastków chemicznych różniących się liczbą atomową Z układają się na linii prostej: ν 1 λ Dla serii K, σ = 1 Dla serii L, σ = 7,4 (w przybliżeniu) ( Z σ ) Prawo Moseleyabyło wykorzystane do odkrycia "brakujących pierwiastków", np. Hf (Hafn) prawie identyczny chemicznie z cyrkonem Zr został zidentyfikowany w 1923 roku dzięki Janusz Andrzejewski 36 swojemu widmu rentgenowskiemu przez Holendra Dirka Costera i Węgra György von Hevesy'ego.