ZAAWANSOWANE METODY USTALANIA BUDOWY ZWIĄZKÓW ORGANICZNYCH

Podobne dokumenty
MECHANIZMY FRAGMENTACJI ZWIĄZKÓW ORGANICZNYCH. Copyright 2003 Witold Danikiewicz

FIZYKOCHEMICZNE METODY USTALANIA BUDOWY ZWIĄZKÓW ORGANICZNYCH PODSTAWY INTERPRETACJI WIDM MASOWYCH

ZAAWANSOWANE METODY USTALANIA BUDOWY ZWIĄZKÓW ORGANICZNYCH

Spektrometria mas (1)

PODSTAWY INTERPRETACJI WIDM MASOWYCH. Copyright 2003 Witold Danikiewicz

PODSTAWY INTERPRETACJI WIDM MASOWYCH. Copyright 2005 Witold Danikiewicz

ZASTOSOWANIA SPEKTROMETRII MAS W CHEMII ORGANICZNEJ I BIOCHEMII WYKŁAD II ZASTOSOWANIA SPEKTROMETRII MAS

dobry punkt wyjściowy do analizy nieznanego związku

Krzywe energii potencjalnej dla molekuły dwuatomowej ilustracja przejść dysocjacyjnych IDENTYFIKACJA ZWIĄZKÓW ORGANICZNYCH

FIZYKOCHEMICZNE METODY USTALANIA BUDOWY ZWIĄZKÓW ORGANICZNYCH. Witold Danikiewicz

ZASTOSOWANIA SPEKTROMETRII MAS W CHEMII ORGANICZNEJ I BIOCHEMII WYKŁAD I PODSTAWY SPEKTROMETRII MAS

ZASTOSOWANIA SPEKTROMETRII MAS W CHEMII ORGANICZNEJ I BIOCHEMII

ZAAWANSOWANE METODY USTALANIA BUDOWY ZWIĄZKÓW ORGANICZNYCH

Spektroskopia masowa Materiały do ćwiczeń

Spektroskopia masowa Materiały do ćwiczeń

Spektroskopia. Spotkanie pierwsze. Prowadzący: Dr Barbara Gil

Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego O O

FIZYKOCHEMICZNE METODY USTALANIA BUDOWY ZWIĄZKÓW ORGANICZNYCH PODSTAWY SPEKTROMETRII MAS

Jonizacja plazmą wzbudzaną indukcyjnie (ICP)

Spektrometria Mas. Możesz skorzystać z gotowego programu sprawdzając powyższe parametry.

ZASTOSOWANIA SPEKTROMETRII MAS W CHEMII ORGANICZNEJ I BIOCHEMII

IDENTYFIKACJA SUBSTANCJI W CHROMATOGRAFII CIECZOWEJ

ANALIZA WIDM MASOWYCH OBSŁUGA PROGRAMU DATA ANALYSIS

1. Od czego i w jaki sposób zależy szybkość reakcji chemicznej?

JONY METASTABILNE I FRAGMENTACJA POD WPŁYWEM ENERGII ZDERZEŃ. Copyright 2003 Witold Danikiewicz

Wskaż grupy reakcji, do których można zaliczyć proces opisany w informacji wstępnej. A. I i III B. I i IV C. II i III D. II i IV

dr Małgorzata Czerwicka Zakład Analizy Środowiska Instytut Ochrony Środowiska i Zdrowia Człowieka Wydział Chemii UG

Repetytorium z wybranych zagadnień z chemii

Addycje Nukleofilowe do Grupy Karbonylowej

Reakcje związków karbonylowych zudziałem atomu węgla alfa (C- )

Zastosowanie spektroskopii masowej w odlewnictwie

1. Określ liczbę wiązań σ i π w cząsteczkach: wody, amoniaku i chloru

Laboratorium. Podstawowe procesy jednostkowe w technologii chemicznej

Budowa atomu Poziom: rozszerzony Zadanie 1. (2 pkt.)

relacje ilościowe ( masowe,objętościowe i molowe ) dotyczące połączeń 1. pierwiastków w związkach chemicznych 2. związków chemicznych w reakcjach

SPEKTOMETRIA MAS W POŁĄCZENIU Z CHROMATOGRAFIĄ GAZOWĄ

TECHNIKI SEPARACYJNE ĆWICZENIE. Temat: Problemy identyfikacji lotnych kwasów tłuszczowych przy zastosowaniu układu GC-MS (SCAN, SIM, indeksy retencji)

ZAAWANSOWANE METODY USTALANIA BUDOWY ZWIĄZKÓW ORGANICZNYCH. Witold Danikiewicz. Instytut Chemii Organicznej PAN ul. Kasprzaka 44/52, Warszawa

Grupa Moniki Musiał. Uniwersytet Śląski Instytut Chemii Zakład Chemii Teoretycznej

ZASTOSOWANIA TECHNIK SPEKTROMETRII MAS DO IDENTYFIKACJI I USTALANIA BUDOWY ZWIĄZKÓW ORGANICZNYCH

Masowo-spektrometryczne badania reakcji jonowo-molekularnych w mieszaninach amoniaku i argonu

Cz. I Materiał powtórzeniowy do sprawdzianu dla klas II LO - Wiązania chemiczne + przykładowe zadania i proponowane rozwiązania

Materiały dodatkowe - węglowodory

Zagadnienia. Budowa atomu a. rozmieszczenie elektronów na orbitalach Z = 1-40; I

SPEKTROMETRIA IRMS. (Isotope Ratio Mass Spectrometry) Pomiar stosunków izotopowych (R) pierwiastków lekkich (H, C, O, N, S)

I ,11-1, 1, C, , 1, C

RJC A-B A + B. Slides 1 to 27

Mechanizm dehydratacji alkoholi

Model wiązania kowalencyjnego cząsteczka H 2

METODY SPEKTROSKOPOWE II. UV-VIS od teorii do praktyki Jakub Grynda Katedra Technologii Leków i Biochemii

X / \ Y Y Y Z / \ W W ... imię i nazwisko,nazwa szkoły, miasto

Zadania powtórkowe do egzaminu maturalnego z chemii Budowa atomu, układ okresowy i promieniotwórczość

Różne typy wiązań mają ta sama przyczynę: energia powstającej stabilnej cząsteczki jest mniejsza niż sumaryczna energia tworzących ją, oddalonych

Proteomika. Spektrometria mas. i jej zastosowanie do badań białek

UKŁAD OKRESOWY PIERWIASTKÓW

Wykład przygotowany w oparciu o podręczniki:

Opracowała: mgr inż. Ewelina Nowak

Orbitale typu σ i typu π

PODSTAWY CHEMII INŻYNIERIA BIOMEDYCZNA. Wykład 2

Schemat ideowy spektrometru mas z podwójnym ogniskowaniem przedstawiono na rys. 1. Pierwsze ogniskowanie według energii jonów odbywa się w sektorze

RJC E + E H. Slides 1 to 41

IDENTYFIKACJA JAKOŚCIOWA NIEZNANEGO ZWIĄZKU ORGANICZNEGO

Cz. I Materiał powtórzeniowy do sprawdzianu dla klas I LO - Wiązania chemiczne + przykładowe zadania i proponowane rozwiązania

Atomy wieloelektronowe

Plan dydaktyczny z chemii klasa: 2TRA 1 godzina tygodniowo- zakres podstawowy. Dział Zakres treści

Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego ĆWICZENIE 5. Związki aromatyczne

Anna Grych Test z budowy atomu i wiązań chemicznych

b) Podaj liczbę moli chloru cząsteczkowego, która całkowicie przereaguje z jednym molem glinu.

Analiza Organiczna. Jan Kowalski grupa B dwójka 7(A) Własności fizykochemiczne badanego związku. Zmierzona temperatura topnienia (1)

JONY METASTABILNE I FRAGMENTACJA POD WPŁYWEM ENERGII ZDERZEŃ

Wykład 5 XII 2018 Żywienie

b) Pierwiastek E tworzy tlenek o wzorze EO 2 i wodorek typu EH 4, a elektrony w jego atomie rozmieszczone są na dwóch powłokach elektronowych

1. REAKCJA ZE ZWIĄZKAMI POSIADAJĄCYMI KWASOWY ATOM WODORU:

Teoria Orbitali Molekularnych. tworzenie wiązań chemicznych

VI Podkarpacki Konkurs Chemiczny 2013/2014

Konkurs przedmiotowy z chemii dla uczniów dotychczasowych gimnazjów 24 stycznia 2018 r. zawody II stopnia (rejonowe)

Co to jest spektrometria mas?

ANALITYKA W KONTROLI JAKOŚCI

Proteomika. 1. Definicja proteomiki i techniki stosowane w proteomice

Proteomika. Spektrometria mas. i jej zastosowanie do badań białek

Otrzymywanie halogenków alkilów

Opis przedmiotu zamówienia

Spektrometria mas związków organicznych z chromatograficznym wprowadzeniem próbki

Spektroskopia molekularna. Spektroskopia w podczerwieni

liczba kwantowa, n kwantowa, l Wanad 3 2 [Ar] 3d 3 4s 2

Wykład 5: Cząsteczki dwuatomowe

Chemia - laboratorium

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

Opracowała: mgr Agata Wiśniewska PRZYKŁADOWE SPRAWDZIANY WIADOMOŚCI l UMIEJĘTNOŚCI Współczesny model budowy atomu (wersja A)

KONKURS CHEMICZNY DLA UCZNIÓW GIMNAZJUM ROK SZKOLNY 2018/2019 ETAP REJONOWY

Temat Ocena dopuszczająca Ocena dostateczna Ocena dobra Ocena bardzo dobra Ocena celująca. Uczeń:

Detekcja spektrometrii mas

Alkeny: Struktura, nazewnictwo, Termodynamika i kinetyka

KONKURS CHEMICZNY DLA UCZNIÓW GIMNAZJÓW

Jak analizować widmo IR?

spektroskopia elektronowa (UV-vis)

I Etap szkolny 16 listopada Imię i nazwisko ucznia: Arkusz zawiera 19 zadań. Liczba punktów możliwych do uzyskania: 39 pkt.

Zadanie 2. (1 pkt) Uzupełnij tabelę, wpisując wzory sumaryczne tlenków w odpowiednie kolumny. CrO CO 2 Fe 2 O 3 BaO SO 3 NO Cu 2 O

Konkurs przedmiotowy z chemii dla uczniów gimnazjów 6 marca 2015 r. zawody III stopnia (wojewódzkie)

Kamil Jurowski. Kamila Kochan. Anna Jurowska. Grzegorz Zając. Kornel Roztocki

Transkrypt:

ZAAWANSWANE METDY USTALANIA BUDWY ZWIĄZKÓW GANICZNYC Witold Danikiewicz Instytut Chemii rganicznej PAN ul. Kasprzaka 44/52, 1-224 Warszawa Listopad 215 styczeń 216 PDSTAWY INTEPETACJI WIDM MASWYC Spec #1[BP = 817.4, 2132] 1 817.3 2132 9 2M Na 8 % Intensity 7 6 5 M Na M 42.2 398.2 Ph N M = 397 Ph 818.4 4 M K 3 436.2 2 616.3 623.7 819.4 1 3 42 54 66 78 9 Mass (m/z) α C 2 C C 2 5 C C m/z 43 (1%) 3 α C 2 C C 2 5 C m/z 57 (7%) 2 1

Pytania, na które może odpowiedzieć spektrometria mas 1. Jaka jest masa cząsteczkowa związku? Metody: widmo EI 7 ev i np. 12 ev lub łagodne metody jonizacji (FAB, LSIMS, CI, ESI, MALDI) w celu otrzymania jonu molekularnego. 2. Jaki jest skład elementarny związku (wzór sumaryczny)? Metody: dokładny pomiar masy jonu molekularnego i komputerowe dopasowanie możliwych składów elementarnych, badanie profilu izotopowego. 3. Jaka jest budowa cząsteczki związku (wzór strukturalny)? Metody: analiza fragmentacji w standardowym widmie EI, badanie ścieżek fragmentacji poprzez rejestrowanie jonów metastabilnych i jonów powstających w wyniku aktywacji zderzeniowej, dokładne pomiary masy jonów fragmentacyjnych, wymiana izotopowa, otrzymywanie i badanie pochodnych. Identyfikacja związków znanych przez porównanie widma eksperymentalnego z widmami z komputerowej biblioteki widm. 4. Czy związek jest czysty? Metody: zachowanie próbki podczas parowania w źródle jonów, stwierdzenie obecności więcej niż jednego jonu molekularnego lub braku zgodności widm () i (-). 5. Jaki jest skład mieszaniny związków? Metody: chromatografia gazowa lub cieczowa sprzężona ze spektrometrią mas (GC/MS, LC/MS) analiza jakościowa i ilościowa. 3 1. Jaka jest masa cząsteczkowa związku? Aby wyznaczyć masę cząsteczkową trzeba zaobserwować i zidentyfikować jon molekularny (lub pseudomolekularny) Metody: widmo EI 7 ev; łagodne metody jonizacji (FAB, LSIMS, CI, ESI, APCI, MALDI, FI) w celu zaobserwowania jonu molekularnego. 4 2

Terminologia Jon molekularny: jon o masie równej masie cząsteczkowej badanego związku (z dokładnością do masy elektronu), powstający w wyniku oderwania lub (znacznie rzadziej) przyłączenia elektronu przez cząsteczkę. Jest to jon nieparzystoelektronowy (kationo- lub anionorodnik). Jon pseudomolekularny, quasimolekularny lub jon typu jonu molekularnego: jon powstający w wyniku przyłączenia prostego jonu (najczęściej, Na, - ) do cząsteczki badanego związku lub oderwania jonu od tej cząsteczki. becnie zaleca się stosowanie nazw typu: protonowana cząsteczka, deprotonowana cząsteczka itp. Jony tego typu są jonami parzystoelektronowymi. 5,2 1.78254, 99.985 2.141179,.15 e,2 3.16293,.13 4.26325, 99.99987 Li, 2 6.151232, 7.52 7.1645, 92.48 Be,1 9.121825, 1. B,2 1.12938, 18.98 11.9353, 81.2 C,2 12., 98.892 13.335484, 1.18 Dokładne masy atomowe i składy izotopowe najlżejszych pierwiastków N,2 14.3741, 99.635 15.1898,.365,3 15.99491464, 99.759 16.999136,.37 17.99915939,.24 F,1 18.9984325, 1. Ne,3 19.9924391, 9.92 2.9938453,.257 21.9913837, 8.82 Na, 1 22.9897697, 1. Mg, 3 23.98545, 78.6 24.9858392, 1.11 25.9825954, 11.29 Al,1 26.9815413, 1. Si,3 27.9769284, 92.18 28.9764964, 4.71 29.9737717, 3.12 P,1 3.9737634, 1. S,4 31.972718, 95.18 32.9714591,.75 33.96786774, 4.215 35.96779,.17,2 34.96885273, 75.4 36.9659262, 24.6 6 3

Profile izotopowe jonów w funkcji ich masy C 3 7 N 2 C 6 12 N 2 3 C 15 33 N 5 9 C 3 68 N 1 19 C 6 138 N 2 39 C 15 348 N 5 99 89 89.5 89.9 16 16.9 16.17 427 427.23 427.43 872 872.47 89.93 1762 1762.94 1763.87 4432 4434.37 4436.69 Masa nominalna Masa monoizotopowa Masa średnia 7 eguła azotowa Parzysta liczba atomów azotu = = parzysta masa cząsteczkowa (nominalna) Nieparzysta liczba atomów azotu = = nieparzysta masa cząsteczkowa (nominalna) W spektrometrii mas dotyczy jonów nieparzystoelektronowych. Dla jonów parzystoelektronowych jest na odwrót. Jony parzystoelektronowe: M, M, M Na, M itp. powstają w wyniku jonizacji ESI, APCI, MALDI. Jony nieparzystoelektronowe: M powstają w wyniku jonizacji EI, FI i FD. 8 4

Liczba miejsc nienasycenia Dla cząsteczki o wzorze C x y N z n liczba miejsc nienasycenia N wynosi: N = x z 1 y 1 2 2 1 gólniej: typ x: C, Si typ y:, F,, Br, I typ z: N, P typ n:, S Dla cząsteczek obojętnych i kationo- lub anionorodników liczba miejsc nienasycenia musi być całkowita i dodatnia lub równa. Dla jonów parzystoelektronowych ułamkowa i nie mniejsza niż -,5. 9 Warunki, które musi spełnić jon molekularny w widmie EI, FI lub FD (konieczne, ale nie wystarczające) 1. Musi być jonem o najwyższej masie w danym widmie (z uwzględnieniem jonów izotopowych). 2. Musi być jonem nieparzystoelektronowym, czyli odpowiadający mu wzór sumaryczny musi spełniać regułę azotową. 3. Masy najbliższych mu jonów fragmentacyjnych (czyli fragmentów o najwyższych masach) muszą dać się wyjaśnić utratą fragmentów obojętnych (cząsteczek lub rodników) o logicznych masach. 1 5

Warunki, które musi spełnić jon pseudomolekularny w widmie CI, ESI, APCI lub MALDI 1. Musi być jonem parzystoelektronowym, a odpowiadający mu wzór sumaryczny musi spełniać regułę azotową po odjęciu lub dodaniu jonu odpowiedzialnego za jonizację (najczęściej, Na, - itp.). 2. Jego masa musi umożliwić wyjaśnienie obecności ewentualnych klasterów typu (nm Kat), (nm Kat) lub (nm A), a także klasterów z matrycą (w LSIMS) lub rozpuszczalnikiem (w ESI). 3. Jego masa musi być zgodna z masami obserwowanych jonów naładowanych wielokrotnie (w ESI, czasem także w LSIMS). 4. W większości przypadków zakwaszenie próbki powinno spowodować wzrost intensywności jonu M, a dodanie soli sodowej jonu M Na. 5. W przypadku próbek o charakterze amfoterycznym (np. peptydy) dodatni jon pseudomolekularny powinien mieć masę o dwie jednostki większą niż ujemny jon pseudomolekularny (dotyczy jonów M i M ). 11 Widmo EI cholesterolu Abundance 95 9 85 8 #22929: Cholest-5-en-3-ol (3.beta.)- (CAS) $$ Lanol $$ Dyth 386 M 3 C 75 7 3 C 65 6 55 5 45 4 43 81 17 275 368 35 3 25 2 145 31 161 213 255 353 371 15 1 123 178 231 m/z--> 5 326 65 197 342 4 6 8 1 121416 182 222426 283 323436 38 12 6

Widma EI i ESI nadkaprylanu metylu 1 9 41 57 EI 7 ev % Intensity 8 7 6 5 4 3 2 1 43 55 6 74 69 83 87 97 [M 2 ] 15 115 127 M = 174 4 6 8 1 12 M/z 14 16 18 2 197.1 1 9 8 MNa ESI w Me 7 6 M 175.1 % Intensity 5 4 3 2MNa 371.2 2 192.2 1 166.1 213.1 279.2 31.2 339.2 15 2 25 3 35 4 M ass (m/z) 13 Identyfikacja jonu molekularnego w ESI Q1: 2.39 to 3.576 min from Sample 1 (MP 29) of mp3469.wiff (Turbo Spray) Max. 4.5e6 cps. I n te n s i t y, c p s 4.5e6 4.e6 3.5e6 3.e6 2.5e6 2.e6 1.5e6 Widmo standardowe w Me M 636.5 658.5 659.5 MNa MK 1.e6 637.5 674.4 5.e5 66.4 675.5 Widmo w Me z dodatkiem kwasu. 5 51 52 53 54 55 56 57 58 59 6 61 62 63 64 65 66 67 68 69 7 m/z, Da Widmo w Me z dodatkiem soli Na I n t e n s i t y, c p s Q1: 5.13 to 5.481 min from Sample 2 (MP 29 ) of mp3469.wiff (Turbo Spray), Smoothed Max. 3.3e6 cps. 3.2e6 3.e6 2.8e6 2.6e6 2.4e6 2.2e6 2.e6 1.8e6 1.6e6 1.4e6 1.2e6 1.e6 8.e5 6.e5 4.e5 2.e5 538. 539. 536. 57. M. 5 51 52 53 54 55 56 57 58 59 6 61 62 63 64 65 66 67 68 69 7 m/z, Da 636.4 637.4 638.5 MNa 551.553.4 675.5 59.1 54.1 66.3 556. 571. 579.4 598. 619.9 676.4 658.5 659.4 MK 674.4 I n t e n s i t y, c p s Q1: 1.136 to 3.42 min from Sample 4 (MP 29 Na) of mp3469.wiff (Turbo Spray), Smoothed, Smoothed Max. 3.1e6 cps. 3.1e6 3.e6 2.8e6 2.6e6 2.4e6 2.2e6 2.e6 1.8e6 1.6e6 1.4e6 1.2e6 1.e6 8.e5 6.e5 4.e5 2.e5. M 5 51 52 53 54 55 56 57 58 59 6 61 62 63 64 65 66 67 68 69 7 m/z, Da 636.4 637.4 515.2 674.4 638.4 661.3 658.5 659.4 66.3 MNa MK 14 7

Widma ESI w trybie jonów dodatnich i ujemnych pochodnej binaftylu o masie 344 Da, zawierającej grupy i C 1 9 8? 21.? 225.2 Spec #1[BP = 21., 724] ESI () 724 C () m % Intensity 7 6 5 4 3 2 F 149. F 279.1? F? 31.1 239.2 367.1 25.1 F 711.2 155.1 1 241.2 712.2 391.3 485.8 579.3 1 24 38 52 66 8 Mass (m/z) [2M Na ] 1 9 8 7 () n Spec #1[BP = 343.1, 2675] 343.1 [M ] ESI (-) 2675 6 % Intensity 5 4 3 2 344.1 15 1 345.1 187. 1 24 38 52 66 8 Mass (m/z) Widm ESI peptydu o masie 2524,6 Da [M 4 ] 4 Spec /1:8[BP = 632.1, 2248] 1 632.1 842.51 2248 842.85 9 8 7 842.18 843.18 843.53 M =,33 n = 3 6 % Intensity 5 4 [M 5 ] 5 3 [M 3 ] 3 842.5 63.9 2 55.9 1 441.3 66.4 [M 2 ] 2 88.5 1263.3 4 84 128 172 216 26 Mass (m/z) 16 8

1 9 Widmo ESI peptydu o masie 3377 u [M4 ] 4 Spec /1:14[BP = 846.1, 396] 846.17 846.17 845.92 846.33 M,25 n = 4 396.2 8 846.68 7 845.67 846.93 6 % Intensity 5 4 M 3 2 1 [M5 ] 5 676.95 [M3 ] 3 1127.88 5 74 98 122 146 17 338.64 Mass (m/z) 1 3379.63 9 Spec /1:14=>DECNV[BP = 338.5, 571] 571.1 8 3381.68 7 3382.58 6 % Intensity 5 3378.64 3383.58 4 3384.48 3 3393.58 2 1 17 3367. 3376.6 3386.2 3395.8 345.4 3415. Mass (m/z) Widmo ESI peptydu o masie 16952 Da 16952.2 Widmo po dekonwolucji m 2 m 1 m 1 = (M n)/n m 2 = (M n 1)/(n 1) n = (m 2 1)/(m 1 m 2 ) ( m M = m 2 1)( m1 1) 1 m 2 ozdzielczość spektrometru zbyt niska, aby można było rozróżnić jony izotopowe. 18 9

Widma ESI i MALDI polistyrenu z dodatkiem CF 3 CAg ESI MALDI 19 Widma ESI kompleksów eterów makrocyklicznych z kationami litowców 269.4 M Na 313.3 M K 329.2 M b 375.3 423.1 377.3 285.3 527.4 26 28 3 32 34 36 38 4 42 44 46 48 5 52 54 56 58 6 62 64 m/z, amu N M = 29 N Ligand Na K b Cs (1:1:1:1:1) w Me 2 (7:3) M Cs 2M Na 63.5 M Na 625.5 M K M Cs 735.3 641.4 687.2 M b M = 62 N N Ligand Na K b Cs (1:1:1:1:1) w Me 2 (7:3) 2M K 2M b 689.2 2M Na 1227.7 2M Cs 1243.8 1289.7 1337.7 65 7 75 8 85 9 95 1 15 11 115 12 125 13 135 m/z, amu 2 1

Widma ESI aldehydu o M = 269 Da w Me i Et Mariner Spec /27:32 (T /1.39:1.82) ASC[BP = 324.1, 611] 1 9 Widmo w Me 324.1 M Me Na 611.2 Aldehydy często tworzą hydraty i hemiacetale: ' % Intensity 8 7 6 5 M Me 4 32.2 M 2 Na M M Na 3 2 31.1 325.1 1 173.1 217.1 239.2 27.1 292.1 325.5 349.2 15 2 25 3 35 4 Mass (m/z) ' 1 9 8 Widmo w Et Mariner Spec /7:26 (T /.38:2.) ASC[BP = 338.2, 355] 338.2 M Et Na 354.9 7 % Intensity 6 5 4 3 2 M 2 Na M Na 185.1 217.1 292.1 31.1 339.2 1 15 2 25 3 35 4 Mass (m/z) 21 2. Jaki jest skład elementarny związku (wzór sumaryczny)? Metody: dokładny pomiar masy jonu molekularnego lub pseudomolekularnego i komputerowe dopasowanie możliwych składów elementarnych; badanie profilu izotopowego. 22 11

,2 1.78254, 99.985 2.141179,.15 e,2 3.16293,.13 4.26325, 99.99987 Li, 2 6.151232, 7.52 7.1645, 92.48 Be,1 9.121825, 1. B,2 1.12938, 18.98 11.9353, 81.2 C,2 Dokładne masy atomowe i składy izotopowe najlżejszych pierwiastków 12., 98.892 13.335484, 1.18 N,2 14.3741, 99.635 15.1898,.365,3 15.99491464, 99.759 16.999136,.37 17.99915939,.24 F,1 18.9984325, 1. Ne,3 19.9924391, 9.92 2.9938453,.257 21.9913837, 8.82 Na, 1 22.9897697, 1. Mg, 3 23.98545, 78.6 24.9858392, 1.11 25.9825954, 11.29 Al,1 26.9815413, 1. Si,3 27.9769284, 92.18 28.9764964, 4.71 29.9737717, 3.12 P,1 3.9737634, 1. S,4 31.972718, 95.18 32.9714591,.75 33.96786774, 4.215 35.96779,.17,2 34.96885273, 75.4 36.9659262, 24.6 23 Ważne: Dokładny pomiar masy - wymagania Dokładny pomiar masy nie zastępuje analizy elementarnej, ponieważ nie dostarcza informacji o czystości próbki. Pozwala jedynie na stwierdzenie, że w widmie masowym badanej próbki znajduje się pik pochodzący od jonu o masie odpowiadającej założonemu wzorowi sumarycznemu. Czystość związku należy udowodnić w inny sposób. Wymagania większości czasopism odnośnie dokładnych pomiarów masy są następujące: 1. Pomiar musi dotyczyć jonu molekularnego lub pseudomolekularnego (a nie jonów fragmentacyjnych). 2. Dokładność pomiaru powinna wynosić 5 ppm (w niektórych czasopismach dopuszcza się 1 ppm, zwłaszcza dla wyższych mas). 3. Można mierzyć masy nie przekraczające 1 u. 24 12

Zależność liczby możliwych wzorów sumarycznych od dokładności pomiaru masy i masy cząsteczkowej 25 Ustalanie wzoru sumarycznego w programie MassLynx MM286/1 z4_mm1993 43 (.863) AM2 (Ar,3.,.,.); Cm (43:49) 1 581.371 1: TF MS ES 5.e6 581,371 Czy jon o m/z 581 jest jonem M czy MNa? % 582.398 271.1884 583.314 229.1414 215.1257 272.1915 584.3112 m/z 15 2 25 3 35 4 45 5 55 6 65 7 75 8 85 9 95 1 26 13

Ustalanie wzoru sumarycznego w programie MassLynx M = C Czy jon o m/z 581 jest 38 44 3 S MNa = C jonem M czy MNa? 35 46 4 Si Na 27 Ustalanie wzoru sumarycznego w programie MassLynx MM286/1 z4_mm1993 43 (.863) AM2 (Ar,3.,.,.); Cm (43:49) 1 581.371 1: TF MS ES 5.e6 Jeśli jon m/z 581 jest jonem M, to jego klaster powinien mieć masę 2 x 58 1 = 1161. Jeśli jon m/z 581 jest jonem MNa, to jego klaster powinien mieć masę 2 x 558 23 = 1139. % 582.398 1139.6226 271.1884 583.314 229.1414 215.1257 272.1915 584.3112 1139.6226 m/z 15 2 25 3 35 4 45 5 55 6 65 7 75 8 85 9 95 1 15 11 115 12 28 14

Ustalanie wzoru sumarycznego w programie MassLynx Najlepszy wzór: C 7 92 8 Si 2 Na zgadza się ze wzorem: 2 x C 35 46 4 Si Na 29 Profile izotopowe kombinacji pospolitych pierwiastków dwuizotopowych typu M2 3 15

Porównanie profilu izotopowego zmierzonego i obliczonego 1 9 8 782.2 Widmo zmierzone Intensity (%age) 7 6 5 4 3 2 1 776.2 777.1 778.2 779.2 78.1 781.2 783.1 784 785.1 776 778 78 782 784 786 788 79 792 Low esolution M/z Intensity (%age) 1 9 8 7 6 5 4 3 2 1 776.1762 778.17517 779.1754 781.17543 782.17345 784.17414 Widmo obliczone dla składu: C 35 38 F 6 N 2 5 u 786.1844 787.18277 789.19169 776 778 78 782 784 786 788 79 792 Mass 31 3. Czy związek jest czysty? Metody: zachowanie próbki podczas parowania w źródle jonów (w EI); stwierdzenie obecności więcej niż jednego jonu molekularnego; stwierdzenie wzajemnej niezgodności widm jonów dodatnich i ujemnych. 32 16

Typowe zanieczyszczenia próbek obserwowane w widmach masowych 33 Węglowodory nasycone (na przykładzie triakontanu C 3 62 ) M = 422 34 17

Silikony Abundance 73 #275767: SILIKNFETT SE3 (GEVELS) 9 8 7 Si Si n Si 6 5 147 221 M = 74 4 27 355 3 281 429 2 295 53 26 1 111 41 181 577 253 325 475 534 652 5 1 15 2 25 3 35 4 45 5 55 6 65 m/z--> 35 Ftalan di-n-butylu M = 278 36 18

Ftalan diizooktylu M = 39 37 Widmo ESI ftalanów 1 9 8 Spec /2:19 ASC[BP = 413.3, 542] 413.3 ftalan diizooktylu Na 413 542.4 7 6 % Intensity 5 4 3 ftalan di-n-butylu Na 31 31.1 2 414.3 (ftalan diizooktylu) 2 Na 1 393.3 349.2 32.1 83.6 437.2 311.3 394.3 36.3 481.3 149. 447.3 691.4 569.4 613.4 285.2 657.5 525.3 85.5 182.9 215. 357.2 475.3 13. 717.5 251.1 421.3 745.5 1 28 46 64 82 1 Mass (m/z) 83 38 19

4. Jaka jest budowa cząsteczki związku (wzór strukturalny)? Metody: analiza fragmentacji w standardowym widmie EI; identyfikacja związków znanych przez porównanie widma eksperymentalnego z widmami z komputerowej biblioteki widm; badanie ścieżek fragmentacji poprzez rejestrowanie jonów metastabilnych i jonów powstających w wyniku aktywacji zderzeniowej (CID); dokładne pomiary masy jonów fragmentacyjnych; wymiana izotopowa; otrzymywanie i badanie pochodnych. 39 Identyfikacja produktu reakcji na podstawie widma masowego C 2 5 C 2 5 Na Et czy? 1 9 8 315 x 5 344 Intensity (%age) 7 6 5 4 3 2 1 15 13 16 189 234 316 59 = C 3 7-59 M 43 5 1 15 2 25 3 35 4 Low esolution M/z 4 2

Wykorzystanie wymiany izotopowej do ustalania liczby wymienialnych atomów wodoru 41 N 2 M = 137 Intensity (%age) Intensity (%age) 1 9 8 7 6 5 4 3 2 1 1 9 8 7 6 5 4 3 2 1 37 39 46 52 55 6 65 66 74 8 92 93 1819 3 4 5 6 7 8 9 1 11 12 13 14 15 Low esolution M/z 33 37 Widmo standardowe 39 44 47 52 55 61 65 66 Widma EI Widmo po kilkakrotnym odparowaniu próbki z D 73 74 77 81 89 92 3 4 5 6 7 8 9 1 11 12 13 14 15 Low esolution M/z 93 1819 12 12 121 121 131 136 137 d 1 138 d 2 d 3 141 149 1 9 138 M Na M 16 Widma ESI Wykorzystanie wymiany izotopowej do ustalania liczby wymienialnych atomów wodoru 42 N 2 M = 137 % Intensity % Intensity 8 7 6 5 4 3 2 1 139 161 1 12 14 16 18 2 Mass (m/z) 1 9 8 7 6 5 4 3 2 1 d 2 -M Na 162 d 2 -M D d 3 -M d 3 -M D d-m D d 2 -M 14 141 161 M D 139 142 d-m 163 d 3 -M Na d 1 -M Na Widmo w Me/ 2 Widmo w MeD/D 2 1 12 14 16 18 2 Mass (m/z) 21

MECANIZMY FAGMENTACJI JNÓW ZWIĄZKÓW GANICZNYC 43 Cechy charakterystyczne zjawiska fragmentacji jonów Proces jednocząsteczkowy; szybkość fragmentacji jest mała w porównaniu z szybkością rozpraszania energii na wszystkie stopnie swobody jonu: proces quasirównowagowy; możliwość równoległego (konkurencyjnego) przebiegu wielu procesów fragmentacji danego jonu; możliwość przebiegu reakcji następczych (fragmentacja wieloetapowa); intensywność względna piku jonu fragmentacyjnego zależy od szybkości jego tworzenia i szybkości dalszego rozpadu. 44 22

Możliwe warianty fragmentacji jonów dodatnich Jony E E EE E E N rozerwanie nieparzystej liczby wiązań, najczęściej 1, rzadziej 3 rozerwanie parzystej liczby wiązań, najczęściej 2 Jony EE EE EE N EE E sposób preferowany: rozerwanie parzystej liczby wiązań, najczęściej 2 sposób na ogół niekorzystny, ale są bardzo liczne wyjątki: rozerwanie nieparzystej liczby wiązań, najczęściej 1 Even electron rule reguła parzystości elektronów E - jony nieparzystoelektronowe; EE - jony parzystoelektronowe 45 Zależność szybkości fragmentacji od energii jonu P(E) (Populacja jonów) (AD )* M AD AB log k(e) (Logarytm stałej szybkości) 6 5 E ABCD AB CD (proste rozerwanie wiązania) ABCD AD BC (przegrupowanie) IE M (Energia jonizacji) AE AB AE AD (Energia pojawiania się jonu) E (Energia wewnętrzna jonu) 46 23

Stany przejściowe w reakcjach prostego rozerwania wiązania i przegrupowania eakcja prostego rozerwania wiązania kontrolowana przez entalpię A B C D A B C D "luźny stan przejściowy" (luźno związany) A B C D ównanie Eyringa-Polanyi ego kbt k = e h # G T kbt = e h # S e # T A B C D " ciasny stan przejściowy" (ciasno związany) eakcja przegrupowania kontrolowana przez entropię A D B C 47 Zależność wyglądu widma EI octanu etylu od energii elektronów proste rozerwanie wiązania przegrupowanie 43 61 7 88 M C 3 C C 2 M = 88 48 24

Jakościowe teorie fragmentacji A. Tworzenie najtrwalszych produktów fragmentacji Zgodnie z tą teorią fragmentacja przebiega w taki sposób, aby jej produktami były możliwie najtrwalsze, czyli najlepiej stabilizowane (o najniższej energii) kationy i rodniki. Teoria ta jest zgodna z postulatem ammonda: fragmentacja jest procesem endoenergetycznym, dlatego też charakteryzuje się późnym, czyli zbliżonym do budowy produktu ( product-like ) stanem przejściowym: E A M współrzędna reakcji 49 Jakościowe teorie fragmentacji A. Tworzenie najtrwalszych produktów fragmentacji cd. W tej teorii stosuje się zapisy równań reakcji fragmentacji w postaci np.: Ph C 15 Ph C m/z 15 Nie dyskutuje się lokalizacji ładunku i miejsca rodnikowego, ani mechanizmu fragmentacji. 5 25

Jakościowe teorie fragmentacji B. Teoria inicjowania fragmentacji poprzez zlokalizowany ładunek i/lub niesparowany elektron Lokalizację ładunku w cząsteczce określa względna łatwość oderwania elektronu. Kolejność orbitali pod względem łatwości oderwania elektronu: n > π > σ Dla elektronów n (niewiążących): N > S > > I, Br,, F 51 Jakościowe teorie fragmentacji B. Teoria inicjowania fragmentacji poprzez zlokalizowany ładunek i/lub niesparowany elektron cd. Zgodnie z tą teorią stosuje się zapis przemieszczeń elektronów podczas fragmentacji: 1 elektron 2 elektrony (para) C 2 C 2 2 C C 2 We wzorach pomija się na ogół niewiążące pary elektronowe nie uczestniczące w reakcji. 52 26

Najważniejsze mechanizmy fragmentacji inicjowane niesparowanym elektronem i/lub ładunkiem 1. ozerwanie wiązania σ w wyniku oderwania jednego z jego elektronów - e C - σ C C Proces ten ma znaczenie tylko dla alkanów i fluorowcoalkanów. Preferencje: tworzy się kation o najwyższej rzędowości; odrywa się największa grupa alkilowa. 53 1. ozerwanie wiązania σ w wyniku oderwania jednego z jego elektronów cd. Przykład: - C 3 7 m/z 57 (5%) - C 2 5 m/z 1 - m/z 71 (48%) m/z 85 (4%) 54 27

2. ozpad α inicjowany miejscem rodnikowym (rozpad homolityczny) ozpad α dotyczy tylko jonów E. Zdolność do inicjowania rozpadu α: N > S,, π >, Br > Miejsce rodnikowe dostarcza elektron do utworzenia wiązania z sąsiednim atomem z równoczesnym rozerwaniem następnego wiązania. Proces przebiega z zachowaniem położenia ładunku. Preferencje: odrywa się największa grupa alkilowa lub grupa o najwyższej rzędowości; tworzy się kation najlepiej stabilizowany. 55 2. ozpad α cd. 2a) Wariant nasycony 1 α 1 1 C 2 Y 2 C Y C 2 Y Przykład: α C 2 2 C m/z 31 (1%) C α C m/z 45 (55%) 56 28

2. ozpad α cd. 2b) Wariant nienasycony z heteroatomem C Y 1 Przykład: α 1 1 C Y C Y α C 2 C C 2 5 C C m/z 43 (1%) 3 α C 2 C C 2 5 C m/z 57 (7%) 57 2. ozpad α cd. 2c) ozpad allilowy dla alkenów C 2 C C 2 - e C 2 C C - α 2 C 2 C C2 C C2 Przykład: C 2 C α C 2 C C 2 m/z 41 (1%) C C α C 2 C C 2 m/z 55 (4%) 58 29

3. ozpad inicjowany ładunkiem (indukcyjnie; rozpad heterolityczny) W rozpadzie tym ulega przemieszczeniu cała para elektronowa w kierunku atomu z ładunkiem dodatnim. ozpad ten może przebiegać zarówno dla jonów E, jak i EE. Następuje przeniesienie ładunku. Preferencje: Tworzy się trwalszy kation (większy lub o wyższej rzędowości). 3a) Wariant nasycony dla jonów E Przykład: 1 i Y 1 Y i C 2 5 C 2 C 5 C 2 5 2 5 m/z 29 (4%) (ponadto C 2 = C 2 5, m/z 59, 4%, z rozpadu α) 59 3. ozpad inicjowany ładunkiem cd. 3b) Wariant nienasycony dla jonów E C Y i 1 C Y 1 Przykład: C C i C C (ponadto C m/z 43, 36%, z rozpadu α) m/z 57 (1%) Praktycznie nie obserwuje się powstawania kationu dominuje powstawanie kationu o wyższej rzędowości 6 3

Konkurencja rozpadu α i rozpadu i Grupa alkilowa: I-rzędowa α i m/z 57 C m/z 43 C 1% 15% α C m/z 43 1% II-rzędowa i C 38% m/z 57 III-rzędowa α i C m/z 43 C 36% 1% m/z 57 61 3. ozpad inicjowany ładunkiem cd. 3c) ozpad jonów EE - wariant nasycony Przykład: i Y 2 Y 2 C 2 5 CI i C 2 5 2 C 2 5 2 3d) ozpad jonów EE - wariant nienasycony Przykład: i Y C 2 Y C 2 α C 2 C 2 C 5 C 2 2 5 i i C2 5 C 2 62 31

4. Przegrupowanie wodoru do miejsca nienasycenia (przegrupowanie McLafferty ego) Przegrupowanie McLafferty ego przebiega poprzez 6-członowy, cykliczny stan przejściowy. Y r 1 Y 1 α Y 1 Y 1 Zachowanie ładunku - - jon zyskuje 1 atom Inna forma zapisu: Y 1 A B Y i 1 Y 1 Przeniesienie ładunku - - jon traci 1 atom r rearrangement of ydrogen 63 4. Przegrupowanie McLafferty ego cd. Przykład związki karbonylowe: r α = = Ph 4% 5% i = = Ph 5% 1% 64 32

5. Przegrupowanie wodoru do miejsca nasyconego Przykłady efekt orto przebiegający poprzez 6-członowy stan przejściowy: Kwasy benzoesowe i ich estry podstawione z pozycji orto Y Y = C,, N r =, alkil Y i - odrywa się cząsteczka obojętna i pozostaje kationorodnik (E E ) Y C orto-nitrotoluen (i inne orto-nitroalkilobenzeny) N C C r α - N N N (możliwe też inne struktury) = alkil odrywa się rodnik i powstaje kation (E EE ) 65 A. Pierścień nasycony 6. eakcje otwarcia pierścienia α - e - σ m/z 56 (1%) B. Pierścień cykloheksenu (reakcja retro-dielsa-aldera) α - e - α α Zachowanie ładunku = 8% = Ph,4% i Przeniesienie ładunku = 3% = Ph 1% 66 33

Klasyfikacja podstawowych typów fragmentacji protonowanego łańcucha peptydowego x n 2 N C C y n 2 N z n C C (...) N C 1 2 n n1 x 1 C y 1 2 N z 1 C C 2 2 a 1 b 1 c 1 a n b n c n 67 Ustalanie sekwencji peptydu na podstawie widma ESI-CID-MS Μ = 129,3 Glu Spektrometr: Finnigan MAT LCQ J.. Yates III, J. Mass Spectrom., 33, 1 (1998) 68 34

IDENTYFIKACJA ZANIECZYSZCZEŃ CLPIDGELU S 3 C N 69 Widmo ESI() opidogrelu Q1: 2.172 to 2.46 min from Sample 3 (9/1 ACN 2 Ac.6 ml/min 27 nm) of 531... Max. 2.9e6 cps. 2.9e6 2.5e6 C 3 N S 322.4 M 2.e6 1.5e6 324.5 1.e6 5.e5 152.3 184.3 212.3 214.4 325.4 1 12 14 16 18 2 22 24 26 28 3 32 34 m/z, amu 7 35

Fragmentacja opidogrelu MS2 (322.1) CE (1): 3.356 to 5.39 min from Sample 1 (frag 322) of opidogrel2.wiff (Unknown Ion Source) 3.8e5 3.6e5 3.4e5 3.2e5 3.e5 2.8e5 2.6e5 C 3 N S 184.2 212. Max. 4.e5 cps. N S DA C 2 N S 2.4e5 2.2e5 2.e5 1.8e5 1.6e5 1.4e5 1.2e5 1.e5 8.e4 6.e4 4.e4 2.e4 183.2 152. 35 M 44.9 125.1 111.2 182.4 136.4 21.5 322.1 262. 293.2. 2 4 6 8 1 12 14 16 18 2 22 24 26 28 3 32 34 m/z, amu MS2 (324.) CE (2): 1.453 to 2.154 min from Sample 2 (frag 324) of opidogrel2.wiff (Unknown Ion Source) 1.5e5 186.2 Max. 1.1e5 cps. m/z 322/324 m/z 212/214 -C predominates at low collision energy C 2 N -C 2 =N predominates at high collision energy C 1.e5 9.5e4 9.e4 8.5e4 m/z 184/186 m/z183/185 8.e4 7.5e4 7.e4 6.5e4 - -C 5.5e4 5.e4 4.5e4 4.e4 3.5e4 3.e4 2.5e4 154. 185.1 214. 37 M N -CN C 2 6.e4 2.e4 1.5e4 1.e4 5. 45. 152. 183.3 127. 212.1 324.1 2 4 6 8 1 12 14 16 18 2 22 24 26 28 3 32 34 m/z, amu m/z 152/154 m/z125/127 m/z155/157 71 Chromatogramy PLC/UV i GC/MS opidogrelu Detector A, Channel 1 from Sample 1 (2,5mg75%ACN25%2) of 2227_ymc_Q1.wiff Max. 4.e6. 1.4e5 11.28 1.3e5 1.2e5 1.1e5 3.25 1.e5 9.e4 8.e4 AU/uV 7.e4 6.e4 5.e4 4.e4 3.e4 4.89 5.42 6.58 5.27 5.62 2.e4 1.e4. 3.51 7.97 7.42 9.89 12.3 4.42 9.66 14.66 1 2 3 4 5 6 7 8 9 1 11 12 13 14 15 16 17 18 Time, min 7mg_mlMe_slit_1_1_start1stop operator: Marian lejnik clopid1527_ci 1 GCT Premier 1-ct-27 18:9:44 9.56 9.56 TF MS CI TIC 82 4.59 % 5.89 3.89 3.51 1.54 3.36 2.84 6.41 6.98 1.1 1.99 Time 3. 4. 5. 6. 7. 8. 9. 1. 11. 12. 8.79 72 36

Synteza opidogrelu (ostatni etap) S S N C 2 / N eakcja typu Picteta-Spenglera (wariant reakcji Mannicha) 73 Zanieczyszczenie opidogrelu o masie 351/353 Da EPI (352.4) CE (2): Exp 2, 5.98 to 5.216 min from Sample 1 (2,5mg75%ACN25%2) of 2227_ymc_frag3... Max. 4.6e6 cps. EPI (322.5) CE (2): Exp 2, 1.321 to 1.857 min from Sample 1 (2,5mg75%ACN25%2) of 2227_ymc_fra... Max. 4.5e6 cps. 4.5e6 184. 352. 4.5e6 183.9 322. 4.e6 Zanieczyszczenie 4.e6 opidogrel 3.5e6 3.5e6 3.e6 3.e6 2.5e6 212. 2.5e6 211.9 2.e6 2.e6 1.5e6 1.e6 151.9 1.5e6 1.e6 151.9 5.e5 155. 334. 5.e5 155. 185. 6 8 1 12 14 16 18 2 22 24 26 28 3 32 34 36 m/z, amu 6 8 1 12 14 16 18 2 22 24 26 28 3 32 34 36 m/z, amu óżnica masy: 3 Da (np. C 2 ). Drogi fragmentacji: identyczne jak w opidogrelu powstają te same jony fragmentacyjne. Wnioski: badany związek ma grupę o masie 31 Da w pierścieniu tiofenowym N S Prawdopodobna struktura: 74 37

N 11/9/215 Zanieczyszczenie opidogrelu o masie 323/325 Da EPI (324.) CE (3): Exp 1, 1.857 to 11.156 min from Sample 2 (2,5mg75%ACN25%2) of 2227_ymc_fra... 9.9e6 9.5e6 9.e6 8.5e6 8.e6 7.5e6 7.e6 6.5e6 6.e6 5.5e6 5.e6 4.5e6 4.e6 3.5e6 3.e6 2.5e6 2.e6 1.5e6 1.e6 5.e5 76.9 11.9 155. 168. 182.9 185.9 198. 225.9 151.9 157. 214. 221. Fragmentacja jonu m/z 324 ( 35 ) Max. 9.9e6 cps. 6 8 1 12 14 16 18 2 22 24 26 28 3 32 34 36 m/z, amu EPI (326.) CE (3): Exp 1, 1.97 to 11.159 min from Sample 1 (2,5mg75%ACN25%2) of 2227_ymc_fra... 2.8e6 2.6e6 2.4e6 2.2e6 2.e6 1.8e6 1.6e6 1.4e6 1.2e6 1.e6 8.e5 M M 6.e5 155. 266. 264. 17. 324. 4.e5 226. 326. 2.e5 76.9 11.9 112.9 157. 185. 183. 168. 2. 228. Max. 2.8e6 cps. Fragmentacja jonu m/z 326 ( 37 ) 6 8 1 12 14 16 18 2 22 24 26 28 3 32 34 36 m/z, amu óżnica masy: 2 Da (2). Drogi fragmentacji: istotne różnice w porównaniu z opidogrelem, ale niektóre jony wspólne (183/185, 155/157). Wnioski: brak fragmentacji typu DA świadczy o nieobecności pierścienia 6-członowego z atomem azotu. N S Prawdopodobna struktura: 75 Proponowane drogi fragmentacji zanieczyszczenia o masie 323/325 C 2 N -C C 2 N S N S m/z 226/228 m/z 198/2 - C 2 =N- m/z 324/326 - C 2 4 2 S C -C S m/z 183/185 m/z155/157 m/z 111 m/z 264/266 76 38