Fuzja sygnałów i filtry bayesowskie

Podobne dokumenty
Algorytmy estymacji stanu (filtry)

Metody systemowe i decyzyjne w informatyce

Prawdopodobieństwo i statystyka

Metody systemowe i decyzyjne w informatyce

Modele zapisane w przestrzeni stanów

Metody systemowe i decyzyjne w informatyce

Modele DSGE. Jerzy Mycielski. Maj Jerzy Mycielski () Modele DSGE Maj / 11

Rozpoznawanie obrazów

PROCESY STOCHASTYCZNE. PEWNE KLASY PROCESÓW STOCHASTYCZNYCH Definicja. Procesem stochastycznym nazywamy rodzinę zmiennych losowych X(t) = X(t, ω)

Rozpoznawanie obrazów

Wstęp do Metod Systemowych i Decyzyjnych Opracowanie: Jakub Tomczak

Rozkłady wielu zmiennych

Procesy stochastyczne

Podstawowe modele probabilistyczne

REGRESJA LINIOWA Z UOGÓLNIONĄ MACIERZĄ KOWARIANCJI SKŁADNIKA LOSOWEGO. Aleksander Nosarzewski Ekonometria bayesowska, prowadzący: dr Andrzej Torój

Procesy stochastyczne

Stacjonarne procesy gaussowskie, czyli o zwiazkach pomiędzy zwykła

KADD Minimalizacja funkcji

SPOTKANIE 6: Klasteryzacja: K-Means, Expectation Maximization

SMOP - wykład. Rozkład normalny zasady przenoszenia błędów. Ewa Pawelec

WYKŁAD 4. Podejmowanie decyzji dla modeli probabilistycznych Modelowanie Gaussowskie. autor: Maciej Zięba. Politechnika Wrocławska

Agnieszka Nowak Brzezińska Wykład III

Układy stochastyczne

Metody systemowe i decyzyjne w informatyce

Eksploracja Danych. wykład 4. Sebastian Zając. 10 maja 2017 WMP.SNŚ UKSW. Sebastian Zając (WMP.SNŚ UKSW) Eksploracja Danych 10 maja / 18

Obliczenia naukowe Wykład nr 2

Wnioskowanie bayesowskie

Roboty Manipulacyjne i Mobilne Budowanie mapy, lokalizacja, SLAM

Metody iteracyjne rozwiązywania układów równań liniowych (5.3) Normy wektorów i macierzy (5.3.1) Niech. x i. i =1

Rozwiązywanie układów równań liniowych metody przybliżone Materiały pomocnicze do ćwiczeń z metod numerycznych

Weryfikacja hipotez statystycznych

Rozkłady statystyk z próby

Proces rezerwy w czasie dyskretnym z losową stopą procentową i losową składką

SPOTKANIE 3: Regresja: Regresja liniowa

Agnieszka Nowak Brzezińska Wykład III

Filtracja pomiarów z głowic laserowych

Klasyfikacja metodą Bayesa

ROZWIĄZYWANIE RÓWNAŃ NIELINIOWYCH

1 Klasyfikator bayesowski

Prawa wielkich liczb, centralne twierdzenia graniczne

Klasyfikatory: k-nn oraz naiwny Bayesa. Agnieszka Nowak Brzezińska Wykład IV

Rozdział 2: Metoda największej wiarygodności i nieliniowa metoda najmniejszych kwadratów

Prawdopodobieństwo i statystyka

Matematyka stosowana i metody numeryczne

WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 13 i 14 - Statystyka bayesowska

Spis treści. Przedmowa... XI. Rozdział 1. Pomiar: jednostki miar Rozdział 2. Pomiar: liczby i obliczenia liczbowe... 16

Analiza danych. TEMATYKA PRZEDMIOTU

Na A (n) rozważamy rozkład P (n) , który na zbiorach postaci A 1... A n określa się jako P (n) (X n, A (n), P (n)

Prognozowanie i Symulacje. Wykład I. Matematyczne metody prognozowania

Algorytmy metaheurystyczne Wykład 11. Piotr Syga

Wykład 6 Centralne Twierdzenie Graniczne. Rozkłady wielowymiarowe

Komputerowa Analiza Danych Doświadczalnych

Wykład 4 Wybór najlepszej procedury. Estymacja parametrów re

2. Wykaż, że moment pierwszego skoku w procesie Poissona. S 1 := inf{t : N t > 0} jest zmienną losową o rozkładzie wykładniczym z parametrem λ.

Elementy Modelowania Matematycznego Wykład 4 Regresja i dyskryminacja liniowa

Rozkład Gaussa i test χ2

WYKŁAD 3. Klasyfikacja: modele probabilistyczne

Wstęp do sieci neuronowych, wykład 12 Łańcuchy Markowa

Podstawy opracowania wyników pomiarów z elementami analizy niepewności pomiarowych. Wykład tutora na bazie wykładu prof. Marka Stankiewicza

Ważne rozkłady i twierdzenia c.d.

Prawdopodobieństwo i statystyka

Prawdopodobieństwo i statystyka r.

Dynamiczne stochastyczne modele równowagi ogólnej

Metoda największej wiarogodności

Zawansowane modele wyborów dyskretnych

Podstawy opracowania wyników pomiarów z elementami analizy niepewności pomiarowych. Wykład tutora na bazie wykładu prof. Marka Stankiewicza

STATYSTYKA MATEMATYCZNA WYKŁAD października 2009

Geometryczna zbieżność algorytmu Gibbsa

1.7. Eksploracja danych: pogłębianie, przeszukiwanie i wyławianie

LABORATORIUM PODSTAW TELEKOMUNIKACJI

Komputerowa Analiza Danych Doświadczalnych

WYKŁAD 6. Witold Bednorz, Paweł Wolff. Rachunek Prawdopodobieństwa, WNE, Uniwersytet Warszawski. 1 Instytut Matematyki

Rozdział 1. Wektory losowe. 1.1 Wektor losowy i jego rozkład

Zmienne losowe, statystyki próbkowe. Wrocław, 2 marca 2015

Obliczanie niepewności rozszerzonej metodą analityczną opartą na splocie rozkładów wielkości wejściowych

Wstęp do sieci neuronowych, wykład 11 Łańcuchy Markova

Komputerowa analiza danych doświadczalnych

2. Wykaż, że moment pierwszego skoku w procesie Poissona. S 1 := inf{t : N t > 0} jest zmienną losową o rozkładzie wykładniczym z parametrem λ.

Wykład z analizy danych: powtórzenie zagadnień z rachunku prawdopodobieństwa

Modelowanie zależności. Matematyczne podstawy teorii ryzyka i ich zastosowanie R. Łochowski

Prawdopodobieństwo i statystyka

Testowanie hipotez statystycznych.

Rozkład normalny Parametry rozkładu zmiennej losowej Zmienne losowe wielowymiarowe

WYKŁAD 2. Problem regresji - modele liniowe

ELEMENTY ANALIZY NUMERYCZNEJ ELEMENTY ANALIZY NUMERYCZNEJ. Egzamin pisemny zestaw 1 24 czerwca 2019 roku

Prawdopodobieństwo i rozkład normalny cd.

Wykład 11: Martyngały: definicja, twierdzenia o zbieżności

Zad. 4 Należy określić rodzaj testu (jedno czy dwustronny) oraz wartości krytyczne z lub t dla określonych hipotez i ich poziomów istotności:

Spacery losowe generowanie realizacji procesu losowego

Ćw. 2: Analiza błędów i niepewności pomiarowych

Algorytmy, które estymują wprost rozkłady czy też mapowania z nazywamy algorytmami dyskryminacyjnymi.

Obliczenia Naukowe. Wykład 12: Zagadnienia na egzamin. Bartek Wilczyński

Filtr Kalmana. Zaawansowane Techniki Sterowania. Wydział Mechatroniki Politechniki Warszawskiej. Anna Sztyber

Rachunek prawdopodobieństwa Rozdział 5. Rozkłady łączne

Modelowanie rynków finansowych z wykorzystaniem pakietu R

KARTA MODUŁU / KARTA PRZEDMIOTU

Niech X i Y będą niezależnymi zmiennymi losowymi o rozkładach wykładniczych, przy czym Y EX = 4 i EY = 6. Rozważamy zmienną losową Z =.

+ r arcsin. M. Przybycień Rachunek prawdopodobieństwa i statystyka π r x

ELEMENTY ANALIZY NUMERYCZNEJ ELEMENTY ANALIZY NUMERYCZNEJ. Egzamin pisemny zestaw 1 26 czerwca 2017 roku

Sterowanie napędów maszyn i robotów

Transkrypt:

Fuzja sygnałów i filtry bayesowskie Roboty Manipulacyjne i Mobilne dr inż. Janusz Jakubiak Katedra Cybernetyki i Robotyki Wydział Elektroniki, Politechnika Wrocławska Wrocław, 10.03.2015

Dlaczego potrzebna jest fuzja sygnałów? Rodzaje informacji: rozłączne, komplementarne, substytucyjne. J. Jakubiak (KCIR) Fuzja sygnałów Wrocław, 10.03.2015 2 / 17

Dlaczego potrzebna jest fuzja sygnałów? Rodzaje informacji: rozłączne, komplementarne, substytucyjne. Problem: czujnik 1 z x _ 1 =a x z 2 czujnik 2 x _ =b x _ =??? J. Jakubiak (KCIR) Fuzja sygnałów Wrocław, 10.03.2015 2 / 17

Dlaczego potrzebna jest fuzja sygnałów? Fuzja sygnałów Przetworzenie sygnałów pochodzących z różnych czujników w taki sposób, że wynikowa informacja jest lepsza od informacji możliwych do uzyskania z każdego z czujników oddzielnie. J. Jakubiak (KCIR) Fuzja sygnałów Wrocław, 10.03.2015 3 / 17

Dlaczego potrzebna jest fuzja sygnałów? Fuzja sygnałów Przetworzenie sygnałów pochodzących z różnych czujników w taki sposób, że wynikowa informacja jest lepsza od informacji możliwych do uzyskania z każdego z czujników oddzielnie. Rozróżnia się fuzje bezpośrednią, nazywaną także fuzją sensorów, w której przetwarzane są wyłącznie dane z czujników oraz pośrednią (fuzja informacji), w której wykorzystywane są także informacje z innych źródeł (np. wiedza a priori, informacje od użytkownika). J. Jakubiak (KCIR) Fuzja sygnałów Wrocław, 10.03.2015 3 / 17

Notacja x stan rzeczywisty układu (R n ), x estymata stanu, z obserwacja (R m ), J. Jakubiak (KCIR) Fuzja sygnałów Wrocław, 10.03.2015 4 / 17

Notacja x stan rzeczywisty układu (R n ), x estymata stanu, z obserwacja (R m ), p(a B) prawdopodobieństwo zdarzenia A pod warunkiem B, N (µ, Σ) wielowymiarowy rozkład normalny ze średnią µ i macierzą kowariancji Σ (parametrami: momenty) N (µ, Σ) p(x ) = { 1 (2π) n det Σ exp 1 } 2 (x µ)t Σ 1 (x µ) J. Jakubiak (KCIR) Fuzja sygnałów Wrocław, 10.03.2015 4 / 17

Notacja x stan rzeczywisty układu (R n ), x estymata stanu, z obserwacja (R m ), p(a B) prawdopodobieństwo zdarzenia A pod warunkiem B, N (µ, Σ) wielowymiarowy rozkład normalny ze średnią µ i macierzą kowariancji Σ (parametrami: momenty) N (µ, Σ) p(x ) = { 1 (2π) n det Σ exp 1 } 2 (x µ)t Σ 1 (x µ) Twierdzenie Bayesa p(x Z) = p(z X )p(x ) p(z) = ηp(z X )p(x ), gdzie η jest współczynnikiem normalizującym. J. Jakubiak (KCIR) Fuzja sygnałów Wrocław, 10.03.2015 4 / 17

Notacja (2) Zmiany momentów dystrybucji gaussowskich przy przekształceniach liniowym (Y = AX + B) p(x ) = N (µ, Σ) p(y ) = N (Aµ + B, AΣA T ) J. Jakubiak (KCIR) Fuzja sygnałów Wrocław, 10.03.2015 5 / 17

Notacja (2) Zmiany momentów dystrybucji gaussowskich przy przekształceniach liniowym (Y = AX + B) p(x ) = N (µ, Σ) p(y ) = N (Aµ + B, AΣA T ) sumie (Y = X 1 + X 2 ) p(x 1 ) = N (µ 1, Σ 1 ), p(x 2 ) = N (µ 2, Σ 2 ), p(y ) = N (µ 1 + µ 2, Σ 1 + Σ 2 ) J. Jakubiak (KCIR) Fuzja sygnałów Wrocław, 10.03.2015 5 / 17

Notacja (2) Zmiany momentów dystrybucji gaussowskich przy przekształceniach liniowym (Y = AX + B) p(x ) = N (µ, Σ) p(y ) = N (Aµ + B, AΣA T ) sumie (Y = X 1 + X 2 ) p(x 1 ) = N (µ 1, Σ 1 ), p(x 2 ) = N (µ 2, Σ 2 ), iloczyn p(y ) = N (µ 1 + µ 2, Σ 1 + Σ 2 ) p(x 1 )p(x 2 ) = N (µ 1, Σ 1 )N (µ 2, Σ 2 ) N (µ Y, Σ Y ), Σ Y = ( ) Σ 1 1 + Σ 1 1 2 µ Y = Σ Y Σ 1 1 µ 1 + Σ Y Σ 1 2 µ 2 J. Jakubiak (KCIR) Fuzja sygnałów Wrocław, 10.03.2015 5 / 17

Niezależne pomiary czujnik 1 z 1 x x _ z 2 czujnik 2 J. Jakubiak (KCIR) Fuzja sygnałów Wrocław, 10.03.2015 6 / 17

Niezależne pomiary p(x z 1 z 2 ) = p(x z 1 )p(x z 2 ) = ηp(z 1 x)p(z 2 x) czujnik 1 z 1 x x _ z 2 czujnik 2 J. Jakubiak (KCIR) Fuzja sygnałów Wrocław, 10.03.2015 6 / 17

Niezależne pomiary przykład Załóżmy, że mamy dwa czujniki A i B, dające niezależne pomiary. Czujnik A ma dokładność ±0.8, czunik B: ±0.5. Rozkłady prawdopodobieństwa są jednorodne w podanym zakresie dokładności. J. Jakubiak (KCIR) Fuzja sygnałów Wrocław, 10.03.2015 7 / 17

Niezależne pomiary przykład Załóżmy, że mamy dwa czujniki A i B, dające niezależne pomiary. Czujnik A ma dokładność ±0.8, czunik B: ±0.5. Rozkłady prawdopodobieństwa są jednorodne w podanym zakresie dokładności. Przy pomiarze czujniki zwróciły A:2.0, a B:2.9. 1 Jak wyglądają rozkłady prawdopodobieństwa pomiarów z obu czujników? J. Jakubiak (KCIR) Fuzja sygnałów Wrocław, 10.03.2015 7 / 17

Niezależne pomiary przykład Załóżmy, że mamy dwa czujniki A i B, dające niezależne pomiary. Czujnik A ma dokładność ±0.8, czunik B: ±0.5. Rozkłady prawdopodobieństwa są jednorodne w podanym zakresie dokładności. Przy pomiarze czujniki zwróciły A:2.0, a B:2.9. 1 Jak wyglądają rozkłady prawdopodobieństwa pomiarów z obu czujników? 2 Jak wygląda rozkład gęstości pomiaru łącznego, jaka jest jego dokładność? J. Jakubiak (KCIR) Fuzja sygnałów Wrocław, 10.03.2015 7 / 17

Niezależne pomiary przykład Załóżmy, że mamy dwa czujniki A i B, dające niezależne pomiary. Czujnik A ma dokładność ±0.8, czunik B: ±0.5. Rozkłady prawdopodobieństwa są jednorodne w podanym zakresie dokładności. Przy pomiarze czujniki zwróciły A:2.0, a B:2.9. 1 Jak wyglądają rozkłady prawdopodobieństwa pomiarów z obu czujników? 2 Jak wygląda rozkład gęstości pomiaru łącznego, jaka jest jego dokładność? 3 (*) Jak dokładność zależy od różnicy między odczytami z sensorów A i B? J. Jakubiak (KCIR) Fuzja sygnałów Wrocław, 10.03.2015 7 / 17

Niezależne pomiary c.d. p(x z 1 z 2 ) = p(x z 1 )p(x z 2 ) = ηp(z 1 x)p(z 2 x) J. Jakubiak (KCIR) Fuzja sygnałów Wrocław, 10.03.2015 8 / 17

Niezależne pomiary c.d. p(x z 1 z 2 ) = p(x z 1 )p(x z 2 ) = ηp(z 1 x)p(z 2 x) J. Jakubiak (KCIR) Fuzja sygnałów Wrocław, 10.03.2015 8 / 17

Procesy Markowa Proces ma własność Markowa, jeśli warunkowe rozkłady przyszłych stanów procesu zależą tylko od stanu bieżącego, a nie od stanów przeszłych J. Jakubiak (KCIR) Fuzja sygnałów Wrocław, 10.03.2015 9 / 17

Procesy Markowa Proces ma własność Markowa, jeśli warunkowe rozkłady przyszłych stanów procesu zależą tylko od stanu bieżącego, a nie od stanów przeszłych Własność ta w robotyce mobilnej często nie jest spełniona np. z powodu następujących czynników: model nie uwzględnia dynamiki otoczenia (np. poruszający się ludzie i ich wpływ na pomiary czujników), niedokładności modeli probabilistycznych p(z t x t ), p(x t x t 1, u t ), błędy przybliżonych reprezentacji (np. rozkładu prawdopodobieństwa). Niektóre z nich mogą być uwzględnione w modelu, jednak kosztem jego znacznej komplikacji. J. Jakubiak (KCIR) Fuzja sygnałów Wrocław, 10.03.2015 9 / 17

Filtry gaussowskie Wszystkie wykorzystują ideę wielowymiarowej dystrybucji Gaussa, z parametryzacją za pomocą momentów, lub kanoniczną. Zakładają zatem unimodalność, z czego wynika: + dobrze sprawdzają się w zadaniach ze zmienną losową w pobliżu stanu rzeczywistego - działają gorzej lub wcale w zadaniach z wieloma równoprawnymi hipotezami J. Jakubiak (KCIR) Fuzja sygnałów Wrocław, 10.03.2015 10 / 17

Filtr Kalmana (KF) (Swerling 1958, Kalman1960) Stosowany dla układów liniowych, ciągłych. W chwili t szacujemy rozkład prawdopodobieństwa X przez N (µ t, Σ t ). Zakładamy, że spełnione są założenia Markowa oraz: 1 prawdopodobieństwo dla funkcji przejścia jest f.liniową x t = A t x t 1 + B t u t + ɛ t, ɛ t N (0, R t ), 2 prawdopodobieństwo pomiarów f. liniowa 3 prawdopodobieństwo początkowe z t = C t x t + δ t, δ t N (0, Q t ), p(x 0 ) = N (µ 0, Σ 0 ). Wtedy także prawdopodobieństwo a posteriori jest gaussowskie. J. Jakubiak (KCIR) Fuzja sygnałów Wrocław, 10.03.2015 11 / 17

Filtr Kalmana algorytm µ t = A t µ t 1 + B t u t Σ t = A t Σ t 1 A T t + R t K t = Σ t C T t (C t Σt C T t + Q t ) 1 µ t = µ t + K t (z t C t µ t ) Σ t = (I K t C t ) Σ t Obliczenia przewidywanego rozkładu nowego stanu po zastosowaniu u t. Wyznaczenie tzw. wzmocnienia Kalmana. Wyznaczenie wypadkowego rozkładu nowego stanu. (jeśli wzmocnienie Kalmana wynosi 0 nowy rozkład wyliczany jest wyłącznie na podstawie wiedzy a priori, jeśli zaś K t = Ct 1 wyłącznie na podstawie pomiarów) J. Jakubiak (KCIR) Fuzja sygnałów Wrocław, 10.03.2015 12 / 17

Filtr Kalmana algorytm µ t = A t µ t 1 + B t u t Σ t = A t Σ t 1 A T t + R t K t = Σ t C T t (C t Σt C T t + Q t ) 1 µ t = µ t + K t (z t C t µ t ) Σ t = (I K t C t ) Σ t Obliczenia przewidywanego rozkładu nowego stanu po zastosowaniu u t. Wyznaczenie tzw. wzmocnienia Kalmana. Wyznaczenie wypadkowego rozkładu nowego stanu. (jeśli wzmocnienie Kalmana wynosi 0 nowy rozkład wyliczany jest wyłącznie na podstawie wiedzy a priori, jeśli zaś K t = Ct 1 wyłącznie na podstawie pomiarów) J. Jakubiak (KCIR) Fuzja sygnałów Wrocław, 10.03.2015 12 / 17

Filtr Kalmana algorytm µ t = A t µ t 1 + B t u t Σ t = A t Σ t 1 A T t + R t K t = Σ t C T t (C t Σt C T t + Q t ) 1 µ t = µ t + K t (z t C t µ t ) Σ t = (I K t C t ) Σ t Obliczenia przewidywanego rozkładu nowego stanu po zastosowaniu u t. Wyznaczenie tzw. wzmocnienia Kalmana. Wyznaczenie wypadkowego rozkładu nowego stanu. (jeśli wzmocnienie Kalmana wynosi 0 nowy rozkład wyliczany jest wyłącznie na podstawie wiedzy a priori, jeśli zaś K t = Ct 1 wyłącznie na podstawie pomiarów) J. Jakubiak (KCIR) Fuzja sygnałów Wrocław, 10.03.2015 12 / 17

Filtr Kalmana algorytm µ t = A t µ t 1 + B t u t Σ t = A t Σ t 1 A T t + R t K t = Σ t C T t (C t Σt C T t + Q t ) 1 µ t = µ t + K t (z t C t µ t ) Σ t = (I K t C t ) Σ t Obliczenia przewidywanego rozkładu nowego stanu po zastosowaniu u t. Wyznaczenie tzw. wzmocnienia Kalmana. Wyznaczenie wypadkowego rozkładu nowego stanu. (jeśli wzmocnienie Kalmana wynosi 0 nowy rozkład wyliczany jest wyłącznie na podstawie wiedzy a priori, jeśli zaś K t = Ct 1 wyłącznie na podstawie pomiarów) J. Jakubiak (KCIR) Fuzja sygnałów Wrocław, 10.03.2015 12 / 17

KF przykład Rozpoczynamy od rozkładu w poprzedniej iteracji x t 1. J. Jakubiak (KCIR) Fuzja sygnałów Wrocław, 10.03.2015 13 / 17

KF przykład Wyznaczamy przewidywany rozkład x t po przemieszczeniu. J. Jakubiak (KCIR) Fuzja sygnałów Wrocław, 10.03.2015 13 / 17

KF przykład Jednocześnie dokonujemy pomiaru z t. J. Jakubiak (KCIR) Fuzja sygnałów Wrocław, 10.03.2015 13 / 17

KF przykład Wyliczamy rozkład bieżący z t. J. Jakubiak (KCIR) Fuzja sygnałów Wrocław, 10.03.2015 13 / 17

Rozszerzony filtr Kalmana (EKF) EKF Stosowany dla układów nieliniowych postaci x t = g(u t, x t 1 ) + ɛ t z t = h(x t ) + δ t J. Jakubiak (KCIR) Fuzja sygnałów Wrocław, 10.03.2015 14 / 17

EKF algorytm µ t = g(u t, µ t 1 ) Σ t = G t Σ t 1 Gt T + R t K t = Σ t H T t (H t Σt H T t + Q t ) 1 µ t = µ t + K t (z t h t ( µ t )) Σ t = (I K t H t ) Σ t Obliczane jakobiany: G t = g (u t, µ t 1 ), g (u t, x t 1 ) = g(u t, t 1 ) x t 1 H t = h (µ t ) h (x t ) = h(x t) x t J. Jakubiak (KCIR) Fuzja sygnałów Wrocław, 10.03.2015 15 / 17

EKF algorytm µ t = g(u t, µ t 1 ) Σ t = G t Σ t 1 Gt T + R t K t = Σ t H T t (H t Σt H T t + Q t ) 1 µ t = µ t + K t (z t h t ( µ t )) Σ t = (I K t H t ) Σ t Obliczane jakobiany: G t = g (u t, µ t 1 ), g (u t, x t 1 ) = g(u t, t 1 ) x t 1 H t = h (µ t ) h (x t ) = h(x t) x t J. Jakubiak (KCIR) Fuzja sygnałów Wrocław, 10.03.2015 15 / 17

EKF algorytm µ t = g(u t, µ t 1 ) Σ t = G t Σ t 1 Gt T + R t K t = Σ t H T t (H t Σt H T t + Q t ) 1 µ t = µ t + K t (z t h t ( µ t )) Σ t = (I K t H t ) Σ t Obliczane jakobiany: G t = g (u t, µ t 1 ), g (u t, x t 1 ) = g(u t, t 1 ) x t 1 H t = h (µ t ) h (x t ) = h(x t) x t J. Jakubiak (KCIR) Fuzja sygnałów Wrocław, 10.03.2015 15 / 17

EKF algorytm µ t = g(u t, µ t 1 ) Σ t = G t Σ t 1 Gt T + R t K t = Σ t H T t (H t Σt H T t + Q t ) 1 µ t = µ t + K t (z t h t ( µ t )) Σ t = (I K t H t ) Σ t Obliczane jakobiany: G t = g (u t, µ t 1 ), g (u t, x t 1 ) = g(u t, t 1 ) x t 1 H t = h (µ t ) h (x t ) = h(x t) x t J. Jakubiak (KCIR) Fuzja sygnałów Wrocław, 10.03.2015 15 / 17

Podsumowanie EKF Złożoność obliczeniowa jednej iteracji algorytmu O(k 2.4 + n 2 ). Założenie o unimodalności (jednak w wielu praktycznych przypadkach, mimo niespełnienia tego założenia, okazuje się skuteczny). Jakość estymacji zależy od nieliniowości funkcji w pobliżu punktu przybliżenia oraz od niepewności początkowej. J. Jakubiak (KCIR) Fuzja sygnałów Wrocław, 10.03.2015 16 / 17

Modyfikacje MHEKF (multi-hypothesis), ADF (assumed density) dopasowanie momentów a posteriori, UKF (unscented) analiza stochastyczna z użyciem tzw. punktów σ, IF/EIF ((extended) information filter) dualny do f. Kalmana, wykorzystujący reprezentację kanoniczną rozkładu, czyli macierz informacji Ω = Σ 1 oraz wektor informacji ξ = Σ 1 µ. (E)IF (E)KF + reprezentacja globalnej niepewności + mniejsza złożoność + lepsza stabilność numeryczna obliczeniowa + w środowiskach wielorobotowych J. Jakubiak (KCIR) Fuzja sygnałów Wrocław, 10.03.2015 17 / 17

Modyfikacje MHEKF (multi-hypothesis), ADF (assumed density) dopasowanie momentów a posteriori, UKF (unscented) analiza stochastyczna z użyciem tzw. punktów σ, IF/EIF ((extended) information filter) dualny do f. Kalmana, wykorzystujący reprezentację kanoniczną rozkładu, czyli macierz informacji Ω = Σ 1 oraz wektor informacji ξ = Σ 1 µ. (E)IF (E)KF + reprezentacja globalnej niepewności + mniejsza złożoność + lepsza stabilność numeryczna obliczeniowa + w środowiskach wielorobotowych J. Jakubiak (KCIR) Fuzja sygnałów Wrocław, 10.03.2015 17 / 17

Modyfikacje MHEKF (multi-hypothesis), ADF (assumed density) dopasowanie momentów a posteriori, UKF (unscented) analiza stochastyczna z użyciem tzw. punktów σ, IF/EIF ((extended) information filter) dualny do f. Kalmana, wykorzystujący reprezentację kanoniczną rozkładu, czyli macierz informacji Ω = Σ 1 oraz wektor informacji ξ = Σ 1 µ. (E)IF (E)KF + reprezentacja globalnej niepewności + mniejsza złożoność + lepsza stabilność numeryczna obliczeniowa + w środowiskach wielorobotowych J. Jakubiak (KCIR) Fuzja sygnałów Wrocław, 10.03.2015 17 / 17

Modyfikacje MHEKF (multi-hypothesis), ADF (assumed density) dopasowanie momentów a posteriori, UKF (unscented) analiza stochastyczna z użyciem tzw. punktów σ, IF/EIF ((extended) information filter) dualny do f. Kalmana, wykorzystujący reprezentację kanoniczną rozkładu, czyli macierz informacji Ω = Σ 1 oraz wektor informacji ξ = Σ 1 µ. (E)IF (E)KF + reprezentacja globalnej niepewności + mniejsza złożoność + lepsza stabilność numeryczna obliczeniowa + w środowiskach wielorobotowych J. Jakubiak (KCIR) Fuzja sygnałów Wrocław, 10.03.2015 17 / 17

Modyfikacje MHEKF (multi-hypothesis), ADF (assumed density) dopasowanie momentów a posteriori, UKF (unscented) analiza stochastyczna z użyciem tzw. punktów σ, IF/EIF ((extended) information filter) dualny do f. Kalmana, wykorzystujący reprezentację kanoniczną rozkładu, czyli macierz informacji Ω = Σ 1 oraz wektor informacji ξ = Σ 1 µ. (E)IF (E)KF + reprezentacja globalnej niepewności + mniejsza złożoność + lepsza stabilność numeryczna obliczeniowa + w środowiskach wielorobotowych J. Jakubiak (KCIR) Fuzja sygnałów Wrocław, 10.03.2015 17 / 17