RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 212003 (13) B1 (21) Numer zgłoszenia: 361067 (51) Int.Cl. A61L 15/36 (2006.01) C08B 1/00 (2006.01) Urząd Patentowy Rzeczypospolitej Polskiej (22) Data zgłoszenia: 03.07.2003 (54) Sposób otrzymywania celulozy bakteryjnej (43) Zgłoszenie ogłoszono: 10.01.2005 BUP 01/05 (73) Uprawniony z patentu: BOWIL BIOTECH SPÓŁKA Z OGRANICZONĄ ODPOWIEDZIALNOŚCIĄ, Władysławowo, PL (45) O udzieleniu patentu ogłoszono: 31.07.2012 WUP 07/12 (72) Twórca(y) wynalazku: ALINA KRYSTYNOWICZ, Łódź, PL WOJCIECH CZAJA, Piotrków Trybunalski, PL STANISŁAW BIELECKI, Łódź, PL PL 212003 B1
2 PL 212 003 B1 Opis wynalazku Przedmiotem wynalazku jest sposób otrzymywania celulozy bakteryjnej, w warunkach hodowli stacjonarnej z wykorzystaniem szczepu Acetobacter xylinum, w których na powierzchni ciekłej pożywki formuje się hydrożelowa, sprężysta błona celulozowa. Celuloza bakteryjna znajduje zastosowanie w medycynie jako materiał opatrunkowy w terapii rozległych ran oparzeniowych 2 i 3 stopnia, stosowany w postaci membran celulozowych o dowolnych rozmiarach i formie. Celuloza jest nierozgałęzionym homopolisacharydem, zbudowanym z jednostek β,d-glukopiranozy połączonych ze sobą wiązaniami β-1,4-glikozydowymi. Celuloza bakteryjna (BC) należy do wysokokrystalicznych celuloz, bogatych we frakcję Iα [czasopisma Proceedings of the National Academy of Sciences USA 87, 8130-8134 i Journal of Materials Science 35, 261-270]. Syntetyzowane przez bakterie łańcuchy glukanowe łączą się i formują elementarne subfibryle celulozowe o szerokości 1,5 nm, należące do najcieńszych naturalnie występujących włókien, porównywalnych jedynie do elementarnych włókien celulozy wykrytych w kambium niektórych roślin i śluzie pigwy [czasopismo Journal of Fermentation and Bioengineering 75, 18-22]. BC jest syntetyzowana przez kilka rodzajów bakterii, spośród których do najlepiej poznanych należą szczepy bakterii octowych Acetobacter. Synteza celulozy I przez Acetobacter xylinum, jak również przez inne organizmy wykazujące tę zdolność, obejmuje przynajmniej dwa etapy: 1) polimeryzację cząsteczek glukozy w liniowy β-1,4 glukan, 2) łączenie i krystalizację indywidualnych łańcuchów polimerowych w większe jednostki strukturalne. Mikroskopia elektronowa negatywowo wybarwionej celulozy, wytworzonej w hodowli bakterii Acetobacter xylinum [czasopismo Bioscience, Biotechnology, and Biochemistry 61(9), 1585-1586], ujawniła hierarchiczny charakter procesu przestrzennego gromadzenia celulozy. W pierwszym etapie 10-15 łańcuchów β-1,4-glukanowych tworzy subfibrylę o średnicy około 1,5 nm. Subfibryle łączą się i formują mikrofibryle (3,0-3,5 nm) zbudowane z licznych, równolegle ułożonych do siebie łańcuchów. W kolejnym etapie dochodzi do asocjacji 50-80 mikrofibryli, które łączą się następnie w luźne struktury o szerokości 40-60 nm, znane jako wstążki, złożone z około 1000 indywidualnych łańcuchów glukanowych [czasopismo Biochemical Journal 58, 345-352]. Biochemiczne badania mechanizmu regulacji syntezy celulozy wykazały, iż aktywność syntazy celulozowej warunkuje obecność allosferycznego efektora, którym jest cykliczny nukleotyd - diquanozynomonofosforan (c-di-gmp) [czasopismo Carbohydrate Polymers 35, 233-23 725]. W czasopiśmie Proceedings of the National Academy of Sciences USA 87, 8130-8134 oraz w opisie patentowym US 5 268 2 74 dowiedziono, że proces biosyntezy celulozy bakteryjnej jest związany z aktywnością czterech genów: bcvsa (2261 par zasad), bcsb (2405 par zasad), bcsc (3956 par zasad) oraz bcsd (467 par zasad), które tworzą operon syntazy celulozowej o długości 9217 par zasad. Funkcje białek kodowanych przez każdy z tych genów nie zostały jeszcze precyzyjnie wyjaśnione, aczkolwiek pewne informacje na temat ich potencjalnej roli zostały uzyskane dzięki metodzie komplementacji uszkodzonego genu syntazy celulozowej [czasopismo Proceedings of the National Academy of Sciences USA 87, 8130-8134]. Analiza genu odpowiedzialnego za kodowanie podjednostki katalitycznej (cesa), analogicznego do genu bcsb [czasopismo Proceedings of the National Academy of Sciences USA 87, 8130-8134, opis patentowy US 5 268 274], została również przedstawiona w czasopiśmie Plant Molecular Biology 16, 947-954] i następnie w czasopiśmie Journal of General Microbiology 11, 123] zidentyfikowano gen odpowiedzialny za kodowanie podjednostki regulatorowej (cesb). Jednakże badania [czasopisma Plant Molecular Biology 16, 947-954 i Journal of General Microbiology 11, 123] wykazały, że pozycje dwóch pierwszych genów w operonie syntazy celulozowej są dokładnie przeciwne, niż zademonstrowano to w czasopiśmie Proceedings of the National Academy of Sciences USA 87, 8130-8134] sugerując, że pierwszy z tych genów koduje podjednostkę katalityczną syntazy celulozowej. Rola produktów ekspresji genów bcsc i bcsd nie została jak dotąd precyzyjnie wyjaśniona. Produkcja BC na skalę przemysłową jest jeszcze niewielka, głównie ze względu na trudności związane z wyselekcjonowaniem wysokoaktywnych szczepów, zdolnych do biosyntezy celulozy w warunkach hodowli wgłębnej i pozbawionych możliwości metabolizowania glukozy do kwasów glukonowych, a także ze względu na dość wysokie koszty składników podłoża hodowlanego. Proces biosyntezy BC może być prowadzony zarówno w warunkach hodowli stacjonarnej jak i hodowli wgłębnej, która zapewnia pełną jego kontrolę. Wybór metody hodowli zależy ściśle od dalszego przeznaczenia syntetyzowanego polimeru [czasopismo Mededelingen Van De Faculteit Landbouwwetenschappen Universiteit Gent Proceedings Part I, 213-220]. Kontrola procesu biosyntezy BC
PL 212 003 B1 3 w hodowli stacjonarnej jest znacznie utrudniona ze względu na gromadzącą się na powierzchni pożywki błonę, która ogranicza dostęp do cieczy hodowlanej. Synteza BC w warunkach stacjonarnych może być prowadzona przy wykorzystaniu jednoetapowej (pożywka szczepiona 5-10% inokulum) lub dwuetapowej procedury [czasopismo Biopolymers Vol 7: Polysaccharides I Munster, Germany 37-90]. Ta ostania obejmuje etap hodowli wgłębnej w celu namnożenia biomasy, a następnie kontynuację procesu w warunkach stacjonarnych [czasopismo World Journal of Microbiology & Biotechnology 16, 245-248]. Wytwarzanie celulozy w dużej skali, w hodowlach z ciągłym mieszaniem, napotyka na szereg trudności, z których największą jest niestabilność kultury przejawiająca się tendencją do spontanicznej mutacji w kierunku szczepów nieaktywnych, tak zwanych Cel - [PN JP 97-21905]. Szczep niestabilny może być z powodzeniem stosowany w hodowlach stacjonarnych, w których wzrost bakterii i synteza celulozy przebiega na granicy faz pożywka-powietrze. W warunkach hodowli wstrząsanej, w której wzrost bakterii Cel+ jest ograniczony szybkością rozpuszczania się tlenu oraz agregacją komórek przez syntetyzowaną celulozę (co utrudnia dostęp tlenu), faworyzowane są komórki nieaktywne Cel -. BC może być również produkowana w warunkach ciągłej hodowli stacjonarnej [czasopismo Zentralblatt für Bakteriologie, Mikrobiologie, und Hygiene 145, 247-252]. Acetobacter xylinum jest wówczas hodowany na tacach, na podłożu SH i po 2-3 dniach procesu wytworzona na powierzchni podłoża błona celulozowa jest w sposób ciągły wprowadzana do kąpieli w roztworze sodowego siarczanu dodecylu (SDS) w celu inaktywacji komórek, a następnie nawijana na specjalny wałek. Proces taki prowadzony był przez kilka tygodni, przy prędkości nawijania 35 mm/h i przy okresowym uzupełnianiu podłoża (co 8-12 h), w celu utrzymania optymalnych warunków hodowli. Wykorzystując tę metodę uzyskano pas celulozowy o długości 5 m, co wskazuje na potencjalną możliwość jej wykorzystania na skalę przemysłową. Innym, opisywanym sposobem syntezy celulozy jest hodowla bakterii Acetobacter w specjalnych bioreaktorach poziomych, wyposażonych w zestaw obracających się wałków, na których osadzał się wytwarzany polimer. W takich warunkach [czasopismo Plant Molecular Biology 15, 673-683] obserwowano przyspieszony wzrost komórek oraz prawie 2-krotny wzrost wydajności procesu biosyntezy celulozy w stosunku do hodowli kontrolnej, prowadzonej w warunkach stacjonarnych. Możliwości wykorzystania BC w medycynie, szczególnie jako materiału opatrunkowego oraz sztucznych organów, stwarzają takie jej właściwości, jak wysoka czystość, wytrzymałość mechaniczna, zdolność chłonięcia cieczy, bardzo dobra zgodność z żywą tkanką a w szczególności z krwią. Właściwie oczyszczone błony celulozowe, wytworzone metodą hodowli stacjonarnej, mogą stanowić gotowy materiał opatrunkowy spełniający standardy przypisane nowoczesnym materiałom opatrunkowym [czasopisma Postępy Biologii Komórki 16(2), 197-212 i Applied Biochemistry and Biotechnology 28/29, 341-351]. Jest biokompatybilny, porowaty, elastyczny, łatwy w zastosowaniu i przechowywaniu, zapewnia optymalną wilgotność sprzyjająca gojeniu się rany i może być sterylizowany termicznie. Błony celulozowe są również znakomitymi nośnikami służącymi do immobilizacji różnorodnych substancji bioaktywnych, przyspieszających proces gojenia. Z uwagi na występujące ostatnio problemy i kontrowersje związane ze stosowaniem produktów pochodzenia zwierzęcego, opatrunki kolagenowe mogą zostać zastąpione właśnie opatrunkami celulozowymi. Jak dotychczas zanotowano kilka doniesień mówiących o pozytywnych rezultatach badań klinicznych z wykorzystaniem BC jako opatrunku do leczenia ran oparzeniowych, owrzodzeń troficznych lub też jako biomateriału przy transplantacji skóry [opis zgłoszenia patentowego WO 97/05271, czasopisma British Polimer Journal 22, 167-171 i Nature 325, 279-28]. Właściwości BC otwierają wiele możliwości jej praktycznego wykorzystania, uzasadnionych ekonomicznie, przy uwzględnieniu udoskonalenia metod hodowli i oparciu produkcji na ulepszonych szczepach Acetobacter; wykorzystujących tanie i łatwo dostępne surowce. Z opisu patentowego PL 171952 i z opisu zgłoszenia patentowego P 317139 jest znany sposób wytwarzania BC w postaci błon na drodze hodowli powierzchniowej bakterii Acetobacter xylinum na podłożu opartym na glukozie. Stosowany w tym sposobie szczep bakterii Acetobacter xylinum P23 wykazuje optymalny wzrost w temperaturze 28-30 C przy ph 4-6,5. Na podłożach stałych zawierających glukozę, ekstrakt drożdżowy, pepton, agar tworzy galaretowate kolonie, zaś w hodowli na podłożach płynnych tworzy śluzowatą, zwartą błonkę. Szczep Acetobacter xylinum P23 inkubuje się na podłożu płynnym. Z opisów patentowych US 5975095, US 5962278 i US 6110712 jest znany sposób syntezy celulozy przez bakterie Acetobacter xylinum subsp.nonaacetoxidans.
4 PL 212 003 B1 W opisach patentowych US 6429002, US 6329192, US 5144021, US 5079162 i US 4863565 przedstawiono sposób wytwarzania BC w warunkach wstrząsania, w których w czasie 70 h uzyskano przynajmniej 0,1 g/l w czasie 1 godziny. Z opisu patentowego US 5955325 jest znane wytwarzanie celulozy mikrobiologicznej o wysokiej zawartości wody w fermentorze dyskowym. Opis patentowy EP 0792935 przedstawia proces wytwarzania celulozy w fermentorze, przy częściowym ciśnieniu CO 2 w fazie gazowej w zbiorniku fermentacyjnym (10,13 kpa lub mniejszym). Opis patentowy WO 8602095 dotyczy sposobu wytwarzania filmu celulozowego jako sztucznej skóry stosowanej przy przeszczepach. Sposób ten obejmuje przygotowanie medium hodowlanego, w którym pożywkę stanowią źródło azotu oraz węglowodany, zaszczepienie hodowli bakteriami Acetobacter xylinum, inkubację hodowli w temperaturze, która zapewnia aktywność bakterii w czasie koniecznym do wytworzenia wymaganego filmu, usunięcie utworzonego filmu z pożywki w celu dehydratacji w stanie rozciągniętym. Z opisów patentowych US 4788146 i US 4588400 jest znane zastosowanie błon celulozowych jako opatrunków do ran i skaleczeń, a także ran oparzeniowych. Błony te wytwarzane w hodowli Acetobacter xylinum, mają grubość 0,1-15 mm lub więcej i po usunięciu z nich pożywki, w stanie uwodnionym są sterylizowane. Z publikacji w czasopiśmie Mededelingen Van De Faculteit Landbouwwetenschappen Uniwersiteit Gent, vol.65, no. 3A, 2000, s. 213-220 jest znany sposób otrzymywania BC w formie blon, w drodze hodowli bakterii Acetobacter xylinum, polegający na zaszczepieniu podłoża hodowlanego o składzie w częściach wagowych: 20 części glukozy, 5 części substancji ekstraktu drożdżowego, 5 części peptonu, 2,5 części MgSO 4 x 7 H 2 O, 2,7 części Na 2 HPO4, 1,15 części kwasu cytrynowego, 10 części etanolu, do 1000 części wody destylowanej, zawiesiną bakterii przechowywanych na podłożu o takim samym składzie w czasie nie dłuższym niż 7 dni, o gęstości 5 x 10 7 jtk/ml, użytą w ilości 5% v/v i prowadzeniu hodowli wstępnej inokularnej w temperaturze 27-33 C, wymieszaniu podłoża z otrzymanym inokulum i zaszczepieniu otrzymaną w ten sposób zawiesiną bakterii, użytą w ilości 5% v/v, podłoża produkcyjnego o składzie określonym powyżej, prowadzeniu hodowli produkcyjnej w bioreaktorach, w wyniku której otrzymuje się błony celulozowe, które poddaje się oczyszczeniu polegającemu na płukaniu w wodzie, gotowaniu w 1%-owym NaOH w czasie 0,5-2 godzin, ponownym płukaniu w wodzie do całkowitego usunięcia NaOH, działaniu 1%-owym kwasem octowym, przemyciu wodą i w końcu wodą destylowaną, odwodnieniu i ewentualnie sterylizacji. Pomimo opisanych powyżej sposobów otrzymywania BC istnieje ciągła potrzeba modyfikacji metod hodowlanych, optymalizacji podłoża hodowlanego z uwzględnieniem aspektów ekonomicznych. Celem niniejszego wynalazku jest optymalizacja warunków syntezy BC w formie błon przeznaczonej do zastosowań medycznych, z uwzględnieniem sposobu szczepienia podłoża hodowlanego, jego kosztów decydujących o opłacalności produkcji w skali przemysłowej. Sposób otrzymywania celulozy bakteryjnej w drodze hodowli bakterii Acetobacter xylinum, polegający na zaszczepieniu podłoża hodowlanego o składzie w częściach wagowych: 20 części glukozy, 5 części ekstraktu drożdżowego, 5 części peptonu, 2,5 części MgSO 4 x 7 H 2 O, 2,7 części Na 2 HPO 4, 1,15 części kwasu cytrynowego, 10 części etanolu, do 1000 części wody destylowanej, zawiesiną bakterii przechowywanych na podłożu o takim samym składzie w czasie nie dłuższym niż 7 dni, o gęstości 5 x 10 7 jtk/ml, użytą w ilości 5% v/v i prowadzeniu hodowli wstępnej inokulum w temperaturze 27-33 C, wymieszaniu podłoża z otrzymanym inokulum i zaszczepieniu otrzymaną w ten sposób zawiesiną bakterii, podłoża produkcyjnego zawierającego 20 części wagowych substancji stanowiącej źródło węgla, substancję stanowiącą źródło azotu, 2,5 części wagowych MgSO 4 x 7 H 2 O, 2,7 części wagowych Na 2 HPO 4, 1,15 części wagowych kwasu cytrynowego, 10 części wagowych etanolu, do 1000 części wagowych wody destylowanej, prowadzeniu hodowli produkcyjnej w bioreaktorach, w wyniku której otrzymuje się błony celulozowe, które poddaje się oczyszczeniu polegającemu na płukaniu w wodzie, gotowaniu w 1%-owym NaOH w czasie 0,5-2 godzin, ponownym płukaniu w wodzie do całkowitego usunięcia NaOH, działaniu 1%-owym kwasem octowym, przemyciu wodą i w końcu wodą destylowaną oraz odwodnieniu i ewentualnie sterylizacji, według wynalazku charakteryzuje się tym, że przed właściwą hodowlą produkcyjną stosuje się wstępną preinkubację całej objętości podłoża w warunkach stacjonarnych w czasie 24 godzin w temperaturze 27-33 C, po czym po dokładnym wymieszaniu podłoża i przelaniu do bioreaktorów w takich ilościach, aby stosunek powierzchni do objętości wynosił 0,6-0,8 cm -1, prowadzi się hodowlę produkcyjną właściwą w warunkach stacjonarnych w czasie 5-7 dni. Stosuje się podłoże hodowlane korzystnie uzupełnione karboksymety-
PL 212 003 B1 5 locelulozą o masie cząsteczkowej 90.000, użytą w ilości 5 części wagowych, oraz podłoże produkcyjne, w którym źródło węgla stanowi surowiec odpadowy zawierający 45-70% glukozy, 10-15% izomaltozy i 5-6% gencjobiozy, syrop glukozo-fruktozowy 1:1, melasa o zawartości sacharozy 51% i glukozy około 15% lub odciek po mikrobiologicznej biosyntezie dekstranu zawierający 12,23% fruktozy, około 0,3% glukozy i około 2,8% sacharozy, lub glicerol, źródło azotu stanowi namok kukurydziany, ciecz hodowlana po syntezie celulozy bądź ciecz inokularna. Stosuje się 20 części wagowych namoku kukurydzianego. Wytworzone błony, po oczyszczeniu i usunięciu z nich wody, poddaje się sterylizacji radiacyjnej stosując dawkę promieniowania 20-25 kgy. Sposób według wynalazku ilustrują poniższe przykłady. P r z y k ł a d 1 Podłoże binokularne P1 o składzie w częściach wagowych: 20 części glukozy, 5 części ekstraktu drożdżowego, 5 części peptonu, 2,5 części MgSO 4 x 7H 2 O, 2,7 części Na 2 HPO 4, 1,15 części kwasu cytrynowego, 10 części etanolu, do 1000 części wody destylowanej, szczepiono 5% v/v zawiesiny bakterii Acetobacter (5 x 10 7 jtk/ml) przechowywanych na tymże podłożu nie dłużej niż 7 dni, w temperaturze 4 C i hodowano w czasie 2 dni w temperaturze 30 C, po czym po intensywnym mieszaniu zaszczepiono zawiesiną bakterii w ilości 5% objętości podłoża produkcyjnego o tym samym składzie i preinkubowano całą objętość jedną dobę w temperaturze 30 C, po czym przeniesiono je do bioreaktorów o wymaganej powierzchni, w takiej ilości aby stosunek S/V (powierzchnia/objętość) wynosił 0,7 cm -1. Wytworzenie błon w tych warunkach wymagało przygotowania 14 dm 3 podłoża hodowlanego, które po zaszczepieniu i preinkubacji rozlano do bioreaktorów i prowadzono proces biosyntezy błon celulozowych w czasie 7 dni. Uformowane błony o grubości około 5 mm oczyszczano stosując płukanie w wodzie wodociągowej, następnie traktowano je 1%-owym NaOH w temperaturze 100 C w czasie 1 h, po czym ponownie płukano w wodzie wodociągowej, następnie w 1%-owym kwasie octowym, ponownie w wodzie i na końcu w wodzie destylowanej, a nadmiar wody (około 90%) usunięto stosując wyciskanie, po czym wilgotne błony pakowano do szczelnych woreczków foliowych i poddano sterylizacji radiacyjnej stosując dawkę promieniowania γ = 25 kgy. Uzyskano około 3,5 g suchej, oczyszczonej masy celulozowej z 1 dm 3 podłoża, w której zawartość białka nie przekraczała 3%. P r z y k ł a d 2 Inokulum otrzymanym jak w przykładzie 1 zaszczepiono sterylne podłoże produkcyjne o składzie w częściach wagowych: odciek po krystalizacji glukozy w ilości odpowiadającej 2% glukozy, 20 części namoku kukurydzianego, 10 części etanolu i wody destylowanej do 1000 części. W rezultacie otrzymano porównywalną ilość masy celulozowej jak w przykładzie 1. P r z y k ł a d 3 Inokulum otrzymanym jak w przykładzie 1 zaszczepiono sterylne podłoże produkcyjne zawierające jako źródło węgla syrop glukozo-fruktozowy (1:1) w ilości odpowiadającej 1% glukozy i 1% fruktozy oraz pozostałe składniki jak w podłożu P1. W rezultacie otrzymano masę celulozową w ilości około 15% wyższej w porównaniu z wynikiem przykładu 1. P r z y k ł a d 4 Inokulum otrzymanym jak w przykładzie 1 zaszczepiono sterylne podłoże produkcyjne, w którym jako źródło fruktozy w ilości 50 części wagowych stosowano odciek fruktozowy - surowiec odpadowy po wytrąceniu i oddzieleniu dekstranu z cieczy hodowlanej Leuconostoc mesenteroides oraz 2 części etanolu i 5 części ekstraktu drożdżowego, woda destylowana do 1000 części. Uzyskano o około 20% więcej masy celulozowej w porównaniu z wynikiem przykładu 1. P r z y k ł a d 5 Inokulum otrzymanym jak w przykładzie 1 zaszczepiono sterylne podłoże produkcyjne, w którym jako źródło węgla stosowano roztwór melasy w takiej ilości, aby sacharoza w podłożu stanowiła 50 części wagowych, źródło azotu - ekstrakt drożdżowy stanowił 5 części, etanol 10 części oraz woda destylowana do 1000 części. W rezultacie otrzymano masę celulozową w ilości odpowiadającej około 75% masy celulozowej z przykładu 1.
6 PL 212 003 B1 P r z y k ł a d 6 Inokulum otrzymanym jak w przykładzie 1 zaszczepiono sterylne podłoże produkcyjne P1, w którym 5 części ekstraktu drożdżowego i 5 części peptonu zastąpiono 20 częściami namoku kukurydzianego, nie zmieniając ilości pozostałych składników. W rezultacie otrzymano o 10% więcej masy celulozowej w porównaniu z wynikiem przykładu 1. P r z y k ł a d 7 Inokulum otrzymanym jak w przykładzie 1 (w ilości 10% v/v) zaszczepiono sterylne podłoże produkcyjne P1, w którym 50% stanowiła ciecz pozostała po 7-dniowej hodowli. Uzyskano wynik porównywalny z wynikiem przykładu 1. P r z y k ł a d 8 Postępując jak w przykładzie 1 zastosowano podłoże hodowlane P1 uzupełnione karboksymetylocelulozą (CMC) o masie cząsteczkowej 90.000 w ilości 5 części wagowych. Uzyskano masę celulozową, w której ilość suchej masy przekraczała o 30% ilość masy z przykładu 1. Wytworzona z dodatkiem CMC błona celulozowa po wysuszeniu charakteryzowała się około 10-krotnie wyższą wodochłonnością w porównaniu z wodochłonnością błon otrzymanych na podłożach bez CMC. Zastrzeżenia patentowe 1. Sposób otrzymywania celulozy bakteryjnej w drodze hodowli bakterii Acetobacter xylinum, polegający na zaszczepieniu podłoża hodowlanego o składzie w częściach wagowych: 20 części glukozy, 5 części ekstraktu drożdżowego, 5 części peptonu, 2,5 części MgSO 4 x 7 H 2 O, 2,7 części Na 2 HPO 4, 1,15 części kwasu cytrynowego, 10 części etanolu, do 1000 części wody destylowanej, zawiesiną bakterii przechowywanych na podłożu o takim samym składzie w czasie nie dłuższym niż 7 dni, o gęstości 5 x 10 7 jtk/ml, użytą w ilości 5% v/v i prowadzeniu hodowli wstępnej inokulum w temperaturze 27-33 C, wymieszaniu podłoża z otrzymanym inokulum i zaszczepieniu otrzymaną w ten sposób zawiesiną bakterii, podłoża produkcyjnego zawierającego 20 części wagowych substancji stanowiącej źródło węgla, substancję stanowiącą źródło azotu, 2,5 części wagowych MgSO 4 x 7 H 2 O, 2,7 części wagowych Na 2 HPO 4, 1,15 części wagowych kwasu cytrynowego, 10 części wagowych etanolu, do 1000 części wagowych wody destylowanej, prowadzeniu hodowli produkcyjnej w bioreaktorach, w wyniku której otrzymuje się błony celulozowe, które poddaje się oczyszczeniu polegającemu na płukaniu w wodzie, gotowaniu w 1%-owym NaOH w czasie 0,5-2 godzin, ponownym płukaniu w wodzie do całkowitego usunięcia NaOH, działaniu 1%-owym kwasem octowym, przemyciu wodą i w końcu wodą destylowaną oraz odwodnieniu i ewentualnie sterylizacji, znamienny tym, że przed właściwą hodowlą produkcyjną stosuje się wstępną preinkubację całej objętości podłoża w warunkach stacjonarnych w czasie 24 godzin w temperaturze 27-33 C, po czym po dokładnym wymieszaniu podłoża i przelaniu do bioreaktorów w takich ilościach, aby stosunek powierzchni do objętości wynosił 0,6-0,8 cm -1, prowadzi się hodowlę produkcyjną właściwą w warunkach stacjonarnych w czasie 5-7 dni, przy czym stosuje się podłoże hodowlane korzystnie uzupełnione karboksymetylocelulozą o masie cząsteczkowej 90.000, użytą w ilości 5 części wagowych, oraz podłoże produkcyjne, w którym źródło węgla stanowi surowiec odpadowy zawierający 45-70% glukozy, 10-15% izomaltozy i 5-6% gencjobiozy, syrop glukozo-fruktozowy 1:1, melasa o zawartości sacharozy 51% i glukozy około 15% lub odciek po mikrobiologicznej biosyntezie dekstranu zawierający 12,23% fruktozy, około 0,3% glukozy i około 2,8% sacharozy, lub glicerol, źródło azotu stanowi namok kukurydziany, ciecz hodowlana po syntezie celulozy bądź ciecz inokularna. 2. Sposób według zastrz. 1, znamienny tym, że stosuje się 20 części wagowych namoku kukurydzianego. Departament Wydawnictw UP RP Cena 2,46 zł (w tym 23% VAT)