Wykład 16: Atomy wieloelektronowe Funkcje falowe Kolejność zapełniania orbitali Energia elektronów Konfiguracja elektronowa Reguła Hunda i zakaz Pauliego Efektywna liczba atomowa Reguły Slatera Wydział Chemii UJ Podstawy chemii -wykład 16/1 dr hab. W. Makowski Funkcje falowe dla atomów wieloelektronowych w równaniu Schrödingera należy uwzględnić wzajemne odpychanie elektronów rozwiązaniem równania Schrödingera jest wieloelektronowa funkcja falowa (określona dla współrzędnych wszystkich elektronów) np. dla He Funkcję wieloelektronową można przedstawić za pomocą funkcji jednoelektronowych, podobnych do orbitali dla atomu wodoru Ĥ = Êk 1+ V1+ Êk+ V+ V Ψ(x, y,z,x, y,z ) 1 Przypisanie elektronów do poszczególnych orbitali (jednoelektronowych funkcji falowych) 1 1 1 Wydział Chemii UJ Podstawy chemii -wykład 16/ dr hab. W. Makowski 1
Kolejność zapełniania orbitali atomowych zgodnie ze wzrostem energii 1 3 4 5 6 7 s s s s s s s p p p p p p d d d d d f f f f z zachowaniem zakazu Pauliego i reguły Hunda Wydział Chemii UJ Podstawy chemii -wykład 16/3 dr hab. W. Makowski Energia elektronów Degeneracja istnienie różnych stanów kwantowych o takiej samej energii np. w atomie H dla n = 4 orbitale (s, p -1, p 0 p 1 ) mają taką samą energię Dla atomów wieloelektronowych obserwuje się zmniejszenie degeneracji poziomów elektronowych - energia elektronów zależy od liczb kwantowych n i l Wydział Chemii UJ Podstawy chemii -wykład 16/4 dr hab. W. Makowski
Zakaz Pauliego Zakaz Pauliego i reguła Hunda W atomie nie mogą występować elektrony, które nie różnią się przynajmniej jedną liczbą kwantową. albo Dowolny orbital może być obsadzony przez najwyżej dwa elektrony. Reguła Hunda Orbitale zdegenerowane przyporządkowywane są kolejnym elektronom w taki sposób, by liczba elektronów niesparowanych w stanie podstawowym była możliwie największa. albo Jeżeli w podpowłoce dostępnych jest kilka orbitali, elektrony najpierw obsadzają niezajęte orbitale, zanim w jednym z orbitali utworzą parę. Wydział Chemii UJ Podstawy chemii -wykład 16/5 dr hab. W. Makowski Konfiguracja elektronowa Okres 1 Okres Okres 3 s s s p p Wydział Chemii UJ Podstawy chemii -wykład 16/6 dr hab. W. Makowski 3
Konfiguracja elektronowa Okres 4 s d d p Wydział Chemii UJ Podstawy chemii -wykład 16/7 dr hab. W. Makowski Bloki s, p, d i f w układzie okresowym Wydział Chemii UJ Podstawy chemii -wykład 16/8 dr hab. W. Makowski 4
Odstępstwa od kolejności zapełniania orbitali atomowych " [ 18 Ar]3d 5 4s 1 " * [ 36 Kr]4d 5 5s 1 [ 18 Ar]3d 10 4s 1 " ) [ 36 Kr]4d 10 5s 1 [ 18 Ar]3d 6 4s [ 18 Ar]3d 7 4s [ 18 Ar]3d 8 4s! "" # [ 36 Kr]4d 7 5s 1 [ 36 Kr]4d 8 5s 1 [ 36 Kr]4d 10 " # " & [ 54 Xe]4f 14 5d 6 6s ' [ 54 Xe]4f 14 5d 7 6s [ 54 Xe]4f 14 5d 9 6s 1 Wydział Chemii UJ Podstawy chemii -wykład 16/9 dr hab. W. Makowski Konfiguracja kationów metali przejściowych - atomy z bloku d najpierw tracą elektrony walencyjne z orbitali s +* [Ar]3d 5 4s +* [Ar]3d 5 + [Ar]3d 6 4s + [Ar]3d 6 +. [Ar]3d 5 + [Ar]3d 7 4s + [Ar]3d 7 +. [Ar]3d 6 + [Ar]3d 10 4s 1 + [Ar]3d 10 + [Ar]3d 9 + [Ar]3d 10 4s + [Ar]3d 10 +) [Kr]4d 10 5s 1 +) [Kr]4d 10 Wydział Chemii UJ Podstawy chemii -wykład 16/10 dr hab. W. Makowski 5
Ekranowanie jądra elektrony znajdujące się na wyższych powłokach nie wpływają na oddziaływanie z jądrem elektrony znajdujące się na niższych powłokach zmniejszają przyciąganie przez jądro Wydział Chemii UJ Podstawy chemii -wykład 16/11 dr hab. W. Makowski Postulaty Slatera 1. Zachowujemy orbitale wodoropodobne. Uwzględniamy ekranowanie elektronów zewnętrznych przez wewnętrzne 3. Wprowadzamy efektywną liczbę atomową Z*, czyli efektywny ładunek jądra 4. Zachowujemy wzór na energię elektronu E= Z * * ( Z ) me e 8h ε n = Z S o 4 S - stała ekranowania obliczona na podstawie reguł Slatera Wydział Chemii UJ Podstawy chemii -wykład 16/1 dr hab. W. Makowski 6
Efektywna liczba atomowa Wartości Z eff (czyli Z * ) dla pierwiastków lekkich Wydział Chemii UJ Podstawy chemii -wykład 16/13 dr hab. W. Makowski Obliczanie stałej ekranowania Wprowadzamy ugrupowania orbitali (1s) (s p) (3s 3p) (3d) (4s 4p) (4d) (4f) (5s 5p) (5d) (5f) itd Wprowadzamy udziały elektronów w stałej ekranowania dla (nsnp) 0 elektrony z prawej strony 0,35 z tego samego ugrupowania wyjątek 1s udział = 0,3 dla (nd) lub (nf) znika ostatnie rozróżnienie - dla wszystkich wcześniejszych elektronów udział = 1,0 0,85 z ugrupowania (n-1) 1,0 z ugrupowania (n-), (n-3), itd. Wydział Chemii UJ Podstawy chemii -wykład 16/14 dr hab. W. Makowski 7
Reguły Slatera przykład 1 Porównanie energii elektronów 3d i 4s w atomie Cu [ 9 Cu]: (1s) (sp) 8 (3s3p) 8 (3d) 10 (4s) 1 dla elektronu 4s S = 10 x 0,85 + 18 x 1,0 = 6,5 Z* = 9 6,5 =,5 dla elektronu 3d S = 9 x 0,35 + 8 x 1,0 + 8 x 1,0 + x 1,0 = 1,15 Z* = 9 1,15 = 7,85 niższa energia! Wydział Chemii UJ Podstawy chemii -wykład 16/15 dr hab. W. Makowski Reguły Slatera przykład Uzasadnienie konfiguracji elektronowej atomu K [ 19 K]: (1s) (sp) 8 (3s3p) 8 3d 1 (1s) (sp) 8 (3s3p) 8 4s 1 hipotetyczna rzeczywista dla elektronu 3d s = 18 x 1,0 = 18 Z* = 19 18 = 1 dla elektronu 4s s = 8 x 0,85 + 10 x 1,0 = 16,8 Z* = 19 16,8 =, niższa energia! Wydział Chemii UJ Podstawy chemii -wykład 16/16 dr hab. W. Makowski 8