1. 1. W p r owadze n ie 1 Rozdział 1 PODSTAWOWE POJĘCIA I DEFINICJE 1.1. WPROWADZENIE SYGNAŁ nośnik informacji ANALIZA SYGNAŁU badanie, którego celem jest identyfikacja własności, cech, miar sygnału; odtwarzanie informacji niesionej przez sygnał PRZETWARZANIE SYGNAŁU zmiana własności, formy, cech, miar sygnału celem jego łatwiejszej analizy, rejestracji, przechowywania itd. Metody używane w analizie sygnałów: badanie miar statystycznych (momentów) analiza rozkładu (gęstości) prawdopodobieństwa analiza korelacyjna analiza widmowa (spektralna, fourierowska albo częstotliwościowa) analiza falkowa (wavelet analysis) Rodzaje metod analizy: analogowe (dla sygnałów ciągłych) cyfrowe (dla sygnałów dyskretnych)
1. 1. W p r owadze n ie 2 Przykłady sygnałów: uwaga kierunkowskaz samochodowy sygnał 2-stanowy ( miga albo nie miga ) bardzo łatwy do analizy ocena studenta kilka możliwych wartości łatwy do analizy przebieg czasowy amplitudy drgań łożyska silnikowego sygnał wielopoziomowy nieskończona (lub bardzo duża) liczba możliwych wartości sygnał o złożonym charakterze, zmienny w czasie w sposób losowy nie przewidywalny wymagane zaawansowane metody analizy prosty sygnał (uboga informacja) prosta metoda złożony sygnał (bogata informacja) zaawansowana metoda
1. 2. P r oc e s S t oc h as t y c zn y 3 1.2. PROCES STOCHASTYCZNY Proces stochastyczny PS zbiór N losowych zmiennych Q i (realizacji procesu) zależnych od nielosowego parametru t, odpowiadających elementarnym zdarzeniom ω i należącym do zbioru Ω { ω, ω,... ω } Ω = (1.1) 1 2, każdemu zdarzeniu elementarnemu ω i może być przyporządkowane kilka realizacji ω Q i ω R i i i = = M N f ( t ) Q ( t ) f ( t ) R ( t ) i i (1.2) ( P.S.) ( P.S.) Q R = = { Q1( t ),Q2 ( t ),...,Q N ( t )} { R ( t ),R ( t ),...,R ( t )} 1 M 2 N (1.3) parametr t przeważnie czas, lecz może to być również inny parametr np. współrzędna
1. 2. P r oc e s S t oc h as t y c zn y 4 Q 3 Q 2 i Q Q 1 t 3 t 1 t 2 t przekrój procesu stochastycznego zbiór wartości zmiennych Q i odpowiadających ustalonej wartości parametru t (np. pewnej chwili czasu) { Q ( t ),Q ( t ),...,Q ( t )} t1 Q i( t1 ) = 1 1 2 2 N 1 { Q ( t ), Q ( t ),...,Q ( t )} t2 Q i( t2 ) = 1 2 2 2 N 2..
1. 3. S t ac j on ar n oś ć i E r g ody c zn oś ć 5 1.3. STACJONARNOŚĆ I ERGODYCZNOŚĆ STACJONARNOŚĆ a) niezależność miar statystycznych realizacji PS od przedziału zmienności parametru t Q 3 t ( t1;t2 ) = Qt ( t2 ;t ) =... M (1.4) b) niezależność miar statystycznych od przekroju PS Q 2 z ( t1 ) = Q z( t ) =... M (1.5) ustalona (stacjonarna) wariancja zmienna (niestacjonarna) średnia Q (t) 1 t 1 t 2 t 3 t
1. 3. S t ac j on ar n oś ć i E r g ody c zn oś ć 6 stała (stacjonarna) średnia narastająca (niestacjonarna) wariancja ERGODYCZNOŚĆ stacjonarność uśrednianie w zbiorze równoważne uśrednianiu w funkcji parametru t Q t = Q z M (1.6) proces stochastyczny jest ergodyczny
7 1.4. KLASYFIKACJA SYGNAŁÓW sygnał deterministyczny mieszany stochastyczny (losowy) deterministyczny przewidywalny stochastyczny nieprzewidywalny mieszany sygnał złożony z conajmniej dwóch sygnałów składowych, z których jeden jest sygnałem deterministycznym a drugi losowym
8 Jak rozpoznać sygnał deterministyczny??? sygnał deterministyczny okresowy nieokresowy sinusoidalny (harmoniczny) nieustalony poliharmoniczny quasi-okresowy sygnał okresowy x(t) = x(t + T) =... = x(t + kt) (1.7) T okres sygnału k liczba całkowita
9 sygnał sinusoidalny x(t) = A0 + A sin(2π ft + ϕ) ( 1. 8) A 0 wartość średnia A amplituda sygnału f częstotliwość (f = 1/T) ϕ przesunięcie fazowe (kąt fazowy) sygnał poliharmoniczny N 0 n = 1 x(t) = A + An sin(2π nft + ϕn ) ( 1. 9) f częstotliwość podstawowa T = 1/f A n sin(2πntf + ϕ n ) n-ta harmoniczna sygnał nieokresowy x(t) x(t+k*t) okres sygnału dąży do nieskończoności sygnał quasi-okresowy N 0 n = 1 x(t) = A + An sin(2π fnt + ϕn ) ( 1. 10) f i /f k jest niewymierny dla conajmniej jednej pary składowych sygnału (harmonicznych) i, k <1; N> np.: x t) = A sin(3t + ϕ ) + A sin( 5t + ) ( 1 1 2 ϕ2
10 sygnał nieustalony x( t) = cos(6t) exp( t) "drgania tłumione" x( t) = exp( t 2 ) krzywa Gaussa
11 kryterium: stacjonarność sygnał stochastyczny stacjonarny niestacjonarny ze względu na: x σ...... x σ...... kryterium: ergodyczność sygnał stacjonarny ergodyczny kryterium: czas trwania sygnału sygnał nieergodyczny (trudny do analizy) skończony nieskończony faktycznie: T praktycznie: T <
12 kryterium: energia sygnału energia sygnału skończona nieskończona (skończona moc) energia jaka jest jednostka energii sygnału [P] =? energia skończona: 2 P = x ( t) dt (1.11) sygnały o skończonym czasie trwania niektóre sygnały niestacjonarne o nieskończonym (praktycznie skończonym) czasie trwania
13 energia nieskończona: sygnały stacjonarne o nieskończonym czasie trwania sygnały nieustalone moc N = T t + T jaka jest jednostka mocy sygnału [N] =? * 1 2 lim x ( t) dt (1.12) T t * moc jest zawsze skończona N <!!! moc mogłaby być nieskończona tylko wtedy gdyby amplituda sygnału dążyła do nieskończoności x(t) N co jest niemożliwe w przypadku rzeczywistych procesów fizycznych
14 kryterium: ciągłość dziedziny czasu (lub innej zmiennej niezależnej np. współrzędnej) - sygnał ciągły (nieskończona liczba chwil) t < t b ; t e > - sygnał dyskretny (skończona liczba chwil) t i {t 0, t 1,..., t N } kryterium: ciągłość dziedziny amplitudy - sygnał analogowy (nieskończona liczba możliwych poziomów) x < x l ; x u > - sygnał cyfrowy (skończona liczba możliwych poziomów) x i {x 0, x 1,..., x N } SYGNAŁ ciągły analogowy mieszany ciągły cyfrowy dyskretny analogowy dyskretny cyfrowy