Sylabus do programu kształcenia obowiązującego od roku akademickiego 2012/13



Podobne dokumenty
Sylabus do programu kształcenia obowiązującego od roku akademickiego 2014/15

SYLABUS DOTYCZY CYKLU KSZTAŁCENIA (skrajne daty)

Sylabus do programu kształcenia obowiązującego od roku akademickiego 2012/13

Opis efektów kształcenia dla modułu zajęć

PRZEWODNIK PO PRZEDMIOCIE

Opis przedmiotu: Matematyka II

Matematyki i Nauk Informacyjnych, Zakład Procesów Stochastycznych i Matematyki Finansowej B. Ogólna charakterystyka przedmiotu

Opis przedmiotu. Karta przedmiotu - Matematyka II Katalog ECTS Politechniki Warszawskiej

Matematyka II nazwa przedmiotu SYLABUS A. Informacje ogólne

Matematyka Mathematics. Inżynieria bezpieczeństwa I stopień (I stopień / II stopień) ogólnoakademicki (ogólnoakademicki / praktyczny)

Sylabus do programu kształcenia obowiązującego od roku akademickiego 2014/15

Z-LOG-530I Analiza matematyczna II Calculus II

OPIS MODUŁ KSZTAŁCENIA (SYLABUS)

SYLABUS DOTYCZY CYKLU KSZTAŁCENIA 2016/ /20 (skrajne daty)

WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCH KOMPETENCJI 1. Zalecana znajomość matematyki odpowiadająca maturze na poziomie podstawowym

KARTA PRZEDMIOTU. 1. NAZWA PRZEDMIOTU: Analiza matematyczna III (ANA023) 2. KIERUNEK: MATEMATYKA. 3. POZIOM STUDIÓW: I stopnia

2. Opis zajęć dydaktycznych i pracy studenta

KARTA MODUŁU KSZTAŁCENIA

Matematyka Mathematics. Transport I stopień (I stopień / II stopień) Ogólnoakademicki (ogólno akademicki / praktyczny)

WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCH KOMPETENCJI 1. Zalecana znajomość matematyki odpowiadająca maturze na poziomie podstawowym

Opis efektów kształcenia dla modułu zajęć

WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCH KOMPETENCJI 1. Zalecana znajomość matematyki odpowiadająca maturze na poziomie podstawowym

WYDZIAŁ ***** KARTA PRZEDMIOTU

Poziom przedmiotu: II stopnia. Liczba godzin/tydzień: 3W E, 3C PRZEWODNIK PO PRZEDMIOCIE

WYDZIAŁ MATEMATYKI WYDZIAŁ BUDOWNICTWA LĄDOWEGO I WODNEGO KARTA PRZEDMIOTU

Opis efektów kształcenia dla modułu zajęć

AiRZ-0531 Analiza matematyczna Mathematical analysis

KARTA MODUŁU KSZTAŁCENIA

Wykład Ćwiczenia Laboratorium Projekt Seminarium Liczba godzin zajęć zorganizowanych w Uczelni 45 45

Z-ZIP-0530 Analiza Matematyczna II Calculus II

AiRZ-0531 Analiza matematyczna Mathematical analysis

Opis efektów kształcenia dla modułu zajęć

Matematyka. Wzornictwo Przemysłowe I stopień ogólno akademicki studia stacjonarne wszystkie specjalności Katedra Matematyki dr Monika Skóra

Opis efektów kształcenia dla modułu zajęć

Analiza matematyczna

Analiza matematyczna. Mechanika i Budowa Maszyn I stopień ogólnoakademicki studia stacjonarne wszystkie Katedra Matematyki dr Beata Maciejewska

Analiza matematyczna Mathematical analysis. Transport I stopień (I stopień / II stopień) Ogólnoakademicki (ogólno akademicki / praktyczny)

PRZEWODNIK PO PRZEDMIOCIE

ANALIZA SYLABUS. A. Informacje ogólne

Analiza matematyczna. Wzornictwo Przemysłowe I stopień Ogólnoakademicki studia stacjonarne wszystkie specjalności Katedra Matematyki dr Monika Skóra

Z-ID-102 Analiza matematyczna I

OPIS MODUŁ KSZTAŁCENIA (SYLABUS)

GEODEZJA I KARTOGRAFIA I stopień (I stopień / II stopień) Ogólnoakademicki (ogólnoakademicki / praktyczny)

Sylabus - Matematyka

Sylabus do programu kształcenia obowiązującego od roku akademickiego 2014/15

Inżynieria Środowiska I stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny)

Z-ID-202 Analiza matematyczna II Calculus II

Analiza matematyczna Mathematical analysis. Transport I stopień (I stopień / II stopień) Ogólnoakademicki (ogólno akademicki / praktyczny)

AiRZ-0008 Matematyka Mathematics

Wykład Ćwiczenia Laboratorium Projekt Seminarium 15

Z-ETI-1002-W1 Analiza Matematyczna I Calculus I. stacjonarne (stacjonarne / niestacjonarne) Katedra Matematyki dr Marcin Stępień

20 zorganizowanych w Uczelni (ZZU) Liczba godzin całkowitego 150 nakładu pracy studenta (CNPS)

KARTA MODUŁU KSZTAŁCENIA

Sylabus do programu kształcenia obowiązującego od roku akademickiego 2014/15

Geodezja i Kartografia I stopień (I stopień / II stopień) Ogólnoakademicki (ogólnoakademicki / praktyczny) Stacjonarne (stacjonarne / niestacjonarne)

Z-LOG Calculus II

KARTA PRZEDMIOTU. 1. NAZWA PRZEDMIOTU: Analiza zespolona. 2. KIERUNEK: Matematyka. 3. POZIOM STUDIÓW: I stopnia 4. ROK/ SEMESTR STUDIÓW: II/4

KARTA PRZEDMIOTU CELE PRZEDMIOTU

PRZEWODNIK PO PRZEDMIOCIE

Matematyka I i II - opis przedmiotu

Data wydruku: Dla rocznika: 2015/2016. Opis przedmiotu

WYDZIAŁ MECHANICZNO-ENERGETYCZNY KARTA PRZEDMIOTU

Podstawowy (podstawowy / kierunkowy / inny HES) Obowiązkowy (obowiązkowy / nieobowiązkowy) Semestr 2. Semestr letni (semestr zimowy / letni)

Wykład Ćwiczenia Laboratorium Projekt Seminarium Liczba godzin zajęć zorganizowanych w Uczelni 30 30

GEODEZJA I KARTOGRAFIA I stopień (I stopień / II stopień) Ogólnoakademicki (ogólnoakademicki / praktyczny)

Zał. nr 4 do ZW 33/2012 WYDZIAŁ MATEMATYKI WYDZIAŁ BUDOWNICTWA LĄDOWEGO I WODNEGO KARTA PRZEDMIOTU

KARTA PRZEDMIOTU. 10. WYMAGANIA WSTĘPNE: wiadomości i umiejętności z zakresu matematyki z semestru 1

PRZEWODNIK PO PRZEDMIOCIE

Odnawialne Źródła Energii I stopień (I stopień / II stopień) ogólnoakademicki (ogólnoakademicki / praktyczny) Dr Jadwiga Dudkiewicz

Rok akademicki: 2015/2016 Kod: RBM s Punkty ECTS: 9. Poziom studiów: Studia I stopnia Forma i tryb studiów: Stacjonarne

SYLABUS DOTYCZY CYKLU KSZTAŁCENIA realizacja w roku akademickim 2016/2017

Z-LOG-530I Analiza matematyczna II Mathematical Analysis II

MATEMATYKA SYLABUS. A. Informacje ogólne

PRZEWODNIK PO PRZEDMIOCIE

Wykład Ćwiczenia Laboratorium Projekt Seminarium 45 30

Z-LOG-476I Analiza matematyczna I Calculus I. Przedmiot podstawowy Obowiązkowy polski Semestr I

KARTA PRZEDMIOTU. 12. PRZEDMIOTOWE EFEKTY KSZTAŁCENIA Odniesienie do kierunkowych efektów kształcenia (symbol)

KARTA PRZEDMIOTU. Informacje ogólne WYDZIAŁ MATEMATYCZNO-PRZYRODNICZY. SZKOŁA NAUK ŚCISŁYCH UNIWERSYTET KARDYNAŁA STEFANA WYSZYŃSKIEGO W WARSZAWIE

Zastosowania matematyki w analityce medycznej

KARTA PRZEDMIOTU. 12. PRZEDMIOTOWE EFEKTY KSZTAŁCENIA Odniesienie do kierunkowych efektów kształcenia (symbol)

Z-LOGN1-014 Analiza matematyczna II Mathematical Analysis II. Przedmiot podstawowy Obowiązkowy polski Semestr II

Wykład Ćwiczenia Laboratorium Projekt Seminarium Liczba godzin zajęć

SYLABUS/KARTA PRZEDMIOTU

Rok akademicki: 2013/2014 Kod: EIB s Punkty ECTS: 6. Poziom studiów: Studia I stopnia Forma i tryb studiów: Stacjonarne

Inżynieria Środowiska I stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny)

Z-0476z Analiza matematyczna I

WYDZIAŁ MECHANICZNY KARTA PRZEDMIOTU

SYLABUS. 4.Studia Kierunek studiów/specjalność Poziom kształcenia Forma studiów Ekonomia Studia pierwszego stopnia Studia stacjonarne i niestacjonarne

Wykład Ćwiczenia Laboratorium Projekt Seminarium 45 30

Sylabus do programu kształcenia obowiązującego od roku akademickiego 2014/15

Matematyki i Nauk Informacyjnych, Zakład Procesów Stochastycznych i Matematyki Finansowej B. Ogólna charakterystyka przedmiotu

Spis treści. Rozdział I. Wstęp do matematyki Rozdział II. Ciągi i szeregi... 44

Matematyka I nazwa przedmiotu SYLABUS A. Informacje ogólne

PRZEWODNIK PO PRZEDMIOCIE

SYLABUS. Studia Kierunek studiów Poziom kształcenia Forma studiów. stopnia

Imię, nazwisko i tytuł/stopień KOORDYNATORA (-ÓW) kursu/przedmiotu zatwierdzającego protokoły w systemie USOS Mirosław Szejbak, dr

Odnawialne Źródła Energii I stopień (I stopień / II stopień) ogólnoakademicki (ogólnoakademicki / praktyczny) Prof. dr hab. inż. Jerzy Zb.

KARTA PRZEDMIOTU. 12. PRZEDMIOTOWE EFEKTY KSZTAŁCENIA Odniesienie do kierunkowych efektów kształcenia (symbol)

Kierunek i poziom studiów: Matematyka, studia I stopnia (licencjackie), rok I

Transkrypt:

Sylabus do programu kształcenia obowiązującego od roku akademickiego 2012/13 (1) Nazwa Rachunek różniczkowy i całkowy II (2) Nazwa jednostki prowadzącej Instytut Matematyki przedmiot (3) Kod (4) Studia Kierunek studiów Poziom kształcenia Forma studiów Matematyka Studia pierwszego stopnia studia stacjonarne (5) Rodzaj podstawowy (6) Rok i semestr studiów II rok, III i IV semestr (7) Imię i nazwisko koordynatora dr hab. Mirosława Zima () Imię i nazwisko osoby prowadzącej (osób prowadzących) zajęcia z dr hab. Mirosława Zima, dr hab. Jacek Chudziak, dr Jacek Dziok, dr Swietłana Minczewa-Kamińska, mgr Aneta Dadej, mgr Katarzyna Halik (9) Cele zajęć z 1. Przyswojenie przez studentów podstawowych pojęć, faktów i metod z zakresu rachunku różniczkowego i całkowego 2. Kształcenie umiejętności w zakresie rozumowań matematycznych rozwiązywania zadań i problemów korzystania z różnych opracowań matematycznych. 3. Wskazywanie na możliwości zastosowań poznanego materiału do opisów modeli matematycznych. (10) Wymagania wstępne Zaliczony przedmiot rachunek różniczkowy i całkowy I (11) Efekty kształcenia Wiedza: definiuje większość klasycznych pojęć i formułuje podstawowe twierdzenia z zakresu rachunku różniczkowego i całkowego posiada wiedzę dotyczącą metod dowodowych stosowanych w rachunku różniczkowym i całkowym posiada wiedzę dotyczącą technik obliczeniowych stosowanych w rachunku różniczkowym i całkowym Umiejętności: potrafi w sposób zrozumiały, w mowie i na piśmie, poprawne formułować definicje i twierdzenia z zakresu rachunku różniczkowego i całkowego umie dowodzić wybrane twierdzenia z zakresu rachunku różniczkowego i całkowego i ilustrować je przykładami stosuje twierdzenia i metody rachunku różniczkowego funkcji wielu zmiennych w zagadnieniach optymalizacyjnych posługuje się rachunkiem całkowym funkcji wielu zmiennych w zastosowaniach geometrycznych i fizycznych 1

umie rozwiązywać podstawowe typy równań różniczkowych i ich układów Kompetencje społeczne: zna ograniczenia własnej wiedzy i rozumie potrzebę dalszego kształcenia, potrafi formułować opinie na temat podstawowych zagadnień z zakresu rachunku różniczkowego i całkowego, znajduje zastosowania rachunku różniczkowego i całkowego w życiu codziennym i różnych dziedzinach wiedzy samodzielnie wyszukuje informacje w literaturze i właściwie je stosuje, znajduje swoje miejsce grupie. (12) Forma(y) zajęć, liczba realizowanych godzin Wykład - 60 godzin, Ćwiczenia audytoryjne 60 godzin A. Problematyka wykładu Treści merytoryczne (13) Treści programowe 1. Funkcje wielu zmiennych. Granica i ciągłość funkcji wielu zmiennych. Pochodne kierunkowe i cząstkowe funkcji wielu zmiennych. Pochodna i różniczkowalność funkcji wielu zmiennych. Pochodne cząstkowe wyższych rzędów. Ekstrema lokalne i warunkowe funkcji wielu zmiennych. Wyznaczanie wartości najmniejszej i największej w zbiorze zwartym. Odwzorowania. Pochodna złożenia odwzorowań. Pochodna skalarna. Twierdzenie o funkcji odwrotnej. Liczba godzin 20 2. Funkcje uwikłane. Pojęcie funkcji uwikłanej. Twierdzenie o funkcji uwikłanej. Ekstrema lokalne i globalne funkcji uwikłanych jednej i wielu zmiennych. Prosta styczna i płaszczyzna styczna do wykresu funkcji uwikłanych jednej i dwóch zmiennych. 3. Całki wielokrotne. Definicje i podstawowe własności całek wielokrotnych. Interpretacja geometryczna i fizyczna. Zamiana całki wielokrotnej na całki iterowane. Twierdzenie o zamianie zmiennych. Zastosowania całek wielokrotnych. 4. Całki krzywoliniowe i powierzchniowe. Definicje. Podstawowe własności. Twierdzenia o zamianie całki krzywoliniowej na całkę oznaczoną i całki powierzchniowej na całkę podwójną. Związek pomiędzy całką zorientowanąj i niezorientowaną.niezależność całki krzywoliniowej od drogi całkowania. Twierdzenie Greena, Twierdzenie Ostrogradskiego-Gaussa, Twierdzenie Stokesa.. Zastosowania całek krzywoliniowych i powierzchniowych. 5. Równania różniczkowe. Pojęcie równania różniczkowego oraz jego rozwiązania, interpretacja geometryczna. Zagadnienie Cauchy ego. Istnienie i jednoznaczność rozwiązań równania różniczkowego. Przykłady równań całkowalnych. Układy równań różniczkowych. 10 14 2

Omówienie podstaw równań różniczkowych cząstkowych. Podstawowe algorytmy numeryczne dla zadań rachunku różniczkowego i całkowego. Suma godzin 60 B. Problematyka ćwiczeń konwersatoryjnych Treści merytoryczne 1. Funkcje wielu zmiennych. Obliczanie granic i sprawdzanie ciągłości funkcji wielu zmiennych. Obliczanie pochodnych kierunkowych i cząstkowych funkcji wielu zmiennych z definicji i z wykorzystaniem własności. Sprawdzanie z definicji różniczkowalności funkcji wielu zmiennych. Obliczanie pochodnych cząstkowych wyższych rzędów. Wyznaczanie ekstremów lokalnych i warunkowych funkcji wielu zmiennych. Wyznaczanie wartości najmniejszej i największej funkcji wielu zmiennych w zbiorze zwartym. Obliczanie przybliżonej wartości funkcji wielu zmiennych przy pomocy różniczki. Wyznaczanie równania płaszczyzny stycznej do wykresu funkcji dwóch zmiennych. Obliczanie pochodnych złożenia odwzorowań. 2. Funkcje uwikłane. Wyznaczanie ekstremów lokalnych i globalnych funkcji uwikłanych jednej i wielu zmiennych. Obliczanie przybliżonej wartości funkcji uwikłanych przy pomocy różniczki. Wyznaczanie równania prostej stycznej lub płaszczyzny stycznej do wykresu funkcji uwikłanej jednej lub dwóch zmiennych. 3. Całki wielokrotne. Obliczanie całek wielokrotnych. Zamiana całki wielokrotnej na całki iterowane. Wykorzystanie twierdzenie o zamianie zmiennych. Obliczanie miary Jordana zbiorów wielowymiarowych. Obliczanie pola powierzchni. Obliczanie masy, momentu bezwładności, momentu statycznego zbiorów materialnych wielowymiarowych. 4. Całki krzywoliniowe i powierzchniowe. Obliczanie całek krzywoliniowych i powierzchniowych poprzez zamianę na całkę oznaczoną lub podwójną. Rozwiązywanie zadań z zastosowań całek krzywoliniowych. Liczba godzin 20 10 16 6 5. Równania różniczkowe. Rozwiązywanie równań różniczkowych o zmiennych rozdzielonych. Rozwiązywanie równań różniczkowych liniowych z wykorzystaniem czynnika całkującego. Obniżanie rzędu równań różniczkowych. Rozwiązywanie równań różniczkowych liniowych wyższych rzędów. Rozwiązywanie układów równań różniczkowych. Rozwiązywanie prostych równań różniczkowych cząstkowych. Wykorzystanie algorytmów numerycznych dla zadań rachunku różniczkowego i całkowego. Suma godzin 60 (14) Metody dydaktyczne Wykład, rozwiązywanie zadań 3

(15) Sposób(y) i forma(y) zaliczenia Zaliczenie ćwiczeń: W trakcie semestru studenci będą pisać przynajmniej dwa kolokwia. Zaliczenie uzyskuje student, który uczęszcza na zajęcia i otrzyma przynajmniej połowę punktów (pozytywnych ocen) z pisanych kolokwiów. Ocena z zaliczenia jest wówczas średnią arytmetyczną ocen z kolokwiów zaokrągloną do najbliższej z ocen 3.0; 3.5; 4.0; 4.5; 5.0. Ocena ta może być zmieniona przez prowadzącego ćwiczenia w zakresie jednego stopnia w zależności od aktywności studenta na ćwiczeniach w trakcie semestru. Studentowi, który nie spełni tych wymogów przysługuje zaliczenie poprawkowe z całego semestru. W przypadku uzyskania oceny niedostatecznej student ma prawo ubiegać się o zaliczenie komisyjne zgodnie z regulaminem studiów. Egzamin: Po każdym semestrze wykład kończy się zaliczeniem (bez oceny). Po drugim semestrze jest egzamin pisemny. Warunkiem dopuszczenia do egzaminu jest zaliczenie wykładu i ćwiczeń. Studentowi, który nie zda egzaminu w pierwszym terminie przysługuje zdawanie egzaminu poprawkowego w sesji poprawkowej. Obydwie oceny z egzaminów wpisywane są do indeksu. (16) Metody i kryteria oceny (17) Całkowity nakład pracy studenta potrzebny do osiągnięcia założonych efektów w godzinach oraz punktach ECTS (1) Język wykładowy polski III semestr wykład 30 ćwiczenia 30 udział w konsultacjach 6 przygotowanie do kolokwiów 15 przygotowanie do ćwiczeń 45 przygotowanie do zaliczenia 10 wykładu Zaliczenie wykładu 1 SUMA GODZIN 137 LICZBA PUNKTÓW ECTS 6 IV semestr wykład 60 ćwiczenia 60 udział w konsultacjach 6 przygotowanie do kolokwiów 15 przygotowanie do ćwiczeń 45 przygotowanie do egzaminu 20 udział w egzaminie 4 SUMA GODZIN 150 LICZBA PUNKTÓW ECTS 6 4

(19) Praktyki zawodowe w ramach nie dotyczy 5