NAFTA-GAZ. maj 2009 ROK LXV (1) V V

Podobne dokumenty
Zadanie Cyfryzacja grida i analiza geometrii stropu pułapki w kontekście geologicznym

WYKORZYSTANIE ATRYBUTÓW SEJSMICZNYCH DO BADANIA PŁYTKICH ZŁÓŻ

Zadanie 3. Dla poziomego reflektora rozmiary binu determinowane są przez promień strefy Fresnela. Promień strefy Fresnela dany jest wzorem:

Ruch jednostajnie przyspieszony wyznaczenie przyspieszenia

Izotropowa migracja głębokościowa w ośrodku anizotropowym

Zadanie 2. Wstęp teoretyczny. a) Równania Zoeppritza. sin(θ 1 V P1 V S2 V P2 V S1

Anizotropia ośrodka geologicznego oraz jej wpływ na zarejestrowane dane sejsmiczne

Do obliczeń można wykorzystywać rozmaite algorytmy wykorzystujące najprostszych należą przedstawione niżej:

Funkcja liniowa - podsumowanie

CPT-CAD - Program do tworzenia dokumentacji geologicznej i geotechnicznej

CHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWE

LABORATORIUM POMIARY W AKUSTYCE. ĆWICZENIE NR 4 Pomiar współczynników pochłaniania i odbicia dźwięku oraz impedancji akustycznej metodą fali stojącej

WSKAŹNIKI GAZONOŚNOŚCI OKREŚLANE NA PODSTAWIE DANYCH GEOFIZYKI OTWOROWEJ I MODELOWAŃ TEORETYCZNYCH

Automatyczna klasyfikacja zespołów QRS

Zastosowanie metody MASW do wyznaczania profilu prędkościowego warstw przypowierzchniowych

BAZA DANYCH ORAZ SZCZEGÓŁOWY 3D MODEL GEOLOGICZNY DLA PODZIEMNEJ SEKWESTRACJI CO 2 REJONU BEŁCHATOWA NA PRZYKŁADZIE STRUKTURY BUDZISZEWIC - ZAOSIA

Wyznaczanie prędkości dźwięku w powietrzu

Y t=0. x(t)=v t. R(t) y(t)=d. Przelatujący supersamolot. R(t ) = D 2 + V 2 t 2. T = t + Δt = t + R(t) = t + D2 + V 2 t 2 T = R2 D 2 V. + R V d.

- Strumień mocy, który wpływa do obszaru ograniczonego powierzchnią A ( z minusem wpływa z plusem wypływa)

Ćwiczenia nr 7. TEMATYKA: Krzywe Bézier a

PODSTAWY MECHANIKI KWANTOWEJ

System transakcyjny oparty na średnich ruchomych. ś h = gdzie, C cena danego okresu, n liczba okresów uwzględnianych przy kalkulacji.

Regresja wieloraka Ogólny problem obliczeniowy: dopasowanie linii prostej do zbioru punktów. Najprostszy przypadek - jedna zmienna zależna i jedna

Sposoby opisu i modelowania zakłóceń kanałowych

Pochodna i różniczka funkcji oraz jej zastosowanie do rachunku błędów pomiarowych

Wojciech Janecki. Geosoft sp. z o.o. Wrocław

Rozdział 2. Krzywe stożkowe. 2.1 Elipsa. Krzywe stożkowe są zadane ogólnym równaniem kwadratowym na płaszczyźnie

Analiza zależności liniowych

Ćwiczenie z fizyki Doświadczalne wyznaczanie ogniskowej soczewki oraz współczynnika załamania światła

Sztuczna Inteligencja Tematy projektów Sieci Neuronowe

Szukanie rozwiązań funkcji uwikłanych (równań nieliniowych)

Następnie przypominamy (dla części studentów wprowadzamy) podstawowe pojęcia opisujące funkcje na poziomie rysunków i objaśnień.

Rozwiązanie zadania w podejściu optymalizacyjnym

CEL ĆWICZENIA: Celem ćwiczenia jest zapoznanie się z zastosowaniem diod i wzmacniacza operacyjnego

O 2 O 1. Temat: Wyznaczenie przyspieszenia ziemskiego za pomocą wahadła rewersyjnego

Definicje i przykłady

Jednowymiarowa mechanika kwantowa Rozpraszanie na potencjale Na początek rozważmy najprostszy przypadek: próg potencjału

F = e(v B) (2) F = evb (3)

Rozważmy nieustalony, adiabatyczny, jednowymiarowy ruch gazu nielepkiego i nieprzewodzącego ciepła. Mamy następujące równania rządzące tym ruchem:

5 Błąd średniokwadratowy i obciążenie

Oznacza to, że chcemy znaleźć minimum, a właściwie wartość najmniejszą funkcji

Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Elektroniki

14 Modulatory FM CELE ĆWICZEŃ PODSTAWY TEORETYCZNE Podstawy modulacji częstotliwości Dioda pojemnościowa (waraktor)

NAFTA-GAZ, ROK LXXIII, Nr 12 / 2017

ĆWICZENIE 3 REZONANS AKUSTYCZNY

Rozdział 8. Regresja. Definiowanie modelu

Obciążenia, warunki środowiskowe. Modele, pomiary. Tomasz Marcinkowski

Ocena niepewności rozwiązania w modelowaniu zmienności przestrzennej parametrów ośrodka za pomocą metody kosymulacji

Aproksymacja funkcji a regresja symboliczna

Wstępne wyniki badania właściwości tłumiących utworów fliszu karpackiego metodą refrakcji sejsmicznej

Układy VLSI Bramki 1.0

Instytut Politechniczny Państwowa Wyższa Szkoła Zawodowa. Diagnostyka i niezawodność robotów

Rys 1 Schemat modelu masa- sprężyna- tłumik

SPOSOBY POMIARU KĄTÓW W PROGRAMIE AutoCAD

Nazwisko i imię: Zespół: Data: Ćwiczenie nr 9: Swobodne spadanie

Przekształcenia sygnałów losowych w układach

PRÓBNY EGZAMIN MATURALNY

3. FUNKCJA LINIOWA. gdzie ; ół,.

Ćwiczenie nr 43: HALOTRON

POLITECHNIKA BIAŁOSTOCKA

w analizie wyników badań eksperymentalnych, w problemach modelowania zjawisk fizycznych, w analizie obserwacji statystycznych.

Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności. dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl

W. Guzicki Próbna matura, grudzień 2014 r. poziom rozszerzony 1

Analiza Danych Sprawozdanie regresja Marek Lewandowski Inf 59817

METODY CHEMOMETRYCZNE W IDENTYFIKACJI ŹRÓDEŁ POCHODZENIA

ANALIZA HARMONICZNA DŹWIĘKU SKŁADANIE DRGAŃ AKUSTYCZNYCH DUDNIENIA.

Katarzyna Jesionek Zastosowanie symulacji dynamiki cieczy oraz ośrodków sprężystych w symulatorach operacji chirurgicznych.

Analiza zmiany objętości węglowodorów gromadzonych w danej strukturze w czasie geologicznym z wykorzystaniem modelowania PetroCharge

BADANIE STATYCZNYCH WŁAŚCIWOŚCI PRZETWORNIKÓW POMIAROWYCH

Bełchatów w rejonie linii NS wzdłuż przekroju geologicznego 58 NS Wyznaczenie efektu. grawitacyjnego złoża

Analiza regresji - weryfikacja założeń

Spis treści. Wykaz ważniejszych oznaczeń. Przedmowa 15. Wprowadzenie Ruch falowy w ośrodku płynnym Pola akustyczne źródeł rzeczywistych

Definicja i własności wartości bezwzględnej.

W celu obliczenia charakterystyki częstotliwościowej zastosujemy wzór 1. charakterystyka amplitudowa 0,

Pochodna funkcji c.d.-wykład 5 ( ) Funkcja logistyczna

Pochodna i różniczka funkcji oraz jej zastosowanie do obliczania niepewności pomiarowych

Programowanie celowe #1

1 Płaska fala elektromagnetyczna

Ćwiczenie 2 Numeryczna symulacja swobodnego spadku ciała w ośrodku lepkim (Instrukcja obsługi interfejsu użytkownika)

Program do obliczania zapasu przepustowości sieci gazowej o dowolnej strukturze

Transformacja współrzędnych geodezyjnych mapy w programie GEOPLAN

CYFROWE PRZTWARZANIE SYGNAŁÓW (Zastosowanie transformacji Fouriera)

DYNAMIKA ŁUKU ZWARCIOWEGO PRZEMIESZCZAJĄCEGO SIĘ WZDŁUŻ SZYN ROZDZIELNIC WYSOKIEGO NAPIĘCIA

? 14. Dana jest funkcja. Naszkicuj jej wykres. Dla jakich argumentów funkcja przyjmuje wartości dodatnie? 15. Dana jest funkcja f x 2 a x

Optymalizacja wież stalowych

Informatyka I Lab 06, r.a. 2011/2012 prow. Sławomir Czarnecki. Zadania na laboratorium nr. 6

Spis treści. Przedmowa... XI. Rozdział 1. Pomiar: jednostki miar Rozdział 2. Pomiar: liczby i obliczenia liczbowe... 16

Geometria Struny Kosmicznej

Dopasowywanie modelu do danych

Geometria analityczna

Tranzystor bipolarny LABORATORIUM 5 i 6

Nasyp przyrost osiadania w czasie (konsolidacja)

ROZKŁAD MATERIAŁU DO II KLASY LICEUM (ZAKRES ROZSZERZONY) A WYMAGANIA PODSTAWY PROGRAMOWEJ.

Opis programu Konwersja MPF Spis treści

3. Składowe wektora indukcji (lub wektora natężenia) pola magnetycznego Ziemi

Zagadnienia: równanie soczewki, ogniskowa soczewki, powiększenie, geometryczna konstrukcja obrazu, działanie prostych przyrządów optycznych.

MATEMATYKA POZIOM PODSTAWOAWY Kryteria oceniania odpowiedzi. Arkusz A I. Strona 1 z 7

FUNKCJA LINIOWA - WYKRES

A6: Wzmacniacze operacyjne w układach nieliniowych (diody)

KLASYFIKACJI I BUDOWY STATKÓW MORSKICH

Transkrypt:

maj 009 ROK LX W niniejszej publikacji przedstawiono metodę wykorzystującą zależność zmienności amplitudy z offsetem, prowadzącą do obliczenia refleksyjności fali, refleksyjności fali i ostatecznie uzyskania sekcji współczynnika Fluid Factor. odjęto także próbę oszacowania prędkości propagacji fali poprzecznej, wykorzystując moduły AO dostępne w systemie romax. mith i Gidlow [9] przedstawili koncepcję weighted stacking, w której głównym założeniem jest przedstawienie różnic w odniesieniu do trendu tła (np. zawodnionego ośrodka). Atrybut, który szczególnie mocno reaguje na anomalie związane z zawartością węglowodorów, to Fluid Factor. Metoda ta bazuje na równaniu Zeoppritz a i jego aproksymacji trójczłonowym równaniu Aki-Richards a, które zostało uproszczone przez mith i Gidlow do równania dwuczłonowego dzięki zastosowaniu relacji Gardnera ( p ~ ρ). Następnie, dla sprecyzowanego współczynnika p / s oraz dla wybranego celu geologicznego widocznego na danych kolekcjach CM lub CR, wykonywane są obliczenia prowadzące do otrzymania sekcji atrybutu refleksyjności fali i fali. Zaproponowana metoda w efekcie końcowym pozwala na uzyskanie sekcji atrybutu Fluid Factor. Technologię tę zastosowano zarówno do danych modelowych, jak i rzeczywistych danych sejsmicznych. Dane modelowe przygotowano (mgr inż. K. Żuławiński) w systemie Norsar, a następnie wykonano sekwencje procedur przetwarzania, przygotowującą dane do analiz AO w systemie romax. Finalnie, wykorzystując wyniki modułów AO, wykonano obliczenia przy użyciu programów autorskich (dr A. ółchłopek), w celu uzyskania sekcji prędkości fali. Analiza amplitudy zmiennej z offsetem, stosowana już prawie powszechnie w polskim przemyśle, niestety często ogranicza się do zaprezentowania podstawowych atrybutów AO, na przykład sekcji: intercept, gradient lub produkt. Możliwości wykorzystania tej metody jest o wiele więcej, jednak do ich przedstawienia brakuje często doświadczenia, wiedzy lub wystarczającej ilości różnorodnych danych; między innymi pomiarów geofizyki otworowej (na przykład sondą akustyczną rejestrującą pełne pole falowe). odstawę metody AO stanowi równanie Zeoppritz a, którego aproksymację przedstawili w 1980 roku Aki i Richards: 1 R() (1 tg ) 1 (1 4 sin ) 4 sin (1) 361

p = ( p1 + p )/ średnia prędkość fali p = ( p p1 ) s = ( s1 + s )/ średnia prędkość fali s = ( s s1 ) ρ = (ρ 1 + ρ )/ średnia gęstość ρ = (ρ ρ 1 ) Aproksymacja bazująca na równaniu Aki-Richards a została zaprezentowana przez mith a i Gidlow a [9]. Wykorzystali oni tę aproksymację w celu przestawienia wagowanej sekcji składania, wykonanej na kolekcjach sejsmicznych po korekcie, na której widoczne są informacje o właściwościach złożowych skał. mith i Gidlow przekształcili równanie Aki- Richards a do postaci: 1 R() 1 tg a następnie uproszczono równanie () używając równania Gardnera: 1 k 4 o zróżniczkowaniu otrzymano: 1 4 (3) (4) odstawiając rezultat (4) do równania () otrzymano: R( ) c d sin () (5) (seudo-oisson s ratio reflectivity), zdefiniowana następująco: oraz Fluid Factor (6) (7) Aby otrzymać Fluid Factor mith i Gidlow używają równania Mudrock Line, które charakteryzuje generalną zależność wodonośnych skał klastycznych. oniżej przedstawiono równanie Mudrock Line: o zróżniczkowaniu otrzymano: p = 1360 + 1,16 s (8) p = 1,16 s (9) Równanie (9) można wyrazić też w formie: 1, 16 (10) Castagna J.., et al. [1] zdefiniował Mudrock Line linię prostą leżącą w układzie prędkość fali /prędkości fali, w pobliżu której leżą próbki skał wykazujące własności zawodnionej skały klastycznej. Gazonośny piaskowiec leży powyżej linii Mudrock, a skały węglanowe leżą poniżej linii Mudrock (rysunek ), na wykresie prędkości p i s pomierzonych z danych otworowych. Na wykresie prędkości p i s pomierzonych z otworu produktywnego (zgazowany piaskowiec) zgrupowane wartości charakteryzują daną litologię, a co ważniejsze F 1, 16 1 c 8 5 d 4 sin sin tg Równanie (5) rozwiązywane jest metodą najmniejszych kwadratów, aby dostarczyć wag, które następnie zostaną zaaplikowane do kolekcji sejsmicznych, w celu wyestymowania p / p oraz s / s. mith i Gidlow wyprowadzili dwa typy sekcji ważonych: refleksyjność współczynnika pseudo oissona Rys. 1. Mudrock Line linia charakteryzująca zawodnione skały klastyczne oraz (powyżej niej) położenie gazonośnych piaskowców, na wykresie zależności prędkości fali od prędkości fali [1] 36 nr 5/009

artyku³y widać rozróżnienie pomiędzy piaskowcami zgazowanymi, a piaskowcami zawodnionymi oraz łupkami. raktyczne zastosowanie tej metody związane jest z określeniem trendu tła z pomiarów otworowych (np. otrzymujemy następujące przybliżenie p / p p / p = ~ 8 R p /5 (13) Używając Mudrock Line [1] otrzymujemy: p = 1,16 s lub p / p = 1,16( s / p )( s / s ) owyższa zależność obowiązuje tylko w przypadku nasyconych wodą złożową utworów klastycznych (piaskowce, iłowce, mułowce), zatem dla nasyconych węglowodorami skał Fluid Factor F jest definiowany jako różnica pomiędzy obserwowaną wartością p / p (z równania 13) i p / p prognozowaną z s / s (11). Rys.. Wykres zależności p od s dla pomiarów z otworu związanego ze złożem gazowym [] sondą dalekiego zasięgu) oraz przygotowaniem danych sejsmicznych pod kątem analizy AO. mith i Gidlow przedstawili koncepcję weighted stacking ważonej sekcji sumowania. W tej technice głównym założeniem jest przedstawienie różnic w odniesieniu do trendu tła (np. zawodnionego ośrodka). Atrybut, który szczególnie mocno reaguje na anomalie związane z zawartością węglowodorów to Fluid Factor. Z podstawowego równania AO obliczone zostają wartości: intercept R p oraz gradient G, następnie według mith i Gidlow różnica pomiędzy R p i G może być przybliżona przez stosunek różnicy prędkości s na granicy ośrodków, do średniej wartości prędkości s w warstwie powyżej i poniżej granicy sejsmicznej [11]. s = ( s s1 ) s = ( s1 + s )/ s / s = ~ R p G (11) w połączeniu z relacją Gardnera (3) oraz równaniem (4) 1 Rp ρ = (ρ ρ 1 ) ρ = (ρ + ρ 1 )/ p = ( p + p1 ) p = ( p + p1 )/ p / p / (1) F = p / p = 1,16(v s / s ) (14) v to współczynnik s / p, który może być prognozowany dzięki zastosowaniu Mudrock Line do oceny prędkości interwałowych otrzymanych z konwencjonalnej analizy prędkości. Fatti J.L., et al. [] przedefiniował Fluid Factor pod kątem refleksyjności fali i refleksyjności fali F = R p 1,16( s / p )R s (15) Jeśli wartość F jest bliska zeru, oznacza to, że mamy do czynienia ze skałą zawodnioną, jeśli natomiast w ośrodku występuje zgazowany piaskowiec, to atrybut Fluid Factor F będzie negatywny w stropie, a pozytywny w spągu skały złożowej [9]. onadto przedstawiono alternatywną drogę spojrzenia na równanie (15), w której Fluid Factor jest różnicą pomiędzy rzeczywistym współczynnikiem odbicia fali R p, a wyliczonym R p dla tego samego, ale zawodnionego piaskowca. Obliczony R p jest wyprowadzony (pochodzi) od współczynnika odbicia fali R s przy użyciu zależności linii Mudrock. Równanie (15) przybiera postać: F(t) = R p (t) g(t)r s (t) (16) t jest podwójnym czasem przebiegu T, R p (t) trasą refleksyjności fali, R s (t) trasą refleksyjności fali, g(t) funkcja zależności szerokości okna od czasu (slowly time-varying gain function). nr 5/009 363

Ta funkcja szerokości okna (bramki) wyraża się następująco: g(t) = M( s / p ) (17) M jest wartością zależną od kąta nachylenia linii Mudrock. Fatti J.L., et al. [] sugeruje, że wartość ta powinna być raczej wyekstrahowana (uzyskana) lokalnie, niż tak jak przedstawia ją Castagna J.., et al. [1]. W celu przeanalizowania możliwości oszacowania prędkości fali przygotowano (mgr inż. Krzysztof Żuławiński) modelowe dane sejsmiczne w systemie Norsar, w oparciu o przedstawiony poniżej model geologiczny (rysunek 3). Uzyskane w ten sposób pliki w formacie.sgy zostały wprowadzone do systemu ro- MAX i w nim poddane processingowi, koniecznemu do wykonania analiz AO. Na rysunku 3 przedstawiono model geometryczno-prędkościowy ośrodka o granicach nachylonych, w którym założono niezmienność parametrów wewnątrz poszczególnych warstw. arametry modelu przedstawiono w tablicy 1. arametry geometrii danych modelowych są następujące: rozstaw niesymetryczny 96 kanałów, odległość pomiędzy kanałami = 0 m, offset min = 0 m, offset max = 190 m, odległość pomiędzy punktami odbioru O = 0 m (O 1 = 0 m, O = 40 m,..., O ostatni = 490 m), odległość pomiędzy punktami wzbudzania (strzałowymi) = 0 m (W 1 = 0 m, W = 0 m,, W ostatni = 4000 m), ilość punktów wzbudzania = 01, długość rejestracji = 3000 ms, krok próbkowania T = ms CD = 10 m. Na rysunku 4 zaprezentowano kolekcje modelowe, dane z pliku model_norar.dat pierwsze rekordy. Rys. 4. Kolekcje danych modelowych tzw. surowe dane z pliku model_norar.dat Rys. 3. Model geometryczno-prędkościowy ośrodka o warstwach zapadających; parametry modelu p, s, ρ Następnym etapem jest processing przetwarzanie pod kątem analiz AO, w którym zastosowano niżej opisane procedury: 364 nr 5/009

artyku³y TAR odzyskiwanie rzeczywistych amplitud (True Amplitud Recovery) roces ten stosuje czasowo zmienną funkcję wzmocnienia na trasach, w celu skompensowania utraty energii fali sejsmicznej z głębokością (a tym samym zmniejszania się amplitudy z głębokością), do której dochodzi z powodu sferycznego rozwierania się frontu falowego (rysunek 5). Rys. 6. Odwrócenie polaryzacji : RZED i O zastosowaniu modułu Trace Reverse z zasadą przetwarzania dla potrzeb AO unika się indywidualnego wyrównywania tras, a skalowania typu AGC są wykluczone. Rys. 5. Kolekcja danych modelowych po zastosowaniu aplikacji TAR (odzyskiwania rzeczywistych amplitud) Trace Reverse odwrócenie polaryzacji onieważ system Norsar generuje odwrotną polaryzacje, zgodną ze standardem amerykańskim, w module Trace Reverse dokonano odwrócenia polaryzacji, aby dopasować dane modelowe do standardu danych sejsmicznych, czyli zgodnie z konwencją: dodatnie amplitudy trasy sejsmicznej w przypadku dodatnich współczynników odbicia (rysunek 6). onieważ przetwarzanie dotyczy danych modelowych, nie było konieczne zastosowanie zaawansowanych procedur przetwarzania, należało jednak zwrócić uwagę, aby zastosowane procedury nie ingerowały i nie zakłóciły relacji amplitudowych, dlatego na każdym etapie przetwarzania wnikliwie analizowano efekt każdej procedury. Z uwagi na powyższe oraz zgodnie elocity Analysis Dokładna analiza prędkości, często powtarzana kilkakrotnie w celu uzyskania najlepszego modelu prędkościowego, jest bardzo ważnym etapem sekwencji przetwarzania do celów AO. Analiza prędkości jest interaktywnym narzędziem służącym do uzyskania prędkości sumowania ( CD ) ( RM ). rędkość ta nie posiada sensu fizycznego, ale zapewnia najlepszy efekt składania. Otrzymaną prędkość stosujemy do obliczania poprawek kinematycznych (NMO Normal Moveout). rzeprowadzono analizę prędkości metodą stałych prędkości (C Constant elocity can) w zakresie p = 1500-4500 m/s (rysunek 7). W tym przypadku wykonano trzy iteracje analiz prędkości. Ostateczna analiza prędkości została wykonana z krokiem co 10 CD (100 m). Zaaplikowanie korekty NMO oraz uzyskanie płaskiego wybranego horyzontu (celu poszukiwawczego) stanowi bardzo nr 5/009 365

ważny etap przygotowania danych do AO. Efektem końcowym jest pole prędkości sumowania. Aby sprawdzić jego poprawność należy wykonać sumowanie w module CD/Ensamble tack. Rys. 9. ekcja sumowana tack velrm_3 na tle pola prędkości velrm_3 Rys. 7. Trzecia iteracja analiz prędkości wykonywana z gęstością co 10 CD. Analiza prędkości metodą stałych prędkości (C Constant elocity can) CD = 83. CD/Ensemble tack Wykonano składanie za pomocą modułu CD/Ensemble tack, którego efektem jest sekcja sumowana danych modelowych tack_velrm_3 (rysunek 8). W module Normal Moveout Correction wykorzystano model prędkości vel RM_3 (rysunek 9). W module olume iever/editor, służącym między innymi do wizualizacji pola prędkości, sprawdzono poprawność wyliczonego pola prędkości. Na rysunku 9 pokazano sekcję sumowaną (tack velrm_3) na tle pola prędkości velrm_3 otrzymanego w wyniku analiz prędkości. Rys. 8. ekcja sumowana danych modelowych tack_ velrm_3 o zakończonym etapie przetwarzania sejsmicznych danych modelowych pod kątem analiz AO, a przed przystąpieniem do wykonania modułów AO, należy przygotować interwałowe pole prędkości, dzięki któremu przeliczone zostaną kąty padania i stworzone zostaną kolekcje kątowe. Najlepiej wykorzystać do tego celu dane z analiz prędkości z pola prędkości velrm_3, po odpowiednim ich przygotowaniu. elocity Manipulation oraz Interactive elocity Edit Do przygotowania pola prędkości interwałowych zostały wykorzystane moduły elocity Manipulation oraz Interactive elocity Edit. rzygotowane w ten sposób pole prędkości, przeliczone na czasowe prędkości interwałowe, może być wprowadzone do kolejnej aplikacji AO Analysis Gathers. AO kolekcje kątowe (Analysis Gathers) Dane wejściowe muszą mieć zaaplikowaną korektę NMO. Należy zwrócić uwagę, aby najbardziej interesujące interpretatora horyzonty po zaaplikowaniu poprawki NMO były płaskie. W tym przypadku wprowadzono prędkości z pliku velrm_3. Moduł ten konwertuje wejściowe kolekcje CD na kolekcje kąta padania lub kolekcje ograniczone kątem (offsetem). Kolekcje te są używane jako wejściowe dane do AO Weighted tack. Dane zostają posortowane według AOFFET na wejściu i wyjściu tego modułu. Ważnym parametrem tej aplikacji jest wprowadzenie prędkości interwałowych. o ustaleniu właściwego zakresu kątów, procedura AO Analysis Gathers generuje kolekcje tras odpowiadające różnym 366 nr 5/009

artyku³y kątom padania. W przypadku danych modelowych ustalono optymalny zakres kątów od 1-40 o (rysunek 10). W niniejszej publikacji przedstawiono trzy główne atrybuty: stack wave reflectivity refleksyjność fali R p, W stack wave reflectivity refleksyjność fali R s, Fluid Factor (rysunek 11). Rys. 10. Wejściowa kolekcja CD = 155 posortowana względem offsetu. Kolekcje kątowe danych modelowych, zakres kątów 1-40 o AO Weighted tacks Teoretyczną podstawą tej metody jest koncepcja ważonej sekcji sumowania, przedstawiona przez mith a i Gidlow a, opisana szerzej w początkowej części niniejszej publikacji. o właściwym przygotowaniu danych, analiza przy użyciu tego modułu może dostarczyć cennych informacji na temat litologii i rodzaju nasycenia. Ogólne rozpoznanie może być wykonane w module AO Weighted tacks, jednak bardziej szczegółowe dochodzenie powinno zostać wykonane na kolekcjach kątowych, analizując konkretną anomalię. Analiza według modułu AO Weighted tacks jest używana (z sukcesem) do rozróżnienia pomiędzy obecnością gazu, a zmiennością litologiczną w przypadku bright spot u na sekcji sejsmicznej. W wyniku wykorzystania modułu AO Weighted tacks dostępne są następujące atrybuty w systemie romax: stack wave reflectivity refleksyjność fali, W stack wave reflectivity refleksyjność fali, stack minus W stack, stack podzielona przez W stack, W stack podzielona przez stack, stack minus skalowana W stack, suma wag stack, suma wag W stack, Fluid Factor. Rys. 11. ekcja Fluid Factor atrybut modułu AO Weighted tack stack = p / p W stack = s / s Fluid Factor F = p / p 1,16 ( s / p ) ( s / s ) (18) W systemie romax przyjęty jest trend linii Mudrock, według poniższej zależności: s = 0,861 p 1,174 (19) owyżej przedstawione wyniki modułu AO Weighted tack przetransformowano do formatu.sgy. Następnie po zaaplikowaniu pola prędkości fali, wyników sekcji refleksyjności fali, sekcji refleksyjności fali oraz sekcji Fluid Factor obliczono przy pomocy programów autorskich (dr Anna ółchłopek) sekcję pola prędkości fali s. Z pliku prędkości fali (rysunek 1) obliczono prędkości średnie w zadanych warstwach modelu (rysunek 13). Jak widać poniżej, niestety prędkości fali odbiegają od prędkości założonych w modelu (rysunek 3). rzeprowadzono także próbę oszacowania prędkości propagacji fali na danych rzeczywistych, przy użyciu modułów AO dostępnych w systemie romax. Dane sejsmiczne (profil T019) zostały poddane specjalistycznemu przetwarzaniu pod kątem analiz AO nr 5/009 367

(właściwie zastosowana aplikacja TAR oraz nie używanie AGC dane nie mogą być skalowane!), sekwencja processingu powinna zachowywać charakterystykę częstotliwościową z płaskim przebiegiem w paśmie przenoszenia sygnału i w jak najszerszym zakresie, kolekcje wejściowe do analiz AO muszą być zmigrowane pre-stack. W celu wizualizacji danych wejściowych (proc_avo. dat) przetworzonych pod kątem AO wykonano sumowanie (rysunek 15), wykorzystując pole prędkości RM (plik final.vel rysunek 16). Rys. 1. ekcja pola prędkości fali s Rys. 13. Uśrednione w zadanych warstwach prędkości z pliku vel Rys. 15. ekcja sumowana proc_avo.stk Rys. 14. Wejściowa kolekcja CD posortowana według offsetu. Dane po odpowiednim przetworzeniu pod kątem analiz AO proc_avo.dat (Geofizyka Toruń p. z o.o.). Najważniejsze warunki, które musi spełniać przetwarzanie pre-stack wymagane do analiz AO, to według Yilmaz a [1]: zachowanie rzeczywistych amplitud w celu wychwycenia zmian amplitudy ze zmieniającym się offsetem Rys. 16. ole prędkości sumowania (plik final.vel) wraz z sekcją proc_avo.stk CD/Ensemble tack Za pomocą modułu CD/Ensemble tack wykonano składanie, którego efektem jest sekcja sumowana proc_avo.stk (rysunek 15). W module Normal Moveout Correction wykorzystano model prędkości final.vel (rysunek 16). Analiza prędkości pod kątem AO (w standardowym przetwa- 368 nr 5/009

artyku³y rzaniu co -3 km) powinna być wykonywana dość gęsto (np. co 50 m), w celu wychwycenia zmian prędkości, które mogą powodować anomalie AO. W tym przypadku analiza prędkości była wykonana co 0,5 km, co można uznać za wystarczającą gęstość. AO Analysis Gathers Moduł ten konwertuje wejściowe kolekcje CD na kolekcje kąta padania lub kolekcje ograniczone kątem (offsetem). Kolekcje te używane są jako wejściowe dane do AO Weighted tack. Dane zostają posortowane według AOFFET na wejściu i wyjściu tego modułu. Ważnym parametrem tej aplikacji jest wprowadzenie prędkości interwałowych, przeliczonych z pliku prędkości RM final.vel. o ustaleniu właściwego zakresu kątów, procedura AO Analysis Gathers generuje kolekcje tras, odpowiadające różnym kątom padania. Kolekcje te służą także do analizowania właściwości AO na poszczególnych rekordach. W tym przypadku wykorzystano kolekcje kątowe w zakresie od 10-35 o (rysunek 17). W stack wave reflectivity refleksyjność fali R s (rysunek 19), Fluid Factor (rysunek 0). Rys. 18. ekcja refleksyjności fali atrybut AO Weighted tack Rys. 19. ekcja refleksyjności fali atrybut AO Weighted tack Rys. 17. Kolekcja kątowa odpowiadające kątom padania (10-35 o ) AO Analysis Gathers AO Weighted tacks odstawą tej metody jest koncepcja ważonej sekcji sumowania, przedstawiona przez mith a i Gidlow a. Analiza w module AO Weighted tacks jest używana z powodzeniem do rozróżnienia anomalii bright spot spowodowanej obecnością gazu, od anomalii powstałej wskutek zmienności litologicznej. rzedstawiono trzy główne atrybuty modułu AO Weighted tacks, opisane szczegółowo w początkowej części niniejszej publikacji: stack wave reflectivity refleksyjność fali R p (rysunek 18), Rys. 0. ekcja Fluid Factor atrybut AO Weighted tack rzedstawione na rysunkach: 18, 19 i 0 wyniki modułu AO Weighted tack przetransformowano nr 5/009 369

do formatu.sgy. Następnie, po zaaplikowaniu pola prędkości fali (final.vel) do wyników sekcji refleksyjności fali, sekcji refleksyjności fali oraz sekcji Fluid Factor obliczono przy pomocy programów autorskich (dr Anna ółchłopek) sekcję pola prędkości fali s. W niniejszej publikacji przeanalizowano atrybuty AO Weighted tacks. Aplikacja ta używana jest do rozróżniania anomalii bright spot spowodowanych zawartością gazu, od anomalii powstałej w wyniku zmienności litologicznej. rzedstawiono metodę wykorzystującą zależność zmienności amplitudy z offsetem, prowadzącą do obliczenia refleksyjności fali, refleksyjności fali i ostatecznie uzyskania sekcji współczynnika Fluid Factor atrybutu, który szczególnie mocno reaguje na anomalie związane z zawartością węglowodorów. odjęto także próbę oszacowania prędkości propagacji fali poprzecznej, wykorzystując moduły AO dostępne w systemie romax. Metoda ta oparta jest na koncepcji weighted stacking, w której głównym założeniem jest przedstawienie różnic w odniesieniu do trendu tła (np. zawodnionego ośrodka). Technologię tę zastosowano Rys. 1. ekcja prędkości propagacji fali poprzecznej zarówno do danych modelowych, jak i rzeczywistych danych sejsmicznych. Głównym zastosowaniem przedstawionej metody, według autorki powinno być wskazywanie stref interesujących złożowo, a szczególnie rozróżnianie, czy dana anomalia bright spot jest anomalią spowodowaną przez zmiany litologiczne, czy też nasycenie węglowodorami. Literatura [1] Castagna J.., wan H.W., Foster D.J.: Framework for AO gradient and intercept interpretation, Geophysics, oc. of Expl. Geophys., vol. 63, 1998. [] Fatti J.L., mith G.C., ail.j., trauss.j., Levitt.R.: Detection of gas in sandstone reservoirs using AO analysis: A 3-D seismic case history using the Geostack technique, Geophysics, vol. 59, no. 9, p. 136-1376, 1994. [3] Hampson Russell oftware ervices Ltd. online. [4] Leginowicz A.: Analiza zmienności amplitudy względem offsetu w systemie romax, Nafta-Gaz, nr 10, 008. [5] Ostrander W.J.: lane-wave reflection coefficients for gas sands at non-normal angles of incidence, Geophysics, oc. of Expl. Geophys., 49, p. 1637-1649, 1984. [6] romax Manual Book. [7] Rutherford.R., Williams R.H.: Amplitude-versus-offset variations in gas sands, Geophysics, oc. of Expl. Geophys., 54, 680-688, 1989. [8] huey R.T.: A simplification of the Zoeppritz equations, Geophysics, vol. 50, 1985. Recenzent: prof. dr hab. inż. Andrzej Kostecki [9] mith G.C., Gidlow.M.: Weighted stacking for rock property estimation and detection of gas, Geophysical rospecting, 35, p. 993-1014, 1987. [10] mith G.C., utherland R.A.: The fluid factor as an AO indicator, Geophysics, vol. 61, no. 5, p. 145-148, 1996. [11] Wiggins R., et al.: A method for determining and displaying the shear-velocity reflectivities of a geologic formation, European atent Application 0113944, 1983. [1] Yilmaz O.: eismic Data Analysis, ociety of Exploration Geophysicists, 001. Mgr inż. Anna LEGiNOWiCZ absolwentka Wydzialu Geologii, Geofizyki i Ochrony Środowiska AGH w Krakowie. Jest asystentem w Zakładzie ejsmiki inig w Krakowie, gdzie zajmuje się interpretacją sejsmiczną przy użyciu oprogramowania chlumberger a GeoFrame/ Charisma oraz zagadnieniami inwersji sejsmicznej i sejsmiki wielokomponentowej. 370 nr 5/009