Rozwiązanie zadania w podejściu optymalizacyjnym
|
|
- Jarosław Kania
- 8 lat temu
- Przeglądów:
Transkrypt
1 Celem pracy była próba określenia kryteriów zastosowania metody optymalizacji globalnej SA dla wyznaczenia prędkości propagacji fali poprzecznej w odwrotnym zadaniu sejsmicznym. Obliczenia prowadzono na modelach o coraz bardziej skomplikowanej geometrii ośrodka. Rozpoczęto od modelu o granicach płaskorównoległych, następnym modelem był model o granicach nachylonych, natomiast ostatni model posiadał granice o dowolnej geometrii. Za podstawowe poszukiwane parametry ośrodka geologicznego przyjęto: prędkość propagacji fali podłużnej, prędkość propagacji fali poprzecznej oraz głębokość danej warstwy. Prowadzone badania pozwoliły na dalsze rozpoznanie metody symulowanego wyżarzania i jej użyteczności w konkretnym zadaniu geofizycznym. Evaluation of application of SA method for estimation of shear wave velocity in the geological medium with varied geometry The aim of this paper was determination the criterions of application of global optimization method SA (Simulated Annealing) in estimation of shear wave velocity in inverse problem in seismic method. Calculations were made for models with more and more complex geometry of the geological medium. The first model had plane and parallel boundaries, the second model had plane and slope boundaries, the last model had arbitrary boundaries. The parameters of geological medium which were sought in the first place were as follows: longitudinal wave velocity and shear wave velocity and also depth of boundaries and their angles of dip. The performed research helped to know SA method better and to state its usefulness for a specific geophysical problem. Wstęp Kluczowym zadaniem w geofizyce jest to, aby na podstawie danych otrzymanych z pomiarów geofizycznych wyznaczyć model ośrodka geologicznego, który jak najlepiej przybliża rzeczywisty ośrodek geologiczny. Problem jest tym trudniejszy, im bardziej skomplikowana jest geometria i charakterystyka badanego obszaru. W niniejszym opracowaniu, opartym na pracy statutowej o nr arch. DK /08, zaprezentowano jeden ze sposobów rozwiązania odwrotnego zadania sejsmicznego. Kontynuując badania prowadzone w latach , w ramach projektu celowego pt.: Metodyka i procedury przetwarzania danych sejsmicznych odbitych fal przemiennych oraz pracy własnej pt.: Zastosowanie metod probabilistycznych w rozwiązaniu odwrotnego zadania kinematycznego dla fali PS, zdecydowano się na podejście optymalizacyjne i zastosowano rozpoznaną w wyżej wymienionych pracach probabilistyczną metodę optymalizacji globalnej SA. Zadaniem było wyznaczenie prędkości propagacji fali podłużnej i poprzecznej oraz głębokości i kątów upadu granic refleksyjnych na podstawie hodografów sejsmicznych. Obliczenia prowadzono stopniowo na coraz bardziej skomplikowanych modelach. Podjęto próbę określenia kryteriów i warunków zastosowania metody SA dla postawionego zadania. Rozwiązanie zadania w podejściu optymalizacyjnym Problem optymalizacyjny polega na określeniu takich wartości parametrów, dla których zdeklarowana funkcja celu przyjmuje najmniejszą lub największą wartość. W przypadku odwrotnego zadania sejsmicz- nego, zbiorem parametrów są parametry fizyczne ośrodka geologicznego prędkości propagacji fali podłużnej i poprzecznej oraz głębokości granic refleksyjnych. Natomiast funkcją celu jest funkcja 287
2 dopasowania, która charakteryzuje różnice pomiędzy zaobserwowanymi danymi, a syntetycznymi danymi wyliczonymi z założonego modelu ośrodka geologicznego. Optymalizowana funkcja celu dla i-tej warstwy jest postaci: gdzie: m i = (h i, α i, v pi, v si ) wartości parametrów dla i-tej warstwy, j t pom pomierzony czas przyjścia, zarejestrowany przez j-ty odbiornik, t k,obl (m i )j syntetyczny czas przyjścia dla rekordu k, zarejestrowany przez j-ty odbiornik, obliczony dla ustalonych wartości parametrów modelu m i, N ilość pomiarów, K ilość rekordów. Oprócz zdefiniowania funkcji celu i określenia parametryzacji modelu, dla problemu optymalizacyjnego należało dobrać program do modelowania sejsmicznego oraz wybrać metodę poszukiwania minimum funkcji celu. Do modelowania sejsmicznego wykorzystano program MODKLXH (program autorski opracowany w INIG przez panią Krystynę Żukowską). Korzystając z tego programu obliczono hodografy modelowe, które traktowano jako hodografy pomierzone, czyli dane z pomiarów. Program MODKLXH jest uruchamiany wielokrotnie podczas działania programu optymalizacyjnego, w celu obliczenia hodografów syntetycznych. Rozwiązania poszukiwano za pomocą metody optymalizacji globalnej symulowanego wyżarzania SA (Simulated Annealing). W przeciwieństwie do klasycznych metod optymalizacji, nie wykorzystuje ona informacji o gradiencie funkcji celu, dzięki czemu posiada cechę wychodzenia z lokalnych ekstremów i jest niezależna od modelu początkowego, a także nie wymaga obliczeń na macierzach, które w przypadku modeli o dużej liczbie parametrów są praktycznie niemożliwe do implementacji. Zastosowaną technikę optymalizacji globalnej wyróżnia zupełnie nowe podejście do zagadnienia optymalizacji. Rozwiązania w kolejnych iteracjach nie są obliczane z ustalonych wzorów, lecz są generowane losowo, według ustalonego, składającego się z bardzo dużej ilości iteracji schematu. Stosowanie tej metody optymalizacji wymaga jednak dużo ostrożności i doświadczenia, gdyż jest ona zależna od doboru parametrów sterujących metodą. Dla metody symulowanego wyżarzania należy ustalić: temperaturę początkową i końcową, schemat chłodzenia oraz warunki zatrzymania algorytmu. Dokładna charakterystyka metody, zalety i wady oraz zastosowanie metody w różnych dziedzinach nauki zostały opisane w wielu pozycjach z literatury światowej [m.in. 8, 12, 13], a także publikacjach polskich naukowców [1, 3, 14]. Opracowany program optymalizacyjny wyznacza wartości prędkości propagacji fali podłużnej i poprzecznej oraz głębokości (w dalszych testach również kąty upadu) granic refleksyjnych, dla których wymodelowane hodografy syntetyczne najlepiej przybliżają hodografy pomierzone. Optymalizacja przebiega warstwa po warstwie; od warstwy najpłytszej do najgłębszej. Ogólny schemat działania programu optymalizacyjnego przedstawiono na rysunku 1. Rys. 1. Schemat blokowy rozwiązania problemu optymalizacyjnego w odwrotnym zadaniu sejsmicznym Testowanie metodyki modele i założenia Zaproponowaną metodykę przetestowano na modelach charakteryzujących 3 typy ośrodka geologicznego: 1) model tzw. płaskorównoległy, 7-warstwowy, zdefiniowany na podstawie danych sejsmicznych i pro- 288
3 filowania akustycznego z otworu Rajsko-1; parametry modelu I przedstawiono w tablicy 1 oraz na rysunku 2, 2) model 4-warstwowy syntetyczny, o granicach płaskich, nachylonych (zastosowano kąt upadu < 30 o ); parametry modelu II przedstawiono w tablicy 2 oraz na rysunku 3, 3) model 2-warstwowy o granicach dowolnych; parametry modelu III przedstawiono w tablicy 3 oraz na rysunku 4. Rys. 2. Model testowy I geometria ośrodka i hodografy modelowe Rys. 3. Model testowy II geometria ośrodka i hodografy modelowe 289
4 Rys. 4. Model testowy III geometria ośrodka i hodografy modelowe W przypadku wszystkich modeli założono, że ośrodek geologiczny jest ośrodkiem o stałych prędkościach propagacji fali podłużnej i poprzecznej w obrębie każdej z warstw. Dla modelu I i II przeprowadzono testy bez wykorzystania informacji, a następnie z wykorzystaniem danych o fali PP (optymalizacja dwuetapowa). W przypadku modelu I obliczenia prowadzono dla 1 rekordu. Przyjęto rozstaw dwustronny, z ilością 161 odbiorników rozmieszczonych co 15 m. Dla modelu II obliczenia prowadzono dla 1 rekordu, a następnie dla 4 rekordów punkty wzbudzania ustalono odpowiednio w odległości: 1000 m, 1500 m, 2000 m, 2500 m od początku profilu. Przyjęto rozstaw prawostronny, z ilością 96 odbiorników rozmieszczonych co 20 m. Natomiast dla modelu III obliczenia prowadzono dla 4 rekordów punkty wzbudzania ustalono odpowiednio w odległości: 1580 m, 1780 m, 1980 m, 2180 m od początku profilu. Przyjęto rozstaw prawostronny, z ilością 96 odbiorników rozmieszczonych co 20 m. W sytuacji, gdy uwzględniano informację o fali PP, optymalizacja przebiegała w dwóch etapach: etap 1 korzystając z hodografów fali PP, programem do optymalizacji dla fali PP wyznaczono optymalne wartości głębokości i prędkości fali v p dla poszczególnych warstw danego modelu. etap 2 uruchomiono program do optymalizacji dla fali PS, zmieniając sposób generowania kolejnych wartości parametrów modelu w ten sposób, aby podczas procesu optymalizacji modyfikacja głębokości oraz wartości prędkości fali v p były nieznaczne. Testowanie metodyki Podczas testowania napotykano wiele problemów związanych z zastosowaniem metody SA zasadniczą trudnością było ustalenie uniwersalnych, najefektywniejszych parametrów sterujących. Wykonano wiele dodatkowych testów, ponieważ parametry sterujące algorytmami bazującymi na metodzie symulowanego wyżarzania można wyznaczyć jedynie metodą prób i błędów. Jednocześnie reguły rządzące algorytmem są trudne do zaobserwowania i mogą być niezgodne z intuicją; np. wartości parametrów modelu dla płytszej granicy ośrodka są gorzej przybliżone od wartości parametrów dla granicy położonej głębiej. W wyniku optymalizacji wartość jednego z parametrów może się pogorszyć w stosunku do wartości wyjściowej, a jednocześnie przybliżenie wartości innych parametrów może ulec poprawie. Kolejnym problemem jest brak możliwości oszacowania błędu przybliżenia wartości parametrów. Ocenę błędu estymacji parametrów ośrodka prowadzono pośrednio, drogą oceny różnicy pomiędzy wartością obserwowaną (hodograf modelowy, pomierzony ), a obliczoną z funkcji F = f(x, h, v p,v s ) (hodograf syntetyczny). W metodzie sejsmicznej parametry h, v p, 290
5 v s ośrodka nie są przedmiotem pomiaru, a jedynie wynikiem interpretacji. Zdarza się, że wyznaczone hodografy optymalne dobrze przybliżają hodografy pomierzone, a wartości parametrów modelu mogą w rzeczywistości okazać się odległe od poszukiwanych, co jest związane z niejednoznacznością zadania. Wyniki optymalizacji Na rysunku 5 i w tablicy 4 przedstawiono najlepszy wynik optymalizacji dla modelu I. Na rysunkach 6 i 7 oraz w tablicach 5 i 6 zaprezentowano najlepsze wyniki dla modelu II. Rys. 5. Wyniki optymalizacji z wykorzystaniem informacji o fali PP dla modelu I. Na wykresach przedstawiono rozkłady prędkości v p i v s modelowe (poszukiwane, kolor zielony) i rezultaty optymalizacji (kolor niebieski) 291
6 Rys. 6. Wyniki optymalizacji bez wykorzystania informacji o fali PP dla modelu II. Obliczenia dla czterech rekordów. Na wykresach przedstawiono rozkłady prędkości v p i v s modelowe (poszukiwane, kolor zielony) i rezultaty optymalizacji (kolor niebieski) Rys. 7. Wyniki optymalizacji z wykorzystaniem informacji o fali PP dla modelu II. Na wykresach przedstawiono rozkłady prędkości v p i v s modelowe (poszukiwane, kolor zielony) i rezultaty optymalizacji (kolor niebieski). 292
7 W przypadku modelu III otrzymane wyniki nie są satysfakcjonujące. Błędy przybliżenia prędkości oraz parametrów dotyczących geometrii ośrodka są duże. Wyniki optymalizacji przedstawiono w tablicy 7. Analiza wyników Dla wyników testów dla modeli I i II obliczono błąd względny procentowy ( (v szuk v optym ) / v szuk * 100%) (tablica 8). Wyniki nie są zadowalające dla modelu płaskorównoległego w sytuacji braku informacji o fali PP błąd względny procentowy jest taki sam lub nawet przekracza błąd z jakim przyjęto model początkowy (prędkości v p i v s w modelu początkowym przyjęto jako oddalone od prędkości v p i v s modelu początkowego o ± 10%). Rezultaty działania programu optymalizacyjnego ulegają znacznej poprawie, gdy skorzysta się z wcześniejszych obliczeń dla fali PP dla pierwszych pięciu granic obie prędkości zostały przybliżone z bardzo dobrą dokładnością, a dla dwóch ostatnich granic błąd względny procentowy nie przekracza 10%. W przypadku testów dla modelu o granicach nachylonych bez wykorzystania informacji o fali PP również oszacowanie prędkości nie jest zadowalające dla drugiej granicy błąd względny procentowy dla obu prędkości pozostał na poziomie błędu, z jakim przyjęto model początkowy (10%). Znacznie lepsze wyniki otrzymano, gdy do obliczeń włączono dane z kolejnych rekordów. Błąd dla drugiej granicy spadł do 4,5% w przypadku prędkości v p i do 5% w przypadku 293
8 prędkości v s, natomiast gdy optymalizację przeprowadzono dwuetapowo najpierw dla fali PP, a następnie dla fali PS, korzystając z wyników etapu pierwszego, dokładność przybliżenia prędkości dla pierwszych trzech granic wzrosła i błąd nie przekroczył 2,5%. Duży błąd przybliżenia prędkości v p dla czwartej granicy (8%) jest spowodowany dużym błędem wartości tego parametru otrzymanym w pierwszym etapie optymalizacji (w przypadku optymalizacji dwuetapowej, najpierw korzystając z hodografów fali PP oszacowana zostaje prędkość v p oraz geometria ośrodka, a następnie korzystając hodografów fali PS oszacowana zostaje prędkość v s ; jednocześnie wartości pozostałych parametrów modelu modyfikowane są w nieznacznym stopniu). Jeśli chodzi o zastosowanie metody SA do wyznaczenia prędkości propagacji fali PS dla modelu o granicach dowolnych to przeprowadzone testy nie pozwalają na pełną ocenę działania metody. Nie jest oczywiste, jak najlepiej dobrać sposób parametryzacji geometrii ośrodka, a każdy nowy rodzaj parametryzacji wymaga przeprowadzenia wielu prób i testów, w celu dobrania parametrów sterujących metodą. Jest to proces wysoce czasochłonny, a problem ten mógłby stanowić temat osobnej pracy. Podsumowanie Prowadzone badania pozwoliły na dalsze rozpoznanie metody symulowanego wyżarzania i jej użyteczności w odwrotnym zadaniu sejsmicznym. Najlepsze wyniki otrzymano, gdy w obliczeniach uwzględniono informację o fali PP (optymalizacja dwuetapowa). Dotyczy to zarówno modelu o granicach płaskorównoległych, jak i modelu o granicach nachylonych. Dobre wyniki uzyskano również dla modelu o granicach nachylonych, gdy powiększono liczbę rekordów włączonych do obliczeń. Autorka pragnie złożyć szczególne podziękowanie dla pani prof. Haliny Jędrzejowskiej-Tyczkowskiej, za sformułowanie problemu badawczego i pomoc przy realizacji pracy. Gorące podziękowania należą się również pani dr Krystynie Żukowskiej za udostępnienie, a także zmodyfikowanie na potrzeby niniejszej pracy programu do modelowania sejsmicznego. Recenzent: prof. dr hab. inż. Andrzej Kostecki 294
9 Literatura [1] Dębski W.: Zastosowanie techniki Monte Carlo do rozwiązywania wybranych zagadnień sejsmologicznych. Instytut Geofizyki PAN, [2] Dębski W., Tarantola A.: Information on elastic parameters obtained from the amplitudes of reflected waves. Geophysics, vol. 60, no. 5, p , [3] Dębski W.: The Probabilistic Formulation of the Inverse Theory with Application to the Selected Seismological Problems. Instytut Geofizyki PAN, [4] Ingber L.: Simulated annealing: Practice versus theory. Math. Comput. Modeling 18 (11), 29-57, [5] Jędrzejowska-Zwinczak H.: Problematyka fal niepodłużnych w badaniach sejsmicznych. Prace Instytutu Górnictwa Naftowego i Gazownictwa, [6] Jędrzejowska-Tyczkowska H. i in.: Metodyka i procedury przetwarzania danych sejsmicznych odbitych fal przemiennych. Dokumentacja projektu celowego, archiwum INIG, [7] Jędrzejowska-Tyczkowska H., Pieniążek K.: Zastosowanie metod optymalizacji globalnej, a szczególnie symulowanego wyżarzania (simulated annealing), do rozwiązania odwrotnego zadania kinematycznego w metodzie sejsmicznej. Nafta-Gaz, [8] Kirkpatrick S., Gelatt C.D., Vecchi M.P.: Optimization by simulated annealing. Science 220, , [9] Landa E., Kosloff D., Keydar S., Koren Z., Reshef M.: A method for determination of velocity and depth from seismic reflection data. Geophysical Prospecting, 36, p , [10] Masters T.: Sieci neuronowe w praktyce. Wydawnictwa Naukowo-Techniczne, [11] Pieniążek K.: Określenie kryteriów i warunków zastosowania procedury symulowanego wyżarzania do wyznaczania prędkości propagacji fali poprzecznej. Dokumentacja pracy statutowej, archiwum INIG, [12] Pullammanappallil S.K., Louie J.N.: Inversion of seismic reflection traveltimes using a nonlinear optimization scheme. Geophysics, vol. 58, no. 11, p , [13] Sen M., Stoffa P.L.: Global optimization methods in geophysical inversion, Elsevier, [14] Wojdyla M., Danek T.; Inversion of magnetotelluric sounding data based on Very Fast Simulated Annealing. 18 th International workshop on Electromagnetic Induction in the Earth, El Vendrell, September Mgr Karolina PIENIąŻEK absolwentka kierunku Matematyka na Uniwersytecie Jagiellońskim, specjalizacja: Zastosowania Matematyki. Od lutego 2007 roku pracownik Zakładu Sejsmiki Instytutu Nafty i Gazu w Krakowie. Zajmuje się zastosowaniem metod optymalizacji stochastycznej w rozwiązaniu odwrotnego zadania kinematycznego w metodzie sejsmicznej. 295
NAFTA-GAZ grudzień 2009 ROK LXV
NAFTA-GAZ grudzień 2009 ROK LXV Karolina Pieniążek Instytut Nafty i Gazu, Kraków Przegląd zastosowań algorytmów optymalizacji globalnej w przetwarzaniu danych sejsmicznych W artykule omówiono zaczerpnięte
Zastosowanie metody MASW do wyznaczania profilu prędkościowego warstw przypowierzchniowych
Mat. Symp. str. 493 499 Robert SIATA, Jacek CHODACKI Główny Instytut Górnictwa, Katowice Zastosowanie metody MASW do wyznaczania profilu prędkościowego warstw przypowierzchniowych Streszczenie Rozpoznanie
Aproksymacja funkcji a regresja symboliczna
Aproksymacja funkcji a regresja symboliczna Problem aproksymacji funkcji polega na tym, że funkcję F(x), znaną lub określoną tablicą wartości, należy zastąpić inną funkcją, f(x), zwaną funkcją aproksymującą
w analizie wyników badań eksperymentalnych, w problemach modelowania zjawisk fizycznych, w analizie obserwacji statystycznych.
Aproksymacja funkcji a regresja symboliczna Problem aproksymacji funkcji polega na tym, że funkcję F(), znaną lub określoną tablicą wartości, należy zastąpić inną funkcją, f(), zwaną funkcją aproksymującą
Metoda określania pozycji wodnicy statków na podstawie pomiarów odległości statku od głowic laserowych
inż. Marek Duczkowski Metoda określania pozycji wodnicy statków na podstawie pomiarów odległości statku od głowic laserowych słowa kluczowe: algorytm gradientowy, optymalizacja, określanie wodnicy W artykule
Izotropowa migracja głębokościowa w ośrodku anizotropowym
W artykule przedstawiono efekty zastosowania izotropowej migracji głębokościowej przed sumowaniem do ośrodka anizotropowego typu VTI. Opisano metodę określenia poprawek do rezultatów migracji izotropowej
Ocena niepewności rozwiązania w modelowaniu zmienności przestrzennej parametrów ośrodka za pomocą metody kosymulacji
NAFTA-GAZ grudzień 2012 ROK LXVIII Karolina Pirowska Instytut Nafty i Gazu, Kraków Ocena niepewności rozwiązania w modelowaniu zmienności przestrzennej parametrów ośrodka za pomocą metody kosymulacji Wstęp
Uczenie sieci typu MLP
Uczenie sieci typu MLP Przypomnienie budowa sieci typu MLP Przypomnienie budowy neuronu Neuron ze skokową funkcją aktywacji jest zły!!! Powszechnie stosuje -> modele z sigmoidalną funkcją aktywacji - współczynnik
Optymalizacja ciągła
Optymalizacja ciągła 5. Metoda stochastycznego spadku wzdłuż gradientu Wojciech Kotłowski Instytut Informatyki PP http://www.cs.put.poznan.pl/wkotlowski/ 04.04.2019 1 / 20 Wprowadzenie Minimalizacja różniczkowalnej
ROZWIĄZYWANIE RÓWNAŃ NIELINIOWYCH
Transport, studia I stopnia Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Ewa Pabisek Adam Wosatko Postać ogólna równania nieliniowego Często występującym, ważnym problemem obliczeniowym
Sztuczna Inteligencja Tematy projektów Sieci Neuronowe
PB, 2009 2010 Sztuczna Inteligencja Tematy projektów Sieci Neuronowe Projekt 1 Stwórz projekt implementujący jednokierunkową sztuczną neuronową złożoną z neuronów typu sigmoidalnego z algorytmem uczenia
Techniki optymalizacji
Techniki optymalizacji Symulowane wyżarzanie Maciej Hapke maciej.hapke at put.poznan.pl Wyżarzanie wzrost temperatury gorącej kąpieli do takiej wartości, w której ciało stałe topnieje powolne zmniejszanie
Problem Odwrotny rozchodzenia się fali Love'a w falowodach sprężystych obciążonych cieczą lepką
Problem Odwrotny rozchodzenia się fali Love'a w falowodach sprężystych obciążonych cieczą lepką Dr hab. Piotr Kiełczyński, prof. w IPPT PAN, Instytut Podstawowych Problemów Techniki PAN Zakład Teorii Ośrodków
MODELOWANIE POŁĄCZEŃ TYPU SWORZEŃ OTWÓR ZA POMOCĄ MES BEZ UŻYCIA ANALIZY KONTAKTOWEJ
Jarosław MAŃKOWSKI * Andrzej ŻABICKI * Piotr ŻACH * MODELOWANIE POŁĄCZEŃ TYPU SWORZEŃ OTWÓR ZA POMOCĄ MES BEZ UŻYCIA ANALIZY KONTAKTOWEJ 1. WSTĘP W analizach MES dużych konstrukcji wykonywanych na skalę
ANALiZA WPŁYWU PARAMETRÓW SAMOLOTU NA POZiOM HAŁASU MiERZONEGO WEDŁUG PRZEPiSÓW FAR 36 APPENDiX G
PRACE instytutu LOTNiCTWA 221, s. 115 120, Warszawa 2011 ANALiZA WPŁYWU PARAMETRÓW SAMOLOTU NA POZiOM HAŁASU MiERZONEGO WEDŁUG PRZEPiSÓW FAR 36 APPENDiX G i ROZDZiAŁU 10 ZAŁOżEń16 KONWENCJi icao PIotr
Metody inwersji Bayesowskiej - zaczynamy...
Metody inwersji Bayesowskiej - zaczynamy... W. D ebski debski@igf.edu.pl www.igf.edu.pl/ debski/ Plan wykładu Literatura i materiały pomocnicze Wprowadzenie Zagadnienia modelowania Zagadnienia odwrotne
PROGRAMOWANIE DYNAMICZNE W ROZMYTYM OTOCZENIU DO STEROWANIA STATKIEM
Mostefa Mohamed-Seghir Akademia Morska w Gdyni PROGRAMOWANIE DYNAMICZNE W ROZMYTYM OTOCZENIU DO STEROWANIA STATKIEM W artykule przedstawiono propozycję zastosowania programowania dynamicznego do rozwiązywania
Spis treści. Przedmowa... XI. Rozdział 1. Pomiar: jednostki miar... 1. Rozdział 2. Pomiar: liczby i obliczenia liczbowe... 16
Spis treści Przedmowa.......................... XI Rozdział 1. Pomiar: jednostki miar................. 1 1.1. Wielkości fizyczne i pozafizyczne.................. 1 1.2. Spójne układy miar. Układ SI i jego
Zastosowanie algorytmu genetycznego do estymacji parametrów ośrodka geologicznego na podstawie pomiarów sejsmicznych
NAFTA-GAZ maj 2012 ROK LXVIII Karolina Pirowska Instytut Nafty i Gazu, Kraków Zastosowanie algorytmu genetycznego do estymacji parametrów ośrodka geologicznego na podstawie pomiarów sejsmicznych Wstęp
Podstawy OpenCL część 2
Podstawy OpenCL część 2 1. Napisz program dokonujący mnożenia dwóch macierzy w wersji sekwencyjnej oraz OpenCL. Porównaj czasy działania obu wersji dla różnych wielkości macierzy, np. 16 16, 128 128, 1024
Optymalizacja. Symulowane wyżarzanie
dr hab. inż. Instytut Informatyki Politechnika Poznańska www.cs.put.poznan.pl/mkomosinski, Maciej Hapke Wyżarzanie wzrost temperatury gorącej kąpieli do takiej wartości, w której ciało stałe topnieje powolne
Instytut Politechniczny Państwowa Wyższa Szkoła Zawodowa. Diagnostyka i niezawodność robotów
Instytut Politechniczny Państwowa Wyższa Szkoła Zawodowa Diagnostyka i niezawodność robotów Laboratorium nr 6 Model matematyczny elementu naprawialnego Prowadzący: mgr inż. Marcel Luzar Cele ćwiczenia:
Współczesna technika inwersyjna - dokad zmierzamy? Wojciech Dȩbski
Współczesna technika inwersyjna - dokad zmierzamy? Wojciech Dȩbski 24.5.2 Pomiar bezpośredni IGF, 24.5.2 IGF - Pomiar pośredni IGF, 24.5.2 IGF - 2 Interpretacja matematyczna m m + dm m d + dd d = G(m)
Wszystkie wyniki w postaci ułamków należy podawać z dokładnością do czterech miejsc po przecinku!
Pracownia statystyczno-filogenetyczna Liczba punktów (wypełnia KGOB) / 30 PESEL Imię i nazwisko Grupa Nr Czas: 90 min. Łączna liczba punktów do zdobycia: 30 Czerwona Niebieska Zielona Żółta Zaznacz znakiem
Laboratorium 5 Przybliżone metody rozwiązywania równań nieliniowych
Uniwersytet Zielonogórski Wydział Informatyki, Elektrotechniki i Telekomunikacji Instytut Sterowania i Systemów Informatycznych Elektrotechnika niestacjonarne-zaoczne pierwszego stopnia z tyt. inżyniera
PRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: Kierunek: Informatyka Rodzaj przedmiotu: przedmiot obowiązkowy w ramach treści kierunkowych, moduł kierunkowy ogólny Rodzaj zajęć: wykład, ćwiczenia I KARTA PRZEDMIOTU CEL PRZEDMIOTU
Fuzja sygnałów i filtry bayesowskie
Fuzja sygnałów i filtry bayesowskie Roboty Manipulacyjne i Mobilne dr inż. Janusz Jakubiak Katedra Cybernetyki i Robotyki Wydział Elektroniki, Politechnika Wrocławska Wrocław, 10.03.2015 Dlaczego potrzebna
Rys Szkic sieci kątowo-liniowej. Nr X [m] Y [m]
5.14. Ścisłe wyrównanie sieci kątowo-liniowej z wykorzystaniem programu komputerowego B. Przykłady W prezentowanym przykładzie należy wyznaczyć współrzędne płaskie trzech punktów (1201, 1202 i 1203) sieci
Lokalizacja zjawisk sejsmicznych w kopalni - problemy. Lokalizacja - problemy. brak czasu w ognisku. Lokalizacja względna. niedokładne wyznaczanie
Lokalizacja zjawisk sejsmicznych w kopalni - problemy Lokalizacja - problemy niedokładne wyznaczanie brak czasu w ognisku głębokości Absolutna lokalizacja pojedynczych zjawisk Lokalizacja względna wyznaczamy
WYZNACZANIE NIEPEWNOŚCI POMIARU METODAMI SYMULACYJNYMI
WYZNACZANIE NIEPEWNOŚCI POMIARU METODAMI SYMULACYJNYMI Stefan WÓJTOWICZ, Katarzyna BIERNAT ZAKŁAD METROLOGII I BADAŃ NIENISZCZĄCYCH INSTYTUT ELEKTROTECHNIKI ul. Pożaryskiego 8, 04-703 Warszawa tel. (0)
NAFTA-GAZ, ROK LXXII, Nr 8 / 2016
NAFTA-GAZ, ROK LXXII, Nr 8 / 2016 DOI: 10.18668/NG.2016.08.01 Halina Jędrzejowska-Tyczkowska Instytut Nafty i Gazu Państwowy Instytut Badawczy Modelowanie mikrosejsmiczne narzędziem wspomagania rozpoznawania
Określanie błędów położeń wstrząsów górniczych lokalizowanych metodą kierunkową
Mat. Symp. str. 473 479 Grzegorz PSZCZOŁA, Andrzej LEŚNIAK Akademia Górniczo-Hutnicza, Kraków Określanie błędów położeń wstrząsów górniczych lokalizowanych metodą kierunkową Streszczenie Kierunkowa metoda
Optymalizacja harmonogramów budowlanych - szeregowanie zadań. Mgr inż. Aleksandra Radziejowska AGH Akademia Górniczo-Hutnicza w Krakowie
Optymalizacja harmonogramów budowlanych - szeregowanie zadań Mgr inż. Aleksandra Radziejowska AGH Akademia Górniczo-Hutnicza w Krakowie Opis zagadnienia Zadania dotyczące szeregowania zadań należą do szerokiej
Metody optymalizacji dyskretnej
Metody optymalizacji dyskretnej Spis treści Spis treści Metody optymalizacji dyskretnej...1 1 Wstęp...5 2 Metody optymalizacji dyskretnej...6 2.1 Metody dokładne...6 2.2 Metody przybliżone...6 2.2.1 Poszukiwanie
METODY STATYSTYCZNE W BIOLOGII
METODY STATYSTYCZNE W BIOLOGII 1. Wykład wstępny 2. Populacje i próby danych 3. Testowanie hipotez i estymacja parametrów 4. Planowanie eksperymentów biologicznych 5. Najczęściej wykorzystywane testy statystyczne
Dopasowywanie modelu do danych
Tematyka wykładu dopasowanie modelu trendu do danych; wybrane rodzaje modeli trendu i ich właściwości; dopasowanie modeli do danych za pomocą narzędzi wykresów liniowych (wykresów rozrzutu) programu STATISTICA;
Algorytm genetyczny (genetic algorithm)-
Optymalizacja W praktyce inżynierskiej często zachodzi potrzeba znalezienia parametrów, dla których system/urządzenie będzie działać w sposób optymalny. Klasyczne podejście do optymalizacji: sformułowanie
Zadanie 3. Dla poziomego reflektora rozmiary binu determinowane są przez promień strefy Fresnela. Promień strefy Fresnela dany jest wzorem:
Zadanie 3 Celem zadania jest obliczenie wielkości binu na poziomie celu. Bin jest to elementarna jednostka powierzchni zdjęcia sejsmicznego, która stanowi kryterium podziału powierzchni odbijającej. Jest
METODY STATYSTYCZNE W BIOLOGII
METODY STATYSTYCZNE W BIOLOGII 1. Wykład wstępny 2. Populacje i próby danych 3. Testowanie hipotez i estymacja parametrów 4. Planowanie eksperymentów biologicznych 5. Najczęściej wykorzystywane testy statystyczne
IMPLEMENTACJA SIECI NEURONOWYCH MLP Z WALIDACJĄ KRZYŻOWĄ
IMPLEMENTACJA SIECI NEURONOWYCH MLP Z WALIDACJĄ KRZYŻOWĄ Celem ćwiczenia jest zapoznanie się ze sposobem działania sieci neuronowych typu MLP (multi-layer perceptron) uczonych nadzorowaną (z nauczycielem,
Statystyka. Rozkład prawdopodobieństwa Testowanie hipotez. Wykład III ( )
Statystyka Rozkład prawdopodobieństwa Testowanie hipotez Wykład III (04.01.2016) Rozkład t-studenta Rozkład T jest rozkładem pomocniczym we wnioskowaniu statystycznym; stosuje się go wyznaczenia przedziału
FORECASTING THE DISTRIBUTION OF AMOUNT OF UNEMPLOYED BY THE REGIONS
FOLIA UNIVERSITATIS AGRICULTURAE STETINENSIS Folia Univ. Agric. Stetin. 007, Oeconomica 54 (47), 73 80 Mateusz GOC PROGNOZOWANIE ROZKŁADÓW LICZBY BEZROBOTNYCH WEDŁUG MIAST I POWIATÓW FORECASTING THE DISTRIBUTION
Zadania ze statystyki, cz.7 - hipotezy statystyczne, błąd standardowy, testowanie hipotez statystycznych
Zadania ze statystyki, cz.7 - hipotezy statystyczne, błąd standardowy, testowanie hipotez statystycznych Zad. 1 Średnia ocen z semestru letniego w populacji studentów socjologii w roku akademickim 2011/2012
Algorytm wstecznej propagacji błędów dla sieci RBF Michał Bereta
Algorytm wstecznej propagacji błędów dla sieci RBF Michał Bereta www.michalbereta.pl Sieci radialne zawsze posiadają jedną warstwę ukrytą, która składa się z neuronów radialnych. Warstwa wyjściowa składa
Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory
Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory Dr Anna ADRIAN Paw B5, pok 407 adrian@tempus.metal.agh.edu.pl
Elementy modelowania matematycznego
Elementy modelowania matematycznego Modelowanie algorytmów klasyfikujących. Podejście probabilistyczne. Naiwny klasyfikator bayesowski. Modelowanie danych metodą najbliższych sąsiadów. Jakub Wróblewski
Testowanie hipotez statystycznych. Wnioskowanie statystyczne
Testowanie hipotez statystycznych Wnioskowanie statystyczne Hipoteza statystyczna to dowolne przypuszczenie co do rozkładu populacji generalnej (jego postaci funkcyjnej lub wartości parametrów). Hipotezy
METODY STATYSTYCZNE W BIOLOGII
METODY STATYSTYCZNE W BIOLOGII 1. Wykład wstępny 2. Populacje i próby danych 3. Testowanie hipotez i estymacja parametrów 4. Planowanie eksperymentów biologicznych 5. Najczęściej wykorzystywane testy statystyczne
PORÓWNANIE ALGORYTMÓW OPTYMALIZACJI GLOBALNEJ W MODELOWANIU ODWROTNYM PROCESÓW SUSZENIA PRODUKTÓW ROLNICZYCH
Inżynieria Rolnicza 7(125)/2010 PORÓWNANIE ALGORYTMÓW OPTYMALIZACJI GLOBALNEJ W MODELOWANIU ODWROTNYM PROCESÓW SUSZENIA PRODUKTÓW ROLNICZYCH Michał Siatkowski, Jerzy Weres, Sebastian Kujawa Zakład Informatyki
METODY I TECHNOLOGIA SPRAWDZANIA AKTUALNOŚCI MATERIAŁÓW KARTOGRAFICZNYCH NA POTRZEBY POWSZECHNEJ TAKSACJI
Anna Sobieraj Uniwersytet Warmińsko-Mazurski w Olsztynie METODY I TECHNOLOGIA SPRAWDZANIA AKTUALNOŚCI MATERIAŁÓW KARTOGRAFICZNYCH NA POTRZEBY POWSZECHNEJ TAKSACJI XX JUBILEUSZOWA JESIENNA SZKOŁA GEODEZJI
SCHEMAT ROZWIĄZANIA ZADANIA OPTYMALIZACJI PRZY POMOCY ALGORYTMU GENETYCZNEGO
SCHEMAT ROZWIĄZANIA ZADANIA OPTYMALIZACJI PRZY POMOCY ALGORYTMU GENETYCZNEGO. Rzeczywistość (istniejąca lub projektowana).. Model fizyczny. 3. Model matematyczny (optymalizacyjny): a. Zmienne projektowania
Elementy wspo łczesnej teorii inwersji
Elementy wspo łczesnej teorii inwersji Metoda optymalizacyjna (2) W. Debski, 8.01.2015 Liniowy problem odwrotny m est (λ) = m apr + (G T G + λi) 1 G T ( dobs G m apr) +δ d est d o = + λ I ( G T G + λi
na transformacjach PPS-WPG fal podłużnych
NAFTA-GAZ, ROK LXXI, Nr 10 / 2015 DOI: 10.18668/NG2015.10.01 Robert Bartoń Instytut Nafty i Gazu Państwowy Instytut Badawczy Obliczanie inwersji sejsmicznej na azymutalnych transformacjach PPS-WPG fal
ROZWIĄZYWANIE UKŁADÓW RÓWNAŃ NIELINIOWYCH PRZY POMOCY DODATKU SOLVER PROGRAMU MICROSOFT EXCEL. sin x2 (1)
ROZWIĄZYWANIE UKŁADÓW RÓWNAŃ NIELINIOWYCH PRZY POMOCY DODATKU SOLVER PROGRAMU MICROSOFT EXCEL 1. Problem Rozważmy układ dwóch równań z dwiema niewiadomymi (x 1, x 2 ): 1 x1 sin x2 x2 cos x1 (1) Nie jest
9.9 Algorytmy przeglądu
14 9. PODSTAWOWE PROBLEMY JEDNOMASZYNOWE 9.9 Algorytmy przeglądu Metody przeglądu dla problemu 1 r j,q j C max były analizowane między innymi w pracach 25, 51, 129, 238. Jak dotychczas najbardziej elegancka
Programowanie i techniki algorytmiczne
Temat 2. Programowanie i techniki algorytmiczne Realizacja podstawy programowej 1) wyjaśnia pojęcie algorytmu, podaje odpowiednie przykłady algorytmów rozwiązywania różnych 2) formułuje ścisły opis prostej
WYKORZYSTANIE ATRYBUTÓW SEJSMICZNYCH DO BADANIA PŁYTKICH ZŁÓŻ
Mgr inż. Joanna Lędzka kademia Górniczo Hutnicza, Wydział Geologii, Geofizyki i Ochrony Środowiska, Zakład Geofizyki, l. Mickiewicza 3, 3-59 Kraków. WYKORZYSTNIE TRYUTÓW SEJSMICZNYCH DO DNI PŁYTKICH ZŁÓŻ
WPŁYW SZYBKOŚCI STYGNIĘCIA NA WŁASNOŚCI TERMOFIZYCZNE STALIWA W STANIE STAŁYM
2/1 Archives of Foundry, Year 200, Volume, 1 Archiwum Odlewnictwa, Rok 200, Rocznik, Nr 1 PAN Katowice PL ISSN 1642-308 WPŁYW SZYBKOŚCI STYGNIĘCIA NA WŁASNOŚCI TERMOFIZYCZNE STALIWA W STANIE STAŁYM D.
SIGMA KWADRAT. Weryfikacja hipotez statystycznych. Statystyka i demografia CZWARTY LUBELSKI KONKURS STATYSTYCZNO-DEMOGRAFICZNY
SIGMA KWADRAT CZWARTY LUBELSKI KONKURS STATYSTYCZNO-DEMOGRAFICZNY Weryfikacja hipotez statystycznych Statystyka i demografia PROJEKT DOFINANSOWANY ZE ŚRODKÓW NARODOWEGO BANKU POLSKIEGO URZĄD STATYSTYCZNY
Rentgenowska mikrotomografia komputerowa w badaniu skał węglanowych
NAFTA-GAZ czerwiec 2010 ROK LXVI Jadwiga Zalewska, Grażyna Łykowska, Jan Kaczmarczyk Instytut Nafty i Gazu, Kraków Rentgenowska mikrotomografia komputerowa w badaniu skał węglanowych Wstęp W artykule przedstawiono
Summary in Polish. Fatimah Mohammed Furaiji. Application of Multi-Agent Based Simulation in Consumer Behaviour Modeling
Summary in Polish Fatimah Mohammed Furaiji Application of Multi-Agent Based Simulation in Consumer Behaviour Modeling Zastosowanie symulacji wieloagentowej w modelowaniu zachowania konsumentów Streszczenie
Wojciech Janecki. Geosoft sp. z o.o. Wrocław
Wojciech Janecki Geosoft sp. z o.o. Wrocław www.geosoft.com.pl Rok założenia - 1989 Zakres działalności: Badania i ekspertyzy geotechniczne Oprogramowanie geotechniczne i geologiczne Analizy CPTU i SCPT
Temat 20. Techniki algorytmiczne
Realizacja podstawy programowej 5. 1) wyjaśnia pojęcie algorytmu, podaje odpowiednie przykłady algorytmów rozwiązywania różnych problemów; 2) formułuje ścisły opis prostej sytuacji problemowej, analizuje
Schemat programowania dynamicznego (ang. dynamic programming)
Schemat programowania dynamicznego (ang. dynamic programming) Jest jedną z metod rozwiązywania problemów optymalizacyjnych. Jej twórcą (1957) był amerykański matematyk Richard Ernest Bellman. Schemat ten
Rola stacji gazowych w ograniczaniu strat gazu w sieciach dystrybucyjnych
Rola stacji gazowych w ograniczaniu strat gazu w sieciach dystrybucyjnych Politechnika Warszawska Zakład Systemów Ciepłowniczych i Gazowniczych Prof. dr hab. inż. Andrzej J. Osiadacz Dr hab. inż. Maciej
Automatyczne tworzenie trójwymiarowego planu pomieszczenia z zastosowaniem metod stereowizyjnych
Automatyczne tworzenie trójwymiarowego planu pomieszczenia z zastosowaniem metod stereowizyjnych autor: Robert Drab opiekun naukowy: dr inż. Paweł Rotter 1. Wstęp Zagadnienie generowania trójwymiarowego
Wymagania edukacyjne z matematyki klasa IV technikum
Wymagania edukacyjne z matematyki klasa IV technikum Poziom rozszerzony Obowiązują wymagania z zakresu podstawowego oraz dodatkowo: FUNKCJE TRYGONOMETRYCZNE zaznacza kąt w układzie współrzędnych, wskazuje
OPTYMALIZACJA HARMONOGRAMOWANIA MONTAŻU SAMOCHODÓW Z ZASTOSOWANIEM PROGRAMOWANIA W LOGICE Z OGRANICZENIAMI
Autoreferat do rozprawy doktorskiej OPTYMALIZACJA HARMONOGRAMOWANIA MONTAŻU SAMOCHODÓW Z ZASTOSOWANIEM PROGRAMOWANIA W LOGICE Z OGRANICZENIAMI Michał Mazur Gliwice 2016 1 2 Montaż samochodów na linii w
Z52: Algebra liniowa Zagadnienie: Zastosowania algebry liniowej Zadanie: Operatory różniczkowania, zagadnienie brzegowe.
Z5: Algebra liniowa Zagadnienie: Zastosowania algebry liniowej Zadanie: Operatory różniczkowania zagadnienie brzegowe Dyskretne operatory różniczkowania Numeryczne obliczanie pochodnych oraz rozwiązywanie
Dokumentowanie warunków geologiczno-inżynierskich w rejonie osuwisk w świetle wymagań Eurokodu 7
Ogólnopolska Konferencja Osuwiskowa O!SUWISKO Wieliczka, 19-22 maja 2015 r. Dokumentowanie warunków geologiczno-inżynierskich w rejonie osuwisk w świetle wymagań Eurokodu 7 Edyta Majer Grzegorz Ryżyński
Funkcje dwóch zmiennych
Funkcje dwóch zmiennych Andrzej Musielak Str Funkcje dwóch zmiennych Wstęp Funkcja rzeczywista dwóch zmiennych to funkcja, której argumentem jest para liczb rzeczywistych, a wartością liczba rzeczywista.
MODELOWANIE TRAJEKTORII PROMIENI I CZASÓW PRZEBIEGU FAL ODBITYCH PP, SS I PS DLA DYSKRETNEGO OŒRODKA POPRZECZNIE IZOTROPOWEGO Z NACHYLON OSI SYMETRII
GEOLOGIA 9 Tom 35 Zeszyt /1 387 39 MODELOWANIE TRAJEKTORII PROMIENI I CZASÓW PRZEBIEGU FAL ODBITYCH PP, SS I PS DLA DYSKRETNEGO OŒRODKA POPRZECZNIE IZOTROPOWEGO Z NACHYLON OSI SYMETRII The modeling of
DETEKCJA FAL UDERZENIOWYCH W UKŁADACH ŁOPATKOWYCH CZĘŚCI NISKOPRĘŻNYCH TURBIN PAROWYCH
Mgr inż. Anna GRZYMKOWSKA Politechnika Gdańska Wydział Oceanotechniki i Okrętownictwa DOI: 10.17814/mechanik.2015.7.236 DETEKCJA FAL UDERZENIOWYCH W UKŁADACH ŁOPATKOWYCH CZĘŚCI NISKOPRĘŻNYCH TURBIN PAROWYCH
Węglowego. Title: Pasywna tomografia sejsmiczna obszaru Górnośląskiego Zagłębia. Author: Wojciech Dębski, Łukasz Rudziński
Title: Pasywna tomografia sejsmiczna obszaru Górnośląskiego Zagłębia Węglowego Author: Wojciech Dębski, Łukasz Rudziński Citation style: Dębski Wojciech, Rudziński Łukasz. (21). Pasywna tomografia sejsmiczna
Gospodarcze zastosowania algorytmów genetycznych
Marta Woźniak Gospodarcze zastosowania algorytmów genetycznych 1. Wstęp Ekonometria jako nauka zajmująca się ustalaniem za pomocą metod statystycznych ilościowych prawidłowości zachodzących w życiu gospodarczym
WYKŁAD 9 METODY ZMIENNEJ METRYKI
WYKŁAD 9 METODY ZMIENNEJ METRYKI Kierunki sprzężone. Metoda Newtona Raphsona daje dobre przybliżenie najlepszego kierunku poszukiwań, lecz jest to okupione znacznym kosztem obliczeniowym zwykle postać
Metody numeryczne. materiały do wykładu dla studentów. 7. Całkowanie numeryczne
Metody numeryczne materiały do wykładu dla studentów 7. Całkowanie numeryczne 7.1. Całkowanie numeryczne 7.2. Metoda trapezów 7.3. Metoda Simpsona 7.4. Metoda 3/8 Newtona 7.5. Ogólna postać wzorów kwadratur
1 Równania nieliniowe
1 Równania nieliniowe 1.1 Postać ogólna równania nieliniowego Często występującym, ważnym problemem obliczeniowym jest numeryczne poszukiwanie rozwiązań równań nieliniowych, np. algebraicznych (wielomiany),
Wprowadzenie Metoda bisekcji Metoda regula falsi Metoda siecznych Metoda stycznych RÓWNANIA NIELINIOWE
Transport, studia niestacjonarne I stopnia, semestr I Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Ewa Pabisek Adam Wosatko Postać ogólna równania nieliniowego Zazwyczaj nie można znaleźć
Zastosowanie prędkości interwałowych PPS do modelowania ośrodka geologicznego
NAFTA-GAZ, ROK LXXII, Nr 3 / 2016 DOI: 10.18668/NG.2016.03.01 Robert Bartoń Instytut Nafty i Gazu Państwowy Instytut Badawczy Zastosowanie prędkości interwałowych PPS do modelowania ośrodka geologicznego
Statystyka matematyczna dla leśników
Statystyka matematyczna dla leśników Wydział Leśny Kierunek leśnictwo Studia Stacjonarne I Stopnia Rok akademicki 03/04 Wykład 5 Testy statystyczne Ogólne zasady testowania hipotez statystycznych, rodzaje
Modelowanie jako sposób opisu rzeczywistości. Katedra Mikroelektroniki i Technik Informatycznych Politechnika Łódzka
Modelowanie jako sposób opisu rzeczywistości Katedra Mikroelektroniki i Technik Informatycznych Politechnika Łódzka 2015 Wprowadzenie: Modelowanie i symulacja PROBLEM: Podstawowy problem z opisem otaczającej
NAPRĘŻENIA ŚCISKAJĄCE PRZY 10% ODKSZTAŁCENIU WZGLĘDNYM PRÓBEK NORMOWYCH POBRANYCH Z PŁYT EPS O RÓŻNEJ GRUBOŚCI
PRACE INSTYTUTU TECHNIKI BUDOWLANEJ - KWARTALNIK 1 (145) 2008 BUILDING RESEARCH INSTITUTE - QUARTERLY No 1 (145) 2008 Zbigniew Owczarek* NAPRĘŻENIA ŚCISKAJĄCE PRZY 10% ODKSZTAŁCENIU WZGLĘDNYM PRÓBEK NORMOWYCH
WPŁYW METODY DOPASOWANIA NA WYNIKI POMIARÓW PIÓRA ŁOPATKI INFLUENCE OF BEST-FIT METHOD ON RESULTS OF COORDINATE MEASUREMENTS OF TURBINE BLADE
Dr hab. inż. Andrzej Kawalec, e-mail: ak@prz.edu.pl Dr inż. Marek Magdziak, e-mail: marekm@prz.edu.pl Politechnika Rzeszowska Wydział Budowy Maszyn i Lotnictwa Katedra Technik Wytwarzania i Automatyzacji
Obliczenia iteracyjne
Lekcja Strona z Obliczenia iteracyjne Zmienne iteracyjne (wyliczeniowe) Obliczenia iteracyjne wymagają zdefiniowania specjalnej zmiennej nazywanej iteracyjną lub wyliczeniową. Zmienną iteracyjną od zwykłej
LABORATORIUM 8 WERYFIKACJA HIPOTEZ STATYSTYCZNYCH PARAMETRYCZNE TESTY ISTOTNOŚCI
LABORATORIUM 8 WERYFIKACJA HIPOTEZ STATYSTYCZNYCH PARAMETRYCZNE TESTY ISTOTNOŚCI WERYFIKACJA HIPOTEZ Hipoteza statystyczna jakiekolwiek przypuszczenie dotyczące populacji generalnej- jej poszczególnych
Budowa sztucznych sieci neuronowych do prognozowania. Przykład jednostek uczestnictwa otwartego funduszu inwestycyjnego
Budowa sztucznych sieci neuronowych do prognozowania. Przykład jednostek uczestnictwa otwartego funduszu inwestycyjnego Dorota Witkowska Szkoła Główna Gospodarstwa Wiejskiego w Warszawie Wprowadzenie Sztuczne
Zastosowanie modelu Xu-White do określania prędkości propagacji fal podłużnych i poprzecznych, na przykładzie skał czerwonego spągowca
NAFTA-GAZ luty 2011 ROK LXVII Irena Gąsior Instytut Nafty i Gazu, Kraków Zastosowanie modelu Xu-White do określania prędkości propagacji fal podłużnych i poprzecznych, na przykładzie skał czerwonego spągowca
Plan. Zakres badań teorii optymalizacji. Teoria optymalizacji. Teoria optymalizacji a badania operacyjne. Badania operacyjne i teoria optymalizacji
Badania operacyjne i teoria optymalizacji Instytut Informatyki Poznań, 2011/2012 1 2 3 Teoria optymalizacji Teoria optymalizacji a badania operacyjne Teoria optymalizacji zajmuje się badaniem metod optymalizacji
PRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: PODSTAWY MODELOWANIA PROCESÓW WYTWARZANIA Fundamentals of manufacturing processes modeling Kierunek: Mechanika i Budowa Maszyn Rodzaj przedmiotu: obowiązkowy na specjalności APWiR Rodzaj
ZADANIA OPTYMALIZCJI BEZ OGRANICZEŃ
ZADANIA OPTYMALIZCJI BEZ OGRANICZEŃ Maciej Patan Uniwersytet Zielonogórski WSTEP Zadanie minimalizacji bez ograniczeń f(ˆx) = min x R nf(x) f : R n R funkcja ograniczona z dołu Algorytm rozwiazywania Rekurencyjny
Matematyka stosowana i metody numeryczne
Ewa Pabisek Adam Wosatko Piotr Pluciński Matematyka stosowana i metody numeryczne Konspekt z wykładu 6 Rozwiązywanie równań nieliniowych Rozwiązaniem lub pierwiastkiem równania f(x) = 0 lub g(x) = h(x)
Kombinacja jądrowych estymatorów gęstości w klasyfikacji wstępne wyniki
Kombinacja jądrowych estymatorów gęstości w klasyfikacji wstępne wyniki Mateusz Kobos, 10.12.2008 Seminarium Metody Inteligencji Obliczeniowej 1/46 Spis treści Działanie algorytmu Uczenie Odtwarzanie/klasyfikacja
Wyznaczanie prędkości dźwięku w powietrzu
Imię i Nazwisko... Wyznaczanie prędkości dźwięku w powietrzu Opracowanie: Piotr Wróbel 1. Cel ćwiczenia. Celem ćwiczenia jest wyznaczenie prędkości dźwięku w powietrzu, metodą różnicy czasu przelotu. Drgania
CHARAKTERYSTYKA I ZASTOSOWANIA ALGORYTMÓW OPTYMALIZACJI ROZMYTEJ. E. ZIÓŁKOWSKI 1 Wydział Odlewnictwa AGH, ul. Reymonta 23, Kraków
36/3 Archives of Foundry, Year 004, Volume 4, 3 Archiwum Odlewnictwa, Rok 004, Rocznik 4, Nr 3 PAN Katowice PL ISSN 64-5308 CHARAKTERYSTYKA I ZASTOSOWANIA ALGORYTMÓW OPTYMALIZACJI ROZMYTEJ E. ZIÓŁKOWSKI
Recenzja w sprawie postępowania o nadanie stopnia doktora habilitowanego dr inż. Tomaszowi Dankowi
prof. dr hab. inż. Andrzej Kostecki Kraków, 22. 04.2014 Instytut Nafty i Gazu - Państwowy Instytut Badawczy Kraków, ul. Lubicz 25a kostecki@inig.pl Recenzja w sprawie postępowania o nadanie stopnia doktora
1 Metody rozwiązywania równań nieliniowych. Postawienie problemu
1 Metody rozwiązywania równań nieliniowych. Postawienie problemu Dla danej funkcji ciągłej f znaleźć wartości x, dla których f(x) = 0. (1) 2 Przedział izolacji pierwiastka Będziemy zakładać, że równanie
Monte Carlo, bootstrap, jacknife
Monte Carlo, bootstrap, jacknife Literatura Bruce Hansen (2012 +) Econometrics, ze strony internetowej: http://www.ssc.wisc.edu/~bhansen/econometrics/ Monte Carlo: rozdział 8.8, 8.9 Bootstrap: rozdział
OSTASZEWSKI Paweł (55566) PAWLICKI Piotr (55567) Algorytmy i Struktury Danych PIŁA
OSTASZEWSKI Paweł (55566) PAWLICKI Piotr (55567) 16.01.2003 Algorytmy i Struktury Danych PIŁA ALGORYTMY ZACHŁANNE czas [ms] Porównanie Algorytmów Rozwiązyjących problem TSP 100 000 000 000,000 10 000 000
PROGNOZOWANIE CENY OGÓRKA SZKLARNIOWEGO ZA POMOCĄ SIECI NEURONOWYCH
InŜynieria Rolnicza 14/2005 Sławomir Francik Katedra InŜynierii Mechanicznej i Agrofizyki Akademia Rolnicza w Krakowie PROGNOZOWANIE CENY OGÓRKA SZKLARNIOWEGO ZA POMOCĄ SIECI NEURONOWYCH Streszczenie W