FIZYKA 2. Janusz Andrzejewski

Podobne dokumenty
FIZYKA 2. Janusz Andrzejewski

Dielektryki polaryzację dielektryka Dipole trwałe Dipole indukowane Polaryzacja kryształów jonowych

Wykład FIZYKA II. 2. Prąd elektryczny. Dr hab. inż. Władysław Artur Woźniak

Czym jest prąd elektryczny

Podstawy fizyki sezon 2 3. Prąd elektryczny

Podstawy fizyki wykład 8

Prąd elektryczny - przepływ ładunku

Ładunek elektryczny. Ładunek elektryczny jedna z własności cząstek elementarnych

Materiały pomocnicze 10 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej

Prąd elektryczny 1/37

Podstawy fizyki sezon 2 3. Prąd elektryczny

STAŁY PRĄD ELEKTRYCZNY

1 K A T E D R A F I ZYKI S T O S O W AN E J

ELEKTRONIKA ELM001551W

średnia droga swobodna L

Przepływ prądu przez przewodnik. jest opisane przez natężenie prądu. Przez przewodnik nie płynie prąd.

Podstawowe własności elektrostatyczne przewodników: Pole E na zewnątrz przewodnika jest prostopadłe do jego powierzchni

Q t lub precyzyjniej w postaci różniczkowej. dq dt Jednostką natężenia prądu jest amper oznaczany przez A.

Fizyka 2 Wróbel Wojciech. w poprzednim odcinku

Strumień pola elektrycznego

Natężenie prądu elektrycznego

Wykład 8 ELEKTROMAGNETYZM

Elektrostatyka ŁADUNEK. Ładunek elektryczny. Dr PPotera wyklady fizyka dosw st podypl. n p. Cząstka α

Prądem elektrycznym nazywamy uporządkowany ruch cząsteczek naładowanych.

Fizyka 2 Wróbel Wojciech. w poprzednim odcinku

PRĄD STAŁY. Prąd elektryczny to uporządkowany ruch ładunków wewnątrz przewodnika pod wpływem przyłożonego pola elektrycznego.

Obwód składający się z baterii (źródła siły elektromotorycznej ) oraz opornika. r opór wewnętrzny baterii R- opór opornika

Pojemność elektryczna. Pojemność elektryczna, Kondensatory Energia elektryczna

Rozdział 2. Prąd elektryczny

WŁAŚCIWOŚCI IDEALNEGO PRZEWODNIKA

Pojemność elektryczna, Kondensatory Energia elektryczna

Podstawy fizyki sezon 2 2. Elektrostatyka 2

Podstawy elektrotechniki V1. Na potrzeby wykładu z Projektowania systemów pomiarowych

znak minus wynika z faktu, że wektor F jest zwrócony

Wykład Pole elektryczne na powierzchniach granicznych 8.10 Gęstość energii pola elektrycznego

Powtórzenie wiadomości z klasy II. Przepływ prądu elektrycznego. Obliczenia.

RÓWNANIA MAXWELLA. Czy pole magnetyczne może stać się źródłem pola elektrycznego? Czy pole elektryczne może stać się źródłem pola magnetycznego?

Wykład 4 i 5 Prawo Gaussa i pole elektryczne w materii. Pojemność.

Człowiek najlepsza inwestycja

Podstawy Elektrotechniki i Elektroniki. Opracował: Mgr inż. Marek Staude

Ładunki elektryczne. q = ne. Zasada zachowania ładunku. Ładunek jest cechąciała i nie można go wydzielićz materii. Ładunki jednoimienne odpychają się

E1. OBWODY PRĄDU STAŁEGO WYZNACZANIE OPORU PRZEWODNIKÓW I SIŁY ELEKTROMOTORYCZNEJ ŹRÓDŁA

pobrano z serwisu Fizyka Dla Każdego - - zadania fizyka, wzory fizyka, matura fizyka

Prąd elektryczny stały

Wykład 18 Dielektryk w polu elektrycznym

Wykład 15: Indukcja. Dr inż. Zbigniew Szklarski. Katedra Elektroniki, paw. C-1, pok

Wymiana ciepła. Ładunek jest skwantowany. q=n. e gdzie n = ±1, ±2, ±3 [1C = 6, e] e=1, C

Wykład 14: Indukcja cz.2.

Pole przepływowe prądu stałego

2 K A T E D R A F I ZYKI S T O S O W AN E J

Elektryczność i Magnetyzm

Dielektryki. właściwości makroskopowe. Ryszard J. Barczyński, 2016 Materiały dydaktyczne do użytku wewnętrznego

POLE ELEKTRYCZNE PRAWO COULOMBA

WYDZIAŁ.. LABORATORIUM FIZYCZNE

Źródła siły elektromotorycznej = pompy prądu

KONKURS FIZYCZNY CZĘŚĆ 3. Opracowanie Agnieszka Janusz-Szczytyńska

Badanie transformatora

Pracownia Automatyki i Elektrotechniki Katedry Tworzyw Drzewnych Ćwiczenie 1. Połączenia szeregowe oraz równoległe elementów RC

Śr 3 paźdz L5 T4: Prawo łączenia oporów elektrycznych. Praca prądu elektrycznego.

Wykład FIZYKA II. 1. Elektrostatyka. Dr hab. inż. Władysław Artur Woźniak

Badanie własności hallotronu, wyznaczenie stałej Halla (E2)

Efekt Halla. Cel ćwiczenia. Wstęp. Celem ćwiczenia jest zbadanie efektu Halla. Siła Loretza

Lekcja 40. Obraz graficzny pola elektrycznego.

Rozkład materiału i wymagania edukacyjne na poszczególne oceny z fizyki i astronomii dla klasy II TE, IITI, II TM w roku szkolnym 2012/2013

ĆWICZENIE 31 MOSTEK WHEATSTONE A

Prąd elektryczny. Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

KRYTERIA OCEN Z FIZYKI DLA KLASY II GIMNAZJUM. ENERGIA I. NIEDOSTATECZNY - Uczeń nie opanował wiedzy i umiejętności niezbędnych w dalszej nauce.

Wykład 1 Technologie na urządzenia mobilne. Wojciech Świtała

Ładunki puszczamy w ruch. Wykład 12

Pracownia fizyczna i elektroniczna. Wykład lutego Krzysztof Korona

Obwodem elektrycznym nazywamy zespół połączonych ze sobą elementów, umożliwiający zamknięty obieg prądu.

Badanie transformatora

Podstawy Elektroniki i Elektrotechniki

Badanie rozkładu pola elektrycznego

Wyznaczanie wielkości oporu elektrycznego różnymi metodami

średnia droga swobodna L

Zespół Szkół Technicznych im. J. i J. Śniadeckich w Grudziądzu

Wykład 14: Indukcja. Dr inż. Zbigniew Szklarski. Katedra Elektroniki, paw. C-1, pok

Badanie rozkładu pola elektrycznego

LI OLIMPIADA FIZYCZNA ETAP II Zadanie doświadczalne

ĆWICZENIE 66 BADANIE SPRAWNOŚCI GRZEJNIKA ELEKTRYCZNEGO

SPRAWDZENIE PRAWA OHMA POMIAR REZYSTANCJI METODĄ TECHNICZNĄ

Wykład FIZYKA II. 1. Elektrostatyka

Różne dziwne przewodniki

21 ELEKTROSTATYKA. KONDENSATORY

Indukcja elektromagnetyczna. Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

Plan Zajęć. Ćwiczenia rachunkowe

Wykład FIZYKA II. 4. Indukcja elektromagnetyczna. Dr hab. inż. Władysław Artur Woźniak

POWTÓRKA PRZED KONKURSEM CZĘŚĆ 14 ZADANIA ZAMKNIĘTE

Podstawy fizyki sezon 2 2. Elektrostatyka 2

Fizyka współczesna. Zmienne pole magnetyczne a prąd. Zjawisko indukcji elektromagnetycznej Powstawanie prądu w wyniku zmian pola magnetycznego

Kolokwium 2. Środa 14 czerwca. Zasady takie jak na pierwszym kolokwium

Ładunki puszczamy w ruch. Wykład 12

Elektrostatyczna energia potencjalna U

Ładunki elektryczne i siły ich wzajemnego oddziaływania. Pole elektryczne. Copyright by pleciuga@ o2.pl

Pole magnetyczne. Magnes wytwarza wektorowe pole magnetyczne we wszystkich punktach otaczającego go przestrzeni.

Wyznaczanie krzywej ładowania kondensatora

Ile wynosi całkowite natężenie prądu i całkowita oporność przy połączeniu równoległym?

Transkrypt:

FIZYKA 2 wykład 3 Janusz Andrzejewski

Prąd elektryczny Prąd elektryczny to uporządkowany ruch swobodnych ładunków. Ruchowi chaotycznemu nie towarzyszy przepływ prądu. Strzałki szare - to nieuporządkowany(chaotyczny) ruch cieplny Strzałki czerwone uporządkowany ruch elektronów w polu elektrostatycznym Janusz Andrzejewski 2

Prąd elektryczny Prąd elektryczny wypadkowy przepływ ładunków. Natężenie prądu w przewodniku jest to ładunek q przechodzący cy przez powierzchnię przekroju przewodnika w czasie t. I = q/t Jeżeli szybkość przepływu ładunku nie jest stała, prąd zmienia się w czasie i jest dany jako: I = dq/dt Jednostką natężenia prądu jest amper. 1A = 1 C/s Janusz Andrzejewski 3

Kierunek prądu elektrycznego Kierunek przepływu prądu elektrycznego oznaczamy jako kierunek, w którym poruszałyby się dodatnio naładowane nośniki, nawet jeśli rzeczywiste nośniki są ujemne i poruszają się w przeciwnych kierunkach. Półprzewodniki nośnikami są elektrony i dziury (nośniki dodatnie) Ciecze i gazy -elektrony oraz jony dodatnie (kationy) i jony ujemne (aniony). Janusz Andrzejewski 4

Gęstość prądu elektrycznego Do zmiennego przekroju przewodnika możemy zastosować pojęcie gęstości prądu elektrycznego. Gęstość prądu elektrycznego definiowana jest jako natężenie prądu na jednostkę powierzchni przekroju poprzecznego przewodnika j = I/S j gęstość prądu I natężenie prądu S pole powierzchni Gęstość prądu można przedstawić Gęstość prądu jest wektorem. Jego w postaci linii prądu. długość określa powyższy wzór, a kierunek i zwrot są zgodne z wektorem prędkości Janusz Andrzejewski 5 ładunków dodatnich.

Prędkość unoszenia Gdy przez przewodnik płynie prąd elektryczny, elektrony poruszają się przypadkowo z prędkością v el, a jednocześnie przemieszczają się z prędkością dryfu (lub prędkością unoszenia) v d, w kierunku przeciwnym do pola elektrycznego. v el = 10 6 m/s v d = 10-5 m/s Janusz Andrzejewski 6

Prędkość unoszenia Jeżeli n jest koncentracją elektronów to ilość ładunku Q jaka przepływa przez przewodnik o długości l i przekroju poprzecznym S w czasie t = l/v d wynosi: Q = nlse Q nlse I = = = t l v d nsev d j = I S = nev d = ρv d ρ-gęstość ładunku w przewodniku Janusz Andrzejewski 7

Prawo Ohma Stosunek napięcia przyłożonego do przewodnika do natężenia prądu przepływającego przez ten przewodnik jest stały i nie zależy ani od napięcia ani od natężenia prądu. R = U/I (definicja oporu) U = IR I = U/R Jednostką oporu jest om. 1Ω = 1 V/A Opór mówi nam, jak bardzo dane ciało przeciwstawia się ruchowi elektronów. Janusz Andrzejewski 8

Opór właściwy Opór elektryczny jest własnością ciała, opór elektryczny właściwy jest własnością materiału. ρ = E/j (definicja oporu właściwego) Janusz Andrzejewski 9

Opór i opór właściwy Szukamy oporu jednorodnego przewodnika o długości L, stałym przekroju poprzecznym S i oporności właściwej ρ: Ε= U/L (V konc V pocz = -Ed) j = I/S ρ = E/J (gęstość prądu) (oporność właściwa) ρ = E/J = (U/L )/(I/S) = (U/I)/(L/S) = R/(L/S) R = ρ(l/s) Stałą ρ, charakteryzującą elektryczne własności materiału, nazywamy oporem właściwym (rezystywnością), a jej odwrotność σ = 1/ρ przewodnością właściwą Janusz Andrzejewski 10

r j Prawo Ohma r = σe σ =1/ Jest to inna, wektorowalubmikroskopowa, postać prawa Ohma ρ Janusz Andrzejewski 11

Zależność od temperatury Rozszerzalność cieplna: L L 0 = αl 0 (T T 0 ) α współczynnik rozszerzalności liniowej Opór właściwy również wykazuje zależność od temperatury: ρ ρ 0 = α ρ 0 (T T 0 ) α współczynnik temperaturowy oporu właściwego T 0 temperatura odniesienia ρ 0 opór właściwy w tej temperaturze Janusz Andrzejewski 12

Prawo Ohma Prawo Ohma: natężenie prądu, płynącego przez przewodnik jest zawsze proporcjonalne do różnicy potencjałów przyłożonej do przewodnika. Uwaga: wzór R = U/I nie wyraża prawa Ohma. Jest wyłącznie definicją oporu. Istotą prawa Ohma jest liniowość zależności U od I. 13 Janusz Andrzejewski

Moc w obwodach elektrycznych Różnica potencjałów między a i b wynosi U. W obwodzie płynie prąd I. Zmiana energii potencjalnej: de p = dqu Ładunek dq przeniesiony między a i b w przedziale czasu dt wynosi Idt. Przejściu z a do b towarzyszy spadek potencjału, a wiec i spadek energii potencjalnej. Ilość energii przekazanej ze źródła na jednostkę czasu: P = de p /dt = (dq/dt)u = IU (moc) Janusz Andrzejewski 14

Moc wydzielana na oporniku Gdy w obwodzie występuje opór R, energia przekazana ze źródła do ciała wynosi: P = I 2 R P = U 2 /R Przekazana energia ulega zamianie na energię termiczną. Janusz Andrzejewski 15

SIŁA ELEKTROMOTORYCZNA Aby wytworzyć stały przepływładunku elektrycznego przez obwód musimy dysponować urządzeniem, które wykonując pracę nad nośnikami ładunku, utrzymuje stałą różnicę potencjałów. Urządzenie takie nazywamy źródłem siły elektromotorycznej(źródłem SEM). Siła elektromotoryczna ε określa energię elektryczną ΔWprzekazywaną jednostkowemu ładunkowi Δq ε = W q Miarą SEM jest różnica potencjałów (napięcie) na biegunach źródła prądu w warunkach, kiedy przez ogniwo nie płynie prąd (ogniwo otwarte) Janusz Andrzejewski 16

Siła elektromotoryczna Źródło SEM wykonuje prace nad ładunkami i wymusza ich ruch z bieguna o mniejszym potencjale do bieguna o większym potencjale. W źródle SEM musi istnieć pewne źródło energii, którego kosztem jest wykonywana praca. Definicja SEM (ponownie): ε = dw dq (praca na jednostkę ładunku). a) obwód elektryczny i b) jego grawitacyjny odpowiednik Jednostką SEM jest 1 J/C = 1 V Janusz Andrzejewski 17

Przykłady: bateria elektryczna prądnica ogniwo paliwowe bateria słoneczna Janusz Andrzejewski 18

SEM Natomiast gdy czerpiemy prąd ze źródła to napięcie między jego elektrodami, nazywane teraz napięciem zasilania U z, maleje wraz ze wzrostem pobieranego z niego prądu. Dzieje się tak dlatego, że każde rzeczywiste źródło napięcia posiada opór wewnętrzny R w. Napięcie zasilania jest mniejsze od SEM właśnie o spadek potencjału na oporze wewnętrznym U = ε IR Z IR W Janusz Andrzejewski 19

PRAWA KIRCHHOFFA Pierwsze prawo Kirchhoffa: Twierdzenie o punkcie rozgałęzienia. Algebraiczna suma natężeń prądów przepływających przez punkt rozgałęzienia (węzeł) jest równa zeru. n k = 1 I k = Drugie prawo Kirchhoffa: Twierdzenie o obwodzie zamkniętym. Algebraiczna suma sił elektromotorycznych i przyrostów napięć w dowolnym obwodzie zamkniętym jest równa zeru (spadek napięcia jest przyrostem ujemnym napięcia). n m k k = 1 k = 1 0 ε + I k Twierdzenie o obwodzie zamkniętym jest wynikiem zasady zachowania energii, a twierdzenie o punkcie rozgałęzienia wynika z zasady zachowania ładunku. R k = 0 Janusz Andrzejewski 20

Przykład ε 2 = I 2R2 + I3R1 ε 1 = I3R1 I 1 + I2 I3 = 0 + - + - Janusz Andrzejewski 21

Amperomierz i woltomierz Amperomierz (A) przyrząd do pomiaru natężenia prądu. Opór wewnętrzny amperomierza powinien być mały w porównaniu z oporami w obwodzie. W przeciwnym razie obecność miernika zmieni natężenie prądu, które mierzymy. Woltomierz (V) przyrząd do pomiaru różnicy potencjałów. Opór wewnętrzny woltomierza powinien być duży w porównaniu z oporami w obwodzie. W przeciwnym razie obecność miernika zmieni różnicę potencjałów, którą mierzymy. multimetr cyfrowy Janusz Andrzejewski 22

Pojemność i opór elektryczny?? Janusz Andrzejewski 23

Kondensator Kondensator (najczęściej) składa się z dwóch okładek wykonanych z przewodnika. Okładki mogą gromadzić ładunki. Janusz Andrzejewski 24

Kondensator płaski Pojemność elektryczna Gdy kondensator jest naładowany, jego okładki mają ładunki +q i q. Okładki są powierzchniami ekwipotencjalnymi. Różnicę potencjałów ΔV oznaczamy U (napięcie). Ładunek q i napięcie U spełniają zależność: q = CU Stałą C nazywamy pojemnością kondensatora. Jednostką pojemności jest farad (F): 1 F = 1 C/V Pojemnością elektryczną nazywamy stosunek ładunku kondensatora do różnicy potencjałów (napięcia) między okładkami. q C = = V q U Janusz Andrzejewski 25

Pojemność kondensatora płaskiego q = ε 0 ES U = Ed q = CU CU = ε 0 ES C Ed = ε 0 ES Pojemność kondensatora płaskiego: C = ε 0 S/d Janusz Andrzejewski 26

Kondensator walcowy Kondensatory C = 2πε 0 l/ln(r b /R a ) Izolowana kula C = 4πε 0 R Pojemnością elektryczną przewodnika nazywamy stosunek ładunku umieszczonego na przewodniku do potencjału jaki ma ten przewodnik w polu elektrycznym wytworzonym przez ten ładunek. Janusz Andrzejewski 27

Ładowanie kondensatora Obwód elektryczny zawierający baterię (B), kondensator (C) i klucz (S). Gdy obwód zostanie zamknięty, pole elektryczne wytworzone w przewodach przez źródło przesuwa elektrony w obwodzie. Elektrony z okładki h są przyciągane do dodatniego bieguna źródła i okładka ładuje się dodatnio. Na okładkę l trafia tyle samo elektronów z ujemnego bieguna źródła. Po naładowaniu, różnica potencjałów pomiędzy okładkami jest równa różnicy potencjałów pomiędzy biegunami źródła. Janusz Andrzejewski 28

Kondensatory połączone równolegle q 1 = C 1 U q 2 = C 2 U q 3 = C 3 U q = q 1 + q 2 + q 3 = (C 1 + C 2 + C 3 )U C rw = q/u = C 1 + C 2 + C 3 = Kondensatory połączone równolegle możemy zastąpić równoważnym nym kondensatorem o takim samym całkowitym ładunku q i takiej samej różnicy potencjałów U, jak dla kondensatorów układu. n C rw = C n j= 1 (n kondensatorów połączonych równolegle) 29 Janusz Andrzejewski

Kondensatory połączone szeregowo = Kondensatory połączone szeregowo możemy zastąpić równoważnym o takim samym ładunku q i takiej samej całkowitej różnicy potencjałów U, jak dla kondensatorów układu. U 1 = q/c 1 U 2 = q/c 2 U 3 = q/c 3 U = U 1 + U 2 + U 3 = q (1/C 1 + 1/C 2 + 1/C 3 ) 1/C rw = U/q = 1/C 1 + 1/C 2 + 1/C 3 1 = n Crw j= 1 1 C n (n kondensatorów połączonych szeregowo) Janusz Andrzejewski 30

Energia zmagazynowana w polu elektrycznym Kondensatory mogą służyć do magazynowania energii potencjalnej. Niech na okładce znajduje się ładunek q i. Różnica potencjałów pomiędzy okładkami wynosi U i (= Vi 2 Vi 1 ). Przeniesienie dodatkowego ładunku Dq, wymaga pracy: W W = i = U q i W = i qi = q qi= 0 qi = C W i q dw = q' dq' = i q 1 q q 2 0 C 0 2C Janusz Andrzejewski 31

Energia zmagazynowana w polu elektrycznym Praca W jest zmagazynowana w jako energia potencjalna w kondensatorze: 2 q E p = 2CC lub, zapisując inaczej E p = 1 CU 2 2 Przykład: kondensator w defibrylatorze medycznym o pojemności 70uF jest naładowany do 5000 V. Jaka energia zmagazynowana jest w kondensatorze? E p = 0.5*C*U 2 = 0.5* (70 *10-6 F)(5000 V) 2 = 875 J Około 200 J tej energii jest przekazywane człowiekowi podczas 2 ms impulsu. Jaka jest moc impulsu? P = E p /t = 200 J/(2*10-3 s) = 0.1 MW (Mega Wat) Jest to dużo większa moc, niż moc źródła zasilającego (bateria). Janusz Andrzejewski 32

Energia pola elektrycznego Energia potencjalna Natężenie pola E Pojemność kondensatora 2 q q W = E = C = ε 0 S / d 2 C ε 0 S 2 2 ( ε ES ) W 0 E = W = ε 0 Sd 2C 2 Zauważmy, że iloczyn Sdjest objętością kondensatora, więc gęstość energii w(pola elektrycznego), która jest energią zawartą w jednostce objętości wynosi 2 W ε w = = 0E Sd 2 Jeżeli w jakimś punkcie przestrzeni istnieje pole elektryczne o natężeniu E to możemy uważać, że w tym punkcie jest zmagazynowana energia w ilości ½ε 0 E2 na jednostkę objętości. Janusz Andrzejewski 33

Kondensator z dielektrykiem Gdy kondensator wypełnimy dielektrykiem (materiałem izolującym), jego pojemność wzrasta o czynnik e r. e r jest przenikalnością elektryczną względna materiału. C = e r C pow Janusz Andrzejewski 34

Kondensator z dielektrykiem Gdy do dielektryka przyłożymy pole elektryczne, pole rozciąga atomy rozsuwając środki dodatniego i ujemnego ładunku. Rozsunięcie wytwarza ładunki powierzchniowe na ścianach płyty. Ładunki te wytwarzają pole E przeciwne do przyłożonego pola E 0. Wypadkowe pole E wewnątrz dielektryka ma mniejszą wartość, niż E 0. Janusz Andrzejewski 35

Dielektryki Gdy dielektryk umieścimy w polu elektrycznym to pojawiają się indukowane ładunki powierzchniowe, które wytwarzają pole elektryczne przeciwne do zewnętrznego pola elektrycznego. Janusz Andrzejewski 36

Prawo Gaussa i dielektryki C' ES q q = ε 0 q q => E = 2S q q q ε 0S = = = V Ed q q d = q Prawo Gaussa q C q Pojemność kondensatora C' C = ε r = q q q Wyindukowanyładunek powierzchniowy q' jest mniejszy od ładunku swobodnego q na okładkach. Dla kondensatora bez dielektryka q' = 0 i wtedy ε r = 1. Janusz Andrzejewski 37

Prawo Gaussa i dielektryki ε r r EdS = r q q ε 0 q = q q Prawo Gaussa Względna przenikalność dielektryczna próżni r r ε EdS r = q ε 0 Ogólne prawo Gaussa Uwagi: strumień pola elektrycznego dotyczy wektora ε r E(a nie wektora E) równaniu występuje tylko ładunek swobodny, a wyindukowany ładunek powierzchniowy został uwzględniony przez wprowadzenie stałej dielektrycznej ε r. Janusz Andrzejewski 38