Jednorazowa sk ladka netto w przypadku stochastycznej stopy procentowej. Ubezpieczenie na ca le życie z n-letnim okresem odroczenia.
|
|
- Antonina Dobrowolska
- 9 lat temu
- Przeglądów:
Transkrypt
1 Jednorazowa sk ladka netto w przypadku stochastycznej stopy procentowej Ubezpieczenie na ca le życie z n-letnim okresem odroczenia Wartość obecna wyp laty Y = Zatem JSN = = Kx +1 0, K x = 0, 1,..., n 1, t=1 v t, K x n. k=n k=n (K x +1 E t=1 E (k+1 t=1 ) v t K x = k P (K x = k) v t )P (K x = k) 1
2 Renta p latna z góry na poczatku każdego roku w wysokości c k Wartość obecna wyp laty Zatem JSN = = k k=0 j=0 k k=0 j=0 Y = K x c k k k=0 t=1 ( K x c j E t=1 v t. ) v t K x = k P (K x = k) ( k c j E v t )P (K x = k) t=1 2
3 Modele sk ladek i umów Rozróżnia sie nastepuj ace warianty op lacania umowy P1 jednorazowa sk ladka wnoszona w momencie zawierania umowy. P2 sk ladki o sta lej wysokości, p lacone dyskretnie z góry na poczatku każdego podokresu trwania umowy. P3 sk ladki o sta lej intensywności, p lacone w sposób ciag ly przez ca ly czas trwania umowy. P4 sk ladki o zmiennej wysokości, p lacone dyskretnie. P5 sk ladki o zmiennej intensywności p lacone w sposób ciag ly. 3
4 Modele umowy: 1. ca lkowicie dyskretny 2. ca lkowicie ciag ly 3. mieszany. 4
5 Ca lkowita strata ubezpieczyciela L = OW wyp lat z tytu lu umowy OW sk ladki. Wartość obecna liczona jest na poczatek umowy. L jest zmienna losowa, zmienna losowa jest zarówno OW wyp lat, jak i OW sk ladki. Sk ladke nazywa sie sk ladka netto, jeżeli spe lnia warunek równoważności EL = 0. 5
6 Problem Za lóżmy, że sk ladki w ubezpieczeniu na ca le życie op lacane sa dyskretnie z góry na poczatku roku. Wyznaczyć wysokość sk ladki P (A x ) OW sk ladki = P (A x ) OW wyp laty = v K x+1 K x v k k=0 Zatem warunek EL = 0 oznacza po prostu A x = E [ v K x+1 ] [ K x ] = P (A x ) E v k = P (A x )ä x. k=0 Zatem P (A x ) = A x ä x = d A x 1 A x. 6
7 Prospektywna strata tl := bieżaca wartość w chwili t przysz lych wyp lat bieżaca wartość w chwili t przysz lej sk ladki Oczywiście jest ca lkowita strata. 0L Jeżeli T x < t, to tl = 0. 7
8 Przyk lad 1 Ubezpieczenie na ca le życie (x) z suma ubezpieczenia p latna na koniec roku śmierci ze sk ladka p latna w momencie podpisania umowy, t < K x tl = v K x+1 t, t > 0, v K x+1 A x, t = 0. 8
9 Przyk lad 2 Ubezpieczenie na ca le życie z suma ubezpieczenia p latna na koniec roku śmierci ze sk ladka P (A x ) p latna na poczatku każdego roku, t < K x w szczególności tl = v K x+1 t P (A x ) 0L = v K x+1 P (A x ) K x k=t K x k=0 v k t, v k. 9
10 Przyk lad 3 Odroczone na n > 1 lat ubezpieczenie na ca le życie ze sk ladka p latna przez ca ly czas trwania umowy, w jednakowej wysokości P ( n A x), poza pierwszym rokiem. tl = χ{k x n}v Kx+1 t P ( n A ) K x x v k t k=max{1,t} 10
11 Zmienna losowa, której wartościa jest zysk ubezpieczyciela w chwili t. Dok ladniej: wartość obecna na moment podpisania umowy zysku z ubezpieczenia w chwili t tl retro = OW sk ladki zap laconej od 0 do chwili t OW wyp lat ubezpieczyciela od chwili 0 do chwili t 11
12 Przyk lad 1 Przyk lad 2 tl retro = A x v K x tl retro = P (A x ) t k=0 v k v K x 12
13 E( t L retro ) ( = E OW sk ladki zap laconej od 0 do chwili t OW wyp lat ubezpieczyciela od chwili 0 do chwili t ( = E (OW ca lej sk ladki OW sk ladki po t) (OW wszystkich wyp lat OW wyp lat po t) ( = EL + E OW wyp lat po t latach OW sk ladki po t latach ) = 0 + E ( v t tl ) ) = v t tp x E( t L T x t). ) 13
14 Ostatnia równość wynika oczywiście z zależności gdzie G jest σ-algebra Zatem E ( tl ) = E [ E( t L G) ], {, {t < K x }, {t K x }, Ω}. E ( tl ) = P (K x > t) 0 + P (K x < t) E [ tl K x t ] = t p x E [ tl K x t ] 14
15 Wniosek E( t L retro ) = v t tp x E [ tl K x t ] Wyrażenie te x := v t tp x nazywa si e aktuarialnym czynnikiem dyskonta. Wyrażenie tv := E [ tl K x t ] nazywa sie prospektywna rezerwa sk ladki netto. Oczywiście także tv = 1 P (T x t) E[ tl χ{t x t} ] = E( tl) tp x. 15
16 Sk ladki i rezerwy dla wybranych polis Ubezpieczenie na ca le życie P x := P (A x ) = A x ä x, Dla momentu k wartość oczekiwana wartości bieżacej przysz lej wyp laty E(v K x+1 k ) = m=k v m+1 k P (K x = m), Dla momentu k wartość oczekiwana wartości bieżacej przysz lej sk ladki E(P x K x m=k v m+1 k ) = P x ( m m=k t=k v t k )P (K x = m) 16
17 Zatem rezerwa w tym przypadku wynosi kv x = P x v m+1 k P (K x = m K x k) m=k ( m m=k t=k := A [x]+k P x ä [x]+k v t k )P (K x = m K x k) 17
18 Ubezpieczenie terminowe na n lat Sk ladka netto p lacona w jednakowej wysokości na poczatku każdego roku trwania umowy ubezpieczeniowej P 1x:. n Wartość obecna sk ladki min{k x,n 1} P 1x: n m=0 Wartość obecna wyp laty v m. χ{k x n 1}v K x+1. 18
19 Zatem min{k E χ{k x n 1}v Kx+1 x,n 1} P 1x: n czyli A 1x: n P 1x: n ä x: n = 0. m=0 v m Ostatecznie sk ladka netto w terminowym ubezpieczeniu n-letnim wynosi = 0, P 1x: n = A 1x: n ä x: n. 19
20 Wartość bieżaca w momencie k przysz lych wyp lat χ{k x n 1}v K x+1 k. Wartość bieżaca w momencie k przysz lych sk ladek min{k x,n 1} P 1x: n m=k Zatem rezerwa w momencie k kv 1x: n = 1 kp x n 1 m=k n 1 P 1x: n = n 1 m=k n 1 P 1x: n m=k t=k v m k v m+1 k P (K x = m) m v t k P (K x = m) v m+1 k P (K x = m k T x ) m m=k t=k v t k P (K x = m k T x ) 20
21 Ubezpieczenie na ca le życie, ze sk ladka p lacona przez pierwsze h lat Wartość obecna wyp laty v K x+1 Wartość obecna sk ladki Sk ladka netto min{k x,h} hp x m=0 v m (min{k E(v Kx+1 x,h} ) ) h P x E v m = 0. m=0 Zatem hp x = A x ä x: h. 21
22 Ogólny model dyskretny Ubezpieczenie gwarantuje wyp late sumy b k+1, jeśli K x = k. Sk ladki sa p lacone z góry w wysokości Π k za każdy rozpoczety rok umowy. Prospektywna strata kl = 0, K x < k, b Kx +1v Kx+1 k K x j=k Π jv j k, K x k. Obserwacja kv = b k+j+1 v j+1 j j=0 i=0 Π i+k v i j p [x]+k q [x]+k+j 22
23 Równoważne sformu lowanie obserwacji kv = j=0 b k+j+1 v j+1 p [x]+k q [x]+k+j j=0 Π k+j v j jp [x]+k. 23
24 Ważny wniosek Zachodza nastepuj ace zależności oraz kv = vb k+1 q [x]+k Π k + v k+1 Vp [x]+k kv v k+1 V + Π k = v(b k+1 k+1 V)q [x]+k. 24
25 Podejście deterministyczne Rozważmy kohorte x-latków liczac a poczatkowo l [x] osób, z których każdy zawiera umowe o ubezpieczenie, gwarantujac a wyp late kwoty b k+1 na koniec jego śmierci, jeśli umrze w roku k trwania umowy. Umowa jest op laca sk ladka w rocznych ratach o wysokości Π k, p laconych przez każdego z żyjacych na poczatku każdego roku umowy. 25
26 Na poczatku ubezpieczyciel zgromadzi l kwote l [x] Π 0. Po up lywie roku ubezpieczyciel wyp laci kwot e b 1 d [x] = b 1 ( l[x] l [x]+1 ). W k-ta rocznice ubezpieczyciel wyp laci l acznie sume b k d [x]+k 1 = b k (l [x]+k 1 l [x]+k ), otrzyma także sk ladk e l [x]+k Π k. 26
27 Bieżaca wartość przysz lych wydatków oraz wp lywów w roku k h=0 b k+h+1 v h+1 d [x]+k+h h=0 Π k+h v h l [x]+k+h. Średnia strata w roku k na jednego ubezpieczonego 1 l [x]+k h=0 h=0 b k+h+1 v h+1 d [x]+k+h Π k+h v h l [x]+k+h W roku k ubezpieczyciel zgromadzi l kwot e k 1 h=0 Π h (1 + i) k h l [x]+h k 1 h=0 b h+1 (1 + i) k (h+1) d [x]+h. 27
28 Wniosek h=0 b h+1 v h+1 d [x]+h = h=0 Π h v h l [x]+h. Zatem jeżeli sk ladka ma równoważyć przep lywy, to musi być sk ladka netto. 28
ep do matematyki aktuarialnej Micha l Jasiczak Wyk lad 6 Kalkulacja sk ladki netto II. Funkcje komutacyjne.
Wst ep do matematyki aktuarialnej Micha l Jasiczak Wyk lad 6 Kalkulacja sk ladki netto II. Funkcje komutacyjne. 1 Przypomnienie Umowa ubezpieczenia zawiera informacje o: Przedmiocie ubezpieczenia Czasie
ep do matematyki aktuarialnej Micha l Jasiczak Wyk lad 5 Kalkulacja sk ladki netto I
Wst ep do matematyki aktuarialnej Micha l Jasiczak Wyk lad 5 Kalkulacja sk ladki netto I 1 Kodeks cywilny Tytu l XXVII, Umowa ubezpieczenia Dzia l I. Przepisy ogólne Dzia l II. Ubezpieczenia majatkowe
Składki i rezerwy netto
ROZDZIAŁ 6 Składki i rezerwy netto 1 Składki netto Umowę pomiędzy ubezpieczycielem a ubezpieczonym dotyczącą ubezpieczenia na życie nazywa się polisą ubezpieczeniową Polisa taka zawiera szczegółowe warunki
ep do matematyki aktuarialnej Micha l Jasiczak Wyk lad 3 Tablice trwania życia 2
Wst ep do matematyki aktuarialnej Micha l Jasiczak Wyk lad 3 Tablice trwania życia 2 1 Przypomnienie Jesteśmy już w stanie wyznaczyć tp x = l x+t l x, gdzie l x, l x+t, to liczebności kohorty odpowiednio
ep do matematyki aktuarialnej Micha l Jasiczak Wyk lad 9 Analiza pewnego problemu i krótkie przypomnienie, czyli Powtarzanie jest matka nauki.
Wst ep do matematyki aktuarialnej Micha l Jasiczak Wyk lad 9 Analiza pewnego problemu i krótkie przypomnienie, czyli Powtarzanie jest matka nauki. 1 Zadanie (29) zawar l umowe kredytu w momencie ukończenia
ep do matematyki aktuarialnej Micha l Jasiczak Wyk lad 1 Wprowadzajacy
Wst ep do matematyki aktuarialnej Micha l Jasiczak Wyk lad 1 Wprowadzajacy 1 Matematyka aktuarialna 1. matematyka w ubezpieczeniach, 2. dok ladniej, matematyka ubezpieczeń na życie, 3. czasami szerzej,
Ubezpieczenia na życie
ROZDZIAŁ 4 Ubezpieczenia na życie Ubezpieczenie na życie jest to kontrakt (zwany polisą), w którym ubezpieczony zobowiązuje się do opłacenia składki (jednorazowo lub w ratach), a w zamian za to ubezpieczyciel
MODELE MATEMATYCZNE W UBEZPIECZENIACH
MODELE MATEMATYCZNE W UBEZPIECZENIACH WYKŁAD 4: UBEZPIECZENIA NA ŻYCIE Ubezpieczenie na życie jest to kontrakt (zwany polisą), w którym ubezpieczony zobowiązuje się do opłacenia składki (jednorazowo lub
MODELE MATEMATYCZNE W UBEZPIECZENIACH
MODELE MATEMATYCZNE W UBEZPIECZENIACH WYKŁAD 6: SKŁADKI OKRESOWE Składki okresowe netto Umowę pomiędzy ubezpieczycielem a ubezpieczonym dotyczącą ubezpieczenia na życie nazywa się polisą ubezpieczeniową
UBEZPIECZENIA NA ŻYCIE
UBEZPIECZENIA NA ŻYCIE M BIENIEK Ubezpieczenie na życie jest to kontrakt pomiędzy ubezpieczycielem a ubezpieczonym gwarantujący, że ubezpieczyciel w zamian za opłacanie składek, wypłaci z góry ustaloną
Matematyka finansowa i ubezpieczeniowa - 11 Ubezpieczenia Ŝyciowe 2
Matematyka finansowa i ubezpieczeniowa - Ubezpieczenia Ŝyciowe 2 Składki netto w ubezpieczeniach Ŝyciowych Zakład ubezpieczeniowy pobiera za ubezpieczenia składkę brutto, składającą się ze składki netto
REZERWY UBEZPIECZEŃ I RENT ŻYCIOWYCH
REZERWY UBEZPIECZEŃ I RENT ŻYCIOWYCH M. BIENIEK Przypomnijmy, że dla dowolnego wektora przepływów c rezerwę w chwili k względem funkcji dyskonta v zdefiniowaliśmy jako k(c; v) = Val k ( k c; v), k = 0,
1. Ubezpieczenia życiowe
1. Ubezpieczenia życiowe Przy ubezpieczeniach życiowych mamy do czynienia z jednorazową wypłatą sumy ubezpieczenia. Moment jej wypłaty i wielkość wypłaty może być funkcją zmiennej losowej T a więc czas
Elementy teorii przeżywalności
Elementy teorii przeżywalności Zadanie 1.1 Zapisz 1. Prawdopodobieństwo, że noworodek umrze nie później niż w wieku 8 lat 2. P-two, że noworodek umrze nie później niż w wieku 3 lat 3. P-two, że noworodek
UBEZPIECZ SIĘ, NAJLEPIEJ U MATEMATYKA
KARIERA MATEMATYKĄ KREŚLONA UBEZPIECZ SIĘ, NAJLEPIEJ U MATEMATYKA Ryzyko i ubezpieczenie Możliwość zajścia niechcianego zdarzenia nazywamy ryzykiem. Ryzyko prawie zawsze wiąże się ze stratą. Ryzyko i ubezpieczenie
ep do matematyki aktuarialnej Micha l Jasiczak Wyk lad 2 Tablice trwania życia
Wst ep do matematyki aktuarialnej Micha l Jasiczak Wyk lad 2 Tablice trwania życia 1 Cele (na dzisiaj): Zrozumieć w jaki sposób można wyznaczyć przysz ly czas życia osoby w wieku x. Zrozumieć parametry
Wyk lad 14 Formy kwadratowe I
Wyk lad 14 Formy kwadratowe I Wielomian n-zmiennych x 1,, x n postaci n a ij x i x j, (1) gdzie a ij R oraz a ij = a ji dla wszystkich i, j = 1,, n nazywamy forma kwadratowa n-zmiennych Forme (1) można
3 Ubezpieczenia na życie
3 Ubezpieczenia na życie O ile nie jest powiedziane inaczej, w poniższych zadaniach zakładamy HJP. 3.1. Zadania 7.1-7.26 z Miśkiewicz-Nawrocka, Zeug-Żebro, Zbiór zadań z matematyki finansowej. 3.2. Mając
1. Oblicz prawdopodobieństwo zdarzenia, że noworodek wybrany z populacji, w której śmiertelnością rządzi prawo Gompertza
1. Oblicz prawdopodobieństwo zdarzenia, że noworodek wybrany z populacji, w której śmiertelnością rządzi prawo Gompertza x µ x = 06e. dożyje wieku największej śmiertelności (tzn. takiego wieku, w którym
ROZDZIAŁ 5. Renty życiowe
ROZDZIAŁ 5 Renty życiowe Rentą życiową nazywamy ciąg płatności który ustaje w chwili śmierci pewnej osoby (zwykle ubezpieczonego) Mówiąc o rencie życiowej nie zaznaczamy czy osoba której przyszły czas
= µ. Niech ponadto. M( s) oznacza funkcję tworzącą momenty. zmiennej T( x), dla pewnego wieku x, w populacji A. Wówczas e x wyraża się wzorem: 1
1. W populacji B natężenie wymierania µ ( B ) x jest większe od natężenia wymierania ( A) µ x w populacji A, jednostajnie o µ > 0, dla każdego wieku x tzn. ( B) ( A) µ µ x = µ. Niech ponadto x M( s) oznacza
MODELE MATEMATYCZNE W UBEZPIECZENIACH WYKŁAD 5: RENTY ŻYCIOWE
MODELE MATEMATYCZNE W UBEZPIECZENIACH WYKŁAD 5: RENTY ŻYCIOWE Rentą życiową nazywamy ciąg płatności który ustaje w chwili śmierci pewnej osoby (zwykle ubezpieczonego) Mówiąc o rencie życiowej nie zaznaczamy
LXXIV Egzamin dla Aktuariuszy z 23 maja 2016 r.
Komisja Egzaminacyjna dla Aktuariuszy LXXIV Egzamin dla Aktuariuszy z 23 maja 2016 r. Część II Matematyka ubezpieczeń życiowych Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut Warszawa,
LXVIII Egzamin dla Aktuariuszy z 29 września 2014 r.
Komisja Egzaminacyjna dla Aktuariuszy LXVIII Egzamin dla Aktuariuszy z 29 września 2014 r. Część II Matematyka ubezpieczeń życiowych Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut Warszawa,
OGÓLNE RENTY ŻYCIOWE
OGÓLNE RENTY ŻYCIOWE M. BIENIEK Rentą życiową nazywamy kontrakt między ubezpieczycielem a ubezpieczonym, w którym ubezpieczony w zamian za określoną opłatę, zwaną składką, otrzymuje ciąg z góry określonych
XXXVIII Egzamin dla Aktuariuszy z 20 marca 2006 r.
Komisja Egzaminacyjna dla Aktuariuszy XXXVIII Egzamin dla Aktuariuszy z 20 marca 2006 r. Część II Matematyka ubezpieczeń życiowych Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut Warszawa,
Rachunek zdań - semantyka. Wartościowanie. ezyków formalnych. Semantyka j. Logika obliczeniowa. Joanna Józefowska. Poznań, rok akademicki 2009/2010
Logika obliczeniowa Instytut Informatyki Poznań, rok akademicki 2009/2010 1 formu l rachunku zdań Wartościowanie i sta le logiczne Logiczna równoważność 2 Model formu ly Formu la spe lniona Formu la spe
LXXV Egzamin dla Aktuariuszy z 5 grudnia 2016 r.
Komisja Egzaminacyjna dla Aktuariuszy LXXV Egzamin dla Aktuariuszy z 5 grudnia 2016 r. Część II Matematyka ubezpieczeń życiowych Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut Warszawa,
4. Ubezpieczenie Życiowe
4. Ubezpieczenie Życiowe Składka ubezpieczeniowa musi brać pod uwagę następujące czynniki: 1. Kwotę wypłaconą przy śmierci ubezpieczonego oraz jej wartość aktualną. 2. Rozkład czasu do śmierci ubezpieczonego
LXX Egzamin dla Aktuariuszy z 23 marca 2015 r.
Komisja Egzaminacyjna dla Aktuariuszy LXX Egzamin dla Aktuariuszy z 23 marca 2015 r. Część II Matematyka ubezpieczeń życiowych Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut Warszawa,
Obliczanie skãladek ubezpieczeniowych. oznaczaj ac, dãlugo s c _zycia noworodka. De nicja 1 Czas prze_zycia T(x) dla x-latka okre slony jest wzorem
Obliczanie skãladek ubezpizeniowych Nih x oznacza wiek osoby. Nih X b edzie, zmienn losow oznaczaj ac, dãlugo s c _zycia noworodka. De nicja Czas prze_zycia T(x) dla x-latka okre slony jest wzorem T(x)
Ubezpieczenia życiowe
Maciej Grzesiak Instytut Matematyki Politechniki Poznańskiej Ubezpieczenia życiowe 1. Z historii ubezpieczeń W uproszczeniu mówiąc mamy dwa tradycyjne modele ubezpieczeń. Pierwszy ma źródło w towarzystwach
LIX Egzamin dla Aktuariuszy z 12 marca 2012 r.
Komisja Egzaminacyjna dla Aktuariuszy LIX Egzamin dla Aktuariuszy z 12 marca 2012 r. Część II Matematyka ubezpieczeń życiowych Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut Warszawa,
1. Pięciu osobników pochodzi z populacji, w której pojedyncze życie podlega ryzyku śmierci
1. Pięciu osobników pochodzi z populacji, w której pojedyncze życie podlega ryzyku śmierci + t µ + t A + B 2. Wyznacz prawdopodobieństwo, że z grupy tej nikt nie umrze w ciągu najbliższych 5 lat, jeśli
1. Niech g(t) oznacza gęstość wymierania, od momentu narodzin, pewnej populacji mężczyzn. Demografowie zauważyli, że po drobnej modyfikacji: =
. Niech g(t) oznacza gęstość wymierania, od momentu narodzin, pewnej populacji mężczyzn. Demografowie zauważyli, że po drobnej modyfikacji: ~ 0,9g( t) 0 t < 50 g ( t) =,2 g( t) 50 t. opisuje ona śmiertelność
Wyk lad 3 Wielomiany i u lamki proste
Wyk lad 3 Wielomiany i u lamki proste 1 Konstrukcja pierścienia wielomianów Niech P bedzie dowolnym pierścieniem, w którym 0 1. Oznaczmy przez P [x] zbiór wszystkich nieskończonych ciagów o wszystkich
LXII Egzamin dla Aktuariuszy z 10 grudnia 2012 r.
Komisja Egzaminacyjna dla Aktuariuszy LXII Egzamin dla Aktuariuszy z 10 grudnia 2012 r. Część II Matematyka ubezpieczeń życiowych Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut Warszawa,
LVII Egzamin dla Aktuariuszy z 20 czerwca 2011 r.
Komisja Egzaminacyjna dla Aktuariuszy LVII Egzamin dla Aktuariuszy z 20 czerwca 2011 r. Część II Matematyka ubezpieczeń życiowych Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut Warszawa,
XXXX Egzamin dla Aktuariuszy z 9 października 2006 r.
Komisja Egzaminacyjna dla Aktuariuszy XXXX Egzamin dla Aktuariuszy z 9 października 2006 r. Część II Matematyka ubezpieczeń życiowych Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut Warszawa,
PRE-EGZAMIN Wycena Firm
PRE-EGZAMIN Wycena Firm Philippe J.S. De Brouwer imie i nazwisko: numer studenta: Przed rozpoczeciem pracy należy zapoznać sie, co nastepuje. Dozwolone jest użycie prostego kalkulatora. Egzamin powinien
Sterowalność liniowych uk ladów sterowania
Sterowalność liniowych uk ladów sterowania W zadaniach sterowania docelowego należy przeprowadzić obiekt opisywany za pomoc a równania stanu z zadanego stanu pocz atkowego ẋ(t) = f(x(t), u(t), t), t [t,
LIII Egzamin dla Aktuariuszy z 31 maja 2010 r.
Komisja Egzaminacyjna dla Aktuariuszy LIII Egzamin dla Aktuariuszy z 31 maja 2010 r. Część II Matematyka ubezpieczeń życiowych Imię i nazwisko osoby egzaminowanej:. Czas egzaminu: 100 minut Warszawa, 31
LIV Egzamin dla Aktuariuszy z 4 października 2010 r.
Komisja Egzaminacyjna dla Aktuariuszy LIV Egzamin dla Aktuariuszy z 4 października 2010 r. Część II Matematyka ubezpieczeń życiowych Imię i nazwisko osoby egzaminowanej:...klucz odpowiedzi... Czas egzaminu:
w modelu równowagi Zaawansowana Makroekonomia: Pieniadz 1 Model z ograniczeniem CIA Krzysztof Makarski Wprowadzenie Wst ep Model z pieniadzem.
Zaawansowana Makroekonomia: Pieniadz w modelu równowagi ogólnej Krzysztof Makarski Model z ograniczeniem CIA Wprowadzenie Wst ep Model z pieniadzem. Ocena modelu Optymalna polityka pieni eżna Koszty nieoptymalnej
Elementy matematyki finansowej
ROZDZIAŁ 2 Elementy matematyki finansowej 1. Procent składany i ciągły Stopa procentowa i jest związana z podstawową jednostką czasu, jaką jest zwykle jeden rok. Jeśli pożyczamy komuś 100 zł na jeden rok,
LVI Egzamin dla Aktuariuszy z 4 kwietnia 2011 r.
Komisja Egzaminacyjna dla Aktuariuszy LVI Egzamin dla Aktuariuszy z 4 kwietnia 2011 r. Część II Matematyka ubezpieczeń życiowych Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut Warszawa,
UBEZPIECZENIE NA ŻYCIE Z LOSOWĄ STOPĄ PROCENTOWĄ
UBEZPIECZENIE NA ŻYCIE Z LOSOWĄ STOPĄ PROCENTOWĄ Krzysztof Janas Michał Krzeszowiec Koło Nauk Aktuarialnych Politechniki Łódzkiej Warszawa, 09-11.06.2008 r. Plan Założenia wstępne: Teoria oprocentowania
XLIII Egzamin dla Aktuariuszy z 8 października 2007 r.
Komisja Egzaminacyjna dla Aktuariuszy XLIII Egzamin dla Aktuariuszy z 8 października 2007 r. Część II Matematyka ubezpieczeń życiowych Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut Warszawa,
Pre-egzamin z odpowiedziami wersja robocza Wycena Firm
Pre-egzamin z odpowiedziami wersja robocza Wycena Firm Philippe J.S. De Brouwer Informacje dla studentów: Przed rozpoczeciem pracy należy zapoznać sie, co nastepuje. Dozwolone jest użycie prostego kalkulatora.
Jeden przyk lad... czyli dlaczego warto wybrać MIESI.
Jeden przyk lad... czyli dlaczego warto wybrać MIESI. Micha l Ramsza Szko la G lówna Handlowa Micha l Ramsza (Szko la G lówna Handlowa) Jeden przyk lad... czyli dlaczego warto wybrać MIESI. 1 / 13 Dlaczego
Aktuariat i matematyka finansowa. Rezerwy techniczno ubezpieczeniowe i metody ich tworzenia
Aktuariat i matematyka finansowa Rezerwy techniczno ubezpieczeniowe i metody ich tworzenia Tworzenie rezerw i ich wysokość wpływa na Obliczanie zysku dla potrzeb podatkowych, Sprawozdawczość dla udziałowców,
WNIOSKOWANIE W MODELU REGRESJI LINIOWEJ
WNIOSKOWANIE W MODELU REGRESJI LINIOWEJ Dana jest populacja generalna, w której dwuwymiarowa cecha (zmienna losowa) (X, Y ) ma pewien dwuwymiarowy rozk lad. Miara korelacji liniowej dla zmiennych (X, Y
LXV Egzamin dla Aktuariuszy z 30 września 2013 r.
Komisja Egzaminacyjna dla Aktuariuszy LXV Egzamin dla Aktuariuszy z 30 września 2013 r. Część II Matematyka ubezpieczeń życiowych Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut Warszawa,
LIII Egzamin dla Aktuariuszy z 31 maja 2010 r.
Komisja Egzaminacyjna dla Aktuariuszy LIII Egzamin dla Aktuariuszy z 31 maja 2010 r. Część II Matematyka ubezpieczeń życiowych Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut Warszawa,
Wyk lad 9 Podpierścienie, elementy odwracalne, dzielniki zera
Wyk lad 9 Podpierścienie, elementy odwracalne, dzielniki zera Określenie podpierścienia Definicja 9.. Podpierścieniem pierścienia (P, +,, 0, ) nazywamy taki podzbiór A P, który jest pierścieniem ze wzgledu
LXIV Egzamin dla Aktuariuszy z 17 czerwca 2013 r.
Komisja Egzaminacyjna dla Aktuariuszy LXIV Egzamin dla Aktuariuszy z 17 czerwca 2013 r. Część II Matematyka ubezpieczeń życiowych Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut Warszawa,
Matematyka finansowa 08.01.2007 r. Komisja Egzaminacyjna dla Aktuariuszy. XLI Egzamin dla Aktuariuszy z 8 stycznia 2007 r. Część I
Komisja Egzaminacyjna dla Aktuariuszy XLI Egzamin dla Aktuariuszy z 8 stycznia 2007 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 00 minut . Ile
LX Egzamin dla Aktuariuszy z 28 maja 2012 r.
Komisja Egzaminacyjna dla Aktuariuszy LX Egzamin dla Aktuariuszy z 28 maja 2012 r. Część II Matematyka ubezpieczeń życiowych Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut Warszawa, 28
Immunizacja ryzyka stopy procentowej ubezpieczycieli życiowych
Immunizacja ryzyka stopy procentowej ubezpieczycieli życiowych Elżbieta Krajewska Instytut Matematyki Politechnika Łódzka Elżbieta Krajewska Immunizacja ubezpieczycieli życiowych 1/22 Plan prezentacji
XXXIII Egzamin dla Aktuariuszy z 17 stycznia 2005 r.
Komisja Egzaminacyjna dla Aktuariuszy XXXIII Egzamin dla Aktuariuszy z 17 stycznia 2005 r. Część II Matematyka ubezpieczeń życiowych Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut Warszawa,
LXIII Egzamin dla Aktuariuszy z 25 marca 2013 r.
Komisja Egzaminacyjna dla Aktuariuszy LXIII Egzamin dla Aktuariuszy z 25 marca 2013 r. Część II Matematyka ubezpieczeń życiowych Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut Warszawa,
4. Ubezpieczenie Życiowe
4. Ubezpieczenie Życiowe Składka ubezpieczeniowa musi brać pod uwagę następujące czynniki: 1. Kwotę wypłaconą przy śmierci ubezpieczonego oraz jej wartość aktualną. 2. Rozkład czasu do śmierci ubezpieczonego
P (x, y) + Q(x, y)y = 0. g lym w obszrze G R n+1. Funkcje. zania uk ladu (1) o wykresie przebiegaja
19. O ca lkach pierwszych W paragrafie 6 przy badaniu rozwia zań równania P (x, y) + Q(x, y)y = 0 wprowadzono poje cie ca lki równania, podano pewne kryteria na wyznaczanie ca lek równania. Znajomość ca
Tablice trwania życia
ROZDZIAŁ 3 Tablice trwania życia 1 Przyszły czas życia Osobę, która ukończyła x lat życia, będziemy nazywać x-latkiem i oznaczać symbolem x Jej przyszły czas życia, tzn od chwili x do chwili śmierci, będziemy
LXXII Egzamin dla Aktuariuszy z 28 września 2015 r.
Komisja Egzaminacyjna dla Aktuariuszy LXXII Egzamin dla Aktuariuszy z 28 września 2015 r. Część II Matematyka ubezpieczeń życiowych Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut Warszawa,
Opis subskrypcji Załącznik do Deklaracji Przystąpienia do Ubezpieczenia na życie i dożycie NORD GOLDEN edition
Opis produktu Ubezpieczenie na życie i dożycie NORD GOLDEN edition to grupowe ubezpieczenie ze składką w PLN, płatną jednorazowo, w którym ochrony ubezpieczeniowej udziela MetLife Towarzystwo Ubezpieczeń
XLIV Egzamin dla Aktuariuszy z 3 grudnia 2007 r.
Komisja Egzaminacyjna dla Aktuariuszy XLIV Egzamin dla Aktuariuszy z 3 grudnia 2007 r. Część II Matematyka ubezpieczeń życiowych Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut Warszawa,
LXIX Egzamin dla Aktuariuszy z 8 grudnia 2014 r.
Komisja Egzaminacyjna dla Aktuariuszy LXIX Egzamin dla Aktuariuszy z 8 grudnia 2014 r. Część II Matematyka ubezpieczeń życiowych Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut Warszawa,
Ekonomia matematyczna i dynamiczna optymalizacja
Ekonomia matematyczna i dynamiczna optymalizacja Ramy wyk ladu i podstawowe narz edzia matematyczne SGH Semestr letni 2012-13 Uk lady dynamiczne Rozwiazanie modelu dynamicznego bardzo czesto można zapisać
LXVII Egzamin dla Aktuariuszy z 26 maja 2014 r.
Komisja Egzaminacyjna dla Aktuariuszy LXVII Egzamin dla Aktuariuszy z 26 maja 2014 r. Część II Matematyka ubezpieczeń życiowych Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut Warszawa,
1. Przyszła długość życia x-latka
Przyszła długość życia x-latka Rozważmy osobę mającą x lat; oznaczenie: (x) Jej przyszłą długość życia oznaczymy T (x), lub krótko T Zatem x+t oznacza całkowitą długość życia T jest zmienną losową, której
SYSTEM DIAGNOSTYCZNY OPARTY NA LOGICE DOMNIEMAŃ. Ewa Madalińska. na podstawie prac:
SYSTEM DIAGNOSTYCZNY OPARTY NA LOGICE DOMNIEMAŃ Ewa Madalińska na podstawie prac: [1] Lukaszewicz,W. (1988) Considerations on Default Logic: An Alternative Approach. Computational Intelligence, 44[1],
4. Strumienie płatności: okresowe wkłady oszczędnościowe
4. Strumienie płatności: okresowe wkłady oszczędnościowe Grzegorz Kosiorowski Uniwersytet Ekonomiczny w Krakowie Matematyka finansowa rzegorz Kosiorowski (Uniwersytet Ekonomiczny 4. Strumienie w Krakowie)
Metody aktuarialne - opis przedmiotu
Metody aktuarialne - opis przedmiotu Informacje ogólne Nazwa przedmiotu Metody aktuarialne Kod przedmiotu 11.5-WK-MATP-MA-W-S14_pNadGenEJ6TV Wydział Kierunek Wydział Matematyki, Informatyki i Ekonometrii
XXXVI Egzamin dla Aktuariuszy z 10 października 2005 r.
Komisja Egzaminacyjna dla Aktuariuszy XXXVI Egzamin dla Aktuariuszy z 10 października 2005 r. Część II Matematyka ubezpieczeń życiowych Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut
Dyskretne modele populacji
Dyskretne modele populacji Micha l Machtel Adam Soboczyński 19 stycznia 2007 Typeset by FoilTEX Dyskretne modele populacji [1] Wst ep Dyskretny opis modelu matematycznego jest dobry dla populacji w których
MODELE MATEMATYCZNE W UBEZPIECZENIACH
MODELE MATEMATYCZNE W UBEZPIECZENIACH WYKŁAD 3: WYZNACZANIE ROZKŁADU CZASU PRZYSZŁEGO ŻYCIA 1 Hipoteza jednorodnej populacji Rozważmy pewną populację osób w różnym wieku i załóżmy, że każda z tych osób
4. Decyzje dotycza ce przyznawania świadczeń pomocy materialnej. doktorantów
ZASADY PRZYZNAWANIA ŚWIADCZEŃ POMOCY MATERIALNEJ DLA DOKTORANTÓW W INSTYTUCIE MATEMATYCZNYM POLSKIEJ AKADEMII NAUK OBOWIA ZUJA CE OD ROKU AKADEMICKIEGO 2013/14 1. PODSTAWA PRAWNA Świadczenia pomocy materialnej
Matematyka ubezpieczeń na życie. Piotr Kowalski
Matematyka ubezpieczeń na życie Piotr Kowalski 27 stycznia 212 Spis treści 1 Elementy matematyki finansowej 1 1.1 Oznaczenia.............................. 1 1.2 Związki................................
Matematyka ubezpieczeń na życie Life Insurance Mathematics. Matematyka Poziom kwalifikacji: II stopnia. Liczba godzin/tydzień: 2W E, 2C
Nazwa przedmiotu: Kierunek: Rodzaj przedmiotu: przedmiot obowiązkowy dla specjalności matematyka finansowa i ubezpieczeniowa Rodzaj zajęć: wykład, ćwiczenia Matematyka ubezpieczeń na życie Life Insurance
Matematyka finansowa r. Komisja Egzaminacyjna dla Aktuariuszy. L Egzamin dla Aktuariuszy z 5 października 2009 r.
Komisja Egzaminacyjna dla Aktuariuszy L Egzamin dla Aktuariuszy z 5 października 2009 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 0 minut 1 1.
Przyk ladowe Zadania z MSG cz
mgr Leszek Wincenciak, Katedra Makroekonomii i Teorii Handlu Zagranicznego Przyk ladowe Zadania z MSG cz eść handlowa 1. W modelu Ricardo mamy do czynienia z dwoma krajami prowadzacymi wymiane handlowa.
w teorii funkcji. Dwa s lynne problemy. Micha l Jasiczak
Równania różniczkowe czastkowe w teorii funkcji. Dwa s lynne problemy. Micha l Jasiczak Horyzonty 2014 Podstawowy obiekt wyk ladu: funkcje holomorficzne wielu zmiennych Temat: dwa problemy, których znane
Umowy Dodatkowe. Przewodnik Ubezpieczonego
Umowy Dodatkowe Przewodnik Ubezpieczonego Umowy dodatkowe sà uzupe nieniem umowy ubezpieczenia na ycie. Za cz sto niewielkà sk adk mo esz otrzymaç dodatkowà ochron. Dzi ki temu Twoja umowa ubezpieczenia
XXXVII Egzamin dla Aktuariuszy z 5 grudniaa 2005 r.
Komisja Egzaminacyjna dla Aktuariuszy XXXVII Egzamin dla Aktuariuszy z 5 grudniaa 2005 r. Część II Matematyka ubezpieczeń życiowych Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut Warszawa,
Dziedziny Euklidesowe
Dziedziny Euklidesowe 1.1. Definicja. Dziedzina Euklidesowa nazywamy pare (R, v), gdzie R jest dziedzina ca lkowitości a v : R \ {0} N {0} funkcja zwana waluacja, która spe lnia naste ce warunki: 1. dla
LXVI Egzamin dla Aktuariuszy z 10 marca 2014 r.
Komisja Egzaminacyjna dla Aktuariuszy LXVI Egzamin dla Aktuariuszy z 10 marca 2014 r. Część II Matematyka ubezpieczeń życiowych Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut Warszawa,
PRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: Wstęp do matematyki finansowej Introduction to financial mathematics Kierunek: Kod przedmiotu: Matematyka Rodzaj przedmiotu: obowiązkowy dla specjalności matematyka finansowa i ubezpieczeniowa
Wyk lad 3. Natalia Nehrebecka Dariusz Szymański. 13 kwietnia, 2010
Wyk lad 3 Natalia Nehrebecka Dariusz Szymański 13 kwietnia, 2010 N. Nehrebecka, D.Szymański Plan zaj eć 1 Sprowadzenie modelu nieliniowego do liniowego 2 w modelu liniowym Elastyczność Semielastyczność
Statystyka w analizie i planowaniu eksperymentu
21 marca 2011 Zmienna losowa - wst ep Przeprowadzane w praktyce badania i eksperymenty maja bardzo różnorodny charakter, niemniej jednak wiaż a sie one z rejestracja jakiś sygna lów (danych). Moga to być
Zadanie 1. są niezależne i mają rozkład z atomami: ( ),
Zadanie. Zmienne losowe są niezależne i mają rozkład z atomami: ( ) ( ) i gęstością: ( ) na przedziale ( ). Wobec tego ( ) wynosi: (A) 0.2295 (B) 0.2403 (C) 0.2457 (D) 0.25 (E) 0.269 Zadanie 2. Niech:
Statystyka w analizie i planowaniu eksperymentu
10 marca 2014 Zmienna losowa - wst ep Przeprowadzane w praktyce badania i eksperymenty maja bardzo różnorodny charakter, niemniej jednak wiaż a sie one z rejestracja jakiś sygna lów (danych). Moga to być
Wyk lad 8 macierzy i twierdzenie Kroneckera-Capellego
Wyk lad 8 Rzad macierzy i twierdzenie Kroneckera-Capellego 1 Określenie rz edu macierzy Niech A bedzie m n - macierza Wówczas wiersze macierzy A możemy w naturalny sposób traktować jako wektory przestrzeni
Wyk lad 4 Warstwy, dzielniki normalne
Wyk lad 4 Warstwy, dzielniki normalne 1 Warstwy grupy wzgl edem podgrupy Niech H bedzie podgrupa grupy (G,, e). W zbiorze G wprowadzamy relacje l oraz r przyjmujac, że dla dowolnych a, b G: a l b a 1 b
Matematyka finansowa 26.05.2014 r. Komisja Egzaminacyjna dla Aktuariuszy. LXVII Egzamin dla Aktuariuszy z 26 maja 2014 r. Część I
Komisja Egzaminacyjna dla Aktuariuszy LXVII Egzamin dla Aktuariuszy z 26 maja 2014 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1 1. Przyjmijmy
Statystyka w analizie i planowaniu eksperymentu
29 marca 2011 Przestrzeń statystyczna - podstawowe zadania statystyki Zdarzeniom losowym określonym na pewnej przestrzeni zdarzeń elementarnych Ω można zazwyczaj na wiele różnych sposobów przypisać jakieś
Mikro II: Popyt, Preferencje Ujawnione i Równanie S luckiego
Mikro II: Popyt, Preferencje Ujawnione i Równanie S luckiego Krzysztof Makarski 6 Popyt Wstep Przypomnijmy: Podstawy teoria konsumenta. Zastosowanie wszedzie. W szczególności poszukiwanie informacji zawartych
Statystyka w analizie i planowaniu eksperymentu
31 marca 2014 Przestrzeń statystyczna - podstawowe zadania statystyki Zdarzeniom losowym określonym na pewnej przestrzeni zdarzeń elementarnych Ω można zazwyczaj na wiele różnych sposobów przypisać jakieś
XLVIII Egzamin dla Aktuariuszy z 15 grudnia 2008 r.
Komisja Egzaminacyjna dla Aktuariuszy XLVIII Egzamin dla Aktuariuszy z 15 grudnia 2008 r. Część II Matematyka ubezpieczeń życiowych Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut Warszawa,
Mikro II: Popyt, Preferencje Ujawnione i Równanie S luckiego
Mikro II: Popyt, Preferencje Ujawnione i Równanie S luckiego Jacek Suda (slajdy: Krzysztof Makarski) 1 / 47 Popyt Wst ep Przypomnijmy: Podstawy teoria konsumenta. Zastosowanie wsz edzie. W szczególności