Obliczanie skãladek ubezpieczeniowych. oznaczaj ac, dãlugo s c _zycia noworodka. De nicja 1 Czas prze_zycia T(x) dla x-latka okre slony jest wzorem
|
|
- Tadeusz Kołodziej
- 8 lat temu
- Przeglądów:
Transkrypt
1 Obliczanie skãladek ubezpizeniowych Nih x oznacza wiek osoby. Nih X b edzie, zmienn losow oznaczaj ac, dãlugo s c _zycia noworodka. De nicja Czas prze_zycia T(x) dla x-latka okre slony jest wzorem T(x) X x dla X x: De nicja Przez K(x) b edziemy, oznacza c peãln caãlkowit liczb e, lat, kt ore x- latek prze_zyje do smierci, wi, K(x) [T(x)] dla X x; gdzie [a] oznacza cz e s c, caãlkowit liczby a. Nih i oznacza stop e, procentow a., Przez Z b edziemy, oznacza c warto s c bie_z ac, swiadczenia z danej polisy. Uwaga Stopa procentowa i jest ustalona (deterministyczna). Uwaga Poniewa_z wypãlata swiadczenia jest na og oãl zwi azan ze smierci ubezpizonego, wi, traktujemy Z jako zmienn Najprostsz miar warto sci polisy jest warto s c oczekiwana warto sci obnej swiadczenia E(Z). De nicja 3 SkÃladk netto lub warto sci aktuarialn swiadczenia nazywamy E(Z). Ubezpizenie bezterminowe na _zycie ze swiadczeniem pãlatnym na koni roku smierci ZaÃl o_zmy, _ze ubezpizony ma x lat w momencie zakupu polisy umiera w wieku x +T(x). W owczas wypãlata nast, epuje w chwili x +K(x) + : Z (suma ubezpizenia)v K+ : ZakÃladamy, _ze suma ubezpizenia wynosi zãl. Wob tego Z v K+ :
2 SkÃladk e, netto b edziemy, oznacza ca x. Wtedy A x E(Z) E(v K+ ) Wariancj, e oblicza si, e ze wzoru: v k+ kp x q x+k : D (Z) E(Z ) (E(Z)) P (vk+ ) kp x q x+k (A x ) P (v ) k+ kp x q x+k (A x ) : PrzykÃlad Obliczy c skãladk e, netto dla -latka, gdy stopa procentowa wynosi 5% funkcja prze_zycia jest okre slona wzorem s(x) x dla x[0; ]. W owczas poniewa_z x, kp s( +k) s() +k q +k q +k p +k k s( +k + ) s( +k) k : A X Poniewa_zi 0; 05, k+ k v k A 0; 36678: X v k+ v v5 v : Wob tego aby otrzyma c zãl. na koni roku po smierci ubezpizonego nale_zy wpãlaci c skãladk, e netto w wysoko sci 0; 37 zãl. Obliczymy teraz wariancj, e: E(Z ) (v ) k+ v (v ) 5 v 0; 9: D (Z) 0; 9 (0; 36678) 0; 055: Ubezpizenie terminowe ze swiadczeniem pãlatnym na koni roku smierci
3 W tym przypadku suma ubezpizenia b edzie, wypãlacana tylko wtedy, gdy ubezpizony umrze w ci agu, najbli_zszych n lat, wi, ½ v k+ gdy k 0; ;:::;n Z 0 gdy k n;n + ;:::: SkÃladk e, netto dla tej polisy oznaczamy A x:n, wi, n A x:n X v k+ kp x q x+k ; n X D (Z) (v ) k+ kp x q x+k (A x:n) : PrzykÃlad Obliczy c skãladk e, netto dla -latka w przypadku ubezpizenia terminowego na 5 lat, gdy stopa procentowa wynosi 5% funkcja prze_zycia jest okre slona wzorem s(x) x dla x[0; ]. W owczas poniewa_z x, kp s( +k) s() +k q +k q +k p +k X5 A :5 Poniewa_zi 0; 05, k+ k v k A :5 0; 087: k s( +k + ) s( +k) 4X k : v k+ v v5 v : Wob tego aby otrzyma c zãl. gdy osoba ubezpizone umrze w ci agu, 5 lat na koni roku po smierci ubezpizonego nale_zy wpãlaci c skãladk e, netto w wysoko sci 0; 087 zãl. Obliczymy teraz wariancj e:, E(Z ) 4X (v ) k+ v (v ) 5 v 0; 075; D (Z) 0; 075 (0; 087) 0; 067: 3
4 Ubezpizenie na do_zycie To ubezpizenie polega na tym, _ze suma ubezpizenia b edzie, wypãlacana osobie ubezpizonej dokãladnie zanlat Prawdopodobie nstwo, _ze ubezpizaj acy, si e, w wieku x do_zyje wieku x +n lat jest r owne n p x. 8 < 0 gdy k 0; ;:::;n Z v n gdy k n : 0 gdy k n+ ;n + ;:::: SkÃladk e, netto dla tej polisy b edziemy, oznacza ca x:n. A x:n v n np x D (Z) v n np x n q x : PrzykÃlad 3 Obliczy c skãladk e, netto dla -latka w przypadku ubezpizenia do_zycie do wieku 55 lat, gdy stopa procentowa wynosi 5% funkcja prze_zycia jest okre slona wzorem s(x) x dla x[0; ]. W owczas poniewa_z x, Poniewa_zn5, Skoro i 0; 05, to 5p s( + 5) s() 55 A :5 v 5 5p 55 v : A :5 0; 7: : Wob tego aby otrzyma c zãl. gdy ubezpizony prze_zyje jeszcze 5 lat nale_zy wpãlaci c skãladk, e netto w wysoko sci 0; 7 zãl. Obliczymy teraz wariancj, e: E(Z ) v 0 5p ( 5 p ) v ; D (Z) 0; 55 (0; 7) 0; 046: 4
5 Renta _zyciowa bezterminowa Do_zywotnia renta _zyciowa wypãlacana jest okresowo (np. co roku) a_z do smierci. Warto s c bie_z ac renty _zyciowej bezterminowej wypãlacanej z g ory raz do roku jest zmienn Je sli oznaczymy j przez Y, to Y +v +::: +v K : De nicja 4 Warto s c oczekiwan zmiennej losowej Y nazywamy warto sci aktuarialn renty _zyciowej lub skãladk netto, oznaczamy j Äa x i obliczamy ze wzoru Äa x v k kp x : Warto s c bie_z ac renty _zyciowej bezterminowejwypãlacanejz doãlu razdo roku jest zmienn Je sli oznaczymy j przez Y 0, to Y 0 v+v +::: +v K+ : De nicja 5 Warto s c oczekiwan zmiennej losowej Y 0 nazywamy warto sci aktuarialn renty _zyciowej lub skãladk netto, oznaczamy j a x i obliczamy ze wzoru a x v k+ kp x : PrzykÃlad 4 Obliczy c skãladk e, netto a x dla 65-latka do_zywotniej renty _zyciowej z doãlu, gdy stopa procentowa wynosi 5% funkcja prze_zycia jest okre slona wzorem s(x) x dla x[0; ]. Wtedy x 65. a 65 P 65 v k kp 35 P 35 vk s(65+k) s(65) P k vk 35 0; 8: 5
Metody oceny opãlacalno sci inwestycji
Metody oceny opãlacalno sci inwestycji Podstawowym warunkiem sukcesu rmy jest jej rozw oj. Do rozwoju rmy konieczne s a, wãla sciwe decyzje inwestycyjne. Jednymi z najwa_zniejszych s a, inwestycje polegaj
Obligacje. nazywamy papier warto sciowy maj acy, po_zyczki przez instytucj e, obligacj e, u jej nabywcy.
Obligacje De nicja Obligacj nazywamy papier warto sciowy maj acy, charakter wierzycielski. Obligacj jest zaci agni, eciem, po_zyczki przez instytucj e, sprzedaj ac, obligacj e, u jej nabywcy. Sprzedaj
Matematyka finansowa i ubezpieczeniowa - 11 Ubezpieczenia Ŝyciowe 2
Matematyka finansowa i ubezpieczeniowa - Ubezpieczenia Ŝyciowe 2 Składki netto w ubezpieczeniach Ŝyciowych Zakład ubezpieczeniowy pobiera za ubezpieczenia składkę brutto, składającą się ze składki netto
3 Ubezpieczenia na życie
3 Ubezpieczenia na życie O ile nie jest powiedziane inaczej, w poniższych zadaniach zakładamy HJP. 3.1. Zadania 7.1-7.26 z Miśkiewicz-Nawrocka, Zeug-Żebro, Zbiór zadań z matematyki finansowej. 3.2. Mając
ep do matematyki aktuarialnej Micha l Jasiczak Wyk lad 6 Kalkulacja sk ladki netto II. Funkcje komutacyjne.
Wst ep do matematyki aktuarialnej Micha l Jasiczak Wyk lad 6 Kalkulacja sk ladki netto II. Funkcje komutacyjne. 1 Przypomnienie Umowa ubezpieczenia zawiera informacje o: Przedmiocie ubezpieczenia Czasie
Składki i rezerwy netto
ROZDZIAŁ 6 Składki i rezerwy netto 1 Składki netto Umowę pomiędzy ubezpieczycielem a ubezpieczonym dotyczącą ubezpieczenia na życie nazywa się polisą ubezpieczeniową Polisa taka zawiera szczegółowe warunki
Rachunek warto sci przyszãlej
Rachunek warto sc przyszãlej Pen adz, b edzemy, nazywa c r owne_z kaptaãlem. Pen adz, wãla scwe ulokowany, a w ec, zdeponowany w banku lub odpowedno zanwestowany z reguãly po upãlywe pwenego czasu przynos
UBEZPIECZENIA NA ŻYCIE
UBEZPIECZENIA NA ŻYCIE M BIENIEK Ubezpieczenie na życie jest to kontrakt pomiędzy ubezpieczycielem a ubezpieczonym gwarantujący, że ubezpieczyciel w zamian za opłacanie składek, wypłaci z góry ustaloną
ep do matematyki aktuarialnej Micha l Jasiczak Wyk lad 5 Kalkulacja sk ladki netto I
Wst ep do matematyki aktuarialnej Micha l Jasiczak Wyk lad 5 Kalkulacja sk ladki netto I 1 Kodeks cywilny Tytu l XXVII, Umowa ubezpieczenia Dzia l I. Przepisy ogólne Dzia l II. Ubezpieczenia majatkowe
Elementy teorii przeżywalności
Elementy teorii przeżywalności Zadanie 1.1 Zapisz 1. Prawdopodobieństwo, że noworodek umrze nie później niż w wieku 8 lat 2. P-two, że noworodek umrze nie później niż w wieku 3 lat 3. P-two, że noworodek
MODELE MATEMATYCZNE W UBEZPIECZENIACH WYKŁAD 5: RENTY ŻYCIOWE
MODELE MATEMATYCZNE W UBEZPIECZENIACH WYKŁAD 5: RENTY ŻYCIOWE Rentą życiową nazywamy ciąg płatności który ustaje w chwili śmierci pewnej osoby (zwykle ubezpieczonego) Mówiąc o rencie życiowej nie zaznaczamy
MODELE MATEMATYCZNE W UBEZPIECZENIACH
MODELE MATEMATYCZNE W UBEZPIECZENIACH WYKŁAD 4: UBEZPIECZENIA NA ŻYCIE Ubezpieczenie na życie jest to kontrakt (zwany polisą), w którym ubezpieczony zobowiązuje się do opłacenia składki (jednorazowo lub
Ubezpieczenia na życie
ROZDZIAŁ 4 Ubezpieczenia na życie Ubezpieczenie na życie jest to kontrakt (zwany polisą), w którym ubezpieczony zobowiązuje się do opłacenia składki (jednorazowo lub w ratach), a w zamian za to ubezpieczyciel
Jednorazowa sk ladka netto w przypadku stochastycznej stopy procentowej. Ubezpieczenie na ca le życie z n-letnim okresem odroczenia.
Jednorazowa sk ladka netto w przypadku stochastycznej stopy procentowej Ubezpieczenie na ca le życie z n-letnim okresem odroczenia Wartość obecna wyp laty Y = Zatem JSN = = Kx +1 0, K x = 0, 1,..., n 1,
1. Oblicz prawdopodobieństwo zdarzenia, że noworodek wybrany z populacji, w której śmiertelnością rządzi prawo Gompertza
1. Oblicz prawdopodobieństwo zdarzenia, że noworodek wybrany z populacji, w której śmiertelnością rządzi prawo Gompertza x µ x = 06e. dożyje wieku największej śmiertelności (tzn. takiego wieku, w którym
ROZDZIAŁ 5. Renty życiowe
ROZDZIAŁ 5 Renty życiowe Rentą życiową nazywamy ciąg płatności który ustaje w chwili śmierci pewnej osoby (zwykle ubezpieczonego) Mówiąc o rencie życiowej nie zaznaczamy czy osoba której przyszły czas
Ź Ę ą ć Ź Ź Ń ą ą Ź ą ę ę Ę Ń Ć ą Ę Ę ą Ć Ń ę Ń ę ę ą Ś ę ę ę Ę ę ą Ś Ę ę ą Ś ą Ź ą ę ą ę ą Ź Ś ę ą ą ę ę ęź ęź Ś Ę Ś Ć ą Ź Ś Ś ę ę Ź ę ą ą Ź ę Ź ą ą ą ą ę ę ę Ź ę Ź Ę ę Ś ź Ś Ę Ć ę Ź Ź ą Ń Ś ąą Ś Ź Ę
ó ż ż ć ę ó ó ą ę ó ó ę ó ę ó ż ó ą ę ą ę ó ń ó ę ó ź ę ó ż ę ż ó Ę ą ą ą ą ą ą ą ą ęż ą ć ż ą ź ń ó ń ę ą ó ż Ę ó ą ó ą ó ó ó ó ą ó ó ą ó ńó ęż ó ą ą ó ęż ą ć ę ą ó ż ó ą ó ą ó ó ę ó ż ó ą ó ą ą ó ęż
= µ. Niech ponadto. M( s) oznacza funkcję tworzącą momenty. zmiennej T( x), dla pewnego wieku x, w populacji A. Wówczas e x wyraża się wzorem: 1
1. W populacji B natężenie wymierania µ ( B ) x jest większe od natężenia wymierania ( A) µ x w populacji A, jednostajnie o µ > 0, dla każdego wieku x tzn. ( B) ( A) µ µ x = µ. Niech ponadto x M( s) oznacza
UBEZPIECZ SIĘ, NAJLEPIEJ U MATEMATYKA
KARIERA MATEMATYKĄ KREŚLONA UBEZPIECZ SIĘ, NAJLEPIEJ U MATEMATYKA Ryzyko i ubezpieczenie Możliwość zajścia niechcianego zdarzenia nazywamy ryzykiem. Ryzyko prawie zawsze wiąże się ze stratą. Ryzyko i ubezpieczenie
MODELE MATEMATYCZNE W UBEZPIECZENIACH
MODELE MATEMATYCZNE W UBEZPIECZENIACH WYKŁAD 6: SKŁADKI OKRESOWE Składki okresowe netto Umowę pomiędzy ubezpieczycielem a ubezpieczonym dotyczącą ubezpieczenia na życie nazywa się polisą ubezpieczeniową
OGÓLNE RENTY ŻYCIOWE
OGÓLNE RENTY ŻYCIOWE M. BIENIEK Rentą życiową nazywamy kontrakt między ubezpieczycielem a ubezpieczonym, w którym ubezpieczony w zamian za określoną opłatę, zwaną składką, otrzymuje ciąg z góry określonych
1. Ubezpieczenia życiowe
1. Ubezpieczenia życiowe Przy ubezpieczeniach życiowych mamy do czynienia z jednorazową wypłatą sumy ubezpieczenia. Moment jej wypłaty i wielkość wypłaty może być funkcją zmiennej losowej T a więc czas
Ż Ż ń ń ń Ź Ź Ż Ź Ą Ó ŚĆ Ż Ż Ó Ą Ą Ż Ż ĄŻ ĄŻ ŚĆ Ć ŚĆ Ż Ź Ó Ź Ś ń ń ń ń ń Ą Ż Ż Ż ń Ż Ż Ś ź ń Ą Ż Ż Ś Ó Ś Ś Ż Ó ń Ć Ż Ó Ź Ó Ó Ą Ź ź Ó Ó Ó ń Ń Ź Ó Ó Ó Ą Ś Ź Ó Ź ń Ą Ż ń Ó Ó Ś Ś ź Ą ń ź ń Ó Ż Ż Ś ń Ą Ś ź
Wprowadzenie do równań ró znicowych i ró zniczkowych.
Wprowadzenie do równań ró znicowych i ró zniczkowych. Adam Kiersztyn Lublin 2013 Adam Kiersztyn () Wprowadzenie do równań ró znicowych i ró zniczkowych. maj 2013 1 / 11 Przyjmijmy nast ¾epuj ¾ace oznaczenia:
ć Ą ą ą Ż Ż ó ą ż Ć ą ĆŻ Ż Ó Ó Ó ą Ó ń ą ę ą ę Ź ń ą Ó ą ą ą ą ą ą Ó Ż ęż ę ą ę ą ą ż ĘĆ ż ę Żą ż ą ń Ó ą Ó ą ę ż ęż ó ó ć ż ń ęż ń ń ć ń ż ć ć ą ą Ó Ó ó ó ń ó ę ó Ó ą ż Ć ę Ó ę ż Ó ó ą ó Ó ż Ć ę ó Ó ó
Pochodne cz ¾astkowe i ich zastosowanie.
Pochodne cz ¾astkowe i ich zastosowanie. Adam Kiersztyn Lublin 2013 Adam Kiersztyn () Pochodne cz ¾astkowe i ich zastosowanie. maj 2013 1 / 18 Zanim przejdziemy do omawiania pochodnych funkcji wielu zmiennych
Matematyka ubezpieczeń życiowych r.
1. W danej populacji intensywność śmiertelności zmienia się skokowo w rocznicę narodzin i jest stała aż do następnych urodzin. Jaka jest oczekiwana liczba osób z kohorty miliona 60-latków, które umrą po
1. Pięciu osobników pochodzi z populacji, w której pojedyncze życie podlega ryzyku śmierci
1. Pięciu osobników pochodzi z populacji, w której pojedyncze życie podlega ryzyku śmierci + t µ + t A + B 2. Wyznacz prawdopodobieństwo, że z grupy tej nikt nie umrze w ciągu najbliższych 5 lat, jeśli
LXX Egzamin dla Aktuariuszy z 23 marca 2015 r.
Komisja Egzaminacyjna dla Aktuariuszy LXX Egzamin dla Aktuariuszy z 23 marca 2015 r. Część II Matematyka ubezpieczeń życiowych Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut Warszawa,
Matematyka ubezpieczeń życiowych 17 marca 2008 r.
1. Niech oznacza przeciętne dalsze trwanie życia w ciągu najbliższego roku obliczone przy założeniu hipotezy interpolacyjnej o stałym natężeniu wymierania między wiekami całkowitymi. Podobnie niech oznacza
Tablice trwania życia
ROZDZIAŁ 3 Tablice trwania życia 1 Przyszły czas życia Osobę, która ukończyła x lat życia, będziemy nazywać x-latkiem i oznaczać symbolem x Jej przyszły czas życia, tzn od chwili x do chwili śmierci, będziemy
LIII Egzamin dla Aktuariuszy z 31 maja 2010 r.
Komisja Egzaminacyjna dla Aktuariuszy LIII Egzamin dla Aktuariuszy z 31 maja 2010 r. Część II Matematyka ubezpieczeń życiowych Imię i nazwisko osoby egzaminowanej:. Czas egzaminu: 100 minut Warszawa, 31
LXXIV Egzamin dla Aktuariuszy z 23 maja 2016 r.
Komisja Egzaminacyjna dla Aktuariuszy LXXIV Egzamin dla Aktuariuszy z 23 maja 2016 r. Część II Matematyka ubezpieczeń życiowych Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut Warszawa,
XLIV Egzamin dla Aktuariuszy z 3 grudnia 2007 r.
Komisja Egzaminacyjna dla Aktuariuszy XLIV Egzamin dla Aktuariuszy z 3 grudnia 2007 r. Część II Matematyka ubezpieczeń życiowych Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut Warszawa,
ć ą ą ą ż ą ż ć Ę ą ą ż ć ą ą ń ą ą ż ń ą ą ą ą ą ą ą ą ż ż ń ą ą ą ż ą ń Ś ą ą Ó ą Ęż ż ń Ś ń ń ń Ę ą ą Ó ń ą ą Ż ą ą Ó ą Ó ą Ż Ó Ó ą Ż ą ą Ó Ó ą ą Ś ą ą ń ń ą ą ą Ó ą Ż Ó ą Ę Ę Ł ą ą Ł Ą Ł Ł Ś ć ą Ś
ż ę ć ę ę ę ę ę ę ę ć Ż ę ę ę ż ę ę ę ę ę Ż ć ż ż ę ż Ę ć ę ż ę ęż ę ę ę ę ż ć ź Ł Ę ę ż Ę ć ę Ż ę ęż ę ę ę ę ż ć ź Ę Ł ę ę Ą ż Ę ż Ę ż Ę ż ę Ą Ą ę Ę ę ę Ż ź Ż Ż ż ć ź ź ę ż Ę ż Ę ę Ę Ę ć ż ę ć ż ć ź Ł
ż ż Ę Ę Ę Ó ś ó ę Ć ęż ś ę ę ó ś ę ó ę ę Ę ę ó ść Ę ęć Ż Ś ę ę ę ó ż ż ź ę ż ż ś ę Ó ę ę Ł ęż ś ę ę ó ś ę ż ó Ę ę ę ę ść Ę ę ę ę ęć ę ż ś ę ę ę ę ó ż ę Ł Ę ę ż Ę ęż ś ę ó ę ś ę ż ó ę ę ż ść ę ę ę ę ę ęć
REZERWY UBEZPIECZEŃ I RENT ŻYCIOWYCH
REZERWY UBEZPIECZEŃ I RENT ŻYCIOWYCH M. BIENIEK Przypomnijmy, że dla dowolnego wektora przepływów c rezerwę w chwili k względem funkcji dyskonta v zdefiniowaliśmy jako k(c; v) = Val k ( k c; v), k = 0,
LXII Egzamin dla Aktuariuszy z 10 grudnia 2012 r.
Komisja Egzaminacyjna dla Aktuariuszy LXII Egzamin dla Aktuariuszy z 10 grudnia 2012 r. Część II Matematyka ubezpieczeń życiowych Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut Warszawa,
Tabela oprocentowania kredytów Rybnickiego Banku Spółdzielczego (obowiązuje dla kredytów udzielonych od dnia 05.03.2015 1 )
Załącznik do uchwały zarządu nr 204 /2015 z dnia 30.12.2015 r. wchodzi w życie z dniem 01.01.2016. r. Tabela kredytów Rybnickiego Banku Spółdzielczego (obowiązuje dla kredytów udzielonych od dnia 05.03.2015
MUMIO Lab 6 (składki, kontrakt stop-loss)
MUMIO Lab 6 (składki, kontrakt stop-loss) 1. (6p.) Niech X oznacza ryzyko (zmienn a losow a o własności P (X 0) = 1), a H( ) niech oznacza formułȩ kalkulacji składki (przyporz adkowuj ac a każdemu ryzyku
XLVIII Egzamin dla Aktuariuszy z 15 grudnia 2008 r.
Komisja Egzaminacyjna dla Aktuariuszy XLVIII Egzamin dla Aktuariuszy z 15 grudnia 2008 r. Część II Matematyka ubezpieczeń życiowych Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut Warszawa,
Wycena papierów wartościowych - instrumenty pochodne
Matematyka finansowa - 8 Wycena papierów wartościowych - instrumenty pochodne W ujęciu probabilistycznym cena akcji w momencie t jest zmienną losową P t o pewnym (zwykle nieznanym) rozkładzie prawdopodobieństwa,
XXXVIII Egzamin dla Aktuariuszy z 20 marca 2006 r.
Komisja Egzaminacyjna dla Aktuariuszy XXXVIII Egzamin dla Aktuariuszy z 20 marca 2006 r. Część II Matematyka ubezpieczeń życiowych Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut Warszawa,
Ubezpieczenia życiowe
Maciej Grzesiak Instytut Matematyki Politechniki Poznańskiej Ubezpieczenia życiowe 1. Z historii ubezpieczeń W uproszczeniu mówiąc mamy dwa tradycyjne modele ubezpieczeń. Pierwszy ma źródło w towarzystwach
1 Lista 6 1. LISTA Obliczy JSN renty z doªu dla (30)-latka na 3 lata w wysoko±ci Obliczenia zrobi dla TT -PL97m oraz i = 4%.
1. LISTA 6 1 1 Lista 6 1.1 Obliczy JSN renty z doªu dla (30)-latka na 3 lata w wysoko±ci 3000. Obliczenia zrobi dla TT -PL97m oraz i = 4%. 1.2 Obliczy JSN dla nast puj cej renty dla (30)-latka: je±li»yje
1 Praktyczne metody wyznaczania podstawowych miar przy zastosowaniu programu EXCEL
Kurs w zakresie zaawansowanych metod komputerowej analizy danych Podstawy statystycznej analizy danych 9.03.2014-3 godziny ćwiczeń autor: Adam Kiersztyn 1 Praktyczne metody wyznaczania podstawowych miar
EGZAMIN DYPLOMOWY, część II, Biomatematyka
Biomatematyka Niech a będzie recesywnym płciowo skojarzonym genem i załóżmy, że proces selekcji uniemożliwia kojarzenie się osobników płci męskiej o genotypie aa. Przyjmijmy, że genotypy AA, Aa i aa występują
LIV Egzamin dla Aktuariuszy z 4 października 2010 r.
Komisja Egzaminacyjna dla Aktuariuszy LIV Egzamin dla Aktuariuszy z 4 października 2010 r. Część II Matematyka ubezpieczeń życiowych Imię i nazwisko osoby egzaminowanej:...klucz odpowiedzi... Czas egzaminu:
LXVIII Egzamin dla Aktuariuszy z 29 września 2014 r.
Komisja Egzaminacyjna dla Aktuariuszy LXVIII Egzamin dla Aktuariuszy z 29 września 2014 r. Część II Matematyka ubezpieczeń życiowych Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut Warszawa,
LXXV Egzamin dla Aktuariuszy z 5 grudnia 2016 r.
Komisja Egzaminacyjna dla Aktuariuszy LXXV Egzamin dla Aktuariuszy z 5 grudnia 2016 r. Część II Matematyka ubezpieczeń życiowych Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut Warszawa,
Zadanie 1. Liczba szkód w każdym z trzech kolejnych lat dla pewnego ubezpieczonego ma rozkład równomierny:
Matematyka ubezpieczeń majątkowych 5.2.2008 r. Zadanie. Liczba szkód w każdym z trzech kolejnych lat dla pewnego ubezpieczonego ma rozkład równomierny: Pr ( N = k) = 0 dla k = 0,, K, 9. Liczby szkód w
Ekstrema funkcji wielu zmiennych.
Ekstrema funkcji wielu zmiennych. Adam Kiersztyn Lublin 2013 Adam Kiersztyn () Ekstrema funkcji wielu zmiennych. kwiecień 2013 1 / 13 Niech dana b ¾edzie funkcja f (x, y) określona w pewnym otoczeniu punktu
Ł Ł Ą Ą Ą ż ń ż ń ż ń Ż Ż Ś ń Ż ń ć Ł Ą ń Ż Ś ń ć ń ć ń Ż ć ć ń ń ń ż ć ń ŁĄ ż ć ć ć ć ń Ż Ź ć ć ć ń ż ŁĄ Ł ż Ł Ąż ń ć ż ŚĆ ż Ł ń Ć Ś Ę ń ń ż ź Ż ń ć Ę ń ć ż ć ć ń ń Ć ć ż Ż ć ć ć ćż Ż ć Ż Ę Ż Ż Ść Ż ż
MODELE MATEMATYCZNE W UBEZPIECZENIACH
MODELE MATEMATYCZNE W UBEZPIECZENIACH WYKŁAD 3: WYZNACZANIE ROZKŁADU CZASU PRZYSZŁEGO ŻYCIA 1 Hipoteza jednorodnej populacji Rozważmy pewną populację osób w różnym wieku i załóżmy, że każda z tych osób
Ą ć ć ć ć ć ź
Ą ź ź ź ć ć ć ć ć ć Ą ć ć Ą ć ć ć ć ć ź Ż Ą ć ź Ź Ż ź Ą Ą ć ź ź ź ź Ż Ń Ź Ś ź ź Ź Ź Ź Ą ć Ź Ż ć Ś ź Ą Ń Ś ć Ć Ś ć Ż ź Ż Ą Ż Ą ć ź Ź ź ź ź Ą Ś Ś Ś Ś Ą Ś Ź Ś ź ć ć Ż Ź ć Ż Ś Ś ć ć ć Ś Ż ć ć Ś Ą ć ć Ą Ś
XXXX Egzamin dla Aktuariuszy z 9 października 2006 r.
Komisja Egzaminacyjna dla Aktuariuszy XXXX Egzamin dla Aktuariuszy z 9 października 2006 r. Część II Matematyka ubezpieczeń życiowych Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut Warszawa,
FORMULARZ OFERTOWY W POSTĘPOWANIU NA WYBÓR DOSTAWCY MASZYN I URZĄDZEŃ sygn. MG1/08/2017
Za łącznik nr 4 do Zaproszenia, sygn. MG 1/08/2017 Formularz ofertowy (pieczęć Wykonawcy) FORMULARZ OFERTOWY W POSTĘPOWANIU NA WYBÓR DOSTAWCY MASZYN I URZĄDZEŃ sygn. MG1/08/2017 1. Dane dotycz ące Wykonawcy
LXVII Egzamin dla Aktuariuszy z 26 maja 2014 r.
Komisja Egzaminacyjna dla Aktuariuszy LXVII Egzamin dla Aktuariuszy z 26 maja 2014 r. Część II Matematyka ubezpieczeń życiowych Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut Warszawa,
Ż ż Ź ż ż ć ż ż ż ż ć ż Ź ż ż ż ć Ś ż Ś ć ż ć ż ż ż ć ć ż Ź ż ćż ż ż ż Ż ż Ą ż żć ż ż Ś ż ż ż ć ż ż ż ż ż ż ż ć Ć ż Ą Ż Ż ć Ś ż ż Ś Ś Ęż ż ć ż Ż Żż Ć ż ż ż ż ż ć Ż ż Ćż Ż ż ż ż Ą ż ż ć ż ć ż ż ć ż ż ż
XXXV Egzamin dla Aktuariuszy z 16 maja 2005 r.
Komisja Egzaminacyjna dla Aktuariuszy XXXV Egzamin dla Aktuariuszy z 6 maja 2005 r. Część II Matematyka ubezpieczeń życiowych Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 00 minut Warszawa, 6
2. (8 punktów) 3. (8 punktów) 4. (8 punktów) 5. (8 punktów) EGZAMIN MAGISTERSKI, Matematyka w ekonomii i ubezpieczeniach
Matematyka w ekonomii i ubezpieczeniach 1. (8 punktów) Znajd¹ rozwi zanie poni»szego zagadnienia programowania liniowego: Zmaksymalizowa x 1 2x 2 + x 3 x 5 przy ograniczeniach x 1 3x 2 + x 3 + 2x 5 = 8
Ę Ą Ó Ż Ą Ą ĄĄĘ ż ż Ź ż Ż Ą Ś Ż ż Ż Ą ż ż Ś ż Ó ż Ś ż ż ĄĄ Ż ż ż Ź Ó ż ż Ż Ś Ż ż Ż Ż ż Ó ć Ó Ś ż Ś Ś Ż Ź ż ć Ść Ó Ó Ż ż ż Ż Ż ć Ś Ś Ó Ś Ż ź Ż ż Ź Ę Ż Ż Ó Ę Ż Ś ż ż ż ż ż ć ż Ó Ó ż ż ż Ś Ź ż Ś Ą Ó Ść Ż
EGZAMIN MAGISTERSKI, Biomatematyka
Biomatematyka 91...... Zadanie 1. (8 punktów) Liczebność pewnej populacji jest opisana równaniem różniczkowym: dn = r N(α N)(N β), (1) dt w którym, N(t) oznacza liczebność populacji w chwili t, a r > 0
SPRAWOZDANIE FINANSOWE na dzień 31.12.2013 r.
STOWARZYSZENE NA RZECZ DZEC AUTYSTYCZNYCH ZACSZE" SPRAWOZDANE FNANSOWE na dzień 31.12.2013 r. KRAKÓW 31 STYCZNA 2014 R. STOWARZYSZENE NA RZECZ DZEC AUTYSTYCZNYCH "ZACSZE" 30-376 KRAKÓW UL.SODOWA 17/13
Ę Ę Ę Ó Ę Ę Ó Ź ć Ł Ś Ó Ó Ł Ł Ż ć ć Ż Ą Ż ć Ę Ę ź ć ź Ą Ę Ż ć Ł Ę ć Ż Ę Ę ć ć Ż Ż Ę Ż Ż ć Ó Ę Ę ć Ę ć Ę Ę Ż Ż Ż Ż ź Ż Ę Ę ź Ę ź Ę Ż ć ć Ą Ę Ę ć Ę ć ć Ź Ą Ę ć Ę Ą Ę Ę Ę ć ć ć ć Ć Ą Ą ć Ę ć Ż ć Ę ć ć ć Ą
ż ż ć ż Ż ż ż ć Ł ń ń ź ć ń Ś ż Ł ć ż Ź ż ń ż Ż Ś ć ź ż ć Ś ń ń ź ż ź ń Ś ń Ś ż ń ń ż ć ż ż Ą ć ń ń ń ć ż ć Ś ż Ć ć ż Ś Ś ć Ż ż Ś ć Ż Ż Ż Ą ń ń ć ń Ż ć ń ż Ż ń ż Ś ń Ś Ś ć Ż Ż Ć Ó Ż Ść ż Ż ż ż ń Ż Ż ć
ń ń ź ź ć ń ń Ą Ź ń Ą ĄĄ Ą ń ź Ł Ł ń ć Ó Ą Ą ń ń ć ń ć ź ć ć Ó ć Ó ć Ś ć Ó ń ć ć ć ź ć Ą Ó Ź Ź Ź Ą ź Ó Ą ń ń Ź Ó Ź Ń ć Ń ć ź ń ń ń ń ń ń Ń ń Ź ń Ź Ź Ź ń ń ń Ą Ź Ó ĄĄ ń Ą ń ń Ó Ń Ó Ó ń Ą Ó ź ń ź Ą Ó Ą ź
Ą Ą Ś Ż Ą ć Ź ć Ó Ś Ż Ź Ó ć Ś Ż ć Ś Ź Ó ć Ż Ż Ź Ż Ó Ź Ó Ż Ż Ż Ż Ż Ś Ź Ś ć ć ć Ź ć ć Ó Ó Ó Ś Ą ć ć Ź Ż Ż Ż Ż ź Ż ź Ó Ś Ą Ź Ż Ż ć Ź Ó Ż Ó Ś Ą Ś Ś Ź Ż Ś Ż Ż Ź Ó ć Ś Ś Ść Ś Ż Ź Ó Ś Ó Ź Ó Ż Ź Ó Ś Ś Ż Ź Ż Ś
Ę Ł ć Ą ż Ł Ł Ą Ó ż Ł Ś Ę Ś Ó Ł Ń Ą Ą Ł Ą ĄĄ ż ć Ś Ź ć ć Ł ć ć ć Ś Ó Ś Ś ć ć ć ć Ó ć ć ć Ś ż Ł Ą ż Ś ż Ł ć ć Ó ć ć Ą ć Ś ć ż ć ć Ś ć Ł Ń ć ć Ę ć ć ć Ó ć ć ć ć ć ć ź ć ć Ó ć ć ć ć ć ż ć ć ć ć Ł ć ć ć ć
Ą Ł Ą Ą ś ś ż Ż ś ś ś ść ś ś Ą ś Ż ś ć ż ś ś ż ś ż Ć Ł Ż ż Ź ć ĄĄ Ż Ą Ż Ą Ź Ż Ł Ł Ę ś ś ś ż Ą ś Ą ś Ą Ż Ą Ż Ą Ć Ż Ż ś Ż Ą Ć Ł Ł Ę ś ż Ż ć ś ś ś ś Ż Ć ż ż ś ś ż ś ś Ż Ż ś ś ś ś ś Ż ż Ż ś ś Ż Ę ż ś ż Ź Ę
Ż ź ź ź ź ź ć ć Ą Ą ć Ą ź ź ć Ż Ś ź ć ć Ę ć ź ź ć ź Ą ĄĄ Ń Ą Ń ć ć ć ć Ę ć Ń ć ć ć ć Ą ć ć ć ć ć Ń Ń ć ć ź ź ć Ę Ę ć Ą ć ć ć ć ć Ń Ę ć ć ć ć ć ć ć ć ć ź ć ź Ą ć ć ć Ń ć ć ć ć ź ć ć ć Ń Ń ć ź ź ć ź ź ć
Ę Ę Ę Ę Ę Ź Ą Ę Ą Ę Ą Ą Ę ć Ś ć Ę Ą ź Ą Ź ć Ę Ź Ę ć Ą Ę Ś Ę Ę Ź Ą Ę ć ź Ą Ź Ę ź Ę Ą Ś Ł Ą Ź Ę Ę Ę Ę ć Ę Ą Ę Ę Ą Ś Ą Ę ź ć Ę Ę Ę ź Ź ź Ą Ź Ę Ź ź Ź ć ć Ę Ę Ę Ą Ą Ą Ę ć Ę Ę ć Ę Ę Ą Ę Ą Ę Ę Ę Ą Ę Ś ć Ą ć ć
Ł Ą Ś Ą Ą ź ć ź Ł Ą ć ć ć ć ź Ś ć ć ć Ą Ł ć ź ć ć ć ć Ł ć ć ć ć ć Ł Ą ć Ś Ś Ż ć ź Ą ź ź ź ć ź ć ć ć ć ź ź ć ź ź ź Ś ź ź ć ć ć ć Ś ć ź ź ć ć Ą ź ź ź ź ź ć ć ć ć Ś ć ć ć Ś ć Ż Ł Ś Ł Ł Ł Ł Ż Ł Ś Ś ź ć Ą
4. Ubezpieczenie Życiowe
4. Ubezpieczenie Życiowe Składka ubezpieczeniowa musi brać pod uwagę następujące czynniki: 1. Kwotę wypłaconą przy śmierci ubezpieczonego oraz jej wartość aktualną. 2. Rozkład czasu do śmierci ubezpieczonego
LIX Egzamin dla Aktuariuszy z 12 marca 2012 r.
Komisja Egzaminacyjna dla Aktuariuszy LIX Egzamin dla Aktuariuszy z 12 marca 2012 r. Część II Matematyka ubezpieczeń życiowych Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut Warszawa,