Mieszaniny substancji

Wielkość: px
Rozpocząć pokaz od strony:

Download "Mieszaniny substancji"

Transkrypt

1 Mieszaniny substancji. Roztwory Mieszaniny substancji Są to homogeniczne mieszaniny dwóch lub więcej związków chemicznych. Skład roztworów określa się przez podanie stężenia składników. W roztworach zwykle jeden ze związków chemicznych jest nazywany rozpuszczalnikiem, a drugi substancją rozpuszczaną. Wykład 8 Własności fizykochemiczne roztworów zależą od składu roztworu oraz energii oddziaływania substancja rozpuszczona rozpuszczalnik. Do właściwości fizykochemicznych zaliczamy: prężność pary nad roztworem, temperatura przemiany fazowej (temperatura wrzenia i krzepnięcia), dyfuzja składników roztworu, ciśnienie osmotyczne. Biorąc pod uwagę wzajemne oddziaływanie cząsteczek tworzących roztwór, możemy podzielić roztwory na roztwory doskonałe i rzeczywiste. Roztworem doskonałym nazywamy roztwór, w którym nie ma silnych oddziaływań pomiędzy składnikami A i B i poszczególne składniki zachowują się w układzie wieloskładnikowym (roztworze) tak samo jak w stanie jednoskładnikowym (w czystej substancji). Składniki roztworu ulegają jedynie rozcieńczeniu, a ich właściwości pozostają takie same jak przed zmieszaniem. Podczas tworzenia tego roztworu (mieszania czystych składników) nie występuje żaden efekt energetyczny. Właściwości konstytutywne roztworu (zależące od rozmieszczenia, a w mniejszym stopniu od liczby i rodzaju atomów w cząsteczce) takie jak napięcie powierzchniowe, współczynnik refrakcji, prężność par nad roztworem są wagowo obliczoną średnią właściwości poszczególnych czystych składników. 1

2 Roztwór doskonały to Mieszanina gazów spełniająca prawo Daltona Jeżeli jednak zmieszamy równe objętości cieczy o różnych właściwościach (etanol i woda) to utworzony roztwór będzie miał objętość mniejszą od sumy objętości obu składników. Tworzony w ten sposób roztwór jest roztworem niedoskonałym (rzeczywistym). W tym roztworze energia oddziaływania cząsteczka rozpuszczonarozpuszczalnik jest większa lub mniejsza od energii oddziaływania pomiędzy cząsteczkami czystych składników (A-B >>A-A i B-B lub A-B << A-A i B-B). Porównanie roztworów doskonałych i rzeczywistych Charakterystyka Roztwory doskonałe Roztwory rzeczywiste Prawo Raoulta Spełniają Wykazują odchylenia Mieszanie w warunkach stałej temperatury i ciśnienia Proces samorzutny; ΔG miesz < 0 Może być niesamorzutne, ΔG miesz > 0 Entropia mieszania Dodatnia, ΔS miesz >0 Może być ujemna, ΔS miesz < 0 Wymiana ciepła z otoczeniem Brak, ΔH miesz = 0 Może wymagać wymiany ciepła z otoczeniem ΔH miesz < 0 lub ΔH miesz > 0 Zmiana objętości po zmieszaniu Brak Objętość po zmieszaniu może być mniejsza lub większa od sumy objętości poszczególnych składników 2

3 Mieszaniny lotnych cieczy. A) Układy dwuskładnikowe W roztworach tego typu zarówno substancja rozpuszczona jak i rozpuszczalnik są cieczami. W przypadku roztworów typu "ciecz w cieczy" możemy wyróżnić cztery przypadki: ciecze mieszają się bez ograniczeń (metanol-etanol; benzen-toluen itp.) ciecze mieszają się w stopniu ograniczonym a wzrost temperatury zwiększa zakres wzajemnej mieszalności i powyżej pewnej charakterystycznej dla danego układu temperatury mamy mieszalność nieograniczoną (np. fenol w wodzie i woda w fenolu) ciecze mieszają się w stopniu ograniczonym a wzrost temperatury zmniejsza zakres wzajemnej mieszalności, natomiast wzrost mieszalności występuje wraz z obniżaniem temperatury (np. formaldehyd i woda) ciecze mieszają się w stopniu ograniczonym, zaś zarówno wzrost temperatury jak i jej spadek powodują zwiększanie mieszalności (np. benzyloetylo amina i glicerol) Układ dwóch cieczy mieszających się nieograniczenie ma 2 stopnie swobody, s, (wg reguły faz Gibbsa) układ 2 składnikowy ( ) i dwufazowy (ciecz i para) (β) S = - β +2 Zmieniając parametry opisujące skład roztworu znajdującego się w równowadze np. ustalając skład roztworu i temperaturę pozostałe parametry takie jak prężność pary nad roztworem oraz skład pary będą od nich zależne. Natomiast ustalając prężność pary jako równą ciśnieniu zewnętrznemu oraz skład roztworu wówczas temperatura wrzenia roztworu oraz skład pary będą zależeć od składu roztworu. Ciecze mieszające się nieograniczenie Δμ i < 0, ΔS miesz > 0; dla roztworu doskonałego ΔH miesz = 0 Spełniają prawo Raoulta w całym zakresie stężeń Przykłady: benzen + toluen heptan + cykloheptan metanol + etanol 3

4 Prawo Raoulta, roztwory doskonałe, zeotropowe P B = X B P 0 B p A = X A P 0 A p P 0 A A X a =1.0 X B = 0.0 P 0B B X B =1.0 X A = 0.0 Zmiana prężności pary nad roztworem składników A i B w stałej temperaturze. Przykład W temperaturze 330 K prężność pary n-heksanu wynosi 0,68 x10-5 Pa, a prężność pary n-heptanu 0,24 x10-5 Pa. Obliczyć całkowitą prężność pary nad roztworem w którym ułamek molowy n-heksanu wynosi x hx = 0,25. P hx = 0.25 x 0,68 x10-5 Pa = 1.7 x10-6 Pa P hp = 0.75 X 0,24 x10-5 Pa = 1.8 x10-6 Pa P c = 1.7 x10-6 Pa x10-6 Pa = 3.5 x10-6 Pa lub stosując wzór P = 3.5 x10-6 Pa Dodatnie odchylenie od prawa Raoulta Gdy proces mieszania cieczy jest procesem endotermicznym czyli ΔH miesz > 0, ciecze takowe są układami o nieograniczonej mieszalności ale są roztworami doskonałymi. Wykazują one większą rzeczywistą prężność pary obu składników nad roztworem i całkowita prężność pary nad roztworem jest inna od tej wykazywanej przez prawo Raoulta. Azeotropia dodatnia Oddziaływania A-A i B-B >A-B Przykłady azeotropii dodatniej : etanol + woda; etanol +benzen; benzen + tetrachlorometan; metanol +tetrachlorometan 4

5 Ujemne odchylenie od prawa Raoulta Gdy proces mieszania cieczy jest procesem egzotermicznym czyli ΔH miesz < 0, ciecze takowe są układami o nieograniczonej mieszalności ale nie są roztworami doskonałymi. Wykazują one mniejszą rzeczywistą prężność pary obu składników nad roztworem i całkowitą prężność pary nad roztworem od tej wykazywanej przez prawo Raoulta Przykłady azeotropii ujemnej: aceton + metanol; benzen + metanol; aceton + chloroform; woda+ kwas mrówkowy; woda + kwas azotowy; pirydyna + kwas mrówkowy; Azeotropia ujemna Oddziaływania A-A i B-B < A-B Destylacja Destylacją nazywamy metodę rozdzielenia składników tworzących roztwór opartą na zjawisku wzbogacenia pary nad wrzącym roztworem w składnik bardziej lotny. Para powstała w czasie wrzenia roztworu ulega skropleniu w chłodnicy i jest zbierana w naczyniu odbierającym ( odbieralniku ). Tworzący się w ten sposób kondensat jest wzbogacony w ciecz o większej lotności. Destylacja prowadzona w warunkach izotermicznych (w stałej temperaturze) pozwala na uzyskanie kondensatu (destylatu) o pożądanym składzie. Destylacja jest metodą rozdziału cieczy bardzo często stosowaną w technologii chemicznej. Pozwala ona niekiedy na rozdział bardzo złożonych substancji. Schemat prostego zestawu laboratoryjnego do destylacji Krzywe wrzenia i kondensacji dla dwuskładnikowego roztworu doskonałego substancji A i B. W temperaturze wrzenia T1 skład cieczy i pary odpowiadają punktom 1 na osi składu. W wyniku destylacji skład cieczy wzbogaca się w mniej lotny składnik A (punkt 2 na osi składu) co powoduje wzrost temperatury wrzenia do wartości T2 oraz wzbogacenie składu pary w składnik A. 5

6 Rozdzielanie układów azeotropowych Nie mogą być rozdzielone na drodze destylacji prostej ponieważ w punktach minimum i maksimum prężności par składy wrzącego roztworu i par są jednakowe. Destylacja frakcyjna Zastosowanie do rozdzielenia mieszanin cieczy o zbliżonych temperaturach wrzenia. Polega na wielokrotnym odparowaniu i skropleniu. Na każdej z półek kolumny rektyfikacyjnej dochodzi do destylacji prostej. A każdy następny stopień procesu jest zasilany produktem (destylatem) poprzedniego. Układy cieczy o ograniczonej mieszalności Są to układy dwóch cieczy, które nie tworzą roztworów w każdym stosunku ilościowym i przy pewnym składzie mieszaniny tych cieczy tworzą się dwie fazy ciekłe będące roztworami nasyconymi. Ich entalpia swobodna mieszania, ΔG miesz > 0 Zgodnie z regułą faz Gibbsa układ składający się z dwóch faz (warstw) ciekłych i będącą z nimi w równowadze pary ma jeden stopień swobody. S = (2)- β (3) +2 = 1 Czyli w danej temperaturze ściśle określony jest skład obu warstw ciekłych, prężność par i skład pary nad cieczą. Stąd też: na wzajemną rozpuszczalność (mieszalność) cieczy ma wpływ temperatura. Diagramy fazowe temperatura skład Z uwagi na wpływ temperatury na mieszalność rozróżniamy układy o: - górnej krytycznej temperaturze mieszania - dolnej krytycznej temperaturze mieszania - górnej i dolnej krytycznej temperaturze mieszania 6

7 Binoda vs. konoda t t Binoda X A 0 1 konoda Układy wykazujące górą krytyczną temperaturę mieszania T T Górna krytyczna temperatura mieszania Układy wykazujące dolną i górną krytyczną temperaturę mieszania T Dwie fazy T Jedna faza układ nienasycony cieczy A w X A cieczy B 0 1 X B 1 Dwie fazy 0 Układ nasycony cieczy A w B i B w A Jedna faza układ nienasycony cieczy B w cieczy A Jedna faza X a 0 1 Przykłady takich mieszanin: woda + nikotyna; dietyloamina + woda; woda + tetrahydrofuran gliceryna + m-toluidyna Górna krytyczna temperatura mieszania Dolna krytyczna temperatura mieszania 7

8 Destylacja z parą wodną Wyznaczanie masy molowej Zastosowanie do oczyszczania substancji stałych i ciekłych nie mieszających się z wodą. Wykorzystuje prawo Daltona (p c = p A + p 2 +.p n). Z którego wynika, że dopóki istnieją obie fazy ciekłe, destylat będzie miał stały skład, a temperatura wrzenia będzie niższa niż każdego ze składników osobno. Stosuje się więc tę metodę do destylacji cieczy lub ciał stałych (niskotopliwych) o wysokich temperaturach wrzenia lub do wydzielania lotnego z parą wodną składnika ze złożonych mieszanin. Przykładem takiego zastosowania może być wyodrębnianie olejków eterycznych z materiałów roślinnych. B. Układy trójskładnikowe Zgodnie z regułą faz Gibbsa maksymalna liczba stopni swobody w takich układach, zakładając, że są one jednofazowe, wynosić może 4 (temperatura, ciśnienie, stężenia dwóch spośród trzech składników). S = (3)- β (1) +2 = 4 Układ trójskładnikowy w którym dwie ciecze mieszają się ograniczenie Ciecze mieszające się Woda + metanol Metanol + benzen W diagramach fazowych dla układów trójskładnikowych zakłada się, że temperatura i ciśnienie są stałe. Rozważa się natomiast wpływ stężenia poszczególnych składników na jego stan równowagi. Graficzną analizę diagramów przeprowadza się w oparciu o kształt trójkąta równobocznego, którego wierzchołki odpowiadają czystym składnikom układu. 8

9 Wpływ zmian temperatury na binody układów dwóch par cieczy, które częściowo się mieszają W takich układach mamy do czynienia z dwoma parami binod. Rys.b substancje A i B są całkowicie mieszalne w stosowanej temperaturze. Wzrost temperatury powoduje zwiększenie obszaru mieszalności i redukcję linii binod (rys.c) Spadek temperatury rozciąga binody (rys.a) i mogą one utworzyć, przy wystarczająco niskiej temperaturze, szeroki obszar niemeszalności. Ekstrakcja Cechy rozpuszczalnika w stosunku do fazy, z której prowadzi się ekstrakcję: niewielka wzajemna rozpuszczalność obu faz ekstrahowanej i ekstrahującej, duża rozpuszczalność ekstrahowanej substancji, pożądana niewielka rozpuszczalność innych składników mieszaniny, duża wartość stałej podziału, duża różnica ciężarów właściwych obu faz, trwałość substancji w roztworze, łatwość rozwarstwiania się faz, duża czystość i trwałość mała skłonność do tworzenia emulsji, mała lepkość łatwość i bezpieczeństwo manipulacji, łatwość usunięcia z roztworu, niskie koszty. 9

10 Zad. Jakie jest stężenie kofeiny w warstwie organicznej jeżeli współczynnik podziału tego związku pomiędzy rozpuszczalnikiem organicznym a wodą wynosi 7,2; zaś stężenie kofeiny w wodzie wynosiło: A) w stanie równowagi 0,04 mol/l B) początkowo 0,04 mol/l Modyfikacje prawa podziału Nernsta A B Dysocjacja Asocjacja i dysocjacja K (A lub B) stałą dysocjacji kwasowej lub zasadowej Stała dysocjacji pewnego słabego kwasu organicznego w wodzie wynosi 4,8 x Oblicz jego współczynnik podziału między benzen a wodą, jeżeli jego stężenie w benzenie to 0,8 mol/l a w wodzie 0,028 mol/l. 10

11 Ekstrakcja jednokrotna, ekstrakcja wielokrotna P Dla odróżnienia od stałej podziału P, stosunek całkowitych stężeń substancji w obu fazach (stężenie substancji nie zdysocjowanej + stężenie substancji zdysocjowanej) nazwano współczynnikiem ekstrakcji (lub współczynnikiem podziału) D, a w przypadku kwasu octowego można wyprowadzić wzór na tę wielkość: a ilość gramów substancji zawarta w roztworze wodnym a 1 ilość gramów substancji pozostająca w roztworze wodnym po 1 ekstrakcji a n - ilość gramów substancji pozostająca w roztworze wodnym po n-tej ekstrakcji V- objętość roztworu wodnego V o objętość roztworu organicznego Wyrażenie dla jednokrotnej ekstrakcji Zaś w przypadku zasad współczynnik ekstrakcji: Wyrażenie dla wielokrotnej ekstrakcji Klasyfikacja metod ekstrakcji: 1. stan skupienia fazy, z której ekstrahowany jest analit: próbki gazowe: ekstrakcja w układzie gaz ciecz; ekstrakcja w układzie gaz - ciało stałe próbki ciekłe: ekstrakcja w układzie ciecz-gaz; ekstrakcja w układzie ciecz ciecz; ekstrakcja w układzie ciecz-ciało stałe próbki stałe ekstrakcja w układzie ciało stałe-gaz; ekstrakcja w układzie ciało stałe- ciecz 2. stan skupienia fazy, do której ekstrahowany (przenoszony) jest analit: ekstrakcja do fazy ciekłej ekstrakcja do fazy stałej ekstrakcja do fazy gazowej ekstrakcja do fazy gazu w stanie nadkrytycznym 11

12 3.technika prowadzenia procesu ekstrakcji: okresowa i ciągła bez wspomagania i ze wspomaganiem dodatkową energią (głównie mikrofalową lub ultradźwiękową) jednokrotna i wielokrotna współprądowa i przeciwprądowa Sposób prowadzenia procesu _zywnosci_tz_v/5.%20ekstrakcja.pdf Rodzaj układu ekstrakcyjnego Ekstrakcja typu ciecz -ciecz Warunkiem prawidłowego przebiegu ekstrakcji w układzie ciecz ciecz jest występowanie dwóch faz, które po zakończeniu procesu można łatwo mechanicznie rozdzielić łatwo mechanicznie. 12

13 Zastosowanie ekstrakcji Do rozdzielania układów azeotropowych zamiast destylacji W produkcji olejów roślinnych Pozyskiwania węgla brunatnego z torfu Izolacja substancji aktywnych (np. olejków eterycznych) z materiału roślinnego Rozpuszczalność gazu w cieczy Parametry wpływające na tę własność to: a)temperatura b)ciśnienia 54 Roztwory gazów w cieczach PRAWO HENRY'ego W danym ciśnieniu i temperaturze ciecz (woda) zawiera pewną ilość rozpuszczonych gazów: rozpuszczalność gazów w cieczach spada (maleje zawartość gazu) wraz ze wzrostem temperatury i obniżaniem ciśnienia, rozpuszczalność gazów w cieczach rośnie (rośnie zawartość gazu) wraz z obniżaniem temperatury i wzrostem ciśnienia. C g = k H P g k- stała Henry ego, zdolność łączenia gazu

14 Roztwory nieelektrolitów; Właściwości koligatywne roztworów Koligatywne własności roztworów -zależą od ich Ciśnienie par rozpuszczalnika Ciśnienie par roztworu Temp. wrzenia rozpuszczalnika Podwyższenie temperatury wrzenia Temp. wrzenia roztworu stężenia (wyrażonego w molach substancji rozpuszczonej na jednostkę masy lub objętości rozpuszczalnika), a nie są zależne od rodzaju substancji rozpuszczonej. Należą do nich: efekt ebulioskopowy (ebulimetria) i związane z nim obniżenie prężności pary nad roztworem (względem czystego rozpuszczalnika), efekt krioskopowy (kriometria) oraz efekt osmotyczny (osmoza, ciśnienie osmotyczne). Obniżenie temperatury zamarzania Δt f = mk f Δt b = mk b Ciecz z substancją rozpuszczoną ciecz lód Dodatek soli do wody obniża temperaturę zamarzania tak powstałego roztworu. Δt f obniżenie temperatury krzepnięcia, o C Δt b podniesienie temperatury wrzenia; o C K f stała krioskopowa; o C kg rozpuszczalnika/mol substancji K b stała ebuliskopowa; o C kg rozpuszczalnika/mol substancji m molarność 60 14

15 Przykład: Próbka o masie 1.20 g nielotnego organicznego związku została rozpuszczona w 60 g benzenu. Temperatura wrzenia mieszaniny to C, natomiast temperatura wrzenia czystego benzenu wynosi C. Jaka jest masa cząsteczkowa substancji rozpuszczonej. ΔT = = 0.88 C Masa użytego benzenu to 60.0 g, a nie 1000 g. Tak więc ilość moli substancji = molarność y kg rozpuszczalnika molarny wodny roztwór substancji niejonizującej powoduje obniżenie temperatury zamarzania o C. Jeżeli badamy mocny elektrolit to np m KBr ma molarność m (i.e., m K m Br - ). Tak więc można przewidzieć, że molarny roztwór mocnego elektrolitu obniżałby temperaturę zamarzania o 2 X C, lub C. Rzeczywiste, obserwowane obniżenie punktu krzepnięcia wynosi tylko C. Ta wartość dla ΔT f jest około 6% mniejszy od wyliczonego dla m roztworu Dla bardziej skoncentrowanego 1.00 m roztworu KBr oczekiwane obniżenie temperatury krzepnięcia wynosi 2 X 1.86 C = 3.72 C. Zaś obserwowany spadek temperatury krzepnięcia wynosi tylko 3.29 C. Czyli ΔT f jest około 11% mniejsza od oczekiwanej. Aby obie wartości dla wodnego roztworu elektrolitu skorelować stosuje się współczynnik van t Hoff a dla roztworu. Jest to stosunek aktualnej koligatywnej właściwości do tej, która byłaby oczekiwana gdyby nie doszło do dysocjacji. Tf actual K f meffective meffective i Tf if nonelectrolyte Kimstated mstated ilosc moli subs tan cji rozpuszczonej m [ molarnosc] kg roztworu 64 15

16 i = 1+ α (n-1) α ilość (ułamek) cząstek dysocjujących substancji n- ilość jonów Laboratoryjny zestaw do demonstracji zjawiska osmozy. (a). Rysunek po prawej stronie przedstawia rurkę wypełnioną roztworem cukru umieszczonym w rurce zakończonej membraną półprzepuszczalną. Całość jest zanurzona w roztworze wody. Rysunek po lewej stronie po pewnym czasie od rozpoczęcia procesu transportu wody (solwentu) przez błonę półprzepuszczalną. (b) Układ zamknięty zawierający dwa naczynia w jednym z nich roztwór, a w drugim rozpuszczalnik. Cząsteczki zawarte w roztworze nie są lotne, a rozpuszczalnik tak. Jego cząsteczki ulatniają się i rozcieńczają roztwór. 65 Osmotyczne ciśnienie (π) jest różnicą ciśnienia pomiędzy ciśnieniem układu a ciśnieniem atmosferycznym. Pomiaru można dokonać poprzez zastosowanie wystarczająco dużego ciśnienia aby przerwać wypływ wody z systemu, który powstaje dzięki zjawisku osmozy. n R T V Dla roztworów stężonych π = MRT Dla roztworów rozcieńczonych π = m RT M- molowość m- molarność T-Temperatura n ilość moli Przykład: Jakie jest ciśnienie osmotyczne roztworu sacharozy zawierającego 50 g sacharozy (0.146 moli) w 117 g wody. Gęstość roztworu to 1.34 g ml -1. Pomiaru dokonano w temperaturze 25 o C. T = 273K + 25 = 298K R= L atm mol -1 K -1 1 ml V 167g 125 ml L 1.34 g moles 1 M 1.17 mol L L 1 L atm 1.17 mol L K atm mol K 68 16

17 Komórki pochłaniają wodę gdy stężenie roztworu na zewnątrz jest mniejsze (roztwór hipotoniczny) od stężenia wewnątrz nich. Komórki puchną. Komórki o normalnym kształcie w izotonicznym roztworze. Stężenia obu roztworów są jednakowe. Komórki kurczą się w roztworze o wyższym stężeniu (hipertoniczny roztwór) wskutek przechodzenia wody z wnętrza komórki do roztworu zewnętrznego Żywe komórki zawierają roztwory. Gdy umieścimy je w roztworach o odmiennym stężeniu różnica w ciśnieniu osmotycznym pomiędzy komórką a roztworem zewnętrznym może spowodować przepływ wody do lub z komórki. 17

Mieszaniny substancji

Mieszaniny substancji Mieszaniny substancji Wykład 8 Mieszaniny Mieszanina układ dwóch lub więcej pierwiastków lub związków chemicznych zmieszanych z sobą w dowolnym stosunku i wykazujących swoje indywidualne właściwości. Mieszaniny

Bardziej szczegółowo

WYKŁAD 7. Diagramy fazowe Dwuskładnikowe układy doskonałe

WYKŁAD 7. Diagramy fazowe Dwuskładnikowe układy doskonałe WYKŁAD 7 Diagramy fazowe Dwuskładnikowe układy doskonałe JS Reguła Gibssa. Układy dwuskładnikowe Reguła faz Gibbsa określa liczbę stopni swobody układu w równowadze termodynamicznej: układy dwuskładnikowe

Bardziej szczegółowo

Wykład 2. Anna Ptaszek. 7 października Katedra Inżynierii i Aparatury Przemysłu Spożywczego. Chemia fizyczna - wykład 2. Anna Ptaszek 1 / 1

Wykład 2. Anna Ptaszek. 7 października Katedra Inżynierii i Aparatury Przemysłu Spożywczego. Chemia fizyczna - wykład 2. Anna Ptaszek 1 / 1 Wykład 2 Katedra Inżynierii i Aparatury Przemysłu Spożywczego 7 października 2015 1 / 1 Zjawiska koligatywne Rozpuszczenie w wodzie substancji nielotnej powoduje obniżenie prężności pary nasyconej P woda

Bardziej szczegółowo

chemia wykład 3 Przemiany fazowe

chemia wykład 3 Przemiany fazowe Przemiany fazowe Przemiany fazowe substancji czystych Wrzenie, krzepnięcie, przemiana grafitu w diament stanowią przykłady przemian fazowych, które zachodzą bez zmiany składu chemicznego. Diagramy fazowe

Bardziej szczegółowo

Wykład 3. Fizykochemia biopolimerów- wykład 3. Anna Ptaszek. 30 października Katedra Inżynierii i Aparatury Przemysłu Spożywczego

Wykład 3. Fizykochemia biopolimerów- wykład 3. Anna Ptaszek. 30 października Katedra Inżynierii i Aparatury Przemysłu Spożywczego Wykład 3 - wykład 3 Katedra Inżynierii i Aparatury Przemysłu Spożywczego 30 października 2013 1/56 Warunek równowagi fazowej Jakich układów dotyczy równowaga fazowa? Równowaga fazowa dotyczy układów: jednoskładnikowych

Bardziej szczegółowo

Wykład 8. Równowaga fazowa Roztwory rzeczywiste

Wykład 8. Równowaga fazowa Roztwory rzeczywiste Wykład 8 Równowaga fazowa Roztwory rzeczywiste Roztwory doskonałe Porównanie roztworów doskonałych i Roztwory Doskonałe rzeczywistych Roztwory Rzeczywiste Spełniają prawo Raoulta Mieszanie w warunkach

Bardziej szczegółowo

Wykład 1-4. Anna Ptaszek. 6 września Katedra Inżynierii i Aparatury Przemysłu Spożywczego. Fizykochemia biopolimerów - wykład 1-4.

Wykład 1-4. Anna Ptaszek. 6 września Katedra Inżynierii i Aparatury Przemysłu Spożywczego. Fizykochemia biopolimerów - wykład 1-4. Wykład 1-4 Katedra Inżynierii i Aparatury Przemysłu Spożywczego 6 września 2016 1 / 68 Podstawowe pojęcia Układ termodynamiczny To zbiór niezależnych elementów, które oddziałują ze sobą tworząc integralną

Bardziej szczegółowo

Wykład 8B. Układy o ograniczonej mieszalności

Wykład 8B. Układy o ograniczonej mieszalności Wykład 8B Układy o ograniczonej mieszalności Układy o ograniczonej mieszalności Jeżeli dla pewnego składu entalpia swobodna mieszania ( Gmiesz> 0) jest dodatnia, to mieszanie nie jest procesem samorzutnym

Bardziej szczegółowo

Wykład 6. Klasyfikacja przemian fazowych

Wykład 6. Klasyfikacja przemian fazowych Wykład 6 Klasyfikacja przemian fazowych JS Klasyfikacja Ehrenfesta Ehrenfest klasyfikuje przemiany fazowe w oparciu o potencjał chemiczny. nieciągłość Przemiany fazowe pierwszego rodzaju pochodne potencjału

Bardziej szczegółowo

prof. dr hab. Małgorzata Jóźwiak

prof. dr hab. Małgorzata Jóźwiak Czy równowaga w przyrodzie i w chemii jest korzystna? prof. dr hab. Małgorzata Jóźwiak 1 Pojęcie równowagi łańcuch pokarmowy równowagi fazowe równowaga ciało stałe - ciecz równowaga ciecz - gaz równowaga

Bardziej szczegółowo

Para pozostająca w równowadze z roztworem jest bogatsza w ten składnik, którego dodanie do roztworu zwiększa sumaryczną prężność pary nad nim.

Para pozostająca w równowadze z roztworem jest bogatsza w ten składnik, którego dodanie do roztworu zwiększa sumaryczną prężność pary nad nim. RÓWNOWAGA CIECZ-PARA DLA UKŁADÓW DWUSKŁADNIKOWYCH: 1) Zgodnie z regułą faz Gibbsa układ dwuskładnikowy osiąga największą liczbę stopni swobody (f max ), gdy znajduje się w nim najmniejsza możliwa liczba

Bardziej szczegółowo

Czy równowaga jest procesem korzystnym? dr hab. prof. nadzw. Małgorzata Jóźwiak

Czy równowaga jest procesem korzystnym? dr hab. prof. nadzw. Małgorzata Jóźwiak Czy równowaga jest procesem korzystnym? dr hab. prof. nadzw. Małgorzata Jóźwiak 1 Pojęcie równowagi łańcuch pokarmowy równowagi fazowe równowaga ciało stałe - ciecz równowaga ciecz - gaz równowaga ciało

Bardziej szczegółowo

Warunki izochoryczno-izotermiczne

Warunki izochoryczno-izotermiczne WYKŁAD 5 Pojęcie potencjału chemicznego. Układy jednoskładnikowe W zależności od warunków termodynamicznych potencjał chemiczny substancji czystej definiujemy następująco: Warunki izobaryczno-izotermiczne

Bardziej szczegółowo

Termodynamika równowag fazowych w układach dwuskładnikowych

Termodynamika równowag fazowych w układach dwuskładnikowych Termodynamika równowag fazowych w układach dwuskładnikowych 3.3.1. Równowaga ciecz-para: skład pary nad roztworem, prawo Roulta, Henry ego, destylacja baryczna oraz termiczna 3.3.2. Równowaga ciecz-ciecz

Bardziej szczegółowo

Wykład 1. Anna Ptaszek. 5 października Katedra Inżynierii i Aparatury Przemysłu Spożywczego. Chemia fizyczna - wykład 1. Anna Ptaszek 1 / 36

Wykład 1. Anna Ptaszek. 5 października Katedra Inżynierii i Aparatury Przemysłu Spożywczego. Chemia fizyczna - wykład 1. Anna Ptaszek 1 / 36 Wykład 1 Katedra Inżynierii i Aparatury Przemysłu Spożywczego 5 października 2015 1 / 36 Podstawowe pojęcia Układ termodynamiczny To zbiór niezależnych elementów, które oddziałują ze sobą tworząc integralną

Bardziej szczegółowo

Seminarium 4 Obliczenia z wykorzystaniem przekształcania wzorów fizykochemicznych

Seminarium 4 Obliczenia z wykorzystaniem przekształcania wzorów fizykochemicznych Seminarium 4 Obliczenia z wykorzystaniem przekształcania wzorów fizykochemicznych Zad. 1 Przekształć w odpowiedni sposób podane poniżej wzory aby wyliczyć: a) a lub m 2 b) m zred h E a 8ma E osc h 4 2

Bardziej szczegółowo

Właściwości koligatywne

Właściwości koligatywne Tomasz Lubera Właściwości koligatywne Grupa zjawisk naturalnych niezależnych od rodzaju substancji rozpuszczonej a jedynie od jej ilości. Należą do nich: obniżenie prężności pary, podwyższenie temperatury

Bardziej szczegółowo

Fazy i ich przemiany

Fazy i ich przemiany Układy i fazy Fazy i ich przemiany Co to jest faza? 1. Faza to forma występowania materii jednolita w całej objętości pod względem składu chemicznego i właściwości fizycznych (Atkins) 2. Faza to część

Bardziej szczegółowo

Spis treści. Ciśnienie osmotyczne. Mechanizm powstawania ciśnienia osmotycznego

Spis treści. Ciśnienie osmotyczne. Mechanizm powstawania ciśnienia osmotycznego Roztwór to nierozdzielająca się w długich okresach czasu mieszanina dwóch lub więcej związków chemicznych. Skład roztworów określa się przez podanie stężenia składników. W roztworach zwykle jeden ze związków

Bardziej szczegółowo

Wykład 5. przemysłu spożywczego- wykład 5

Wykład 5. przemysłu spożywczego- wykład 5 Wykład spożywczego- wykład Katedra Inżynierii i Aparatury Przemysłu Spożywczego 4maja2014 1/1 Układy gaz-ciecz Rozpuszczalnośćwybranychgazówwcieczachw20 o Cw g/100g cieczy CIECZ H 2 N 2 O 2 CO 2 H 2 S

Bardziej szczegółowo

BADANIE RÓWNOWAG FAZOWYCH W UKŁADACH TRZECH CIECZY

BADANIE RÓWNOWAG FAZOWYCH W UKŁADACH TRZECH CIECZY Ćwiczenie 16 Grażyna Nowicka, Waldemar Nowicki BADANIE RÓWNOWAG FAZOWYCH W UKŁADACH TRZECH CIECZY Zagadnienia: Faza, składnik niezależny, liczba stopni swobody układu. Termodynamiczne kryterium równowagi

Bardziej szczegółowo

Równowagi fazowe. Zakład Chemii Medycznej Pomorski Uniwersytet Medyczny

Równowagi fazowe. Zakład Chemii Medycznej Pomorski Uniwersytet Medyczny Równowagi fazowe Zakład Chemii Medycznej Pomorski Uniwersytet Medyczny Równowaga termodynamiczna Przemianom fazowym towarzyszą procesy, podczas których nie zmienia się skład chemiczny układu, polegają

Bardziej szczegółowo

Roztwory rzeczywiste (1)

Roztwory rzeczywiste (1) Roztwory rzeczywiste (1) Również w temp. 298,15K, ale dla CCl 4 () i CH 3 OH (). 2 15 1 5-5 -1-15 Τ S H,2,4,6,8 1 G -2 Chem. Fiz. TCH II/12 1 rzyczyny dodatnich i ujemnych odchyleń od prawa Raoulta konsekwencja

Bardziej szczegółowo

Fazy i ich przemiany

Fazy i ich przemiany Układy i fazy Fazy i ich przemiany Co to jest faza? 1. Faza to forma występowania materii jednolita w całej objętości pod względem składu chemicznego właściwości fizycznych (Atkins) 2. Faza to część układu

Bardziej szczegółowo

Fazy i ich przemiany

Fazy i ich przemiany Układy i fazy Fazy i ich przemiany Co to jest faza? 1. Faza to forma występowania materii jednolita w całej objętości pod względem składu chemicznego właściwości fizycznych (Atkins) 2. Faza to część układu

Bardziej szczegółowo

Chemia fizyczna. Równowagi fazowe. Zakład Chemii Medycznej Pomorski Uniwersytet Medyczny

Chemia fizyczna. Równowagi fazowe. Zakład Chemii Medycznej Pomorski Uniwersytet Medyczny Chemia fizyczna Równowagi fazowe. Zakład Chemii Medycznej Pomorski Uniwersytet Medyczny SUBSTANCJE CZYSTE SUBSTANCJE CZYSTE RÓWNOWAGI FAZOWE Fazą danej substancji nazywamy postać materii, która charakteryzuje

Bardziej szczegółowo

POLITECHNIKA POZNAŃSKA ZAKŁAD CHEMII FIZYCZNEJ ĆWICZENIA PRACOWNI CHEMII FIZYCZNEJ

POLITECHNIKA POZNAŃSKA ZAKŁAD CHEMII FIZYCZNEJ ĆWICZENIA PRACOWNI CHEMII FIZYCZNEJ ZLEŻNOŚĆ PRĘŻNOŚCI PRY OD TEMPERTURY - DESTYLCJ WSTĘP Zgodnie z regułą faz w miarę wzrostu liczby składników w układzie, zwiększa się również liczba stopni swobody. Układ utworzony z mieszaniny dwóch cieczy

Bardziej szczegółowo

Roztwory. Homogeniczne jednorodne (jedno-fazowe) mieszaniny dwóch lub więcej składników.

Roztwory. Homogeniczne jednorodne (jedno-fazowe) mieszaniny dwóch lub więcej składników. Roztwory Homogeniczne jednorodne (jedno-fazowe) mieszaniny dwóch lub więcej składników. Własności fizyczne roztworów są związane z równowagę pomiędzy siłami wiążącymi cząsteczki wody i substancji rozpuszczonej.

Bardziej szczegółowo

Laboratorium z chemii fizycznej. Zakres zagadnień na kolokwia

Laboratorium z chemii fizycznej. Zakres zagadnień na kolokwia CHEMIA semestr III Laboratorium z chemii fizycznej Zakres zagadnień na kolokwia 1. Wymagania ogólne Podstawą przygotowania do ćwiczeń jest skrypt pt. Chemia fizyczna. Ćwiczenia laboratoryjne, praca zbiorowa

Bardziej szczegółowo

Równanie gazu doskonałego

Równanie gazu doskonałego Równanie gazu doskonałego Gaz doskonały to abstrakcyjny model gazu, który zakłada, że gaz jest zbiorem sprężyście zderzających się kulek. Wiele gazów w warunkach normalnych zachowuje się jak gaz doskonały.

Bardziej szczegółowo

relacje ilościowe ( masowe,objętościowe i molowe ) dotyczące połączeń 1. pierwiastków w związkach chemicznych 2. związków chemicznych w reakcjach

relacje ilościowe ( masowe,objętościowe i molowe ) dotyczące połączeń 1. pierwiastków w związkach chemicznych 2. związków chemicznych w reakcjach 1 STECHIOMETRIA INTERPRETACJA ILOŚCIOWA ZJAWISK CHEMICZNYCH relacje ilościowe ( masowe,objętościowe i molowe ) dotyczące połączeń 1. pierwiastków w związkach chemicznych 2. związków chemicznych w reakcjach

Bardziej szczegółowo

Analiza termiczna Krzywe stygnięcia

Analiza termiczna Krzywe stygnięcia Analiza termiczna Krzywe stygnięcia 0 0,2 0,4 0,6 0,8 1,0 T a e j n s x p b t c o f g h k l p d i m y z q u v r w α T B T A T E T k P = const Chem. Fiz. TCH II/10 1 Rozpatrując stygnięcie wzdłuż kolejnych

Bardziej szczegółowo

PROCESY JEDNOSTKOWE W TECHNOLOGIACH ŚRODOWISKOWYCH DESTYLACJA

PROCESY JEDNOSTKOWE W TECHNOLOGIACH ŚRODOWISKOWYCH DESTYLACJA KIiChŚ PROCESY JEDNOSTKOWE W TECHNOLOGIACH ŚRODOWISKOWYCH Ćwiczenie nr 5 DESTYLACJA Cel ćwiczenia Doświadczalne wyznaczenie krzywych równowagi ciecz-para dla układu woda-kwas octowy. Wprowadzenie Destylacja

Bardziej szczegółowo

Wykład 4. Przypomnienie z poprzedniego wykładu

Wykład 4. Przypomnienie z poprzedniego wykładu Wykład 4 Przejścia fazowe materii Diagram fazowy Ciepło Procesy termodynamiczne Proces kwazistatyczny Procesy odwracalne i nieodwracalne Pokazy doświadczalne W. Dominik Wydział Fizyki UW Termodynamika

Bardziej szczegółowo

Kalorymetria. 1. I zasada termodynamiki, Prawo Hessa, Prawo Kirchhoffa (graficzna interpretacja), ciepło właściwe, termodynamiczne funkcje stanu.

Kalorymetria. 1. I zasada termodynamiki, Prawo Hessa, Prawo Kirchhoffa (graficzna interpretacja), ciepło właściwe, termodynamiczne funkcje stanu. Kalorymetria 1. I zasada termodynamiki, Prawo Hessa, Prawo Kirchhoffa (graficzna interpretacja), ciepło właściwe, termodynamiczne funkcje stanu. 2. Rodzaje i zasady działania kalorymetrów: a) nieizotermicznego

Bardziej szczegółowo

Wykład 7. Anna Ptaszek. 13 września Katedra Inżynierii i Aparatury Przemysłu Spożywczego. Fizykochemia biopolimerów - wykład 7.

Wykład 7. Anna Ptaszek. 13 września Katedra Inżynierii i Aparatury Przemysłu Spożywczego. Fizykochemia biopolimerów - wykład 7. Wykład 7 Katedra Inżynierii i Aparatury Przemysłu Spożywczego 13 września 2016 1 / 27 Układ wieloskładnikowy dwufazowy P woda 1 atm lód woda ciek a woda + substancja nielotna para wodna 0 0 100 T 2 / 27

Bardziej szczegółowo

Obliczenia chemiczne. Zakład Chemii Medycznej Pomorski Uniwersytet Medyczny

Obliczenia chemiczne. Zakład Chemii Medycznej Pomorski Uniwersytet Medyczny Obliczenia chemiczne Zakład Chemii Medycznej Pomorski Uniwersytet Medyczny 1 STĘŻENIA ROZTWORÓW Stężenia procentowe Procent masowo-masowy (wagowo-wagowy) (% m/m) (% w/w) liczba gramów substancji rozpuszczonej

Bardziej szczegółowo

Chemia fizyczna/ termodynamika, 2015/16, zadania do kol. 2, zadanie nr 1 1

Chemia fizyczna/ termodynamika, 2015/16, zadania do kol. 2, zadanie nr 1 1 Chemia fizyczna/ termodynamika, 2015/16, zadania do kol. 2, zadanie nr 1 1 [Imię, nazwisko, grupa] prowadzący Uwaga! Proszę stosować się do następującego sposobu wprowadzania tekstu w ramkach : pola szare

Bardziej szczegółowo

Prężność pary nad roztworem

Prężność pary nad roztworem Tomasz Lubera Układ: Prężność pary nad roztworem dwuskładnikowy (składniki I i II) dwufazowy (ciecz i gaz) w którym faza ciekła i gazowa to roztwory idealne W stanie równowagi prężności pary składników/układu

Bardziej szczegółowo

Badanie równowag ciecz para w układach dwuskładnikowych

Badanie równowag ciecz para w układach dwuskładnikowych Wprowadzenie Badanie równowag ciecz para w układach dwuskładnikowych Rozważmy równowagę ciecz para w układzie zawierającym dwie ciecze A i B całkowicie mieszające się ze sobą. Zgodnie z regułą faz Gibbsa,

Bardziej szczegółowo

Podstawowe prawa opisujące właściwości gazów zostały wyprowadzone dla gazu modelowego, nazywanego gazem doskonałym (idealnym).

Podstawowe prawa opisujące właściwości gazów zostały wyprowadzone dla gazu modelowego, nazywanego gazem doskonałym (idealnym). Spis treści 1 Stan gazowy 2 Gaz doskonały 21 Definicja mikroskopowa 22 Definicja makroskopowa (termodynamiczna) 3 Prawa gazowe 31 Prawo Boyle a-mariotte a 32 Prawo Gay-Lussaca 33 Prawo Charlesa 34 Prawo

Bardziej szczegółowo

dla której jest spełniony warunek równowagi: [H + ] [X ] / [HX] = K

dla której jest spełniony warunek równowagi: [H + ] [X ] / [HX] = K RÓWNOWAGI W ROZTWORACH Szwedzki chemik Svante Arrhenius w 1887 roku jako pierwszy wykazał, że procesowi rozpuszczania wielu substancji towarzyszy dysocjacja, czyli rozpad cząsteczek na jony naładowane

Bardziej szczegółowo

Ćwiczenie 2: Właściwości osmotyczne koloidalnych roztworów biopolimerów.

Ćwiczenie 2: Właściwości osmotyczne koloidalnych roztworów biopolimerów. 1. Część teoretyczna Właściwości koligatywne Zjawiska osmotyczne związane są z równowagą w układach dwu- lub więcej składnikowych, przy czym dotyczy roztworów substancji nielotnych (soli, polisacharydów,

Bardziej szczegółowo

Woda w organizmie człowieka. Właściwości koligatywne roztworów. Zakład Chemii Medycznej Pomorskiego Uniwersytetu Medycznego

Woda w organizmie człowieka. Właściwości koligatywne roztworów. Zakład Chemii Medycznej Pomorskiego Uniwersytetu Medycznego Woda w organizmie człowieka. Właściwości koligatywne roztworów. Zakład Chemii Medycznej Pomorskiego Uniwersytetu Medycznego Do niedawna nasze wiadomości o gospodarce wodnej i elektrolitowej były nie tyle

Bardziej szczegółowo

11) Stan energetyczny elektronu w atomie kwantowanym jest zespołem : a dwóch liczb kwantowych b + czterech liczb kwantowych c nie jest kwantowany

11) Stan energetyczny elektronu w atomie kwantowanym jest zespołem : a dwóch liczb kwantowych b + czterech liczb kwantowych c nie jest kwantowany PYTANIA EGZAMINACYJNE Z CHEMII OGÓLNEJ I Podstawowe pojęcia chemiczne 1) Pierwiastkiem nazywamy : a zbiór atomów o tej samej liczbie masowej b + zbiór atomów o tej samej liczbie atomowej c zbiór atomów

Bardziej szczegółowo

CHEMIA FIZYCZNA ZTiM

CHEMIA FIZYCZNA ZTiM CHEMIA FIZYCZNA ZTiM Semestr zimowy 2016/2017 Dr hab. inż. Dorota Warmińska 1. Chemia fizyczna. Termodynamika. Podstawowe pojęcia stosowane w termodynamice. Układ i otoczenie. Przegroda adiabatyczna i

Bardziej szczegółowo

DESTYLACJA JAKO METODA WYODRĘBNIANIA I OCZYSZCZANIA ZWIĄZKÓW CHEMICZNYCH

DESTYLACJA JAKO METODA WYODRĘBNIANIA I OCZYSZCZANIA ZWIĄZKÓW CHEMICZNYCH DESTYLCJ JKO METOD WYODRĘNINI I OCZYSZCZNI ZWIĄZKÓW CHEMICZNYCH Zakres materiału: - metody rozdzielania substancji, - destylacja - charakter wykorzystywanych zjawisk, typy destylacji, zastosowanie, charakterystyka

Bardziej szczegółowo

Termodynamiczny opis przejść fazowych pierwszego rodzaju

Termodynamiczny opis przejść fazowych pierwszego rodzaju Wykład II Przejścia fazowe 1 Termodynamiczny opis przejść fazowych pierwszego rodzaju Woda występuje w trzech stanach skupienia jako ciecz, jako gaz, czyli para wodna, oraz jako ciało stałe, a więc lód.

Bardziej szczegółowo

PODSTAWY CHEMII INŻYNIERIA BIOMEDYCZNA. Wykład 2

PODSTAWY CHEMII INŻYNIERIA BIOMEDYCZNA. Wykład 2 PODSTAWY CEMII INŻYNIERIA BIOMEDYCZNA Wykład Plan wykładu II,III Woda jako rozpuszczalnik Zjawisko dysocjacji Równowaga w roztworach elektrolitów i co z tego wynika Bufory ydroliza soli Roztwory (wodne)-

Bardziej szczegółowo

Wykład 3. Diagramy fazowe P-v-T dla substancji czystych w trzech stanach. skupienia. skupienia

Wykład 3. Diagramy fazowe P-v-T dla substancji czystych w trzech stanach. skupienia. skupienia Wykład 3 Substancje proste i czyste Przemiany w systemie dwufazowym woda para wodna Diagram T-v dla przejścia fazowego woda para wodna Diagramy T-v i P-v dla wody Punkt krytyczny Temperatura nasycenia

Bardziej szczegółowo

Ćwiczenia 12 Zadanie 12.4D

Ćwiczenia 12 Zadanie 12.4D Sylwester Arabas (ćwiczenia do wykładu prof. Hanny Pawłowskiej) Instytut Geofizyki, Wydział Fizyki Uniwersytetu Warszawskiego 26 maja 2011 r. : polecenie / rozwiązanie Wyznaczenie do jakiego poziomu musiałaby

Bardziej szczegółowo

Trójkąt Gibbsa Równowagi układów z ograniczoną mieszalnością składników Prawo podziału Nernsta

Trójkąt Gibbsa Równowagi układów z ograniczoną mieszalnością składników Prawo podziału Nernsta Termodynamiczny opis równowag w układach trójskładnikowych 3.4.1. Trójkąt Gibbsa 3.4.2. Równowagi układów z ograniczoną mieszalnością składników 3.4.3. Prawo podziału Nernsta Układy trójskładnikowe Liczba

Bardziej szczegółowo

Praca objętościowa - pv (wymiana energii na sposób pracy) Ciepło reakcji Q (wymiana energii na sposób ciepła) Energia wewnętrzna

Praca objętościowa - pv (wymiana energii na sposób pracy) Ciepło reakcji Q (wymiana energii na sposób ciepła) Energia wewnętrzna Energia - zdolność danego układu do wykonania dowolnej pracy. Potencjalna praca, którą układ może w przyszłości wykonać. Praca wykonana przez układ jak i przeniesienie energii może manifestować się na

Bardziej szczegółowo

Równowagi w roztworach wodnych

Równowagi w roztworach wodnych Równowagi w roztworach wodnych V 1 A + B = C + D V 2 Szybkości reakcji: v 1 = k 1 c A c B v 2 = k 2 c C c D ogólnie Roztwory, rozpuszczalność, rodzaje stężeń, iloczyn rozpuszczalności Reakcje dysocjacji

Bardziej szczegółowo

Ćwiczenie 2. Charakteryzacja niskotemperaturowego czujnika tlenu. (na prawach rękopisu)

Ćwiczenie 2. Charakteryzacja niskotemperaturowego czujnika tlenu. (na prawach rękopisu) Ćwiczenie 2. Charakteryzacja niskotemperaturowego czujnika tlenu (na prawach rękopisu) W analityce procesowej istotne jest określenie stężeń rozpuszczonych w cieczach gazów. Gazy rozpuszczają się w cieczach

Bardziej szczegółowo

Podstawy termodynamiki.

Podstawy termodynamiki. Podstawy termodynamiki. Termodynamika opisuje ogólne prawa przemian energetycznych w układach makroskopowych. Określa kierunki procesów zachodzących w przyrodzie w sposób samorzutny, jak i stanów końcowych,

Bardziej szczegółowo

TERMODYNAMIKA I TERMOCHEMIA

TERMODYNAMIKA I TERMOCHEMIA TERMODYNAMIKA I TERMOCHEMIA Termodynamika - opisuje zmiany energii towarzyszące przemianom chemicznym; dział fizyki zajmujący się zjawiskami cieplnymi. Termochemia - dział chemii zajmujący się efektami

Bardziej szczegółowo

Ćwiczenia audytoryjne z Chemii fizycznej 1 Zalecane zadania kolokwium 1. (2018/19)

Ćwiczenia audytoryjne z Chemii fizycznej 1 Zalecane zadania kolokwium 1. (2018/19) Ćwiczenia audytoryjne z Chemii fizycznej 1 Zalecane zadania kolokwium 1. (2018/19) Uwaga! Uzyskane wyniki mogą się nieco różnić od podanych w materiałach, ze względu na uaktualnianie wartości zapisanych

Bardziej szczegółowo

Sonochemia. Schemat 1. Strefy reakcji. Rodzaje efektów sonochemicznych. Oscylujący pęcherzyk gazu. Woda w stanie nadkrytycznym?

Sonochemia. Schemat 1. Strefy reakcji. Rodzaje efektów sonochemicznych. Oscylujący pęcherzyk gazu. Woda w stanie nadkrytycznym? Schemat 1 Strefy reakcji Rodzaje efektów sonochemicznych Oscylujący pęcherzyk gazu Woda w stanie nadkrytycznym? Roztwór Znaczne gradienty ciśnienia Duże siły hydrodynamiczne Efekty mechanochemiczne Reakcje

Bardziej szczegółowo

Prowadzący. http://luberski.w.interia.pl telefon PK: 126282746 Pokój 210A (Katedra Biotechnologii i Chemii Fizycznej C-5)

Prowadzący. http://luberski.w.interia.pl telefon PK: 126282746 Pokój 210A (Katedra Biotechnologii i Chemii Fizycznej C-5) Tomasz Lubera dr Tomasz Lubera mail: luberski@interia.pl Prowadzący http://luberski.w.interia.pl telefon PK: 126282746 Pokój 210A (Katedra Biotechnologii i Chemii Fizycznej C-5) Konsultacje: we wtorki

Bardziej szczegółowo

CIEPLNE I MECHANICZNE WŁASNOŚCI CIAŁ

CIEPLNE I MECHANICZNE WŁASNOŚCI CIAŁ CIEPLNE I MECHANICZNE WŁASNOŚCI CIAŁ Ciepło i temperatura Pojemność cieplna i ciepło właściwe Ciepło przemiany Przejścia między stanami Rozszerzalność cieplna Sprężystość ciał Prawo Hooke a Mechaniczne

Bardziej szczegółowo

Zadanie: 1 (1pkt) Zadanie: 2 (1 pkt)

Zadanie: 1 (1pkt) Zadanie: 2 (1 pkt) Zadanie: 1 (1pkt) Stężenie procentowe nasyconego roztworu azotanu (V) ołowiu (II) Pb(NO 3 ) 2 w temperaturze 20 0 C wynosi 37,5%. Rozpuszczalność tej soli w podanych warunkach określa wartość: a) 60g b)

Bardziej szczegółowo

Roztwory elekreolitów

Roztwory elekreolitów Imię i nazwisko:... Roztwory elekreolitów Zadanie 1. (2pkt) W teorii Brönsteda sprzężoną parą kwas-zasada nazywa się układ złożony z kwasu oraz zasady, która powstaje z tego kwasu przez odłączenie protonu.

Bardziej szczegółowo

Odwracalność przemiany chemicznej

Odwracalność przemiany chemicznej Odwracalność przemiany chemicznej Na ogół wszystkie reakcje chemiczne są odwracalne, tzn. z danych substratów tworzą się produkty, a jednocześnie produkty reakcji ulegają rozkładowi na substraty. Fakt

Bardziej szczegółowo

Prawa gazowe- Tomasz Żabierek

Prawa gazowe- Tomasz Żabierek Prawa gazowe- Tomasz Żabierek Zachowanie gazów czystych i mieszanin tlenowo azotowych w zakresie użytecznych ciśnień i temperatur można dla większości przypadków z wystarczającą dokładnością opisywać równaniem

Bardziej szczegółowo

Równowaga. równowaga metastabilna (niepełna) równowaga niestabilna (nietrwała) równowaga stabilna (pełna) brak równowagi rozpraszanie energii

Równowaga. równowaga metastabilna (niepełna) równowaga niestabilna (nietrwała) równowaga stabilna (pełna) brak równowagi rozpraszanie energii Równowaga równowaga stabilna (pełna) równowaga metastabilna (niepełna) równowaga niestabilna (nietrwała) brak równowagi rozpraszanie energii energia swobodna Co jest warunkiem równowagi? temperatura W

Bardziej szczegółowo

Statyka Cieczy i Gazów. Temat : Podstawy teorii kinetyczno-molekularnej budowy ciał

Statyka Cieczy i Gazów. Temat : Podstawy teorii kinetyczno-molekularnej budowy ciał Statyka Cieczy i Gazów Temat : Podstawy teorii kinetyczno-molekularnej budowy ciał 1. Podstawowe założenia teorii kinetyczno-molekularnej budowy ciał: Ciała zbudowane są z cząsteczek. Pomiędzy cząsteczkami

Bardziej szczegółowo

1. Stechiometria 1.1. Obliczenia składu substancji na podstawie wzoru

1. Stechiometria 1.1. Obliczenia składu substancji na podstawie wzoru 1. Stechiometria 1.1. Obliczenia składu substancji na podstawie wzoru Wzór związku chemicznego podaje jakościowy jego skład z jakich pierwiastków jest zbudowany oraz liczbę atomów poszczególnych pierwiastków

Bardziej szczegółowo

14. DIAGRAM GIBBSA. Sprawdzono w roku 2014 przez A.Klimek-Turek

14. DIAGRAM GIBBSA. Sprawdzono w roku 2014 przez A.Klimek-Turek 14. DIAGRAM GIBBSA Zagadnienia teoretyczne Reguła faz Gibbsa. Definicja fazy, liczby składników i liczby stopni swobody. Wyznaczenie składu mieszaniny w trójkącie Gibbsa. Izoterma rozpuszczalności (krzywa

Bardziej szczegółowo

Równowagi w roztworach wodnych

Równowagi w roztworach wodnych Równowagi w roztworach wodnych Stan i stała równowagi reakcji chemicznej ogólnie Roztwory, rozpuszczalność, rodzaje stężeń, iloczyn rozpuszczalności Reakcje dysocjacji Stopień dysocjacji Prawo rozcieńczeń

Bardziej szczegółowo

Ćwiczenie 3: Wpływ temperatury na równowagę w układzie ciecz-ciecz

Ćwiczenie 3: Wpływ temperatury na równowagę w układzie ciecz-ciecz 1. Część teoretyczna Dwufazowe układy dwuskładnikowe Ćwiczenie 3: Wpływ temperatury na równowagę w układzie ciecz-ciecz W ramach omawiania równowag fazowych należy wspomnieć o równowadze cieczciecz. Jest

Bardziej szczegółowo

Diagramy fazowe graficzna reprezentacja warunków równowagi

Diagramy fazowe graficzna reprezentacja warunków równowagi Diagramy fazowe graficzna reprezentacja warunków równowagi Faza jednorodna część układu, oddzielona od innych części granicami faz, na których zachodzi skokowa zmiana pewnych własności fizycznych. B 0

Bardziej szczegółowo

DRUGA ZASADA TERMODYNAMIKI

DRUGA ZASADA TERMODYNAMIKI DRUGA ZASADA TERMODYNAMIKI Procesy odwracalne i nieodwracalne termodynamicznie, samorzutne i niesamorzutne Proces nazywamy termodynamicznie odwracalnym, jeśli bez spowodowania zmian w otoczeniu możliwy

Bardziej szczegółowo

Zadania pochodzą ze zbioru zadań P.W. Atkins, C.A. Trapp, M.P. Cady, C. Giunta, CHEMIA FIZYCZNA Zbiór zadań z rozwiązaniami, PWN, Warszawa 2001

Zadania pochodzą ze zbioru zadań P.W. Atkins, C.A. Trapp, M.P. Cady, C. Giunta, CHEMIA FIZYCZNA Zbiór zadań z rozwiązaniami, PWN, Warszawa 2001 Zadania pochodzą ze zbioru zadań P.W. Atkins, C.A. Trapp, M.P. Cady, C. Giunta, CHEMIA FIZYCZNA Zbiór zadań z rozwiązaniami, PWN, Warszawa 2001 I zasada termodynamiki - pojęcia podstawowe C2.4 Próbka zawierająca

Bardziej szczegółowo

Chemia klasa VII Wymagania edukacyjne na poszczególne oceny Semestr II

Chemia klasa VII Wymagania edukacyjne na poszczególne oceny Semestr II Chemia klasa VII Wymagania edukacyjne na poszczególne oceny Semestr II Łączenie się atomów. Równania reakcji Ocena dopuszczająca [1] Ocena dostateczna [1 + 2] Ocena dobra [1 + 2 + 3] Ocena bardzo dobra

Bardziej szczegółowo

Repetytorium z wybranych zagadnień z chemii

Repetytorium z wybranych zagadnień z chemii Repetytorium z wybranych zagadnień z chemii Mol jest to liczebność materii występująca, gdy liczba cząstek (elementów) układu jest równa liczbie atomów zawartych w masie 12 g węgla 12 C (równa liczbie

Bardziej szczegółowo

INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH

INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH INSTYTUT MASZYN I URZĄDZEŃ ENERGETYCZNYCH Politechnika Śląska w Gliwicach INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH WYZNACZANIE WYKRESU RÓWNOWAGI FAZOWEJ (dla stopów dwuskładnikowych) Instrukcja przeznaczona

Bardziej szczegółowo

(1) Równanie stanu gazu doskonałego. I zasada termodynamiki: ciepło, praca.

(1) Równanie stanu gazu doskonałego. I zasada termodynamiki: ciepło, praca. (1) Równanie stanu gazu doskonałego. I zasada termodynamiki: ciepło, praca. 1. Aby określić dokładną wartość stałej gazowej R, student ogrzał zbiornik o objętości 20,000 l wypełniony 0,25132 g gazowego

Bardziej szczegółowo

Ściąga eksperta. Mieszaniny. - filmy edukacyjne on-line Strona 1/8. Jak dzielimy substancje chemiczne?

Ściąga eksperta. Mieszaniny.  - filmy edukacyjne on-line Strona 1/8. Jak dzielimy substancje chemiczne? Mieszaniny Jak dzielimy substancje chemiczne? Mieszaninami nazywamy substancje złożone z kilku skład, zachowujących swoje właściwości. Mieszaniny uzyskuje się na drodze mechanicznego mieszania ze sobą

Bardziej szczegółowo

Roztwory rzeczywiste (1)

Roztwory rzeczywiste (1) Roztwory rzeczywiste (1) Również w temp. 298,15K, ale dla CCl 4 () i CH 3 OH (). 2 15 1 5-5 -1-15 Τ S H,2,4,6,8 1 G -2 Chem. Fiz. TCH II/12 1 Roztwory rzeczywiste (2) Tym razem dla (CH 3 ) 2 CO () i CHCl

Bardziej szczegółowo

ZAMRAŻANIE PODSTAWY CZ.1

ZAMRAŻANIE PODSTAWY CZ.1 METODY PRZECHOWYWANIA I UTRWALANIA BIOPRODUKTÓW ZAMRAŻANIE PODSTAWY CZ.1 Opracował: dr S. Wierzba Katedra Biotechnologii i Biologii Molekularnej Uniwersytetu Opolskiego Zamrażaniem produktów nazywamy proces

Bardziej szczegółowo

Zadania treningowe na kolokwium

Zadania treningowe na kolokwium Zadania treningowe na kolokwium 3.12.2010 1. Stan układu binarnego zawierającego n 1 moli substancji typu 1 i n 2 moli substancji typu 2 parametryzujemy za pomocą stężenia substancji 1: x n 1. Stabilność

Bardziej szczegółowo

RÓWNOWAGI FAZOWE W UKŁADACH TRÓJSKŁADNIKOWYCH TYPU CIECZ CIECZ

RÓWNOWAGI FAZOWE W UKŁADACH TRÓJSKŁADNIKOWYCH TYPU CIECZ CIECZ Ćwiczenie nr 1 RÓWNOWGI FZOWE W UKŁDCH TRÓJSKŁDNIKOWYCH TYPU CIECZ CIECZ I. Cel ćwiczenia Celem ćwiczenia jest wyznaczenie krzywej binodalnej (izotermy) rozpuszczalności układów trójskładnikowych: woda

Bardziej szczegółowo

Ćwiczenia rachunkowe z termodynamiki technicznej i chemicznej Zalecane zadania kolokwium 1. (2014/15)

Ćwiczenia rachunkowe z termodynamiki technicznej i chemicznej Zalecane zadania kolokwium 1. (2014/15) Ćwiczenia rachunkowe z termodynamiki technicznej i chemicznej Zalecane zadania kolokwium 1. (2014/15) (Uwaga! Liczba w nawiasie przy odpowiedzi oznacza numer zadania (zestaw.nr), którego rozwiązanie dostępne

Bardziej szczegółowo

Ekstrakcja. Seminarium 7. 23/11/2015

Ekstrakcja. Seminarium 7. 23/11/2015 Ekstrakcja Seminarium 7. Prawo podziału Nernsta Jeżeli do układu złożonego z dwóch praktycznie niemieszających się cieczy wprowadzimy trzeci składnik, rozpuszczający się w obu cieczach, to w wyniku ustalenia

Bardziej szczegółowo

MATERIAŁOZNAWSTWO Wydział Mechaniczny, Mechatronika, sem. I. dr inż. Hanna Smoleńska

MATERIAŁOZNAWSTWO Wydział Mechaniczny, Mechatronika, sem. I. dr inż. Hanna Smoleńska MATERIAŁOZNAWSTWO Wydział Mechaniczny, Mechatronika, sem. I dr inż. Hanna Smoleńska UKŁADY RÓWNOWAGI FAZOWEJ Równowaga termodynamiczna pojęcie stosowane w termodynamice. Oznacza stan, w którym makroskopowe

Bardziej szczegółowo

14. IZOTERMA ROZPUSZCZALNOŚCI UKŁADU TRÓJSKŁADNIKOWEGO ROZPUSZCZALNIKÓW

14. IZOTERMA ROZPUSZCZALNOŚCI UKŁADU TRÓJSKŁADNIKOWEGO ROZPUSZCZALNIKÓW 14. IZOTERMA ROZPUSZCZALNOŚCI UKŁADU TRÓJSKŁADNIKOWEGO ROZPUSZCZALNIKÓW Zagadnienia teoretyczne Reguła faz Gibbsa. Definicja fazy, liczby składników i liczby stopni swobody. Wyznaczenie składu mieszaniny

Bardziej szczegółowo

b) Wybierz wszystkie zdania prawdziwe, które odnoszą się do przemiany 2.

b) Wybierz wszystkie zdania prawdziwe, które odnoszą się do przemiany 2. Fizyka Z fizyką w przyszłość Sprawdzian 8B Sprawdzian 8B. Gaz doskonały przeprowadzono ze stanu P do stanu K dwoma sposobami: i, tak jak pokazano na rysunku. Poniżej napisano kilka zdań o tych przemianach.

Bardziej szczegółowo

Podstawy termodynamiki

Podstawy termodynamiki Podstawy termodynamiki Organizm żywy z punktu widzenia termodynamiki Parametry stanu Funkcje stanu: U, H, F, G, S I zasada termodynamiki i prawo Hessa II zasada termodynamiki Kierunek przemian w warunkach

Bardziej szczegółowo

Seria 2, ćwiczenia do wykładu Od eksperymentu do poznania materii

Seria 2, ćwiczenia do wykładu Od eksperymentu do poznania materii Seria 2, ćwiczenia do wykładu Od eksperymentu do poznania materii 8.1.21 Zad. 1. Obliczyć ciśnienie potrzebne do przemiany grafitu w diament w temperaturze 25 o C. Objętość właściwa (odwrotność gęstości)

Bardziej szczegółowo

powierzchnia rozdziału - dwie fazy ciekłe - jedna faza gazowa - dwa składniki

powierzchnia rozdziału - dwie fazy ciekłe - jedna faza gazowa - dwa składniki Przejścia fazowe. powierzchnia rozdziału - skokowa zmiana niektórych parametrów na granicy faz. kropeki wody w atmosferze - dwie fazy ciekłe - jedna faza gazowa - dwa składniki Przykłady przejść fazowych:

Bardziej szczegółowo

Wykład 10 Równowaga chemiczna

Wykład 10 Równowaga chemiczna Wykład 10 Równowaga chemiczna REAKCJA CHEMICZNA JEST W RÓWNOWADZE, GDY NIE STWIERDZAMY TENDENCJI DO ZMIAN ILOŚCI (STĘŻEŃ) SUBSTRATÓW ANI PRODUKTÓW RÓWNOWAGA CHEMICZNA JEST RÓWNOWAGĄ DYNAMICZNĄ W rzeczywistości

Bardziej szczegółowo

Projekt Inżynier mechanik zawód z przyszłością współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego

Projekt Inżynier mechanik zawód z przyszłością współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Zajęcia wyrównawcze z fizyki -Zestaw 4 -eoria ermodynamika Równanie stanu gazu doskonałego Izoprzemiany gazowe Energia wewnętrzna gazu doskonałego Praca i ciepło w przemianach gazowych Silniki cieplne

Bardziej szczegółowo

ĆWICZENIE NR 12. Th jest jednym z produktów promieniotwórczego rozpadu uranu. Próbka

ĆWICZENIE NR 12. Th jest jednym z produktów promieniotwórczego rozpadu uranu. Próbka ĆWICZENIE NR 12 WYDZIELANIE 90 Th Z AZOTANU URANYLU Podstawy fizyczne 90 Th jest jednym z produktów promieniotwórczego rozpadu uranu. Próbka oczyszczonych chemicznie związków naturalnego uranu po upływie

Bardziej szczegółowo

GAZ DOSKONAŁY. Brak oddziaływań między cząsteczkami z wyjątkiem zderzeń idealnie sprężystych.

GAZ DOSKONAŁY. Brak oddziaływań między cząsteczkami z wyjątkiem zderzeń idealnie sprężystych. TERMODYNAMIKA GAZ DOSKONAŁY Gaz doskonały to abstrakcyjny, matematyczny model gazu, chociaż wiele gazów (azot, tlen) w warunkach normalnych zachowuje się w przybliżeniu jak gaz doskonały. Model ten zakłada:

Bardziej szczegółowo

WYKAZ NAJWAŻNIEJSZYCH SYMBOLI

WYKAZ NAJWAŻNIEJSZYCH SYMBOLI SPIS TREŚCI WYKAZ NAJWAŻNIEJSZYCH SYMBOLI...7 PRZEDMOWA...8 1. WSTĘP...9 2. MATEMATYCZNE OPRACOWANIE WYNIKÓW POMIARÓW...10 3. LEPKOŚĆ CIECZY...15 3.1. Pomiar lepkości...16 3.2. Lepkość względna...18 3.3.

Bardziej szczegółowo

Spis treści. Wstęp... 9

Spis treści. Wstęp... 9 Spis treści Wstęp... 9 1. Szkło i sprzęt laboratoryjny 1.1. Szkła laboratoryjne własności, skład chemiczny, podział, zastosowanie.. 11 1.2. Wybrane szkło laboratoryjne... 13 1.3. Szkło miarowe... 14 1.4.

Bardziej szczegółowo

Zad: 5 Oblicz stężenie niezdysocjowanego kwasu octowego w wodnym roztworze o stężeniu 0,1 mol/dm 3, jeśli ph tego roztworu wynosi 3.

Zad: 5 Oblicz stężenie niezdysocjowanego kwasu octowego w wodnym roztworze o stężeniu 0,1 mol/dm 3, jeśli ph tego roztworu wynosi 3. Zad: 1 Oblicz wartość ph dla 0,001 molowego roztworu HCl Zad: 2 Oblicz stężenie jonów wodorowych jeżeli wartość ph wynosi 5 Zad: 3 Oblicz stężenie jonów wodorotlenkowych w 0,05 molowym roztworze H 2 SO

Bardziej szczegółowo

Operacje wymiany masy oraz wymiany ciepła i masy

Operacje wymiany masy oraz wymiany ciepła i masy Operacje wymiany masy oraz wymiany ciepła i masy WPROWADZENIE + Destylacja - różniczkowa / równowagowa / z parą wodną prof. M. Kamioski Gdaosk, 2017 INŻYNIERIA CHEMICZNA i BIO-PROCESOWA OPERACJE WYMIANY

Bardziej szczegółowo

Modelowanie w ochronie środowiska

Modelowanie w ochronie środowiska Modelowanie w ochronie środowiska PARAMETRY FIZYKO-CHEMICZNE WPŁYWAJĄCE NA TRWAŁOŚĆ I ROZPRZESTRZENIANIE SIĘ ZWIĄZKÓW CHEMICZNYCH W ŚRODOWISKU NATURALNYM KOMPOENTY ŚRODOWISKA TRWAŁOŚĆ! CZAS PRZEBYWANIA

Bardziej szczegółowo