Mieszaniny substancji

Wielkość: px
Rozpocząć pokaz od strony:

Download "Mieszaniny substancji"

Transkrypt

1 Mieszaniny substancji Wykład 8 Mieszaniny Mieszanina układ dwóch lub więcej pierwiastków lub związków chemicznych zmieszanych z sobą w dowolnym stosunku i wykazujących swoje indywidualne właściwości. Mieszaniny dzielą się na: Homogeniczne (jednorodne, roztwory) - ich składniki są bardzo silnie rozdrobnione najczęściej do pojedynczych cząsteczek. Wzrokowe określenie składu mieszaniny jednorodnej jest zazwyczaj niemożliwe. Heterogeniczne (niejednorodne)- ich składniki są rozdrobnione słabo, zawierają one duże zespoły cząsteczek. W takiej mieszaninie co najmniej jeden składnik możemy rozróżnić gołym okiem bądź za pomocą lupy czy mikroskopu. Mieszaniny jednorodne, roztwory Skład roztworów określa się przez podanie stężenia składników. W roztworach zwykle jeden ze związków chemicznych jest nazywany rozpuszczalnikiem, a drugi substancją rozpuszczoną. 1

2 Własności fizykochemiczne roztworów zależą od składu roztworu oraz energii oddziaływania substancja rozpuszczona rozpuszczalnik. Do właściwości fizykochemicznych zaliczamy: 1. prężność pary nad roztworem, 2. temperatura przemiany fazowej (temperatura wrzenia i krzepnięcia), 3. dyfuzja składników roztworu, 4. ciśnienie osmotyczne. Biorąc pod uwagę wzajemne oddziaływanie cząsteczek tworzących roztwór, możemy podzielić roztwory na roztwory doskonałe i rzeczywiste. Roztworem doskonałym jest taki roztwór, w którym nie ma silnych oddziaływań pomiędzy jego składnikami. Poszczególne składniki tego roztworu zachowują się w układzie wieloskładnikowym (roztworze) tak samo jak w stanie jednoskładnikowym (w czystej substancji). Składniki roztworu ulegają jedynie rozcieńczeniu, a ich właściwości pozostają takie same jak przed zmieszaniem. Podczas tworzenia tego roztworu (mieszania czystych składników) nie występuje żaden efekt energetyczny. Właściwości konstytutywne roztworu (zależące od rozmieszczenia, a w mniejszym stopniu od liczby i rodzaju atomów w cząsteczce) takie jak napięcie powierzchniowe, współczynnik refrakcji, prężność par nad roztworem są wagowo obliczoną średnią właściwości poszczególnych czystych składników. 2

3 Roztwór doskonały to mieszanina gazów spełniająca prawo Daltona Jeżeli jednak zmieszamy równe objętości cieczy o różnych właściwościach (etanol i woda) to utworzony roztwór będzie miał objętość mniejszą od sumy objętości obu składników. Tworzony w ten sposób roztwór jest roztworem niedoskonałym (rzeczywistym). W tym roztworze energia oddziaływania cząsteczka rozpuszczonarozpuszczalnik jest większa lub mniejsza od energii oddziaływania pomiędzy cząsteczkami czystych składników: (A-B >>A-A i B-B lub A-B << A-A i B-B). Porównanie roztworów doskonałych i rzeczywistych Charakterystyka Roztwory doskonałe Roztwory rzeczywiste Prawo Raoulta Spełniają Wykazują odchylenia Mieszanie składników w warunkach stałej temperatury i ciśnienia Proces samorzutny; ΔG miesz < 0 Może być niesamorzutne, ΔG miesz > 0 Entropia mieszania Dodatnia, ΔS miesz >0 Może być ujemna, ΔS miesz < 0 Mieszaniny lotnych cieczy. A) Układy dwuskładnikowe W roztworach tego typu zarówno substancja rozpuszczona jak i rozpuszczalnik są cieczami. Wymiana ciepła z otoczeniem Zmiana objętości po zmieszaniu Brak, ΔH miesz = 0 Brak Może wymagać wymiany ciepła z otoczeniem ΔH miesz < 0 lub ΔH miesz > 0 Objętość po zmieszaniu może być mniejsza lub większa od sumy objętości poszczególnych składników 3

4 W przypadku roztworów typu "ciecz w cieczy" możemy wyróżnić cztery przypadki: ciecze mieszają się bez ograniczeń (metanol-etanol; benzen-toluen itp.) ciecze mieszają się w stopniu ograniczonym, a wzrost temperatury zwiększa zakres wzajemnej mieszalności i powyżej pewnej charakterystycznej dla danego układu temperatury mamy mieszalność nieograniczoną (np. fenol w wodzie i woda w fenolu) ciecze mieszają się w stopniu ograniczonym, a wzrost temperatury zmniejsza zakres wzajemnej mieszalności, natomiast wzrost mieszalności występuje wraz z obniżaniem temperatury (np. formaldehyd i woda) ciecze mieszają się w stopniu ograniczonym, zaś zarówno wzrost temperatury jak i jej spadek powodują zwiększanie mieszalności (np. benzyloetyloamina i glicerol) Ciecze mieszające się nieograniczenie Δμi < 0, ΔSmiesz > 0; dla roztworu doskonałego ΔHmiesz = 0 Spełniają prawo Raoulta w całym zakresie stężeń Przykłady: benzen + toluen heptan + cykloheptan metanol + etanol Układ dwóch cieczy mieszających się nieograniczenie ma 2 stopnie swobody, s, (wg reguły faz Gibbsa) układ 2 składnikowy ( ) i dwufazowy (ciecz i para) (β) S = - β +2 Zmieniając parametry opisujące skład roztworu znajdującego się w równowadze np. ustalając skład roztworu i temperaturę pozostałe parametry takie jak prężność pary nad roztworem oraz skład pary będą od nich zależne. Natomiast przy ustalonej prężności pary mieszaniny równej ciśnieniu zewnętrznemu oraz znanemu składowi roztworu, temperatura wrzenia roztworu oraz skład pary będą zależeć od składu roztworu. Prężność pary nad roztworem dwuskładnikowym (benzen + toluen) p T = const pobenzen XBENZEN 0 0,5 1,0 X TOLUEN 1 0,5 0 4

5 Prężność pary nad roztworem dwuskładnikowym (benzen + toluen) Prężność pary nad roztworem dwuskładnikowym (benzen + toluen) p T = const p o BENZEN p T = const p o BENZEN p o TOLUEN p o TOLUEN X BENZEN 0 0,5 1,0 X TOLUEN 1 0,5 0 X BENZEN 0 0,5 1,0 X TOLUEN 1 0,5 0 Prawo Raoulta, roztwory doskonałe, zeotropowe P B = X B P 0 B p A = X A P 0 A p P 0 A A X a =1.0 X B = 0.0 P 0B B X B =1.0 X A = 0.0 Zmiana prężności pary nad roztworem składników A i B w stałej temperaturze. Przykład W temperaturze 330 K prężność pary n-heksanu wynosi 0,68 x10-5 Pa, a prężność pary n-heptanu 0,24 x10-5 Pa. Obliczyć całkowitą prężność pary nad roztworem w którym ułamek molowy n-heksanu wynosi x hx = 0,25. P hx = 0.25 x 0,68 x10-5 Pa = 1.7 x10-6 Pa P hp = 0.75 X 0,24 x10-5 Pa = 1.8 x10-6 Pa P c = 1.7 x10-6 Pa x10-6 Pa = 3.5 x10-6 Pa lub stosując wzór P = 3.5 x10-6 Pa 5

6 Dodatnie odchylenie od prawa Raoulta Gdy proces mieszania cieczy jest procesem endotermicznym czyli ΔH miesz > 0, ciecze takowe są układami o nieograniczonej mieszalności ale nie są roztworami doskonałymi. Wykazują one większą rzeczywistą prężność pary obu składników nad roztworem oraz inną całkowitą prężność pary nad roztworem od tej wykazywanej przez prawo Raoulta. Przykłady azeotropii dodatniej : etanol + woda; etanol +benzen; benzen + tetrachlorometan; metanol +tetrachlorometan Azeotropia dodatnia Oddziaływania A-A i B-B >A-B Ujemne odchylenie od prawa Raoulta Gdy proces mieszania cieczy jest procesem egzotermicznym czyli ΔH miesz < 0, ciecze takowe są układami o nieograniczonej mieszalności ale nie są roztworami doskonałymi. Wykazują one mniejszą rzeczywistą prężność pary obu składników nad roztworem oraz inną całkowitą prężność pary nad roztworem od tej wykazywanej przez prawo Raoulta. Przykłady azeotropii ujemnej: aceton + metanol; benzen + metanol; aceton + chloroform; woda+ kwas mrówkowy; woda + kwas azotowy; pirydyna + kwas mrówkowy; Azeotropia ujemna Oddziaływania A-A i B-B < A-B 6

7 Mieszaniny azeotropowe Są to ciekłe mieszaniny dwóch lub więcej składników (związków) będące w równowadze termodynamicznej z parą nasyconą powstającą z tej mieszaniny. Skład pary i cieczy jest taki sam. `1 )Bolesław Bochwic (red. zespołowego tłumaczenia z jęz. niemieckiego (Autorenkolektiv, Organikum. Organisch Chemisches Grundpraktikum, Berlin 1963): Preparatyka organiczna. Wyd. 1. Warszawa: Państwowe Wydawnictwo Naukowe, (pol.) Destylacja Metoda rozdzielenia składników tworzących roztwór. Jest ona oparta na zjawisku wzbogacenia pary nad wrzącym roztworem o składnik bardziej lotny. Para powstała w czasie wrzenia roztworu ulega skropleniu w chłodnicy i jest zbierana w naczyniu odbierającym ( odbieralniku ). Tworzący się w ten sposób kondensat jest wzbogacony w ciecz o większej lotności. Destylacja prowadzona w warunkach izotermicznych (w stałej temperaturze) pozwala na uzyskanie kondensatu (destylatu) o pożądanym składzie. Destylacja jest metodą rozdziału cieczy bardzo często stosowaną w technologii chemicznej. Pozwala ona niekiedy na rozdzielenie bardzo złożonych substancji. Schemat prostego zestawu laboratoryjnego do destylacji Krzywe wrzenia i kondensacji dla dwuskładnikowego roztworu doskonałego substancji A i B. W temperaturze wrzenia T1 skład cieczy i pary odpowiadają punktom 1 na osi X układu. W wyniku destylacji skład cieczy wzbogaca się w mniej lotny składnik A (punkt 2 na osi X układu) co powoduje wzrost temperatury wrzenia do wartości T2 oraz wzbogacenie składu pary w składnik A. 7

8 Destylacja frakcyjna Zastosowanie do rozdzielenia mieszanin cieczy o zbliżonych temperaturach wrzenia. Polega na wielokrotnym odparowaniu i skropleniu. Na każdej z półek kolumny rektyfikacyjnej dochodzi do destylacji prostej. A każdy następny stopień procesu jest zasilany produktem (destylatem) poprzedniego. Diagramy fazowe zależne od temperatury Układy cieczy o ograniczonej mieszalności Są to układy dwóch cieczy, które nie tworzą roztworów w każdym stosunku ilościowym i przy pewnym składzie mieszaniny tych cieczy tworzą się dwie fazy ciekłe będące roztworami nasyconymi. Ich entalpia swobodna mieszania, ΔGmiesz> 0 Zgodnie z regułą faz Gibbsa układ składający się z dwóch faz (warstw) ciekłych i będącą z nimi w równowadze parą ma jeden stopień swobody. S = (2)- β (3) +2 = 1 Czyli w danej temperaturze jest ściśle określony skład obu warstw ciekłych, prężność par i skład pary nad cieczą. Stąd też: na wzajemną rozpuszczalność (mieszalność) cieczy ma wpływ temperatura. Układ dwóch cieczy o ograniczonej wzajemnej rozpuszczalności punkt krytyczny Z uwagi na wpływ temperatury na mieszalność rozróżniamy układy o: T - górnej krytycznej temperaturze mieszania - dolnej krytycznej temperaturze mieszania - górnej i dolnej krytycznej temperaturze mieszania A B 0 100% 100% 0 Krzywa równowagi faz ciekłych w układzie fenol - woda 8

9 Układ dwóch cieczy o ograniczonej wzajemnej rozpuszczalności punkt krytyczny Układ dwóch cieczy o ograniczonej wzajemnej rozpuszczalności punkt krytyczny T I IV II III Reguła dźwigni: m fa odcin bc m = fc odcin ab m fa T a b c m fc A 0 100% B 100% 0 Krzywa równowagi faz ciekłych w układzie fenol - woda A % B 100% Krzywa równowagi faz ciekłych w układzie fenol - woda Układy wykazujące górą krytyczną temperaturę mieszania T T Górna krytyczna temperatura mieszania Układ dwóch cieczy o ograniczonej wzajemnej rozpuszczalności (C 2 H 5 ) 3 N; T Jedna faza układ nienasycony cieczy A w X A cieczy B 0 1 X B 1 Dwie fazy 0 Układ nasycony cieczy A w B i B w A Jedna faza układ nienasycony cieczy B w cieczy A A 0 100% B 100 % 0 Krzywa wzajemnej rozpuszczalności trójetyloaminy i wody 9

10 Układ dwóch cieczy o ograniczonej wzajemnej rozpuszczalności T A 0 100% B 100% 0 Krzywa równowagi faz ciekłych w układzie nikotyna - woda Układy wykazujące dolną i górną krytyczną temperaturę mieszania Prężność pary nad układem cieczy nie mieszających się T Dwie fazy T Jedna faza X a 0 1 Przykłady takich mieszanin: woda + nikotyna; dietyloamina + woda; woda + tetrahydrofuran gliceryna + m-toluidyna Górna krytyczna temperatura mieszania Dolna krytyczna temperatura mieszania B W Układ dwuskładnikowy (A + B) np.: benzen + woda 10

11 Prężność pary nad układem cieczy nie mieszających się Prężność pary nad układem cieczy nie mieszających się p B W B W p B p B W Układ dwuskładnikowy (A + B) np.: benzen + woda p W Układ dwuskładnikowy (A + B) np.: benzen + woda p = p o B + p o W p = p o B + p o W Destylacja z parą wodną p p Z p B p W T 1 T 2 T 3 T 11

12 Przykład: Przykład: Prężności pary benzenu i wody w temperaturze wrzenia ich mieszaniny wynoszą kolejno 71,31 * 103 i 29,99 * 103 N/m2. Obliczyć ilość moli benzenu i wody w parze. Naftalen destylowano z parą wodną w temperaturze 327 K pod ciśnieniem 1 * 105 N/m2. Prężność pary wodnej w tej temperaturze wynosi 0,98 * 105 N/m2. Obliczyć ile kilogramów wody należy zużyć do przedestylowania dwóch kilogramów naftalenu. pob : pow = nb : nw nw : nn = pow : pon nb : nw = (71,31 * 103) : (29,99 * 103 ) = 2,37 : 1 nw = nn * pow / pon n=m/m mw = (MW* mn * pow) / (MN * pon) mw = (18 * 2 * 0,96 * 105) / (128 * 0,02 * 105) = 13,76 kg Wyznaczanie masy molowej B. Układy trójskładnikowe Zgodnie z regułą faz Gibbsa maksymalna liczba stopni swobody w takich układach, zakładając, że są one jednofazowe, wynosić może 4 (temperatura, ciśnienie, stężenia dwóch spośród trzech składników). S = (3)- β (1) +2 = 4 W diagramach fazowych dla układów trójskładnikowych zakłada się, że temperatura i ciśnienie są stałe. Rozważa się natomiast wpływ stężenia poszczególnych składników na jego stan równowagi. Graficzną analizę diagramów przeprowadza się w oparciu o kształt trójkąta równobocznego, którego wierzchołki odpowiadają czystym składnikom układu. 12

13 Układ trójskładnikowy w którym dwie ciecze mieszają się ograniczenie Ciecze mieszające się Woda + metanol Metanol + benzen Ekstrakcja Cechy rozpuszczalnika w stosunku do fazy, z której prowadzi się ekstrakcję: niewielka wzajemna rozpuszczalność obu faz ekstrahowanej i ekstrahującej, duża rozpuszczalność ekstrahowanej substancji, pożądana niewielka rozpuszczalność innych składników mieszaniny, duża wartość stałej podziału, duża różnica ciężarów właściwych obu faz, trwałość substancji w roztworze, łatwość rozwarstwiania się faz, duża czystość i trwałość mała skłonność do tworzenia emulsji, mała lepkość łatwość i bezpieczeństwo manipulacji, łatwość usunięcia z roztworu, niskie koszty. 13

14 Zad. Jakie jest stężenie kofeiny w warstwie organicznej jeżeli współczynnik podziału tego związku pomiędzy rozpuszczalnikiem organicznym a wodą wynosi 7,2; zaś stężenie kofeiny w wodzie wynosiło: A) w stanie równowagi 0,04 mol/l B) początkowo 0,04 mol/l Modyfikacje prawa podziału Nernsta A B Dysocjacja Asocjacja i dysocjacja K (A lub B) stałą dysocjacji kwasowej lub zasadowej Stała dysocjacji pewnego słabego kwasu organicznego w wodzie wynosi 4,8 x Oblicz jego współczynnik podziału między benzen a wodą, jeżeli jego stężenie w benzenie to 0,8 mol/l a w wodzie 0,028 mol/l. 14

15 Ekstrakcja jednokrotna, ekstrakcja wielokrotna P a ilość gramów substancji zawarta w roztworze wodnym a 1 ilość gramów substancji pozostająca w roztworze wodnym po 1 ekstrakcji a n - ilość gramów substancji pozostająca w roztworze wodnym po n-tej ekstrakcji V- objętość roztworu wodnego V o objętość roztworu organicznego Wyrażenie dla jednokrotnej ekstrakcji Dla odróżnienia od stałej podziału P, stosunek całkowitych stężeń substancji w obu fazach (stężenie substancji nie zdysocjowanej + stężenie substancji zdysocjowanej) nazwano współczynnikiem ekstrakcji (lub współczynnikiem podziału) D. Współczynnik D jest zależny od stałej dysocjacji ekstrahowanego związku. W przypadku kwasów wartość D można wyliczyć ze wzoru: Zaś w przypadku zasad korzysta się z takiej postaci wzoru na współczynnik ekstrakcji: Wyrażenie dla wielokrotnej ekstrakcji Klasyfikacja metod ekstrakcji: 1. stan skupienia fazy, z której ekstrahowany jest analit: próbki gazowe: ekstrakcja w układzie gaz ciecz; ekstrakcja w układzie gaz - ciało stałe próbki ciekłe: ekstrakcja w układzie ciecz-gaz; ekstrakcja w układzie ciecz ciecz; ekstrakcja w układzie ciecz-ciało stałe próbki stałe: ekstrakcja w układzie ciało stałe-gaz; ekstrakcja w układzie ciało stałe- ciecz 15

16 2. stan skupienia fazy, do której ekstrahowany (przenoszony) jest analit: ekstrakcja do fazy ciekłej ekstrakcja do fazy stałej ekstrakcja do fazy gazowej ekstrakcja do fazy gazu w stanie nadkrytycznym 3.technika prowadzenia procesu ekstrakcji: okresowa i ciągła bez wspomagania i ze wspomaganiem dodatkową energią (głównie mikrofalową lub ultradźwiękową) jednokrotna i wielokrotna współprądowa i przeciwprądowa Zastosowanie ekstrakcji Do rozdzielania układów azeotropowych zamiast destylacji W produkcji olejów roślinnych Pozyskiwania węgla brunatnego z torfu Izolacja substancji aktywnych (np. olejków eterycznych) z materiału roślinnego Roztwory gazów w cieczach Prawo Henry ego: m = k * p Układ dwuskładnikowy W stałej temperaturze masa (m) gazu rozpuszczonego w danej objętości cieczy jest wprost proporcjonalna do jego ciśnienia p nad roztworem. 16

17 Dla roztworów rozcieńczonych: X = kh * p kh stała Henry ego Rozpuszczalność tlenu w wodzie pod ciśnieniem 25 mm Hg (Tr) w temp. 25 oc wynosi 8,31 mg/dm3. Oblicz rozpuszczalność tlenu pod ciśnieniem 100 Tr. X = kh p X1/p1 = X2/p2 X2 = (X1/p1) p2 lg X X2 = / 25 = 33.2 mg dm 3 ln X2 X1 = H o const 2,303RT Horozp R 1 T1-1 T2 17

18 Rozpuszczalność gazu w cieczy Parametry wpływające na tę własność to: a)temperatura b)ciśnienia Roztwory nieelektrolitów; właściwości koligatywne roztworów Ciśnienie par rozpuszczalnika Ciśnienie par roztworu Temp. wrzenia rozpuszczalnika Podwyższenie temperatury wrzenia Temp. wrzenia roztworu Koligatywne własności roztworów -zależą od ich stężenia (wyrażonego w molach substancji rozpuszczonej na jednostkę masy lub objętości rozpuszczalnika), a nie są zależne od rodzaju substancji rozpuszczonej. Należą do nich: efekt ebulioskopowy (ebulimetria) i związane z nim obniżenie prężności pary nad roztworem (względem czystego rozpuszczalnika), efekt krioskopowy (kriometria) oraz efekt osmotyczny (osmoza, ciśnienie osmotyczne). 18

19 Przykład: Obniżenie prężności pary jest równe: p = p o A - p o A * X A p = p o A * X B Obniżenie prężności pary jest wprost proporcjonalne do ułamka molowego substancji rozpuszczonej Prężność pary nad czystą wodą w temp. 293 K wynosi 2320 Pa. Jaka będzie prężność pary nad roztworem, jeżeli w 1000 g wody rozpuścimy 2 mole nielotnej substancji? p = p o * X A p = 2320 * (1000 / 18) : [(1000 / 18) + 2)] p = 2239 Pa a także: p : p o = n : (n + N) p = 2320 * 2 : [(1000 / 18) + 2] = 80,60 Pa P = ,60 = 2239,4 Pa W ścisłym związku z obniżeniem prężności pary nad roztworem pozostaje zjawisko podwyższenia temperatury wrzenia cieczy i obniżenia jej temperatury krzepnięcia p p Z I II Podwyższenie temperatury wrzenia roztworu jest wprost proporcjonalne do stężenia molalnego substancji rozpuszczonej T W = E * C T W - podwyższenie temperatury wrzenia roztworu, C stężenie molalne roztworu, III T TR T T T W T WR T T TR < T T T WR > T W E współczynnik proporcjonalności (stała ebulioskopowa) m * 1000 T W = E M * mo Krzywe prężności pary nad roztworem (II), rozpuszczalnikiem (I) i nad fazą stałą (III) 19

20 Obniżenie temperatury krzepnięcia roztworu jest wprost proporcjonalne do stężenia molalnego substancji rozpuszczonej Wartości stałej krioskopowej i ebulioskopowej dla niektórych rozpuszczalników: T K = K * C T K - obniżenie temperatury krzepnięcia roztworu, C stężenie molalne roztworu, K współczynnik proporcjonalności (stała krioskopowa) m * 1000 T K = K M * mo Rozpuszczalnik woda benzen chloroform czterochlorek węgla Temp. krzepn. ( o C) 0 5,5-63,5-23,0 K kg K/mol 1,86 5,07 4,90 29 Temp. wrzenia ( o C) ,2 61,2 76,5 E kg K/mol 0,512 2,64 3,80 5,3 i = 1+ α (n-1) α ilość (ułamek) cząstek dysocjujących substancji Jeżeli roztwór nie zachowuje się w sposób idealny, wówczas X B należy pomnożyć przez pewien czynnik i, nazywany współczynnikiem izotonicznym van t Hoffa n- ilość jonów i = 1 + * Gdzie jest liczbą jonów, na jakie rozpada się cząsteczka elektrolitu

21 Dla roztworów nieidealnych należy uwzględnić współczynnik izotoniczny i we wzorach : T W = E * i * C Przykład: Próbka o masie 1.20 g nielotnego związku organicznego (nie ulegającego jonizacji) została rozpuszczona w 60 g benzenu. Temperatura wrzenia mieszaniny to C, natomiast temperatura wrzenia czystego benzenu wynosi C. Jaka jest masa molowa substancji rozpuszczonej? ΔT = = 0.88 C T K = K * i * C Pomiary ebuliometryczne i kriometryczne wykorzystuje się do wyznaczania masy molowej, do oznaczania składu roztworu, do wyznaczania stopnia dysocjacji. Masa użytego benzenu to 60.0 g, a nie 1000 g. Tak więc ilość moli substancji = molarność y kg rozpuszczalnika 94 Przykład: W 100g wody rozpuszczono 3,7488 g substancji. Temperatura wrzenia tego roztworu była wyższa o 0,2107 K od temperatury wrzenia rozpuszczalnika. Oblicz masę cząsteczkową substancji rozpuszczonej. Wiedząc, że był to siarczan sodu oblicz współczynnik izotoniczny i. Stała ebulioskopowa dla wody wynosi 0, 512 kg * K / mol. M = E m * 1000 TW * m o M = 0,512 * 3,7488 : (0,2107 * 0,1) [(kg K / mol) * g / (K * kg) M = 91,1 g / mol i = M TEOR / M DOSW i = 142 / 91,9 = 1,545 Zjawisko osmozy. (a). 1. Rurkę zakończoną membraną półprzepuszczalną wypełnia się roztworem cukru a następnie zanurza w roztworze wody. 2. Po pewnym czasie od rozpoczęcia procesu transportu wody (solwentu) przez błonę półprzepuszczalną następuje podniesienie poziomu roztworu w rurce. (b) Układ zamknięty zawierający dwa naczynia w jednym z nich roztwór, a w drugim rozpuszczalnik. Cząsteczki zawarte w roztworze nie są lotne, a rozpuszczalnik tak. Jego cząsteczki ulatniają się i rozcieńczają roztwór. 21

22 Osmotyczne ciśnienie (π) jest różnicą ciśnienia pomiędzy ciśnieniem układu a ciśnieniem atmosferycznym. Pomiaru można dokonać poprzez zastosowanie wystarczająco dużego ciśnienia aby przerwać wypływ wody z systemu, który powstaje dzięki zjawisku osmozy. n R T V Dla roztworów stężonych π = MRT Dla roztworów rozcieńczonych π = m RT M- molowość m- molalność T-Temperatura n ilość moli Przykład: Jakie jest ciśnienie osmotyczne roztworu sacharozy zawierającego 50 g sacharozy (0.146 moli) w 117 g wody. Gęstość roztworu to 1.34 g ml -1. Pomiaru dokonano w temperaturze 25 o C. T = 273K + 25 = 298K R= L atm mol -1 K -1 1 ml V 167g 125 ml L 1.34 g moles 1 M 1.17 mol L L 1 L atm 1.17 mol L K atm mol K 98 Przykład obliczania masy molowej 0.500g hemoglobiny rozpuszczono w takiej ilości wody aby otrzymać 100.0mL roztworu. W 25 o C ciśnienie osmotyczne tego roztworu wynosi 1.78 x 10-3 atm. Jaka jest masa molowa hemoglobiny? n R T V n= 7,28 x 10-6 mola 99 Komórki pochłaniają wodę gdy stężenie roztworu na zewnątrz jest mniejsze (roztwór hipotoniczny) od stężenia wewnątrz nich. Komórki puchną. Komórki o normalnym kształcie w izotonicznym roztworze. Stężenia obu roztworów są jednakowe. Komórki kurczą się w roztworze o wyższym stężeniu (hipertoniczny roztwór) wskutek przechodzenia wody z wnętrza komórki do roztworu zewnętrznego Żywe komórki zawierają roztwory. Gdy umieścimy je w roztworach o odmiennym stężeniu różnica w ciśnieniu osmotycznym pomiędzy komórką a roztworem zewnętrznym może spowodować przepływ wody do lub z komórki. 22

23 23

Mieszaniny substancji

Mieszaniny substancji Mieszaniny substancji. Roztwory Mieszaniny substancji Są to homogeniczne mieszaniny dwóch lub więcej związków chemicznych. Skład roztworów określa się przez podanie stężenia składników. W roztworach zwykle

Bardziej szczegółowo

WYKŁAD 7. Diagramy fazowe Dwuskładnikowe układy doskonałe

WYKŁAD 7. Diagramy fazowe Dwuskładnikowe układy doskonałe WYKŁAD 7 Diagramy fazowe Dwuskładnikowe układy doskonałe JS Reguła Gibssa. Układy dwuskładnikowe Reguła faz Gibbsa określa liczbę stopni swobody układu w równowadze termodynamicznej: układy dwuskładnikowe

Bardziej szczegółowo

chemia wykład 3 Przemiany fazowe

chemia wykład 3 Przemiany fazowe Przemiany fazowe Przemiany fazowe substancji czystych Wrzenie, krzepnięcie, przemiana grafitu w diament stanowią przykłady przemian fazowych, które zachodzą bez zmiany składu chemicznego. Diagramy fazowe

Bardziej szczegółowo

Wykład 2. Anna Ptaszek. 7 października Katedra Inżynierii i Aparatury Przemysłu Spożywczego. Chemia fizyczna - wykład 2. Anna Ptaszek 1 / 1

Wykład 2. Anna Ptaszek. 7 października Katedra Inżynierii i Aparatury Przemysłu Spożywczego. Chemia fizyczna - wykład 2. Anna Ptaszek 1 / 1 Wykład 2 Katedra Inżynierii i Aparatury Przemysłu Spożywczego 7 października 2015 1 / 1 Zjawiska koligatywne Rozpuszczenie w wodzie substancji nielotnej powoduje obniżenie prężności pary nasyconej P woda

Bardziej szczegółowo

Wykład 1-4. Anna Ptaszek. 6 września Katedra Inżynierii i Aparatury Przemysłu Spożywczego. Fizykochemia biopolimerów - wykład 1-4.

Wykład 1-4. Anna Ptaszek. 6 września Katedra Inżynierii i Aparatury Przemysłu Spożywczego. Fizykochemia biopolimerów - wykład 1-4. Wykład 1-4 Katedra Inżynierii i Aparatury Przemysłu Spożywczego 6 września 2016 1 / 68 Podstawowe pojęcia Układ termodynamiczny To zbiór niezależnych elementów, które oddziałują ze sobą tworząc integralną

Bardziej szczegółowo

Wykład 8. Równowaga fazowa Roztwory rzeczywiste

Wykład 8. Równowaga fazowa Roztwory rzeczywiste Wykład 8 Równowaga fazowa Roztwory rzeczywiste Roztwory doskonałe Porównanie roztworów doskonałych i Roztwory Doskonałe rzeczywistych Roztwory Rzeczywiste Spełniają prawo Raoulta Mieszanie w warunkach

Bardziej szczegółowo

Wykład 3. Fizykochemia biopolimerów- wykład 3. Anna Ptaszek. 30 października Katedra Inżynierii i Aparatury Przemysłu Spożywczego

Wykład 3. Fizykochemia biopolimerów- wykład 3. Anna Ptaszek. 30 października Katedra Inżynierii i Aparatury Przemysłu Spożywczego Wykład 3 - wykład 3 Katedra Inżynierii i Aparatury Przemysłu Spożywczego 30 października 2013 1/56 Warunek równowagi fazowej Jakich układów dotyczy równowaga fazowa? Równowaga fazowa dotyczy układów: jednoskładnikowych

Bardziej szczegółowo

Wykład 6. Klasyfikacja przemian fazowych

Wykład 6. Klasyfikacja przemian fazowych Wykład 6 Klasyfikacja przemian fazowych JS Klasyfikacja Ehrenfesta Ehrenfest klasyfikuje przemiany fazowe w oparciu o potencjał chemiczny. nieciągłość Przemiany fazowe pierwszego rodzaju pochodne potencjału

Bardziej szczegółowo

Wykład 8B. Układy o ograniczonej mieszalności

Wykład 8B. Układy o ograniczonej mieszalności Wykład 8B Układy o ograniczonej mieszalności Układy o ograniczonej mieszalności Jeżeli dla pewnego składu entalpia swobodna mieszania ( Gmiesz> 0) jest dodatnia, to mieszanie nie jest procesem samorzutnym

Bardziej szczegółowo

Seminarium 4 Obliczenia z wykorzystaniem przekształcania wzorów fizykochemicznych

Seminarium 4 Obliczenia z wykorzystaniem przekształcania wzorów fizykochemicznych Seminarium 4 Obliczenia z wykorzystaniem przekształcania wzorów fizykochemicznych Zad. 1 Przekształć w odpowiedni sposób podane poniżej wzory aby wyliczyć: a) a lub m 2 b) m zred h E a 8ma E osc h 4 2

Bardziej szczegółowo

Warunki izochoryczno-izotermiczne

Warunki izochoryczno-izotermiczne WYKŁAD 5 Pojęcie potencjału chemicznego. Układy jednoskładnikowe W zależności od warunków termodynamicznych potencjał chemiczny substancji czystej definiujemy następująco: Warunki izobaryczno-izotermiczne

Bardziej szczegółowo

Spis treści. Ciśnienie osmotyczne. Mechanizm powstawania ciśnienia osmotycznego

Spis treści. Ciśnienie osmotyczne. Mechanizm powstawania ciśnienia osmotycznego Roztwór to nierozdzielająca się w długich okresach czasu mieszanina dwóch lub więcej związków chemicznych. Skład roztworów określa się przez podanie stężenia składników. W roztworach zwykle jeden ze związków

Bardziej szczegółowo

Wykład 1. Anna Ptaszek. 5 października Katedra Inżynierii i Aparatury Przemysłu Spożywczego. Chemia fizyczna - wykład 1. Anna Ptaszek 1 / 36

Wykład 1. Anna Ptaszek. 5 października Katedra Inżynierii i Aparatury Przemysłu Spożywczego. Chemia fizyczna - wykład 1. Anna Ptaszek 1 / 36 Wykład 1 Katedra Inżynierii i Aparatury Przemysłu Spożywczego 5 października 2015 1 / 36 Podstawowe pojęcia Układ termodynamiczny To zbiór niezależnych elementów, które oddziałują ze sobą tworząc integralną

Bardziej szczegółowo

Termodynamika równowag fazowych w układach dwuskładnikowych

Termodynamika równowag fazowych w układach dwuskładnikowych Termodynamika równowag fazowych w układach dwuskładnikowych 3.3.1. Równowaga ciecz-para: skład pary nad roztworem, prawo Roulta, Henry ego, destylacja baryczna oraz termiczna 3.3.2. Równowaga ciecz-ciecz

Bardziej szczegółowo

Właściwości koligatywne

Właściwości koligatywne Tomasz Lubera Właściwości koligatywne Grupa zjawisk naturalnych niezależnych od rodzaju substancji rozpuszczonej a jedynie od jej ilości. Należą do nich: obniżenie prężności pary, podwyższenie temperatury

Bardziej szczegółowo

Para pozostająca w równowadze z roztworem jest bogatsza w ten składnik, którego dodanie do roztworu zwiększa sumaryczną prężność pary nad nim.

Para pozostająca w równowadze z roztworem jest bogatsza w ten składnik, którego dodanie do roztworu zwiększa sumaryczną prężność pary nad nim. RÓWNOWAGA CIECZ-PARA DLA UKŁADÓW DWUSKŁADNIKOWYCH: 1) Zgodnie z regułą faz Gibbsa układ dwuskładnikowy osiąga największą liczbę stopni swobody (f max ), gdy znajduje się w nim najmniejsza możliwa liczba

Bardziej szczegółowo

prof. dr hab. Małgorzata Jóźwiak

prof. dr hab. Małgorzata Jóźwiak Czy równowaga w przyrodzie i w chemii jest korzystna? prof. dr hab. Małgorzata Jóźwiak 1 Pojęcie równowagi łańcuch pokarmowy równowagi fazowe równowaga ciało stałe - ciecz równowaga ciecz - gaz równowaga

Bardziej szczegółowo

Fazy i ich przemiany

Fazy i ich przemiany Układy i fazy Fazy i ich przemiany Co to jest faza? 1. Faza to forma występowania materii jednolita w całej objętości pod względem składu chemicznego i właściwości fizycznych (Atkins) 2. Faza to część

Bardziej szczegółowo

Czy równowaga jest procesem korzystnym? dr hab. prof. nadzw. Małgorzata Jóźwiak

Czy równowaga jest procesem korzystnym? dr hab. prof. nadzw. Małgorzata Jóźwiak Czy równowaga jest procesem korzystnym? dr hab. prof. nadzw. Małgorzata Jóźwiak 1 Pojęcie równowagi łańcuch pokarmowy równowagi fazowe równowaga ciało stałe - ciecz równowaga ciecz - gaz równowaga ciało

Bardziej szczegółowo

Fazy i ich przemiany

Fazy i ich przemiany Układy i fazy Fazy i ich przemiany Co to jest faza? 1. Faza to forma występowania materii jednolita w całej objętości pod względem składu chemicznego właściwości fizycznych (Atkins) 2. Faza to część układu

Bardziej szczegółowo

Fazy i ich przemiany

Fazy i ich przemiany Układy i fazy Fazy i ich przemiany Co to jest faza? 1. Faza to forma występowania materii jednolita w całej objętości pod względem składu chemicznego właściwości fizycznych (Atkins) 2. Faza to część układu

Bardziej szczegółowo

Roztwory rzeczywiste (1)

Roztwory rzeczywiste (1) Roztwory rzeczywiste (1) Również w temp. 298,15K, ale dla CCl 4 () i CH 3 OH (). 2 15 1 5-5 -1-15 Τ S H,2,4,6,8 1 G -2 Chem. Fiz. TCH II/12 1 rzyczyny dodatnich i ujemnych odchyleń od prawa Raoulta konsekwencja

Bardziej szczegółowo

Prężność pary nad roztworem

Prężność pary nad roztworem Tomasz Lubera Układ: Prężność pary nad roztworem dwuskładnikowy (składniki I i II) dwufazowy (ciecz i gaz) w którym faza ciekła i gazowa to roztwory idealne W stanie równowagi prężności pary składników/układu

Bardziej szczegółowo

Wykład 7. Anna Ptaszek. 13 września Katedra Inżynierii i Aparatury Przemysłu Spożywczego. Fizykochemia biopolimerów - wykład 7.

Wykład 7. Anna Ptaszek. 13 września Katedra Inżynierii i Aparatury Przemysłu Spożywczego. Fizykochemia biopolimerów - wykład 7. Wykład 7 Katedra Inżynierii i Aparatury Przemysłu Spożywczego 13 września 2016 1 / 27 Układ wieloskładnikowy dwufazowy P woda 1 atm lód woda ciek a woda + substancja nielotna para wodna 0 0 100 T 2 / 27

Bardziej szczegółowo

Laboratorium z chemii fizycznej. Zakres zagadnień na kolokwia

Laboratorium z chemii fizycznej. Zakres zagadnień na kolokwia CHEMIA semestr III Laboratorium z chemii fizycznej Zakres zagadnień na kolokwia 1. Wymagania ogólne Podstawą przygotowania do ćwiczeń jest skrypt pt. Chemia fizyczna. Ćwiczenia laboratoryjne, praca zbiorowa

Bardziej szczegółowo

Chemia fizyczna. Równowagi fazowe. Zakład Chemii Medycznej Pomorski Uniwersytet Medyczny

Chemia fizyczna. Równowagi fazowe. Zakład Chemii Medycznej Pomorski Uniwersytet Medyczny Chemia fizyczna Równowagi fazowe. Zakład Chemii Medycznej Pomorski Uniwersytet Medyczny SUBSTANCJE CZYSTE SUBSTANCJE CZYSTE RÓWNOWAGI FAZOWE Fazą danej substancji nazywamy postać materii, która charakteryzuje

Bardziej szczegółowo

Równowagi fazowe. Zakład Chemii Medycznej Pomorski Uniwersytet Medyczny

Równowagi fazowe. Zakład Chemii Medycznej Pomorski Uniwersytet Medyczny Równowagi fazowe Zakład Chemii Medycznej Pomorski Uniwersytet Medyczny Równowaga termodynamiczna Przemianom fazowym towarzyszą procesy, podczas których nie zmienia się skład chemiczny układu, polegają

Bardziej szczegółowo

Roztwory. Homogeniczne jednorodne (jedno-fazowe) mieszaniny dwóch lub więcej składników.

Roztwory. Homogeniczne jednorodne (jedno-fazowe) mieszaniny dwóch lub więcej składników. Roztwory Homogeniczne jednorodne (jedno-fazowe) mieszaniny dwóch lub więcej składników. Własności fizyczne roztworów są związane z równowagę pomiędzy siłami wiążącymi cząsteczki wody i substancji rozpuszczonej.

Bardziej szczegółowo

Wykład 4. Przypomnienie z poprzedniego wykładu

Wykład 4. Przypomnienie z poprzedniego wykładu Wykład 4 Przejścia fazowe materii Diagram fazowy Ciepło Procesy termodynamiczne Proces kwazistatyczny Procesy odwracalne i nieodwracalne Pokazy doświadczalne W. Dominik Wydział Fizyki UW Termodynamika

Bardziej szczegółowo

Chemia fizyczna/ termodynamika, 2015/16, zadania do kol. 2, zadanie nr 1 1

Chemia fizyczna/ termodynamika, 2015/16, zadania do kol. 2, zadanie nr 1 1 Chemia fizyczna/ termodynamika, 2015/16, zadania do kol. 2, zadanie nr 1 1 [Imię, nazwisko, grupa] prowadzący Uwaga! Proszę stosować się do następującego sposobu wprowadzania tekstu w ramkach : pola szare

Bardziej szczegółowo

relacje ilościowe ( masowe,objętościowe i molowe ) dotyczące połączeń 1. pierwiastków w związkach chemicznych 2. związków chemicznych w reakcjach

relacje ilościowe ( masowe,objętościowe i molowe ) dotyczące połączeń 1. pierwiastków w związkach chemicznych 2. związków chemicznych w reakcjach 1 STECHIOMETRIA INTERPRETACJA ILOŚCIOWA ZJAWISK CHEMICZNYCH relacje ilościowe ( masowe,objętościowe i molowe ) dotyczące połączeń 1. pierwiastków w związkach chemicznych 2. związków chemicznych w reakcjach

Bardziej szczegółowo

Obliczenia chemiczne. Zakład Chemii Medycznej Pomorski Uniwersytet Medyczny

Obliczenia chemiczne. Zakład Chemii Medycznej Pomorski Uniwersytet Medyczny Obliczenia chemiczne Zakład Chemii Medycznej Pomorski Uniwersytet Medyczny 1 STĘŻENIA ROZTWORÓW Stężenia procentowe Procent masowo-masowy (wagowo-wagowy) (% m/m) (% w/w) liczba gramów substancji rozpuszczonej

Bardziej szczegółowo

Kalorymetria. 1. I zasada termodynamiki, Prawo Hessa, Prawo Kirchhoffa (graficzna interpretacja), ciepło właściwe, termodynamiczne funkcje stanu.

Kalorymetria. 1. I zasada termodynamiki, Prawo Hessa, Prawo Kirchhoffa (graficzna interpretacja), ciepło właściwe, termodynamiczne funkcje stanu. Kalorymetria 1. I zasada termodynamiki, Prawo Hessa, Prawo Kirchhoffa (graficzna interpretacja), ciepło właściwe, termodynamiczne funkcje stanu. 2. Rodzaje i zasady działania kalorymetrów: a) nieizotermicznego

Bardziej szczegółowo

Podstawowe prawa opisujące właściwości gazów zostały wyprowadzone dla gazu modelowego, nazywanego gazem doskonałym (idealnym).

Podstawowe prawa opisujące właściwości gazów zostały wyprowadzone dla gazu modelowego, nazywanego gazem doskonałym (idealnym). Spis treści 1 Stan gazowy 2 Gaz doskonały 21 Definicja mikroskopowa 22 Definicja makroskopowa (termodynamiczna) 3 Prawa gazowe 31 Prawo Boyle a-mariotte a 32 Prawo Gay-Lussaca 33 Prawo Charlesa 34 Prawo

Bardziej szczegółowo

POLITECHNIKA POZNAŃSKA ZAKŁAD CHEMII FIZYCZNEJ ĆWICZENIA PRACOWNI CHEMII FIZYCZNEJ

POLITECHNIKA POZNAŃSKA ZAKŁAD CHEMII FIZYCZNEJ ĆWICZENIA PRACOWNI CHEMII FIZYCZNEJ ZLEŻNOŚĆ PRĘŻNOŚCI PRY OD TEMPERTURY - DESTYLCJ WSTĘP Zgodnie z regułą faz w miarę wzrostu liczby składników w układzie, zwiększa się również liczba stopni swobody. Układ utworzony z mieszaniny dwóch cieczy

Bardziej szczegółowo

Badanie równowag ciecz para w układach dwuskładnikowych

Badanie równowag ciecz para w układach dwuskładnikowych Wprowadzenie Badanie równowag ciecz para w układach dwuskładnikowych Rozważmy równowagę ciecz para w układzie zawierającym dwie ciecze A i B całkowicie mieszające się ze sobą. Zgodnie z regułą faz Gibbsa,

Bardziej szczegółowo

BADANIE RÓWNOWAG FAZOWYCH W UKŁADACH TRZECH CIECZY

BADANIE RÓWNOWAG FAZOWYCH W UKŁADACH TRZECH CIECZY Ćwiczenie 16 Grażyna Nowicka, Waldemar Nowicki BADANIE RÓWNOWAG FAZOWYCH W UKŁADACH TRZECH CIECZY Zagadnienia: Faza, składnik niezależny, liczba stopni swobody układu. Termodynamiczne kryterium równowagi

Bardziej szczegółowo

Wykład 5. przemysłu spożywczego- wykład 5

Wykład 5. przemysłu spożywczego- wykład 5 Wykład spożywczego- wykład Katedra Inżynierii i Aparatury Przemysłu Spożywczego 4maja2014 1/1 Układy gaz-ciecz Rozpuszczalnośćwybranychgazówwcieczachw20 o Cw g/100g cieczy CIECZ H 2 N 2 O 2 CO 2 H 2 S

Bardziej szczegółowo

Analiza termiczna Krzywe stygnięcia

Analiza termiczna Krzywe stygnięcia Analiza termiczna Krzywe stygnięcia 0 0,2 0,4 0,6 0,8 1,0 T a e j n s x p b t c o f g h k l p d i m y z q u v r w α T B T A T E T k P = const Chem. Fiz. TCH II/10 1 Rozpatrując stygnięcie wzdłuż kolejnych

Bardziej szczegółowo

dla której jest spełniony warunek równowagi: [H + ] [X ] / [HX] = K

dla której jest spełniony warunek równowagi: [H + ] [X ] / [HX] = K RÓWNOWAGI W ROZTWORACH Szwedzki chemik Svante Arrhenius w 1887 roku jako pierwszy wykazał, że procesowi rozpuszczania wielu substancji towarzyszy dysocjacja, czyli rozpad cząsteczek na jony naładowane

Bardziej szczegółowo

Woda w organizmie człowieka. Właściwości koligatywne roztworów. Zakład Chemii Medycznej Pomorskiego Uniwersytetu Medycznego

Woda w organizmie człowieka. Właściwości koligatywne roztworów. Zakład Chemii Medycznej Pomorskiego Uniwersytetu Medycznego Woda w organizmie człowieka. Właściwości koligatywne roztworów. Zakład Chemii Medycznej Pomorskiego Uniwersytetu Medycznego Do niedawna nasze wiadomości o gospodarce wodnej i elektrolitowej były nie tyle

Bardziej szczegółowo

Ćwiczenia audytoryjne z Chemii fizycznej 1 Zalecane zadania kolokwium 1. (2018/19)

Ćwiczenia audytoryjne z Chemii fizycznej 1 Zalecane zadania kolokwium 1. (2018/19) Ćwiczenia audytoryjne z Chemii fizycznej 1 Zalecane zadania kolokwium 1. (2018/19) Uwaga! Uzyskane wyniki mogą się nieco różnić od podanych w materiałach, ze względu na uaktualnianie wartości zapisanych

Bardziej szczegółowo

CHEMIA FIZYCZNA ZTiM

CHEMIA FIZYCZNA ZTiM CHEMIA FIZYCZNA ZTiM Semestr zimowy 2016/2017 Dr hab. inż. Dorota Warmińska 1. Chemia fizyczna. Termodynamika. Podstawowe pojęcia stosowane w termodynamice. Układ i otoczenie. Przegroda adiabatyczna i

Bardziej szczegółowo

PROCESY JEDNOSTKOWE W TECHNOLOGIACH ŚRODOWISKOWYCH DESTYLACJA

PROCESY JEDNOSTKOWE W TECHNOLOGIACH ŚRODOWISKOWYCH DESTYLACJA KIiChŚ PROCESY JEDNOSTKOWE W TECHNOLOGIACH ŚRODOWISKOWYCH Ćwiczenie nr 5 DESTYLACJA Cel ćwiczenia Doświadczalne wyznaczenie krzywych równowagi ciecz-para dla układu woda-kwas octowy. Wprowadzenie Destylacja

Bardziej szczegółowo

Trójkąt Gibbsa Równowagi układów z ograniczoną mieszalnością składników Prawo podziału Nernsta

Trójkąt Gibbsa Równowagi układów z ograniczoną mieszalnością składników Prawo podziału Nernsta Termodynamiczny opis równowag w układach trójskładnikowych 3.4.1. Trójkąt Gibbsa 3.4.2. Równowagi układów z ograniczoną mieszalnością składników 3.4.3. Prawo podziału Nernsta Układy trójskładnikowe Liczba

Bardziej szczegółowo

Równanie gazu doskonałego

Równanie gazu doskonałego Równanie gazu doskonałego Gaz doskonały to abstrakcyjny model gazu, który zakłada, że gaz jest zbiorem sprężyście zderzających się kulek. Wiele gazów w warunkach normalnych zachowuje się jak gaz doskonały.

Bardziej szczegółowo

PODSTAWY CHEMII INŻYNIERIA BIOMEDYCZNA. Wykład 2

PODSTAWY CHEMII INŻYNIERIA BIOMEDYCZNA. Wykład 2 PODSTAWY CEMII INŻYNIERIA BIOMEDYCZNA Wykład Plan wykładu II,III Woda jako rozpuszczalnik Zjawisko dysocjacji Równowaga w roztworach elektrolitów i co z tego wynika Bufory ydroliza soli Roztwory (wodne)-

Bardziej szczegółowo

11) Stan energetyczny elektronu w atomie kwantowanym jest zespołem : a dwóch liczb kwantowych b + czterech liczb kwantowych c nie jest kwantowany

11) Stan energetyczny elektronu w atomie kwantowanym jest zespołem : a dwóch liczb kwantowych b + czterech liczb kwantowych c nie jest kwantowany PYTANIA EGZAMINACYJNE Z CHEMII OGÓLNEJ I Podstawowe pojęcia chemiczne 1) Pierwiastkiem nazywamy : a zbiór atomów o tej samej liczbie masowej b + zbiór atomów o tej samej liczbie atomowej c zbiór atomów

Bardziej szczegółowo

Ćwiczenia 12 Zadanie 12.4D

Ćwiczenia 12 Zadanie 12.4D Sylwester Arabas (ćwiczenia do wykładu prof. Hanny Pawłowskiej) Instytut Geofizyki, Wydział Fizyki Uniwersytetu Warszawskiego 26 maja 2011 r. : polecenie / rozwiązanie Wyznaczenie do jakiego poziomu musiałaby

Bardziej szczegółowo

Zadania pochodzą ze zbioru zadań P.W. Atkins, C.A. Trapp, M.P. Cady, C. Giunta, CHEMIA FIZYCZNA Zbiór zadań z rozwiązaniami, PWN, Warszawa 2001

Zadania pochodzą ze zbioru zadań P.W. Atkins, C.A. Trapp, M.P. Cady, C. Giunta, CHEMIA FIZYCZNA Zbiór zadań z rozwiązaniami, PWN, Warszawa 2001 Zadania pochodzą ze zbioru zadań P.W. Atkins, C.A. Trapp, M.P. Cady, C. Giunta, CHEMIA FIZYCZNA Zbiór zadań z rozwiązaniami, PWN, Warszawa 2001 I zasada termodynamiki - pojęcia podstawowe C2.4 Próbka zawierająca

Bardziej szczegółowo

Praca objętościowa - pv (wymiana energii na sposób pracy) Ciepło reakcji Q (wymiana energii na sposób ciepła) Energia wewnętrzna

Praca objętościowa - pv (wymiana energii na sposób pracy) Ciepło reakcji Q (wymiana energii na sposób ciepła) Energia wewnętrzna Energia - zdolność danego układu do wykonania dowolnej pracy. Potencjalna praca, którą układ może w przyszłości wykonać. Praca wykonana przez układ jak i przeniesienie energii może manifestować się na

Bardziej szczegółowo

Roztwory rzeczywiste (1)

Roztwory rzeczywiste (1) Roztwory rzeczywiste (1) Również w temp. 298,15K, ale dla CCl 4 () i CH 3 OH (). 2 15 1 5-5 -1-15 Τ S H,2,4,6,8 1 G -2 Chem. Fiz. TCH II/12 1 Roztwory rzeczywiste (2) Tym razem dla (CH 3 ) 2 CO () i CHCl

Bardziej szczegółowo

Ćwiczenie 2: Właściwości osmotyczne koloidalnych roztworów biopolimerów.

Ćwiczenie 2: Właściwości osmotyczne koloidalnych roztworów biopolimerów. 1. Część teoretyczna Właściwości koligatywne Zjawiska osmotyczne związane są z równowagą w układach dwu- lub więcej składnikowych, przy czym dotyczy roztworów substancji nielotnych (soli, polisacharydów,

Bardziej szczegółowo

Podstawy termodynamiki.

Podstawy termodynamiki. Podstawy termodynamiki. Termodynamika opisuje ogólne prawa przemian energetycznych w układach makroskopowych. Określa kierunki procesów zachodzących w przyrodzie w sposób samorzutny, jak i stanów końcowych,

Bardziej szczegółowo

Ćwiczenia rachunkowe z termodynamiki technicznej i chemicznej Zalecane zadania kolokwium 1. (2014/15)

Ćwiczenia rachunkowe z termodynamiki technicznej i chemicznej Zalecane zadania kolokwium 1. (2014/15) Ćwiczenia rachunkowe z termodynamiki technicznej i chemicznej Zalecane zadania kolokwium 1. (2014/15) (Uwaga! Liczba w nawiasie przy odpowiedzi oznacza numer zadania (zestaw.nr), którego rozwiązanie dostępne

Bardziej szczegółowo

Wykład 10 Równowaga chemiczna

Wykład 10 Równowaga chemiczna Wykład 10 Równowaga chemiczna REAKCJA CHEMICZNA JEST W RÓWNOWADZE, GDY NIE STWIERDZAMY TENDENCJI DO ZMIAN ILOŚCI (STĘŻEŃ) SUBSTRATÓW ANI PRODUKTÓW RÓWNOWAGA CHEMICZNA JEST RÓWNOWAGĄ DYNAMICZNĄ W rzeczywistości

Bardziej szczegółowo

Prowadzący. http://luberski.w.interia.pl telefon PK: 126282746 Pokój 210A (Katedra Biotechnologii i Chemii Fizycznej C-5)

Prowadzący. http://luberski.w.interia.pl telefon PK: 126282746 Pokój 210A (Katedra Biotechnologii i Chemii Fizycznej C-5) Tomasz Lubera dr Tomasz Lubera mail: luberski@interia.pl Prowadzący http://luberski.w.interia.pl telefon PK: 126282746 Pokój 210A (Katedra Biotechnologii i Chemii Fizycznej C-5) Konsultacje: we wtorki

Bardziej szczegółowo

1. Stechiometria 1.1. Obliczenia składu substancji na podstawie wzoru

1. Stechiometria 1.1. Obliczenia składu substancji na podstawie wzoru 1. Stechiometria 1.1. Obliczenia składu substancji na podstawie wzoru Wzór związku chemicznego podaje jakościowy jego skład z jakich pierwiastków jest zbudowany oraz liczbę atomów poszczególnych pierwiastków

Bardziej szczegółowo

Ćwiczenia audytoryjne z Chemii fizycznej 1 Zalecane zadania kolokwium 1. (2016/17)

Ćwiczenia audytoryjne z Chemii fizycznej 1 Zalecane zadania kolokwium 1. (2016/17) Ćwiczenia audytoryjne z Chemii fizycznej 1 Zalecane zadania kolokwium 1. (2016/17) Uwaga! Uzyskane wyniki mogą się nieco różnić od podanych w materiałach, ze względu na uaktualnianie wartości zapisanych

Bardziej szczegółowo

WYKAZ NAJWAŻNIEJSZYCH SYMBOLI

WYKAZ NAJWAŻNIEJSZYCH SYMBOLI SPIS TREŚCI WYKAZ NAJWAŻNIEJSZYCH SYMBOLI...7 PRZEDMOWA...8 1. WSTĘP...9 2. MATEMATYCZNE OPRACOWANIE WYNIKÓW POMIARÓW...10 3. LEPKOŚĆ CIECZY...15 3.1. Pomiar lepkości...16 3.2. Lepkość względna...18 3.3.

Bardziej szczegółowo

STRUKTURA STOPÓW UKŁADY RÓWNOWAGI FAZOWEJ. Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego

STRUKTURA STOPÓW UKŁADY RÓWNOWAGI FAZOWEJ. Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego STRUKTURA STOPÓW UKŁADY RÓWNOWAGI FAZOWEJ Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Wykresy układów równowagi faz stopowych Ilustrują skład fazowy

Bardziej szczegółowo

DESTYLACJA JAKO METODA WYODRĘBNIANIA I OCZYSZCZANIA ZWIĄZKÓW CHEMICZNYCH

DESTYLACJA JAKO METODA WYODRĘBNIANIA I OCZYSZCZANIA ZWIĄZKÓW CHEMICZNYCH DESTYLCJ JKO METOD WYODRĘNINI I OCZYSZCZNI ZWIĄZKÓW CHEMICZNYCH Zakres materiału: - metody rozdzielania substancji, - destylacja - charakter wykorzystywanych zjawisk, typy destylacji, zastosowanie, charakterystyka

Bardziej szczegółowo

Ćwiczenie 3: Wpływ temperatury na równowagę w układzie ciecz-ciecz

Ćwiczenie 3: Wpływ temperatury na równowagę w układzie ciecz-ciecz 1. Część teoretyczna Dwufazowe układy dwuskładnikowe Ćwiczenie 3: Wpływ temperatury na równowagę w układzie ciecz-ciecz W ramach omawiania równowag fazowych należy wspomnieć o równowadze cieczciecz. Jest

Bardziej szczegółowo

Diagramy fazowe graficzna reprezentacja warunków równowagi

Diagramy fazowe graficzna reprezentacja warunków równowagi Diagramy fazowe graficzna reprezentacja warunków równowagi Faza jednorodna część układu, oddzielona od innych części granicami faz, na których zachodzi skokowa zmiana pewnych własności fizycznych. B 0

Bardziej szczegółowo

Wymagania programowe: Gimnazjum chemia kl. II

Wymagania programowe: Gimnazjum chemia kl. II Wymagania programowe: Gimnazjum chemia kl. II Dział: Wewnętrzna budowa materii Ocena dopuszczająca [1] posługuje się symbolami odróżnia wzór sumaryczny od wzoru strukturalnego zapisuje wzory sumaryczne

Bardziej szczegółowo

Kryteria oceniania z chemii kl VII

Kryteria oceniania z chemii kl VII Kryteria oceniania z chemii kl VII Ocena dopuszczająca -stosuje zasady BHP w pracowni -nazywa sprzęt laboratoryjny i szkło oraz określa ich przeznaczenie -opisuje właściwości substancji używanych na co

Bardziej szczegółowo

Chemia klasa VII Wymagania edukacyjne na poszczególne oceny Semestr II

Chemia klasa VII Wymagania edukacyjne na poszczególne oceny Semestr II Chemia klasa VII Wymagania edukacyjne na poszczególne oceny Semestr II Łączenie się atomów. Równania reakcji Ocena dopuszczająca [1] Ocena dostateczna [1 + 2] Ocena dobra [1 + 2 + 3] Ocena bardzo dobra

Bardziej szczegółowo

Równowagi w roztworach wodnych

Równowagi w roztworach wodnych Równowagi w roztworach wodnych V 1 A + B = C + D V 2 Szybkości reakcji: v 1 = k 1 c A c B v 2 = k 2 c C c D ogólnie Roztwory, rozpuszczalność, rodzaje stężeń, iloczyn rozpuszczalności Reakcje dysocjacji

Bardziej szczegółowo

MATERIAŁOZNAWSTWO Wydział Mechaniczny, Mechatronika, sem. I. dr inż. Hanna Smoleńska

MATERIAŁOZNAWSTWO Wydział Mechaniczny, Mechatronika, sem. I. dr inż. Hanna Smoleńska MATERIAŁOZNAWSTWO Wydział Mechaniczny, Mechatronika, sem. I dr inż. Hanna Smoleńska UKŁADY RÓWNOWAGI FAZOWEJ Równowaga termodynamiczna pojęcie stosowane w termodynamice. Oznacza stan, w którym makroskopowe

Bardziej szczegółowo

Odpowiedź:. Oblicz stężenie procentowe tlenu w wodzie deszczowej, wiedząc, że 1 dm 3 tej wody zawiera 0,055g tlenu. (d wody = 1 g/cm 3 )

Odpowiedź:. Oblicz stężenie procentowe tlenu w wodzie deszczowej, wiedząc, że 1 dm 3 tej wody zawiera 0,055g tlenu. (d wody = 1 g/cm 3 ) PRZYKŁADOWE ZADANIA Z DZIAŁÓW 9 14 (stężenia molowe, procentowe, przeliczanie stężeń, rozcieńczanie i zatężanie roztworów, zastosowanie stężeń do obliczeń w oparciu o reakcje chemiczne, rozpuszczalność)

Bardziej szczegółowo

2. Procenty i stężenia procentowe

2. Procenty i stężenia procentowe 2. PROCENTY I STĘŻENIA PROCENTOWE 11 2. Procenty i stężenia procentowe 2.1. Oblicz 15 % od liczb: a. 360, b. 2,8 10 5, c. 0.024, d. 1,8 10 6, e. 10 Odp. a. 54, b. 4,2 10 4, c. 3,6 10 3, d. 2,7 10 7, e.

Bardziej szczegółowo

Odwracalność przemiany chemicznej

Odwracalność przemiany chemicznej Odwracalność przemiany chemicznej Na ogół wszystkie reakcje chemiczne są odwracalne, tzn. z danych substratów tworzą się produkty, a jednocześnie produkty reakcji ulegają rozkładowi na substraty. Fakt

Bardziej szczegółowo

(1) Równanie stanu gazu doskonałego. I zasada termodynamiki: ciepło, praca.

(1) Równanie stanu gazu doskonałego. I zasada termodynamiki: ciepło, praca. (1) Równanie stanu gazu doskonałego. I zasada termodynamiki: ciepło, praca. 1. Aby określić dokładną wartość stałej gazowej R, student ogrzał zbiornik o objętości 20,000 l wypełniony 0,25132 g gazowego

Bardziej szczegółowo

Zadanie: 1 (1pkt) Zadanie: 2 (1 pkt)

Zadanie: 1 (1pkt) Zadanie: 2 (1 pkt) Zadanie: 1 (1pkt) Stężenie procentowe nasyconego roztworu azotanu (V) ołowiu (II) Pb(NO 3 ) 2 w temperaturze 20 0 C wynosi 37,5%. Rozpuszczalność tej soli w podanych warunkach określa wartość: a) 60g b)

Bardziej szczegółowo

Statyka Cieczy i Gazów. Temat : Podstawy teorii kinetyczno-molekularnej budowy ciał

Statyka Cieczy i Gazów. Temat : Podstawy teorii kinetyczno-molekularnej budowy ciał Statyka Cieczy i Gazów Temat : Podstawy teorii kinetyczno-molekularnej budowy ciał 1. Podstawowe założenia teorii kinetyczno-molekularnej budowy ciał: Ciała zbudowane są z cząsteczek. Pomiędzy cząsteczkami

Bardziej szczegółowo

Wykład 3. Diagramy fazowe P-v-T dla substancji czystych w trzech stanach. skupienia. skupienia

Wykład 3. Diagramy fazowe P-v-T dla substancji czystych w trzech stanach. skupienia. skupienia Wykład 3 Substancje proste i czyste Przemiany w systemie dwufazowym woda para wodna Diagram T-v dla przejścia fazowego woda para wodna Diagramy T-v i P-v dla wody Punkt krytyczny Temperatura nasycenia

Bardziej szczegółowo

Podstawy termodynamiki

Podstawy termodynamiki Podstawy termodynamiki Organizm żywy z punktu widzenia termodynamiki Parametry stanu Funkcje stanu: U, H, F, G, S I zasada termodynamiki i prawo Hessa II zasada termodynamiki Kierunek przemian w warunkach

Bardziej szczegółowo

Seria 2, ćwiczenia do wykładu Od eksperymentu do poznania materii

Seria 2, ćwiczenia do wykładu Od eksperymentu do poznania materii Seria 2, ćwiczenia do wykładu Od eksperymentu do poznania materii 8.1.21 Zad. 1. Obliczyć ciśnienie potrzebne do przemiany grafitu w diament w temperaturze 25 o C. Objętość właściwa (odwrotność gęstości)

Bardziej szczegółowo

I. Właściwości wody: II. Stany skupienia wody. Na dnie zbiornika wodnego jest zawsze temperatura 4 O C (największa gęstość wody).

I. Właściwości wody: II. Stany skupienia wody. Na dnie zbiornika wodnego jest zawsze temperatura 4 O C (największa gęstość wody). I. Właściwości wody: bezbarwna bezwonna bez smaku dobry rozpuszczalnik temp. topnienia 0 O C temp. wrzenia 100 O C (pod ciśnieniem 1013 hpa) największa gęstość przy temp. 4 O C Na dnie zbiornika wodnego

Bardziej szczegółowo

INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH

INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH INSTYTUT MASZYN I URZĄDZEŃ ENERGETYCZNYCH Politechnika Śląska w Gliwicach INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH WYZNACZANIE WYKRESU RÓWNOWAGI FAZOWEJ (dla stopów dwuskładnikowych) Instrukcja przeznaczona

Bardziej szczegółowo

DRUGA ZASADA TERMODYNAMIKI

DRUGA ZASADA TERMODYNAMIKI DRUGA ZASADA TERMODYNAMIKI Procesy odwracalne i nieodwracalne termodynamicznie, samorzutne i niesamorzutne Proces nazywamy termodynamicznie odwracalnym, jeśli bez spowodowania zmian w otoczeniu możliwy

Bardziej szczegółowo

14. IZOTERMA ROZPUSZCZALNOŚCI UKŁADU TRÓJSKŁADNIKOWEGO ROZPUSZCZALNIKÓW

14. IZOTERMA ROZPUSZCZALNOŚCI UKŁADU TRÓJSKŁADNIKOWEGO ROZPUSZCZALNIKÓW 14. IZOTERMA ROZPUSZCZALNOŚCI UKŁADU TRÓJSKŁADNIKOWEGO ROZPUSZCZALNIKÓW Zagadnienia teoretyczne Reguła faz Gibbsa. Definicja fazy, liczby składników i liczby stopni swobody. Wyznaczenie składu mieszaniny

Bardziej szczegółowo

14. DIAGRAM GIBBSA. Sprawdzono w roku 2014 przez A.Klimek-Turek

14. DIAGRAM GIBBSA. Sprawdzono w roku 2014 przez A.Klimek-Turek 14. DIAGRAM GIBBSA Zagadnienia teoretyczne Reguła faz Gibbsa. Definicja fazy, liczby składników i liczby stopni swobody. Wyznaczenie składu mieszaniny w trójkącie Gibbsa. Izoterma rozpuszczalności (krzywa

Bardziej szczegółowo

Roztwory elekreolitów

Roztwory elekreolitów Imię i nazwisko:... Roztwory elekreolitów Zadanie 1. (2pkt) W teorii Brönsteda sprzężoną parą kwas-zasada nazywa się układ złożony z kwasu oraz zasady, która powstaje z tego kwasu przez odłączenie protonu.

Bardziej szczegółowo

Ekstrakcja. Seminarium 7. 23/11/2015

Ekstrakcja. Seminarium 7. 23/11/2015 Ekstrakcja Seminarium 7. Prawo podziału Nernsta Jeżeli do układu złożonego z dwóch praktycznie niemieszających się cieczy wprowadzimy trzeci składnik, rozpuszczający się w obu cieczach, to w wyniku ustalenia

Bardziej szczegółowo

Równowagi w roztworach wodnych

Równowagi w roztworach wodnych Równowagi w roztworach wodnych Stan i stała równowagi reakcji chemicznej ogólnie Roztwory, rozpuszczalność, rodzaje stężeń, iloczyn rozpuszczalności Reakcje dysocjacji Stopień dysocjacji Prawo rozcieńczeń

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE

WYMAGANIA EDUKACYJNE GIMNAZJUM NR 2 W RYCZOWIE WYMAGANIA EDUKACYJNE niezbędne do uzyskania poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych z CHEMII w klasie II gimnazjum str. 1 Wymagania edukacyjne niezbędne do

Bardziej szczegółowo

Modelowanie w ochronie środowiska

Modelowanie w ochronie środowiska Modelowanie w ochronie środowiska PARAMETRY FIZYKO-CHEMICZNE WPŁYWAJĄCE NA TRWAŁOŚĆ I ROZPRZESTRZENIANIE SIĘ ZWIĄZKÓW CHEMICZNYCH W ŚRODOWISKU NATURALNYM KOMPOENTY ŚRODOWISKA TRWAŁOŚĆ! CZAS PRZEBYWANIA

Bardziej szczegółowo

Ćwiczenie 2. Charakteryzacja niskotemperaturowego czujnika tlenu. (na prawach rękopisu)

Ćwiczenie 2. Charakteryzacja niskotemperaturowego czujnika tlenu. (na prawach rękopisu) Ćwiczenie 2. Charakteryzacja niskotemperaturowego czujnika tlenu (na prawach rękopisu) W analityce procesowej istotne jest określenie stężeń rozpuszczonych w cieczach gazów. Gazy rozpuszczają się w cieczach

Bardziej szczegółowo

Prawa gazowe- Tomasz Żabierek

Prawa gazowe- Tomasz Żabierek Prawa gazowe- Tomasz Żabierek Zachowanie gazów czystych i mieszanin tlenowo azotowych w zakresie użytecznych ciśnień i temperatur można dla większości przypadków z wystarczającą dokładnością opisywać równaniem

Bardziej szczegółowo

Zadania treningowe na kolokwium

Zadania treningowe na kolokwium Zadania treningowe na kolokwium 3.12.2010 1. Stan układu binarnego zawierającego n 1 moli substancji typu 1 i n 2 moli substancji typu 2 parametryzujemy za pomocą stężenia substancji 1: x n 1. Stabilność

Bardziej szczegółowo

Termodynamiczny opis przejść fazowych pierwszego rodzaju

Termodynamiczny opis przejść fazowych pierwszego rodzaju Wykład II Przejścia fazowe 1 Termodynamiczny opis przejść fazowych pierwszego rodzaju Woda występuje w trzech stanach skupienia jako ciecz, jako gaz, czyli para wodna, oraz jako ciało stałe, a więc lód.

Bardziej szczegółowo

15. DESTYLACJA. Wprowadził zmiany, przeredagował tekst i sprawdził T. Tuzimski w roku 2017 r. Temperatura wrzenia i prężność pary

15. DESTYLACJA. Wprowadził zmiany, przeredagował tekst i sprawdził T. Tuzimski w roku 2017 r. Temperatura wrzenia i prężność pary 15. DESTYLACJA Zagadnienia teoretyczne: Parowanie cieczy i prężność pary nasyconej. Zależność prężności pary nasyconej od temperatury. Temperatura wrzenia cieczy. Prężność i skład pary nad układem dwu

Bardziej szczegółowo

ĆWICZENIE 3 CIEPŁO ROZPUSZCZANIA I NEUTRALIZACJI

ĆWICZENIE 3 CIEPŁO ROZPUSZCZANIA I NEUTRALIZACJI ĆWICZENIE 3 CIEPŁO ROZPUSZCZANIA I NEUTRALIZACJI Przybory i odczynniki Kalorymetr NaOH w granulkach Mieszadło KOH w granulkach Cylinder miarowy 50 ml 4n HCl 4 Szkiełka zegarowe 4N HNO 3 Termometr (dokładność

Bardziej szczegółowo

TERMODYNAMIKA I TERMOCHEMIA

TERMODYNAMIKA I TERMOCHEMIA TERMODYNAMIKA I TERMOCHEMIA Termodynamika - opisuje zmiany energii towarzyszące przemianom chemicznym; dział fizyki zajmujący się zjawiskami cieplnymi. Termochemia - dział chemii zajmujący się efektami

Bardziej szczegółowo

ROZTWORY. Mieszaniny heterogeniczne homogeniczne Roztwory - jednorodne mieszaniny dwóch lub wi cej składników gazowe ciekłe stałe

ROZTWORY. Mieszaniny heterogeniczne homogeniczne Roztwory - jednorodne mieszaniny dwóch lub wi cej składników gazowe ciekłe stałe ROZTWORY Mieszaniny heterogeniczne homogeniczne Roztwory - jednorodne mieszaniny dwóch lub wi cej składników gazowe ciekłe stałe roztwór nienasycony - roztwór, w którym st enie substancji rozpuszczonej

Bardziej szczegółowo

powierzchnia rozdziału - dwie fazy ciekłe - jedna faza gazowa - dwa składniki

powierzchnia rozdziału - dwie fazy ciekłe - jedna faza gazowa - dwa składniki Przejścia fazowe. powierzchnia rozdziału - skokowa zmiana niektórych parametrów na granicy faz. kropeki wody w atmosferze - dwie fazy ciekłe - jedna faza gazowa - dwa składniki Przykłady przejść fazowych:

Bardziej szczegółowo

Ściąga eksperta. Mieszaniny. - filmy edukacyjne on-line Strona 1/8. Jak dzielimy substancje chemiczne?

Ściąga eksperta. Mieszaniny.  - filmy edukacyjne on-line Strona 1/8. Jak dzielimy substancje chemiczne? Mieszaniny Jak dzielimy substancje chemiczne? Mieszaninami nazywamy substancje złożone z kilku skład, zachowujących swoje właściwości. Mieszaniny uzyskuje się na drodze mechanicznego mieszania ze sobą

Bardziej szczegółowo

Przeliczanie zadań, jednostek, rozcieńczanie roztworów, zaokrąglanie wyników.

Przeliczanie zadań, jednostek, rozcieńczanie roztworów, zaokrąglanie wyników. Przeliczanie zadań, jednostek, rozcieńczanie roztworów, zaokrąglanie wyników. Stężenie procentowe wyrażone w jednostkach wagowych określa liczbę gramów substancji rozpuszczonej znajdującej się w 0 gramach

Bardziej szczegółowo

Destylacja z parą wodną

Destylacja z parą wodną Destylacja z parą wodną 1. prowadzenie iele związków chemicznych podczas destylacji przy ciśnieniu normalnym ulega rozkładowi lub polimeryzacji. by możliwe było ich oddestylowanie należy wykonywać ten

Bardziej szczegółowo