Modelowanie matematyczne w zastosowaniach biomedycznych
|
|
- Bożena Łuczak
- 7 lat temu
- Przeglądów:
Transkrypt
1 Modelowanie matematyczne w zastosowaniach biomedycznych Wykład 5: Modele rozłożone transportu wody i substancji w tkance Dr Jan Poleszczuk 29/03/2017 IBIB PAN
2 Otrzewna Błona wyścielająca jamę otrzewnową i pokrywająca ściany jamy brzusznej, przewód pokarmowy oraz inne narządy wewnętrzne (np. wątrobę, czy żołądek) Uważa się, że pole powierzchni otrzewnej równa się w przybliżeniu polu powierzchni ciała człowieka (w typowym przypadku 1-2 m 2 ).
3 Dializa otrzewnowa Metoda terapii nerkozastępczej wykorzystywana w leczeniu w przybliżeniu 100 tys. pacjentów na całym świecie. Metoda wykorzystująca błonę otrzewnową jako naturalny dializator - szkodliwe substancje i woda odciągane są do płynu dializacyjnego wlanego do jamy otrzewnowej, który zostaje następnie usunięty. Dwukierunkowy przepływ substancji oraz wody wymusza się wlewając do jamy otrzewnowej roztwór hipertoniczny. Najczęściej jest to płyn o wysokim stężeniu glukozy lub jej polimerów.
4 Składowe transportu przez otrzewną
5 Objętość dializatu w jamie otrzewnowej
6 Stężenie glukozy w dializacie
7 Stężenie sodu w dializacie
8 Stężenie mocznika w dializacie
9 Proste modele membranowe Przepływ wody: J V = L PA ( P i σ i RT C i ) Q A oraz zmiana objętości dializatu: dv D dt = J V
10 Model Pyle a Pyle i in. zaproponowali prostą fenomenologiczną zależność opisującą przepływ wody: J V (t) = A P e kp(t t0) + b P, gdzie t 0 to moment od zakończenia wlewu dializatu do jamy otrzewnowej. Rozwiązując równanie opisujące zmianę objętości dializatu w czasie dv D dt = J V otrzymujemy następującą funkcję opisującą objętość dializatu w czasie dializy V D (t) = V D (t 0 ) + A p k p ( 1 e kp(t t0)) b p (t t 0 ) Zadanie: Wyrysujmy kilka przykładowych rozwiązań modelu Pyle a i zobaczmy czy odpowiada ono danym z klinki.
11 Funkcja zwracająca rozwiązanie modelu Pyle a Zacznijmy od zaimplementowania funkcji zwracającej rozwiązanie modelu Pyle a: function VD = modelpyle(params,vt0,t0, t) end VD = Vt0+params.Ap/params.kp*(1-exp(-params.kp*t-t0))... -params.bp*(t-t0); Wykorzystując powyższą funkcję możemy wyrysować przebiegi modelu Pyle a dla różnych wartości parametrów.
12 Skrypt obliczający i rysujący rozwiązanie modelu Pyle a %definiowanie parametrów params.ap = 10; %ml/min params.kp = 0.01; %1/min params.bp = 1; %ml/min %definiowanie warunku początkowego t0 = 0; %min Vt0 = 2200; %ml %definiowanie punktów czasowych dla rozwiązania tmesh = linspace(t0, t0+360, 200); %rozwiązywanie modelu Pyle a V = modelpyle(params,vt0,t0, tmesh); %rysowanie set(0, DefaultAxesFontSize,16) figure(1) clf %czyszczenie rysunku plot(tmesh, V) ylabel( Objetosc dializatu, ml ) xlabel( Czas na dializie, min )
13 Przykładowe rozwiązanie modelu Pyle a Dla parametrów A p = 10 ml/min, k p = /min oraz b p = 1 ml/min rozwiązanie modelu Pyle a ma następujący przebieg. Widzimy, że przebieg modelu jakościowo odpowiada danym klinicznym. Pytanie: Czy model opisze też dane ilościowo?
14 Objętość dializatu w jamie - dane kliniczne Pliki z danymi do pobrania z mojej strony internetowej. W pliku Vexp386.txt mamy pomiary objętości dializatu w jamie otrzewnowej. W pierwszej kolumnie mamy momenty pomiaru (od zakończenia wlewu). W drugiej kolumnie mamy średnią zmierzoną objętość. W trzeciej kolumnie mamy odchylenie standardowe objętości. Zaimplementujmy zatem funkcję wczytującą dane do Octave.
15 Funkcja wczytująca dane Funkcja wczytująca dane do pliku może mieć następującą postać: function dane = wczytajdane(nazwapliku) end tmp = dlmread(nazwapliku); dane.momentypomiaru = tmp(:,1); dane.srednie = tmp(:,2); dane.odchylenia = tmp(:,3);
16 Estymacja parametrów modelu Naszym zadaniem jest znalezienie takich wartości parametrów V (t 0 ), A p, k p oraz b p, które dawałaby największą zgodność modelu z danymi (zakładamy, że t 0 = 0). Należy zdefiniować miarę zgodności modelu z danymi, aby móc ją minimalizować. Wykorzystamy metodę najmniejszych kwadratów, w której szuka się minimum błędu zdefiniowanego jako Err = t i (dane(t i ) model(t i )) 2, gdzie t i określają momenty dokonania pomiarów Zadanie: Zaimplementujmy zatem funkcję dopasowującą model do danych.
17 Funkcja dopasowująca do danych function [params, Vt0, err] = dopasujmodelpylea(danein) global dane; dane = danein; [xopt, err] = fminunc(@f,[10, 0.01, 1, 2200]); params.ap = xopt(1); params.kp = xopt(2); params.bp = xopt(3); Vt0 = xopt(4); end function err = F(x) global dane; params.ap = x(1); %ml/min params.kp = x(2); %1/min params.bp = x(3); %ml/min %definiowanie warunku początkowego t0 = 0; %min Vt0 = x(4); %ml %rozwiazywanie modelu V = modelpyle(params,vt0,t0, dane.momentypomiaru ); err = sum((v-dane.srednie ).^2); end
18 Dopasowane do danych rozwiązanie modelu Pyle a Dla parametrów A p = ml/min, k p = /min, b p = ml/min oraz V (t 0 ) = rozwiązanie modelu Pyle a dobrze przybliża dane kliniczne.
19 Skrypt dopasowujący rozwiązanie do danych %wczytywanie danych dane = wczytajdane( Dane386/Vexp386.txt ); %dopasowywanie modelu [params, Vt0, err] = dopasujmodelpylea(dane); %definiowanie warunku początkowego t0 = 0; %min %definiowanie punktów czasowych dla rozwiązania tmesh = linspace(t0, t0+360, 200); %rozwiązywanie modelu Pyle a V = modelpyle(params,vt0,t0, tmesh); %rysowanie set(0, DefaultAxesFontSize,16) figure(1) clf hold on plot(tmesh, V) xlim(tmesh([1 end])) errorbar(dane.momentypomiaru, dane.srednie, dane.odchylenia); hold off ylabel( Objetosc dializatu, ml ) xlabel( Czas na dializie, min ) legend({ Model, Dane386 })
20 Podejście membranowe do transportu substancji Przepływ substancji J S = k BD (C D C B ) + SJ V [(1 F )C D + FC B ], F = 1 Pe 1 exp(pe) 1, Pe = SJ V /k BD Zmiana masy w czasie d(v D C D ) dt = J S. Zadanie: Sprawdźmy, czy przy określeniu J V przy pomocy modelu Pyle a jesteśmy w stanie powyższym modelem opisać obserwowaną zmianę stężenia mocznika w dializacie. Zaimplementujmy funkcję rozwiązującą model.
21 Funkcja rozwiązująca model function sol = modelsubstancja(paramsin,cd0, Vt0In,t0In, t) %deklarowanie zmiennych globalnych global params Vt0 t0; params = paramsin; Vt0 = Vt0In; t0 = t0in; %rozwiazywanie modelu sol = ode45(@rhs, [t0, t], CD0); end function dxdt = rhs(t,x) global params Vt0 t0; %obliczanie objetosci dializatu i dvdt = Jv Vd = modelpyle(params,vt0,t0,t); dvdt = (modelpyle(params,vt0,t0,t+0.1)-vd)/0.1; Pe = params.s*dvdt/params.kbd; F = 1/Pe - 1/(exp(Pe)-1); Js = params.kbd*(x(1)-params.cb)+params.s*dvdt*((1-f)*x(1) + F*params.CB); dxdt = (-Js-dVdt*x(1))/Vd; end
22 Skrypt rysujący przykładowe rozwiązanie modelu clear all; %definiowanie parametrow params.ap = ; %ml/min params.kp = ; %1/min params.bp = ; %ml/min params.s = 0.5; params.kbd = 20; Vt0 = ; %ml t0 = 0; params.cb = ; %mmol/l Cd0 = 402.8*params.CB/Vt0; sol = modelsubstancja(params,cd0, Vt0,t0, t0+360); set(0, DefaultAxesFontSize,16) figure(1) clf plot(sol.x, sol.y) ylabel( Stezenie mocznika w dializacie, mmol/l ) xlabel( Czas na dializie, min )
23 Przykładowe rozwiązanie Dla parametrów A p = ml/min, k p = /min, b p = ml/min, V (t 0 ) = , S = 0.5 oraz k BD = 20 ml/min rozwiązanie modelu ma następujący przebieg. Widzimy, że przebieg jakościowo odpowiada danym klinicznym. Pytanie: Czy model może opisać dane kliniczne również ilościowo?
24 Estymacja parametrów modelu Parametry opisujące przepływ wody wyznaczyliśmy już wcześniej. Zagadnienie upraszczamy zakładając, że stężenie we krwi nie zmienia się w trakcie dializy. Pozostaje wyznaczyć parametry S oraz k BD. Znowu wykorzystamy metodę najmniejszych kwadratów, w której szuka się minimum błędu zdefiniowanego jako Err = t i (dane(t i ) model(t i )) 2, gdzie t i określają momenty dokonania pomiarów Zadanie: Zaimplementujmy zatem funkcję dopasowującą model do danych.
25 Funkcja dopasowująca do danych function [params, err] = dopasujmodelsubstancja(danein) global dane; dane = danein; [xopt, err] = fminunc(@f,[0.5, 20]); params.s = min(max(xopt(1),1e-6),1); %ml/min params.kbd = xopt(2); end function err = F(x) global dane; params.s = min(max(x(1),1e-6),1); %ml/min params.kbd = x(2); %1/min params.ap = ; %ml/min params.kp = ; %1/min params.bp = ; %ml/min t0 = 0; %min Vt0 = ; %ml params.cb = ; %mmol/l Cd0 = 402.8*params.CB/Vt0; sol = modelsubstancja(params,cd0, Vt0,t0, t0+360); err = sum((interp1(sol.x,sol.y,dane.momentypomiaru )-dane.srednie ).^2); end
26 Skrypt dopasowujący do danych dane = wczytajdane( Dane386/CdUrea386.txt ); [params, err] = dopasujmodelsubstancja(dane); params.ap = ; %ml/min params.kp = ; %1/min params.bp = ; %ml/min t0 = 0; %min Vt0 = ; %ml params.cb = ; %mmol/l Cd0 = 402.8*params.CB/Vt0; sol = modelsubstancja(params,cd0, Vt0,t0, t0+360); figure(1) clf hold on plot(sol.x, sol.y) errorbar(dane.momentypomiaru, dane.srednie, dane.odchylenia); hold off ylabel( Stezenie mocznika w dializacie, mmol/l ) xlabel( Czas na dializie, min ) legend({ Model, Dane386 })
27 Dopasowane rozwiązanie Dla parametrów A p = ml/min, k p = /min, b p = ml/min, V (t 0 ) = , S = 1e 6 oraz k BD = ml/min rozwiązanie modelu ma następujący przebieg, który dość dobrze odpowiada danym klinicznym.
28 Składowe transportu przez otrzewną
29 Model trójporowy ściany kapilary
30 Model rozłożony - zmienne
31 Ciśnienie hydrostatyczne, a nawodnienie tkanki
32 Model rozłożony - Równania
33 Model rozłożony - Równania
34 Model rozłożony - Równania
35 Model rozłożony - Równania
36 Model rozłożony - Równania
37 Model rozłożony - Równania
38 Model rozłożony - Równania
39 Możliwość sprawdzenia co dzieje się w tkance
Modelowanie matematyczne w zastosowaniach biomedycznych
Modelowanie matematyczne w zastosowaniach biomedycznych Wykład 4: Modele transportu w dializatorach do oczyszczania krwii Dr Jan Poleszczuk 22/03/2017 IBIB PAN Zagadnienie hemodializy raz jeszcze Rysunek
Zadania z rysowania i dopasowania funkcji
Spis treści 1 Zadania z rysowania i dopasowania funkcji 1.1 Znajdowanie miejsca zerowego funkcji 1.2 Wczytywanie danych i wykres 1.3 Dopasowywanie krzywej do danych i wykres 1.3.1 Wskazówki Zadania z rysowania
Statystyka i Analiza Danych
Warsztaty Statystyka i Analiza Danych Gdańsk, 20-22 lutego 2014 Zastosowania wybranych technik regresyjnych do modelowania współzależności zjawisk Janusz Wątroba StatSoft Polska Centrum Zastosowań Matematyki
X Y 4,0 3,3 8,0 6,8 12,0 11,0 16,0 15,2 20,0 18,9
Zadanie W celu sprawdzenia, czy pipeta jest obarczona błędem systematycznym stałym lub zmiennym wykonano szereg pomiarów przy różnych ustawieniach pipety. Wyznacz równanie regresji liniowej, które pozwoli
Warsztaty. Modelowanie matematyczne i współpraca interdyscyplinarna września 2013 r.
Warsztaty 26 28 września 2013 r. Równania różniczkowe jako narzędzie przewidywania efektywności terapii i opisu procesów fizjologicznych stymulowanych przez terapię Instytut Biocybernetyki i Inżynierii
Eksploracja danych - wykład IV
- wykład 1/41 wykład - wykład Instytut Informatyki Teoretycznej i Stosowanej Politechnika Częstochowska 27 października 2016 - wykład 2/41 wykład 1 2 3 4 5 - wykład 3/41 CRISP-DM - standaryzacja wykład
Statystyka opisowa. Wykład V. Regresja liniowa wieloraka
Statystyka opisowa. Wykład V. e-mail:e.kozlovski@pollub.pl Spis treści 1 Prosta regresji cechy Y względem cech X 1,..., X k. 2 3 Wyznaczamy zależność cechy Y od cech X 1, X 2,..., X k postaci Y = α 0 +
Ważne rozkłady i twierdzenia c.d.
Ważne rozkłady i twierdzenia c.d. Funkcja charakterystyczna rozkładu Wielowymiarowy rozkład normalny Elipsa kowariacji Sploty rozkładów Rozkłady jednostajne Sploty z rozkładem normalnym Pobieranie próby
Program na zaliczenie: Odejmowanie widm
Piotr Chojnacki: MATLAB Program na zaliczenie: Odejmowanie widm {Poniższy program ma za zadanie odjęcie dwóch widm od siebie. Do poprawnego działania programu potrzebne są trzy funkcje: odejmowaniewidm.m
K02 Instrukcja wykonania ćwiczenia
Katedra Chemii Fizycznej Uniwersytetu Łódzkiego K2 Instrukcja wykonania ćwiczenia Wyznaczanie krytycznego stężenia micelizacji (CMC) z pomiarów napięcia powierzchniowego Zakres zagadnień obowiązujących
Excel - użycie dodatku Solver
PWSZ w Głogowie Excel - użycie dodatku Solver Dodatek Solver jest narzędziem używanym do numerycznej optymalizacji nieliniowej (szukanie minimum funkcji) oraz rozwiązywania równań nieliniowych. Przed pierwszym
Równania nieliniowe, nieliniowe układy równań, optymalizacja
4 maj 2009 Nieliniowe równania i układy rówań Slajd 1 Równania nieliniowe, nieliniowe układy równań, optymalizacja 4 maj 2009 Nieliniowe równania i układy rówań Slajd 2 Plan zajęć Rozwiązywanie równań
//warunki początkowe m=500; T=30; c=0.4; t=linspace(0,t,m); y0=[-2.5;2.5];
4.3. Przykłady wykorzystania funkcji bibliotecznych 73 MATLAB % definiowanie funkcji function [dx]=vderpol(t,y) global c; dx=[y(2); c*(1-y(1)^2)*y(2)-y(1)]; SCILAB // definiowanie układu function [f]=vderpol(t,y,c)
Pojęcie funkcji. Funkcja liniowa
Pojęcie funkcji. Funkcja liniowa dr Mariusz Grzadziel Katedra Matematyki, Uniwersytet Przyrodniczy we Wrocławiu Wykład 2; rok akademicki 2016/2017 Zależności funkcyjne w naukach przyrodniczych Rozwój algebry
Aproksymacja funkcji a regresja symboliczna
Aproksymacja funkcji a regresja symboliczna Problem aproksymacji funkcji polega na tym, że funkcję F(x), znaną lub określoną tablicą wartości, należy zastąpić inną funkcją, f(x), zwaną funkcją aproksymującą
Rozdział 8. Regresja. Definiowanie modelu
Rozdział 8 Regresja Definiowanie modelu Analizę korelacji można traktować jako wstęp do analizy regresji. Jeżeli wykresy rozrzutu oraz wartości współczynników korelacji wskazują na istniejąca współzmienność
Weryfikacja hipotez statystycznych
Weryfikacja hipotez statystycznych Hipoteza Test statystyczny Poziom istotności Testy jednostronne i dwustronne Testowanie równości wariancji test F-Fishera Testowanie równości wartości średnich test t-studenta
Dopasowywanie modelu do danych
Tematyka wykładu dopasowanie modelu trendu do danych; wybrane rodzaje modeli trendu i ich właściwości; dopasowanie modeli do danych za pomocą narzędzi wykresów liniowych (wykresów rozrzutu) programu STATISTICA;
WSKAZÓWKI DO WYKONANIA SPRAWOZDANIA Z WYRÓWNAWCZYCH ZAJĘĆ LABORATORYJNYCH
WSKAZÓWKI DO WYKONANIA SPRAWOZDANIA Z WYRÓWNAWCZYCH ZAJĘĆ LABORATORYJNYCH Dobrze przygotowane sprawozdanie powinno zawierać następujące elementy: 1. Krótki wstęp - maksymalnie pół strony. W krótki i zwięzły
- prędkość masy wynikająca z innych procesów, np. adwekcji, naprężeń itd.
4. Równania dyfuzji 4.1. Prawo zachowania masy cd. Równanie dyfuzji jest prostą konsekwencją prawa zachowania masy, a właściwie to jest to prawo zachowania masy zapisane dla procesu dyfuzji i uwzględniające
LABORATORIUM Z FIZYKI
LABORATORIUM Z FIZYKI LABORATORIUM Z FIZYKI I PRACOWNIA FIZYCZNA C w Gliwicach Gliwice, ul. Konarskiego 22, pokoje 52-54 Regulamin pracowni i organizacja zajęć Sprawozdanie (strona tytułowa, karta pomiarowa)
Różniczkowanie numeryczne
Różniczkowanie numeryczne Przyjmijmy, że funkcja ciągła y = f(x) = 4sin(3x)e -x/2, gdzie x 0,2π, dana jest w postaci dyskretnej jako ciąg wartości y odpowiadających zmiennej niezależnej x, również danej
Laboratorium Podstaw Biofizyki
CEL ĆWICZENIA Celem ćwiczenia jest zbadanie procesu adsorpcji barwnika z roztworu oraz wyznaczenie równania izotermy Freundlicha. ZAKRES WYMAGANYCH WIADOMOŚCI I UMIEJĘTNOŚCI: widmo absorpcyjne, prawo Lamberta-Beera,
Nazwisko i imię: Zespół: Data: Ćwiczenie nr 1: Wahadło fizyczne. opis ruchu drgającego a w szczególności drgań wahadła fizycznego
Nazwisko i imię: Zespół: Data: Cel ćwiczenia: Ćwiczenie nr 1: Wahadło fizyczne opis ruchu drgającego a w szczególności drgań wahadła fizycznego wyznaczenie momentów bezwładności brył sztywnych Literatura
1. PRZYGOTOWANIE ROZTWORÓW KOMPLEKSUJĄCYCH
1. PRZYGOTOWANIE ROZTWORÓW KOMPLEKSUJĄCYCH 1.1. przygotowanie 20 g 20% roztworu KSCN w wodzie destylowanej 1.1.1. odważenie 4 g stałego KSCN w stożkowej kolbie ze szlifem 1.1.2. odważenie 16 g wody destylowanej
WYKŁAD 8 ANALIZA REGRESJI
WYKŁAD 8 ANALIZA REGRESJI Regresja 1. Metoda najmniejszych kwadratów-regresja prostoliniowa 2. Regresja krzywoliniowa 3. Estymacja liniowej funkcji regresji 4. Testy istotności współczynnika regresji liniowej
Wykłady 11 i 12: Całka oznaczona
Wykłady 11 i 12: Całka oznaczona dr Mariusz Grzadziel Katedra Matematyki, Uniwersytet Przyrodniczy we Wrocławiu semestr zimowy; rok akademicki 2016/2017 Pole trójkata parabolicznego Problem. Chcemy obliczyć
STATYSTYKA I DOŚWIADCZALNICTWO Wykład 5
STATYSTYKA I DOŚWIADCZALNICTWO Wykład 5 Analiza korelacji - współczynnik korelacji Pearsona Cel: ocena współzależności między dwiema zmiennymi ilościowymi Ocenia jedynie zależność liniową. r = cov(x,y
Modelowanie Systemów Dynamicznych Studia zaoczne, Automatyka i Robotyka, rok II. Podstawy MATLABA, cz2.
Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Elektroniki Modelowanie Systemów Dynamicznych Studia zaoczne, Automatyka i Robotyka, rok II Podstawy MATLABA, cz2. 1. Wielomiany
Równania nieliniowe, nieliniowe układy równań, optymalizacja
Nieliniowe równania i układy rówań Slajd 1 Równania nieliniowe, nieliniowe układy równań, optymalizacja Nieliniowe równania i układy rówań Slajd 2 Plan zajęć Rozwiązywanie równań nieliniowych -metoda bisekcji
Wyznaczanie krzywej ładowania kondensatora
Ćwiczenie E10 Wyznaczanie krzywej ładowania kondensatora E10.1. Cel ćwiczenia Celem ćwiczenia jest zbadanie przebiegu procesu ładowania kondensatora oraz wyznaczenie stałej czasowej szeregowego układu.
Wykład FIZYKA I. 5. Energia, praca, moc. http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html. Dr hab. inż. Władysław Artur Woźniak
Wykład FIZYKA I 5. Energia, praca, moc Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html ENERGIA, PRACA, MOC Siła to wielkość
Modelowanie matematyczne w zastosowaniach biomedycznych
Modelowanie matematyczne w zastosowaniach biomedycznych Wykład 6: Model liniowo-kwadratowy w radioterapii nowotworów Dr Jan Poleszczuk 5/04/2017 IBIB PAN Znamiona raka ( Hallmarks of Cancer ) Hanahan &
Spis treści. Przedmowa... XI. Rozdział 1. Pomiar: jednostki miar... 1. Rozdział 2. Pomiar: liczby i obliczenia liczbowe... 16
Spis treści Przedmowa.......................... XI Rozdział 1. Pomiar: jednostki miar................. 1 1.1. Wielkości fizyczne i pozafizyczne.................. 1 1.2. Spójne układy miar. Układ SI i jego
Narzędzia statystyczne i ekonometryczne. Wykład 1. dr Paweł Baranowski
Narzędzia statystyczne i ekonometryczne Wykład 1 dr Paweł Baranowski Informacje organizacyjne Wydział Ek-Soc, pok. B-109 pawel@baranowski.edu.pl Strona: baranowski.edu.pl (w tym materiały) Konsultacje:
Wyniki pomiarów okresu drgań dla wahadła o długości l = 1,215 m i l = 0,5 cm.
2 Wyniki pomiarów okresu drgań dla wahadła o długości l = 1,215 m i l = 0,5 cm. Nr pomiaru T[s] 1 2,21 2 2,23 3 2,19 4 2,22 5 2,25 6 2,19 7 2,23 8 2,24 9 2,18 10 2,16 Wyniki pomiarów okresu drgań dla wahadła
Laboratorium Inżynierii Bioreaktorów
Laboratorium Inżynierii Bioreaktorów Ćwiczenie nr 1 Reaktor chemiczny: Wyznaczanie równania kinetycznego oraz charakterystyka reaktorów o działaniu ciągłym Cele ćwiczenia: 1 Wyznaczenie równania kinetycznego
Szukanie rozwiązań funkcji uwikłanych (równań nieliniowych)
Szukanie rozwiązań funkcji uwikłanych (równań nieliniowych) Funkcja uwikłana (równanie nieliniowe) jest to funkcja, która nie jest przedstawiona jawnym przepisem, wzorem wyrażającym zależność wartości
Tutaj powinny znaleźć się wyniki pomiarów (tabelki) potwierdzone przez prowadzacego zajęcia laboratoryjne i podpis dyżurujacego pracownika obsługi
Tutaj powinny znaleźć się wyniki pomiarów (tabelki) potwierdzone przez prowadzacego zajęcia laboratoryjne i podpis dyżurujacego pracownika obsługi technicznej. 1. Wstęp Celem ćwiczenia jest wyznaczenie
METODY STATYSTYCZNE W BIOLOGII
METODY STATYSTYCZNE W BIOLOGII 1. Wykład wstępny 2. Populacje i próby danych 3. Testowanie hipotez i estymacja parametrów 4. Planowanie eksperymentów biologicznych 5. Najczęściej wykorzystywane testy statystyczne
S88 Badanie rzutu kostką sześcienną
S88 Badanie rzutu kostką sześcienną Andrzej Kapanowski 29 lutego 2012 Streszczenie Celem ćwiczenia jest zbadanie rzutu kostką sześcienną. Dokument ma być pomocą przy przygotowywaniu opracowania z ćwiczenia
Ćwiczenie 5: Wyznaczanie lepkości właściwej koloidalnych roztworów biopolimerów.
Gęstość 1. Część teoretyczna Gęstość () cieczy w danej temperaturze definiowana jest jako iloraz jej masy (m) do objętości (V) jaką zajmuje: (1) Gęstość wyrażana jest w jednostkach układu SI. Gęstość cieczy
Fizyka 1 Wróbel Wojciech. w poprzednim odcinku
w poprzednim odcinku 1 Wzorce sekunda Aktualnie niepewność pomiaru czasu to 1s na 70mln lat!!! 2 Modele w fizyce Uproszczenie problemów Tworzenie prostych modeli, pojęć i operowanie nimi 3 Opis ruchu Opis
w analizie wyników badań eksperymentalnych, w problemach modelowania zjawisk fizycznych, w analizie obserwacji statystycznych.
Aproksymacja funkcji a regresja symboliczna Problem aproksymacji funkcji polega na tym, że funkcję F(), znaną lub określoną tablicą wartości, należy zastąpić inną funkcją, f(), zwaną funkcją aproksymującą
METODY OBLICZENIOWE. Projekt nr 3.4. Dariusz Ostrowski, Wojciech Muła 2FD/L03
METODY OBLICZENIOWE Projekt nr 3.4 Dariusz Ostrowski, Wojciech Muła 2FD/L03 Zadanie Nasze zadanie składało się z dwóch części: 1. Sformułowanie, przy użyciu metody Lagrange a II rodzaju, równania różniczkowego
Ćwiczenie 1 Metody pomiarowe i opracowywanie danych doświadczalnych.
Ćwiczenie 1 Metody pomiarowe i opracowywanie danych doświadczalnych. Ćwiczenie ma następujące części: 1 Pomiar rezystancji i sprawdzanie prawa Ohma, metoda najmniejszych kwadratów. 2 Pomiar średnicy pręta.
WYMAGANIA EDUKACYJNE FIZYKA STOSOWANA II Liceum Ogólnokształcące im. Adama Asnyka w Bielsku-Białej
WYMAGANIA EDUKACYJNE FIZYKA STOSOWANA II Liceum Ogólnokształcące im. Adama Asnyka w Bielsku-Białej OSIĄGNIĘCIA UCZNIÓW Z ZAKRESIE KSZTAŁCENIA W kolumnie "wymagania na poziom podstawowy" opisano wymagania
FIZYKA LABORATORIUM prawo Ohma
FIZYKA LABORATORIUM prawo Ohma dr hab. inż. Michał K. Urbański, Wydział Fizyki Politechniki Warszawskiej, pok 18 Gmach Fizyki, murba@if.pw.edu.pl www.if.pw.edu.pl/ murba strona Wydziału Fizyki www.fizyka.pw.edu.pl
PIERWSZEGO. METODA CZYNNIKA CAŁKUJĄCEGO. METODA ROZDZIELONYCH ZMIENNYCH.
RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE RZĘDU PIERWSZEGO. METODA CZYNNIKA CAŁKUJĄCEGO. METODA ROZDZIELONYCH ZMIENNYCH. Równaniem różniczkowym zwyczajnym nazywamy równanie zawierające pochodne funkcji y(x) względem
Janusz Adamowski METODY OBLICZENIOWE FIZYKI Kwantowa wariacyjna metoda Monte Carlo. Problem własny dla stanu podstawowego układu N cząstek
Janusz Adamowski METODY OBLICZENIOWE FIZYKI 1 Rozdział 20 KWANTOWE METODY MONTE CARLO 20.1 Kwantowa wariacyjna metoda Monte Carlo Problem własny dla stanu podstawowego układu N cząstek (H E 0 )ψ 0 (r)
Modelowanie matematyczne a eksperyment
Modelowanie matematyczne a eksperyment Budowanie modeli w środowisku Hildegard Urban-Woldron Ogólnopolska konferencja, 28.10. 2011, Warszawa Plan Budowanie modelu w środowisku Równania i wartości Uruchomienie
Instrukcja do ćwiczeń laboratoryjnych
UNIWERSYTET GDAŃSKI Pracownia studencka Katedry Analizy Środowiska Instrukcja do ćwiczeń laboratoryjnych Ćwiczenie nr 2 Oznaczanie benzoesanu denatonium w skażonym alkoholu etylowym metodą wysokosprawnej
166 Wstęp do statystyki matematycznej
166 Wstęp do statystyki matematycznej Etap trzeci realizacji procesu analizy danych statystycznych w zasadzie powinien rozwiązać nasz zasadniczy problem związany z identyfikacją cechy populacji generalnej
Funkcja błony otrzewnowej
Dr n. med. Aleksander Horeglad, Szpital Wojewódzki w Przemyślu Funkcja błony otrzewnowej Dializa otrzewnowa polega na wykorzystaniu błony otrzewnowej jako dializatora w procesie usuwania nagromadzonych
Testowanie hipotez statystycznych.
Statystyka Wykład 10 Wrocław, 22 grudnia 2011 Testowanie hipotez statystycznych Definicja. Hipotezą statystyczną nazywamy stwierdzenie dotyczące parametrów populacji. Definicja. Dwie komplementarne w problemie
Dydaktyka matematyki (II etap edukacyjny, klasy IV-VI) II rok matematyki Semestr letni 2016/2017 Ćwiczenia nr 12
Dydaktyka matematyki (II etap edukacyjny, klasy IV-VI) II rok matematyki Semestr letni 2016/2017 Ćwiczenia nr 12 Zadanie domowe Jaka jest odpowiedź dla sześcianu n n n? zero ścian (n 2) 3 jedna ściana
www.dializadomowa.pl
12 marca 2009 r Informacja prasowa Przewlekła choroba nerek prowadzi do nieodwracalnej niewydolności tego organu. Jedyną możliwością utrzymania chorego przy życiu jest leczenie nerkozastępcze. Dializowanie
F = e(v B) (2) F = evb (3)
Sprawozdanie z fizyki współczesnej 1 1 Część teoretyczna Umieśćmy płytkę o szerokości a, grubości d i długości l, przez którą płynie prąd o natężeniu I, w poprzecznym polu magnetycznym o indukcji B. Wówczas
Ćwiczenie 6. Transformacje skali szarości obrazów
Politechnika Wrocławska Wydział Elektroniki Mikrosystemów i Fotoniki Przetwarzanie sygnałów laboratorium ETD5067L Ćwiczenie 6. Transformacje skali szarości obrazów 1. Obraz cyfrowy Obraz w postaci cyfrowej
Estymacja wektora stanu w prostym układzie elektroenergetycznym
Zakład Sieci i Systemów Elektroenergetycznych LABORATORIUM INFORMATYCZNE SYSTEMY WSPOMAGANIA DYSPOZYTORÓW Estymacja wektora stanu w prostym układzie elektroenergetycznym Autorzy: dr inż. Zbigniew Zdun
DIETA W PRZEWLEKŁEJ CHOROBIE NEREK
KURS 15.04.2016 Szczecinek DIETA W PRZEWLEKŁEJ CHOROBIE NEREK dr hab. n. med. Sylwia Małgorzewicz, prof.nadzw. Katedra Żywienia Klinicznego Klinika Nefrologii, Transplantologii i Chorób Wewnętrznych Gdański
Prognozowanie i Symulacje. Wykład I. Matematyczne metody prognozowania
Prognozowanie i Symulacje. Wykład I. e-mail:e.kozlovski@pollub.pl Spis treści Szeregi czasowe 1 Szeregi czasowe 2 3 Szeregi czasowe Definicja 1 Szereg czasowy jest to proces stochastyczny z czasem dyskretnym
Pobieranie prób i rozkład z próby
Pobieranie prób i rozkład z próby Marcin Zajenkowski Marcin Zajenkowski () Pobieranie prób i rozkład z próby 1 / 15 Populacja i próba Populacja dowolnie określony zespół przedmiotów, obserwacji, osób itp.
Modelowanie wybranych zjawisk fizycznych
Ryszard Myhan Modelowanie zjawiska tarcia suchego Suwaka porusza się w poziomych prowadnicach, gdzie x=x(t) oznacza przesunięcie suwaka względem nieruchomej prowadnicy w kierunku zgodnym z kierunkiem siły
STATYSTYKA I DOŚWIADCZALNICTWO Wykład 7
STATYSTYKA I DOŚWIADCZALNICTWO Wykład 7 Analiza korelacji - współczynnik korelacji Pearsona Cel: ocena współzależności między dwiema zmiennymi ilościowymi Ocenia jedynie zależność liniową. r = cov(x,y
STATYSTYKA MATEMATYCZNA
STATYSTYKA MATEMATYCZNA 1. Wykład wstępny 2. Zmienne losowe i teoria prawdopodobieństwa 3. Populacje i próby danych 4. Testowanie hipotez i estymacja parametrów 5. Najczęściej wykorzystywane testy statystyczne
Oznacza to, że chcemy znaleźć minimum, a właściwie wartość najmniejszą funkcji
Wykład 11. Metoda najmniejszych kwadratów Szukamy zależności Dane są wyniki pomiarów dwóch wielkości x i y: (x 1, y 1 ), (x 2, y 2 ),..., (x n, y n ). Przypuśćmy, że nanieśliśmy je na wykres w układzie
Analiza korelacyjna i regresyjna
Podstawy Metrologii i Technik Eksperymentu Laboratorium Analiza korelacyjna i regresyjna Instrukcja do ćwiczenia nr 5 Zakład Miernictwa i Ochrony Atmosfery Wrocław, kwiecień 2014 Podstawy Metrologii i
Wykład 3. Rozkład normalny
Funkcje gęstości Rozkład normalny Reguła 68-95-99.7 % Wykład 3 Rozkład normalny Standardowy rozkład normalny Prawdopodobieństwa i kwantyle dla rozkładu normalnego Funkcja gęstości Frakcja studentów z vocabulary
LABORATORIUM Populacja Generalna (PG) 2. Próba (P n ) 3. Kryterium 3σ 4. Błąd Średniej Arytmetycznej 5. Estymatory 6. Teoria Estymacji (cz.
LABORATORIUM 4 1. Populacja Generalna (PG) 2. Próba (P n ) 3. Kryterium 3σ 4. Błąd Średniej Arytmetycznej 5. Estymatory 6. Teoria Estymacji (cz. I) WNIOSKOWANIE STATYSTYCZNE (STATISTICAL INFERENCE) Populacja
istocie dziedzina zajmująca się poszukiwaniem zależności na podstawie prowadzenia doświadczeń jest o wiele starsza: tak na przykład matematycy
MODEL REGRESJI LINIOWEJ. METODA NAJMNIEJSZYCH KWADRATÓW Analiza regresji zajmuje się badaniem zależności pomiędzy interesującymi nas wielkościami (zmiennymi), mające na celu konstrukcję modelu, który dobrze
Dydaktyka matematyki (II etap edukacyjny, klasy IV-VI) II rok matematyki Semestr letni 2018/2019 Ćwiczenia nr 11
Dydaktyka matematyki (II etap edukacyjny, klasy IV-VI) II rok matematyki Semestr letni 2018/2019 Ćwiczenia nr 11 Zadanie domowe Jaka jest odpowiedź dla sześcianu n n n? zero ścian czerwonych (n 2) 3 jedna
MECHANIKA PŁYNÓW Płyn
MECHANIKA PŁYNÓW Płyn - Każda substancja, która może płynąć, tj. pod wpływem znikomo małych sił dowolnie zmieniać swój kształt w zależności od naczynia, w którym się znajduje, oraz może swobodnie się przemieszczać
INSTRUKCJA DO ĆWICZENIA NR 7
KATEDRA MECHANIKI STOSOWANEJ Wydział Mechaniczny POLITECHNIKA LUBELSKA INSTRUKCJA DO ĆWICZENIA NR 7 PRZEDMIOT TEMAT OPRACOWAŁ LABORATORIUM MODELOWANIA Przykładowe analizy danych: przebiegi czasowe, portrety
Statystyka. Wykład 8. Magdalena Alama-Bućko. 10 kwietnia Magdalena Alama-Bućko Statystyka 10 kwietnia / 31
Statystyka Wykład 8 Magdalena Alama-Bućko 10 kwietnia 2017 Magdalena Alama-Bućko Statystyka 10 kwietnia 2017 1 / 31 Tematyka zajęć: Wprowadzenie do statystyki. Analiza struktury zbiorowości miary położenia
Wykład 8. Dyfuzyjne techniki membranowe (część 3) Opracowała dr Elżbieta Megiel
Wykład 8 Dyfuzyjne techniki membranowe (część 3) Opracowała dr Elżbieta Megiel Dializa Dializa dla roztworów elektrolitów Równowaga Donnana, 1911 W warunkach równowagowych iloczyn jonowy każdego elektrolitu
KONKURS PRZEDMIOTOWY Z FIZYKI dla uczniów gimnazjów. Schemat punktowania zadań
1 KONKURS PRZEDMIOTOWY Z FIZYKI dla uczniów gimnazjów 18 stycznia 018 r. zawody II stopnia (rejonowe) Schemat punktowania zadań Maksymalna liczba punktów 60. 85% 51pkt. Uwaga! 1. Za poprawne rozwiązanie
Opracował dr inż. Tadeusz Janiak
Opracował dr inż. Tadeusz Janiak 1 Uwagi dla wykonujących ilościowe oznaczanie metodami spektrofotometrycznymi 3. 3.1. Ilościowe oznaczanie w metodach spektrofotometrycznych Ilościowe określenie zawartości
Analityczne metody detekcji uszkodzeń
Instytut Sterowania i Systemów Informatycznych Universytet Zielonogórski Wykład 5 Model procesu Rozważmy czasowo-dyskretny model liniowy gdzie: k dyskretny czas, x(k) R n wektor stanu, x(k + 1) = Ax(k)
Opis ćwiczenia. Cel ćwiczenia Poznanie budowy i zrozumienie istoty pomiaru przyspieszenia ziemskiego za pomocą wahadła rewersyjnego Henry ego Katera.
ĆWICZENIE WYZNACZANIE PRZYSPIESZENIA ZIEMSKIEGO ZA POMOCĄ WAHADŁA REWERSYJNEGO Opis ćwiczenia Cel ćwiczenia Poznanie budowy i zrozumienie istoty pomiaru przyspieszenia ziemskiego za pomocą wahadła rewersyjnego
Matura próbna 2014 z matematyki-poziom podstawowy
Matura próbna 2014 z matematyki-poziom podstawowy Klucz odpowiedzi do zadań zamkniętych zad 1 2 3 4 5 6 7 8 9 10 11 12 odp A C C C A A B B C B D A 13 14 15 16 17 18 19 20 21 22 23 24 25 C C A B A D C B
JEDNORÓWNANIOWY LINIOWY MODEL EKONOMETRYCZNY
JEDNORÓWNANIOWY LINIOWY MODEL EKONOMETRYCZNY Będziemy zapisywać wektory w postaci (,, ) albo traktując go jak macierz jednokolumnową (dzięki temu nie będzie kontrowersji przy transponowaniu wektora ) Model
Sieci Komputerowe 2 / Ćwiczenia 1
Tematyka Sieci Komputerowe 2 / Ćwiczenia 1 Opracował: Konrad Kawecki Na ćwiczeniach przeanalizujemy opóźnienia transmisji w sieciach komputerowych. Na podstawie otrzymanych wyników
A4.06 Instrukcja wykonania ćwiczenia
Katedra Chemii Fizycznej Uniwersytetu Łódzkiego A4.06 Instrukcja wykonania ćwiczenia Lepkościowo średnia masa cząsteczkowa polimeru Zakres zagadnień obowiązujących do ćwiczenia 1. Związki wielkocząsteczkowe
Wyznaczanie przyspieszenia ziemskiego za pomocą wahadła prostego
Ćwiczenie M6 Wyznaczanie przyspieszenia ziemskiego za pomocą wahadła prostego M6.1. Cel ćwiczenia Celem ćwiczenia jest wyznaczenie przyspieszenia ziemskiego poprzez analizę ruchu wahadła prostego. M6..
STATYSTYKA MATEMATYCZNA WYKŁAD 3. Populacje i próby danych
STATYSTYKA MATEMATYCZNA WYKŁAD 3 Populacje i próby danych POPULACJA I PRÓBA DANYCH POPULACJA population Obserwacje dla wszystkich osobników danego gatunku / rasy PRÓBA DANYCH sample Obserwacje dotyczące
LINIOWOŚĆ METODY OZNACZANIA ZAWARTOŚCI SUBSTANCJI NA PRZYKŁADZIE CHROMATOGRAFU
LINIOWOŚĆ METODY OZNACZANIA ZAWARTOŚCI SUBSTANCJI NA PRZYKŁADZIE CHROMATOGRAFU Tomasz Demski, StatSoft Polska Sp. z o.o. Wprowadzenie Jednym z elementów walidacji metod pomiarowych jest sprawdzenie liniowości
STATYSTYKA MATEMATYCZNA
STATYSTYKA MATEMATYCZNA 1. Wykład wstępny 2. Zmienne losowe i teoria prawdopodobieństwa 3. Populacje i próby danych 4. Testowanie hipotez i estymacja parametrów 5. Najczęściej wykorzystywane testy statystyczne
Właściwości reologiczne
Ćwiczenie nr 4 Właściwości reologiczne 4.1. Cel ćwiczenia: Celem ćwiczenia jest zapoznanie się z pojęciem reologii oraz właściwości reologicznych a także testami reologicznymi. 4.2. Wstęp teoretyczny:
Komputerowa Analiza Danych Doświadczalnych
Komputerowa Analiza Danych Doświadczalnych Prowadząca: dr inż. Hanna Zbroszczyk e-mail: gos@if.pw.edu.pl tel: +48 22 234 58 51 konsultacje: poniedziałek, 10-11, środa: 11-12 www: http://www.if.pw.edu.pl/~gos/students/kadd
Regresja linearyzowalna
1 z 5 2007-05-09 23:22 Medycyna Praktyczna - portal dla lekarzy Regresja linearyzowalna mgr Andrzej Stanisz z Zakładu Biostatystyki i Informatyki Medycznej Collegium Medicum UJ w Krakowie Data utworzenia:
Programowanie matematyczne
dr Adam Sojda Badania Operacyjne Wykład Politechnika Śląska Programowanie matematyczne Programowanie matematyczne, to problem optymalizacyjny w postaci: f ( x) max przy warunkach g( x) 0 h( x) = 0 x X
Doświadczenie B O Y L E
Wprowadzenie teoretyczne Doświadczenie Równanie Clapeyrona opisuje gaz doskonały. Z dobrym przybliżeniem opisuje także gazy rzeczywiste rozrzedzone. p V = n R T Z równania Clapeyrona wynika prawo Boyle'a-Mario
Rozpoznawanie obrazów
Rozpoznawanie obrazów Laboratorium Python Zadanie nr 1 Regresja liniowa autorzy: A. Gonczarek, J.M. Tomczak, S. Zaręba, M. Zięba, J. Kaczmar Cel zadania Celem zadania jest implementacja liniowego zadania
ĆWICZENIE 1. Farmakokinetyka podania dożylnego i pozanaczyniowego leku w modelu jednokompartmentowym
ĆWICZENIE 1 Farmakokinetyka podania dożylnego i pozanaczyniowego leku w modelu jednokompartmentowym Celem ćwiczenia jest wyznaczenie parametrów farmakokinetycznych leków podanych w jednorazowych dawkach:
ZASTOSOWANIE PROGRAMOWANIA LINIOWEGO W ZAGADNIENIACH WSPOMAGANIA PROCESU PODEJMOWANIA DECYZJI
Wstęp ZASTOSOWANIE PROGRAMOWANIA LINIOWEGO W ZAGADNIENIACH WSPOMAGANIA PROCESU PODEJMOWANIA DECYZJI Problem podejmowania decyzji jest jednym z zagadnień sterowania nadrzędnego. Proces podejmowania decyzji
WYZNACZANIE MODUŁU SZTYWNOŚCI METODĄ DYNAMICZNĄ
ĆWICZENIE 12 WYZNACZANIE MODUŁU SZTYWNOŚCI METODĄ DYNAMICZNĄ Cel ćwiczenia: Wyznaczanie modułu sztywności drutu metodą sprężystych drgań obrotowych. Zagadnienia: sprężystość, naprężenie ścinające, prawo
Pochodna i różniczka funkcji oraz jej zastosowanie do obliczania niepewności pomiarowych
Pochodna i różniczka unkcji oraz jej zastosowanie do obliczania niepewności pomiarowych Krzyszto Rębilas DEFINICJA POCHODNEJ Pochodna unkcji () w punkcie określona jest jako granica: lim 0 Oznaczamy ją
Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności. dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl
Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl Statystyczna teoria korelacji i regresji (1) Jest to dział statystyki zajmujący
FORMULARZ ASORTYMENTOWO CENOWY PAKIET I. Zamawiający nie dopuszcza możliwości składania ofert częściowych w przedmiotowym pakiecie
PAKIET I Zamawiający nie dopuszcza możliwości składania ofert częściowych w przedmiotowym pakiecie Przedmiot zamówienia: Materiały do wykonywania ciągłej hemodializy z regionalną antykoagulacją cytrynianową