POMIARY TENSOMETRYCZNE

Wielkość: px
Rozpocząć pokaz od strony:

Download "POMIARY TENSOMETRYCZNE"

Transkrypt

1 STUDIA NIESTACJONARNE Ćwiczenie OMIARY TENSOMETRYCZNE Cel ćwiczenia Celem ćwiczenia jest zapoznanie studentów z pomiarami sił, naprężeń i odształceń za pomocą tensometrów oraz zbadanie wpływu temperatury na pomiar momentu sręcającego. Wyonanie ćwiczenia A. orównanie właściwości dwupewodowego i trójpewodowego połączenia tensometru z mostiem Wheatstone a płasowni z nalejonym tensometrem, umocowany jednostronnie w imadle cyfrowy mierni tensometryczny -500 o błędzie granicznym ±(0,05% wsazania + D) odważni o masie 1 g omputer lasy C z programem do zapisywania wyniów pomiarów i wyonywania obliczeń błędów pomiaru spowodowanych zmianą temperatury otoczenia. Wyonanie badania dołączamy tensometr do miernia -500 dwoma pewodami: pewód czerwony łączymy z zacisiem +, biały z zacisiem S-, a zacis D 10 zwieramy z zacisiem S- rótim pewodem. Wcisamy pycis onfiguracji mosta 1/ Bridge ; wcisamy pycis AM ZERO i zerujemy tor wzmacniaczy; wcisamy pycis GAGE FACTOR i nastawiamy stałą = ; wcisamy pycis RUN i zrównoważymy moste; obciążamy wolny oniec płasownia odważniiem 1 g, odczytujemy wsazanie miernia (t 1 ) i zapisujemy je w programie Ćw.. Wyonanie obliczeń SN napisanym w Excelu; ścieża dostępu do programu C:\Student-doumenty\Lab. WN, i w\. Tensometria; ogewamy dłońmi pewody łączące tensometr z mierniiem i po 15 seundach ponownie odczytujemy i zapisujemy wsazanie miernia (t ); zdejmujemy odważni; dołączamy tensometr do miernia -500 tema pewodami; pozostawiamy połączenia pewodu czerwonego z zacisiem + i białego z zacisiem S-, a pewód czarny dołączamy do zacisu D 10 ; po zrównoważeniu mosta obciążamy wolny oniec płasownia odważniiem 1 g, odczytujemy i zapisujemy wsazanie miernia (t 1 ); ogewamy dłońmi pewody i po 15 seundach odczytujemy wsazanie miernia (t ) i zapisujemy je; zdejmujemy odważni.. Wyonanie obliczeń Obliczenia procentowych błędów pomiaru odształcenia, wywołanych zmianą temperatury pewodów łączących, są wyonywane w programie zgodnie ze wzorami: dla połączenia dwupewodowego t t1 t 1 100%

2 dla połączenia trójpewodowego t t1 t 1 100% B. Badanie wpływu temperatury na wyni pomiaru momentu sręcającego Uwaga! W czasie ćwiczeń -godzinnych nie wyonuje się pomiarów w tym puncie, pyjmuje się jedna i omentuje wynii zapisane w pliu pyładowym Ćw.. Wyonanie obliczeń SN. stanowiso do zadawania i pomiaru momentu sręcającego z tensometrami nalejonymi na wale, wyposażone w czujni temperatury i gałę umieszczoną wewnąt wału; długość ramienia siły l = 1 m odważnii o masie 5 g 8 sztu poziomnica miroprocesorowy regulator temperatury typu BTC-900 o doładności ±ºC, współpracujący z termoelementem typu K ( ºC) i półpewodniowym peaźniiem SSR (600 V ac, 0 A) cyfrowy mierni tensometryczny -500 omputer lasy C z programem do zapisywania wyniów pomiarów i wyonywania obliczeń błędów mieonych wielości. Wyonanie badania łączymy moste tensometryczny, nalejony na wale stanowisa do zadawania momentu sręcającego, z mierniiem -500 za pomocą czterech pewodów; olory bananów odpowiadają olorom zacisów miernia; wcisamy pycis onfiguracji mosta Full Bridge ; doonujemy odczytów miernia dla obciążeń szali od zera do 0 g; w czasie pomiarów położenie ramienia, na tórym wisi szala, powinno być poziome; wynii pomiarów notujemy w tabeli 1 w aruszu drugim programu Ćw.. Wyonanie obliczeń WN ; na regulatoe nastawiamy olejno temperatury 0, 55, 70 i 85C i po ustaleniu się danej temperatury wyonujemy pomiary, ja w popednim puncie.. Wyonanie obliczeń W programie Ćw.. Wyonanie obliczeń SN następujące obliczenia i wyresy są wyonywane automatycznie: błędy bezwzględne ped i po orecji wpływu temperatury, błędy względne ped i po orecji wpływu temperatury oraz błędy względne zminimalizowane bez orecji temperaturowej. onieważ istnieje proporcjonalność między momentem sręcającym a masą odważniów, M S = mgl, obliczenia błędów termicznych wyonano dla pomiaru masy. C. Wyznaczenie stałej tensometru stanowiso do odształcania tensometrów, wyposażone w czujni zegarowy pemieszczenia liniowego o zaresie 0 5 mm, rozdzielczości 0,001 mm i błędzie granicznym Δf = 0,0 mm śruba mirometryczna o zaresie 0 5 mm, rozdzielczości 0,001 mm i błędzie granicznym Δh = 0,0 mm pymiar o długości 1 m, rozdzielczości 0,1 mm i błędzie granicznym 0,05% wartości mieonej

3 wzmacniacz tensometryczny typu TT6: błąd salowania Δc/c = %, błąd odczytu odchylenia wsazówi Δα = 0,005 działi dla podziałi o znamionowej liczbie działe 1 omputer lasy C z programem do zapisywania wyniów pomiarów i wyonywania obliczeń mieonych wielości oraz błędów ich pomiaru. Wyonanie pomiaru średniej wartości stałej czterech tensometrów otwieramy pierwszy arusz programu Ćw.. Wyonanie obliczeń SN ; w górnej części tabeli 7 zapisujemy grubość beli h, zmieoną mirometrem, długość beli l (między pryzmatami), stałą wzmacniacza c, liczbę czynnych tensometrów n = i stałą f podaną pez producenta tensometrów oraz błędy graniczne wszystich mieonych wielości; zerujemy czujni zegarowy py zluzowanej śrubie naciągowej; cztery badane tensometry, połączone w uład mosta Wheatstone a, dołączamy do teciego anału wzmacniacza tensometrycznego; zgodnie z instrucją obsługi wzmacniacza równoważymy moste, dobieramy optymalny ąt φ pesuwnia fazowego i salujemy teci anał wzmacniacza na zaresie 1 ; dla ośmiu wartości stałe ugięcia beli w zaresie f = 0,65 1 mm odczytujemy odchylenia α wsazówi miernia we wzmacniaczu tensometrycznym i notujemy je w tabeli 7 z doładnością cyfr znaczących (tecia cyfra znacząca to 0 lub 5); po zmniejszeniu czułości wzmacniacza do minimum rozregulowujemy moste za pomocą pełączniów R, C i ponownie, na tym samym anale, wyonujemy drugi i teci pomiar stałej.. Wyonanie obliczeń Obliczenia w tabeli 7 są wyonywane automatycznie według następujących wzorów: eczywiste odształcenie względne hf 1000 l 0 00 zmieona stała tensometru c n błąd fabrycznego wyznaczenia stałej tensometru f śr f śr 100% oszacowanie niepewności względnej pomiaru stałej tensometru dla wybranej stałi ugięcia f (py poziomie ufności p = 0,95 współczynni rozszeenia p = ) U p h h f f l l c c 100% W sprawozdaniu należy zamieścić po jednym pyładzie powyższych obliczeń (wzór, podstawione wartości, wyni bez zaorąglenia, wyni zaorąglony do odpowiedniej liczby cyfr znaczących). D. omiar odształceń, naprężeń i sił zginających rura wyonana z mosiądzu o module Younga E = 98 Ga (±%), z nalejonymi dwiema parami tensometrów o stałej =,10 (±1%), połączonych w dwa ułady półmostowe; rura zamocowana poziomo, obciążona szalą z odważniami, tórych błąd graniczny wynosi 0,01%

4 wzmacniacz tensometryczny typu TT6 opis ja wyżej suwmiara eletroniczna typu MAUa o zaresie 150 mm, rozdzielczości 0,01 mm i błędzie granicznym 0,0 mm pymiar o długości 1 m, rozdzielczości 0,1 mm i błędzie granicznym 0,05% wartości mieonej. Wyonanie pomiaru tensometry nalejone na górnej i dolnej powiechni rury dołączamy do pierwszego anału wzmacniacza; py nieobciążonej szalce alibrujemy pierwszy anał wzmacniacza; dla obciążeń szali podanych w tabeli 8 odczytujemy i notujemy odchylenia wsazówi miernia; po ażdej zmianie zaresu wzmacniacza ponownie peprowadzamy zerowanie i salowanie; mieymy średnicę zewnętną rury w ierunu pionowym i w ierunu poziomym i obliczamy wartość średnią D; średnicę wewnętną rury d pyjmujemy o 1 mm mniejszą od średnicy zewnętnej; mieymy odległość szali od środa czynnej części tensometru L; badamy wpływ siły popecznej na doładność pomiaru siły zginającej. W tym celu tensometry nalejone na bocznych powiechniach rury dołączamy do drugiego anału wzmacniacza i po jego wyalibrowaniu odczytujemy wsazanie miernia dla szali obciążonej odważniiem 0,5 g. Wyni notujemy w ostatnim wierszu tabeli 8. Uwaga! o zaończeniu pomiarów program Ćw.. Wyonanie obliczeń SN należy zapisać w foldee Ćw.. Sprawozdania studentów WN SN oraz na własnych nośniach informacji.. Wyonanie obliczeń Obliczenia w tabeli 8 są wyonywane automatycznie według następujących wzorów: odształcenie względne naprężenie c n siła zginająca Ma w 0 E 10 D d N DL eczywista siła zginająca mg błąd pomiaru siły zginającej 100 błąd spowodowany siłą popeczną (ostatni pomiar) pop 100 N % % W sprawozdaniu należy zamieścić po jednym pyładzie powyższych obliczeń oraz obliczyć niepewność względną pomiaru siły, oystając ze wzoru 00

5 U p D A D d B d c c gdzie współczynnii czułości A i B należy wyznaczyć ze wzorów: A D D B d d E E L L 100% Do wzorów na A i B jao należy wprowadzać pełne wyrażenie na siłę zginającą. Wówczas te wzory pyjmują prostą postać, A i B będą funcjami tylo D i d, np. B d D d E. Obserwacja pebiegów dynamicznych na eranie oscylosopu Aparatura taa sama, ja w popednim puncie plus oscylosop dwuanałowy.. eprowadzenie obserwacji wejście Y oscylosopu dołączamy do wyjścia pierwszego anału wzmacniacza tensometrycznego. Kalibrujemy oscylosop oystając z uładu do salowania wzmacniacza tensometrycznego. Oglądamy pebiegi napięcia na wyjściu wzmacniacza w funcji czasu podczas drgań pionowych rury nieobciążonej i obciążonej szalą; wejście X oscylosopu dołączamy do wyjścia drugiego anału wzmacniacza. Włączamy tryb pracy XY oscylosopu i ustawiamy jednaowe wzmocnienia anałów odchylania pionowego i poziomego. Obserwujemy położenie plami świetlnej na eranie podczas pesuwania ońca rury w różnych ierunach oraz podczas drgań rury nieobciążonej i obciążonej szalą.. rotoół pomiaru Na podstawie ształtu pierwszego obserwowanego pebiegu w funcji czasu oreślamy, jai model matematyczny jest odpowiedni dla badanego uładu do pomiaru siły, np. proporcjonalny, inercyjny I ędu, inercyjny II ędu, oscylacyjny, różniczujący itp. Wyonanie sprawozdania W sprawozdaniu wspólnym należy zamieścić stronę tytułową, cel ćwiczenia, zbiorczy opis aparatury oraz wydru programu Ćw.. Wyonanie obliczeń SN. Sprawozdania indywidualne pisane ręcznie powinny zawierać: a) w puncie A wyjaśnienie zasady działania ompensacji temperaturowej w uładzie z tema pewodami łączącymi tensometr z mostiem (obowiązuje materiał z wyładu); b) w puncie B stwierdzenie, ile razy zmalał masymalny błąd względny po zastosowaniu ompensacji temperaturowej oraz ile razy można zmniejszyć błąd bez ompensacji temperaturowej; c) w puncie C pyłady obliczeń i porównanie błędów pomiarów δ f z niepewnością względną U ; d) w puncie D pyłady obliczeń, wyprowadzenie wzoru na współczynni A, oszacowanie niepewności względnej pomiaru siły dla siódmego pomiaru i porównanie jej wartości z błędem pomiaru δ ; omenta dotyczący wpływu siły popecznej na wyni pomiaru; e) w puncie E nazwę modelu matematycznego badanego uładu; f) własne sposteżenia i uwagi dotyczące pebiegu ćwiczenia i uzysanych wyniów; analizę pyczyn nadmiernych błędów, jeżeli wystąpiły. 5

6 6

POMIARY TENSOMETRYCZNE

POMIARY TENSOMETRYCZNE STUDIA STACJONARNE Ćwiczenie OMIARY TENSOMETRYCZNE Cel ćwiczenia Celem ćwiczenia jest zapoznanie studentów z pomiarami sił, naprężeń i odształceń za pomocą tensometrów oraz zbadanie wpływu temperatury

Bardziej szczegółowo

Pomiary napięć przemiennych

Pomiary napięć przemiennych LABORAORIUM Z MEROLOGII Ćwiczenie 7 Pomiary napięć przemiennych . Cel ćwiczenia Celem ćwiczenia jest poznanie sposobów pomiarów wielości charaterystycznych i współczynniów, stosowanych do opisu oresowych

Bardziej szczegółowo

Ćwiczenie 5. Pomiary parametrów sygnałów napięciowych. Program ćwiczenia:

Ćwiczenie 5. Pomiary parametrów sygnałów napięciowych. Program ćwiczenia: Ćwiczenie 5 Pomiary parametrów sygnałów napięciowych Program ćwiczenia: 1. Pomiar parametrów sygnałów napięciowych o ształcie sinusoidalnym, prostoątnym i trójątnym: a) Pomiar wartości sutecznej, średniej

Bardziej szczegółowo

R w =

R w = Laboratorium Eletrotechnii i eletronii LABORATORM 6 Temat ćwiczenia: BADANE ZASLACZY ELEKTRONCZNYCH - pomiary w obwodach prądu stałego Wyznaczanie charaterysty prądowo-napięciowych i charaterysty mocy.

Bardziej szczegółowo

Ćwiczenie nr 1: Wahadło fizyczne

Ćwiczenie nr 1: Wahadło fizyczne Wydział PRACOWNA FZYCZNA WFi AGH mię i nazwiso 1.. Temat: Ro Grupa Zespół Nr ćwiczenia Data wyonania Data oddania Zwrot do popr. Data oddania Data zaliczenia OCENA Ćwiczenie nr 1: Wahadło fizyczne Cel

Bardziej szczegółowo

WAHADŁO SPRĘŻYNOWE. POMIAR POLA ELIPSY ENERGII.

WAHADŁO SPRĘŻYNOWE. POMIAR POLA ELIPSY ENERGII. ĆWICZENIE 3. WAHADŁO SPRĘŻYNOWE. POMIAR POLA ELIPSY ENERGII. 1. Oscylator harmoniczny. Wprowadzenie Oscylatorem harmonicznym nazywamy punt materialny, na tóry,działa siła sierowana do pewnego centrum,

Bardziej szczegółowo

Temat ćwiczenia: POMIARY W OBWODACH ELEKTRYCZNYCH PRĄDU STAŁEGO. A Lp. U[V] I[mA] R 0 [ ] P 0 [mw] R 0 [ ] 1. U 0 AB= I Z =

Temat ćwiczenia: POMIARY W OBWODACH ELEKTRYCZNYCH PRĄDU STAŁEGO. A Lp. U[V] I[mA] R 0 [ ] P 0 [mw] R 0 [ ] 1. U 0 AB= I Z = Laboratorium Teorii Obwodów Temat ćwiczenia: LBOTOM MD POMY W OBWODCH LKTYCZNYCH PĄD STŁGO. Sprawdzenie twierdzenia o źródle zastępczym (tw. Thevenina) Dowolny obwód liniowy, lub część obwodu, jeśli wyróżnimy

Bardziej szczegółowo

Ćwiczenie nr 35: Elektroliza

Ćwiczenie nr 35: Elektroliza Wydział PRACOWNIA FIZYCZNA WFiIS AGH Imię i nazwiso 1.. Temat: Ro Grupa Zespół Nr ćwiczenia Data wyonania Data oddania Zwrot do popr. Data oddania Data zaliczenia OCENA Ćwiczenie nr 35: Eletroliza Cel

Bardziej szczegółowo

DRGANIA WŁASNE RAM OBLICZANIE CZĘSTOŚCI KOŁOWYCH DRGAŃ WŁASNYCH

DRGANIA WŁASNE RAM OBLICZANIE CZĘSTOŚCI KOŁOWYCH DRGAŃ WŁASNYCH Część 5. DRGANIA WŁASNE RAM OBLICZANIE CZĘSTOŚCI KOŁOWYCH... 5. 5. DRGANIA WŁASNE RAM OBLICZANIE CZĘSTOŚCI KOŁOWYCH DRGAŃ WŁASNYCH 5.. Wprowadzenie Rozwiązywanie zadań z zaresu dynamii budowli sprowadza

Bardziej szczegółowo

Wyznaczanie długości fali świetlnej za pomocą spektrometru siatkowego

Wyznaczanie długości fali świetlnej za pomocą spektrometru siatkowego Politechnia Łódza FTIMS Kierune: Informatya ro aademici: 2008/2009 sem. 2. Termin: 16 III 2009 Nr. ćwiczenia: 413 Temat ćwiczenia: Wyznaczanie długości fali świetlnej za pomocą spetrometru siatowego Nr.

Bardziej szczegółowo

TEORIA OBWODÓW I SYGNAŁÓW LABORATORIUM

TEORIA OBWODÓW I SYGNAŁÓW LABORATORIUM EORI OBWODÓW I SYGNŁÓW LBORORIUM KDEMI MORSK Katedra eleomuniacji Morsiej Ćwiczenie nr 2: eoria obwodów i sygnałów laboratorium ĆWICZENIE 2 BDNIE WIDM SYGNŁÓW OKRESOWYCH. Cel ćwiczenia Celem ćwiczenia

Bardziej szczegółowo

( ) + ( ) T ( ) + E IE E E. Obliczanie gradientu błędu metodą układu dołączonego

( ) + ( ) T ( ) + E IE E E. Obliczanie gradientu błędu metodą układu dołączonego Obliczanie gradientu błędu metodą uładu dołączonego /9 Obliczanie gradientu błędu metodą uładu dołączonego Chodzi o wyznaczenie pochodnych cząstowych funcji błędu E względem parametrów elementów uładu

Bardziej szczegółowo

Podstawy opracowania wyników pomiarów z elementami analizy niepewności pomiarowych

Podstawy opracowania wyników pomiarów z elementami analizy niepewności pomiarowych Podstawy opracowania wyników pomiarów z elementami analizy niepewności pomiarowych dla studentów Chemii (2018) Autor prezentacji :dr hab. Paweł Korecki dr Szymon Godlewski e-mail: szymon.godlewski@uj.edu.pl

Bardziej szczegółowo

A4: Filtry aktywne rzędu II i IV

A4: Filtry aktywne rzędu II i IV A4: Filtry atywne rzędu II i IV Jace Grela, Radosław Strzała 3 maja 29 1 Wstęp 1.1 Wzory Poniżej zamieszczamy podstawowe wzory i definicje, tórych używaliśmy w obliczeniach: 1. Związe między stałą czasową

Bardziej szczegółowo

Ćw. 2: Analiza błędów i niepewności pomiarowych

Ćw. 2: Analiza błędów i niepewności pomiarowych Wydział: EAIiE Kierunek: Imię i nazwisko (e mail): Rok:. (200/20) Grupa: Zespół: Data wykonania: Zaliczenie: Podpis prowadzącego: Uwagi: LABORATORIUM METROLOGII Ćw. 2: Analiza błędów i niepewności pomiarowych

Bardziej szczegółowo

Laboratorium Podstaw Metrologii

Laboratorium Podstaw Metrologii WOCŁAW Wrocław, dnia Laboratorium odstaw Metroogii Ćwiczenie o i ierune studiów... Grupa (dzień tygodnia i godzina rozpoczęcia zajęć) Imię i nazwiso Imię i nazwiso Imię i nazwiso rzetwornii Badanie właściwości

Bardziej szczegółowo

INSTYTUT INŻYNIERII ŚRODOWISKA ZAKŁAD GEOINŻYNIERII I REKULTYWACJI ĆWICZENIE NR 3

INSTYTUT INŻYNIERII ŚRODOWISKA ZAKŁAD GEOINŻYNIERII I REKULTYWACJI ĆWICZENIE NR 3 INSTYTUT INŻYNIERII ŚRODOWISKA ZAKŁAD GEOINŻYNIERII I REKULTYWACJI Laboratorium z mechanii łynów ĆWICZENIE NR 3 CECHOWANIE MANOMETRU NACZYNIWEGO O RURCE POCHYŁEJ 2 1. Cel ćwiczenia Celem ćwiczenia jest

Bardziej szczegółowo

4.15 Badanie dyfrakcji światła laserowego na krysztale koloidalnym(o19)

4.15 Badanie dyfrakcji światła laserowego na krysztale koloidalnym(o19) 256 Fale 4.15 Badanie dyfracji światła laserowego na rysztale oloidalnym(o19) Celem ćwiczenia jest wyznaczenie stałej sieci dwuwymiarowego ryształu oloidalnego metodą dyfracji światła laserowego. Zagadnienia

Bardziej szczegółowo

Ćw. nr 31. Wahadło fizyczne o regulowanej płaszczyźnie drgań - w.2

Ćw. nr 31. Wahadło fizyczne o regulowanej płaszczyźnie drgań - w.2 1 z 6 Zespół Dydaktyki Fizyki ITiE Politechniki Koszalińskiej Ćw. nr 3 Wahadło fizyczne o regulowanej płaszczyźnie drgań - w.2 Cel ćwiczenia Pomiar okresu wahań wahadła z wykorzystaniem bramki optycznej

Bardziej szczegółowo

WYZNACZANIE MODUŁU YOUNGA PRZEZ ZGINANIE

WYZNACZANIE MODUŁU YOUNGA PRZEZ ZGINANIE ĆWICZENIE 4 WYZNACZANIE MODUŁU YOUNGA PRZEZ ZGINANIE Wprowadzenie Pręt umocowany na końcach pod wpływem obciążeniem ulega wygięciu. własnego ciężaru lub pod Rys. 4.1. W górnej warstwie pręta następuje

Bardziej szczegółowo

Politechnika Białostocka INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH

Politechnika Białostocka INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Politechnika Białostocka Wydział Budownictwa i Inżynierii Środowiska INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Temat ćwiczenia: Ścisła próba rozciągania stali Numer ćwiczenia: 2 Laboratorium z przedmiotu:

Bardziej szczegółowo

Katedra Energetyki. Laboratorium Elektrotechniki OCHRONA PRZECIWPORAŻENIOWA. Temat ćwiczenia: I ZABEZPIECZENIA URZĄDZEŃ ELEKTRYCZNYCH

Katedra Energetyki. Laboratorium Elektrotechniki OCHRONA PRZECIWPORAŻENIOWA. Temat ćwiczenia: I ZABEZPIECZENIA URZĄDZEŃ ELEKTRYCZNYCH Katedra Energetyi Laboratorium Eletrotechnii Temat ćwiczenia: OCHRONA PRZECIWPORAŻENIOWA I ZABEZPIECZENIA URZĄDZEŃ ELEKTRYCZNYCH I. Sprawdzanie suteczności zerowania L1 L2 L3 PE N R 0 MZC-300 M 3~ I Z

Bardziej szczegółowo

13. 13. BELKI CIĄGŁE STATYCZNIE NIEWYZNACZALNE

13. 13. BELKI CIĄGŁE STATYCZNIE NIEWYZNACZALNE Część 3. BELKI CIĄGŁE STATYCZNIE NIEWYZNACZALNE 3. 3. BELKI CIĄGŁE STATYCZNIE NIEWYZNACZALNE 3.. Metoda trzech momentów Rozwiązanie wieloprzęsłowych bele statycznie niewyznaczalnych można ułatwić w znaczącym

Bardziej szczegółowo

Laboratorium Podstaw Pomiarów

Laboratorium Podstaw Pomiarów Laboratorium Podstaw Pomiarów Ćwiczenie 5 Pomiary rezystancji Instrukcja Opracował: dr hab. inż. Grzegorz Pankanin, prof. PW Instytut Systemów Elektronicznych Wydział Elektroniki i Technik Informacyjnych

Bardziej szczegółowo

Ćwiczenie 4 Badanie wpływu asymetrii obciążenia na pracę sieci

Ćwiczenie 4 Badanie wpływu asymetrii obciążenia na pracę sieci Ćwiczenie 4 - Badanie wpływu asymetrii obciążenia na pracę sieci Strona 1/13 Ćwiczenie 4 Badanie wpływu asymetrii obciążenia na pracę sieci Spis treści 1.Cel ćwiczenia...2 2.Wstęp...2 2.1.Wprowadzenie

Bardziej szczegółowo

A. Cel ćwiczenia. B. Część teoretyczna

A. Cel ćwiczenia. B. Część teoretyczna A. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z wsaźniami esploatacyjnymi eletronicznych systemów bezpieczeństwa oraz wyorzystaniem ich do alizacji procesu esplatacji z uwzględnieniem przeglądów

Bardziej szczegółowo

Pomiar prędkości i natęŝenia przepływu za pomocą rurek spiętrzających

Pomiar prędkości i natęŝenia przepływu za pomocą rurek spiętrzających Pomiar prędości i natęŝenia przepływu za pomocą rure spiętrzających Instrucja do ćwiczenia nr 8 Miernictwo energetyczne - laboratorium Opracowała: dr inŝ. ElŜbieta Wróblewsa Załad Miernictwa i Ochrony

Bardziej szczegółowo

długość całkowita: L m moment bezwładności (względem osi y): J y cm 4 moment bezwładności: J s cm 4

długość całkowita: L m moment bezwładności (względem osi y): J y cm 4 moment bezwładności: J s cm 4 .9. Stalowy ustrój niosący. Poład drewniany spoczywa na dziewięciu belach dwuteowych..., swobodnie podpartych o rozstawie... m. Beli wyonane są ze stali... Cechy geometryczne beli: długość całowita: L

Bardziej szczegółowo

Analiza nośności poziomej pojedynczego pala

Analiza nośności poziomej pojedynczego pala Poradni Inżyniera Nr 16 Atualizacja: 09/016 Analiza nośności poziomej pojedynczego pala Program: Pli powiązany: Pal Demo_manual_16.gpi Celem niniejszego przewodnia jest przedstawienie wyorzystania programu

Bardziej szczegółowo

INSTRUKCJA. Ćwiczenie A2. Wyznaczanie współczynnika sprężystości sprężyny metodą dynamiczną.

INSTRUKCJA. Ćwiczenie A2. Wyznaczanie współczynnika sprężystości sprężyny metodą dynamiczną. INSRUKCJA Ćwiczenie A Wyznaczanie wpółczynnia prężytości prężyny metodą dynamiczną. Przed zapoznaniem ię z intrucją i przytąpieniem do wyonania ćwiczenia należy zapoznać ię z natępującymi zagadnieniami:

Bardziej szczegółowo

WAT - WYDZIAŁ ELEKTRONIKI INSTYTUT SYSTEMÓW ELEKTRONICZNYCH. Przedmiot: CZUJNIKI I PRZETWORNIKI Ćwiczenie nr 1 PROTOKÓŁ / SPRAWOZDANIE

WAT - WYDZIAŁ ELEKTRONIKI INSTYTUT SYSTEMÓW ELEKTRONICZNYCH. Przedmiot: CZUJNIKI I PRZETWORNIKI Ćwiczenie nr 1 PROTOKÓŁ / SPRAWOZDANIE Grupa: WAT - WYDZIAŁ ELEKTRONIKI INSTYTT SYSTEMÓW ELEKTRONICZNYCH Przedmiot: CZJNIKI I PRZETWORNIKI Ćwiczenie nr 1 PROTOKÓŁ / SPRAWOZDANIE Temat: Przetworniki tensometryczne /POMIARY SIŁ I CIŚNIEŃ PRZY

Bardziej szczegółowo

Ćw. 18: Pomiary wielkości nieelektrycznych II

Ćw. 18: Pomiary wielkości nieelektrycznych II Wydział: EAIiE Kierunek: Imię i nazwisko (e mail): Rok:. (2010/2011) Grupa: Zespół: Data wykonania: Zaliczenie: Podpis prowadzącego: Uwagi: LABORATORIUM METROLOGII Ćw. 18: Pomiary wielkości nieelektrycznych

Bardziej szczegółowo

D Program ćwiczenia I X U X R V

D Program ćwiczenia I X U X R V Ćwiczenie nr 3. Elementy liniowe i nieliniowe obwodów eletrycznych, pomiar charaterysty stałoprądowych. D- Cel ćwiczenia: Zapoznanie się ze sposobem opracowania wyniów pomiarowych, obliczeniem niepewności

Bardziej szczegółowo

ĆWICZENIE NR 3 OBLICZANIE UKŁADÓW STATYCZNIE NIEWYZNACZALNYCH METODĄ SIŁ OD OSIADANIA PODPÓR I TEMPERATURY

ĆWICZENIE NR 3 OBLICZANIE UKŁADÓW STATYCZNIE NIEWYZNACZALNYCH METODĄ SIŁ OD OSIADANIA PODPÓR I TEMPERATURY zęść OLIZNIE UKŁÓW STTYZNIE NIEWYZNZLNYH METOĄ SIŁ 1 POLITEHNIK POZNŃSK INSTYTUT KONSTRUKJI UOWLNYH ZKŁ MEHNIKI UOWLI ĆWIZENIE NR 3 OLIZNIE UKŁÓW STTYZNIE NIEWYZNZLNYH METOĄ SIŁ O OSINI POPÓR I TEMPERTURY

Bardziej szczegółowo

Wskaźnik i 30 WWW.PRECIAMOLEN.COM. Intstrukcja obsługi

Wskaźnik i 30 WWW.PRECIAMOLEN.COM. Intstrukcja obsługi Wsaźni i 30 WWW.PRECIAMOLEN.COM Intstrucja obsługi 04-52-00-7 MU - 11/2012 Niniejsza instrucja jest przeznaczona dla użytowniów wsaźnia i 30. Umożliwia ona szybie zapoznanie się z funcjami urządzenia.

Bardziej szczegółowo

PAŃSTWOWA WYŻSZA SZKOŁA ZAWODOWA W TARNOWIE INSTYTUT POLITECHNICZNY LABORATORIUM METROLOGII

PAŃSTWOWA WYŻSZA SZKOŁA ZAWODOWA W TARNOWIE INSTYTUT POLITECHNICZNY LABORATORIUM METROLOGII PAŃSTWOWA WYŻSZA SZKOŁA ZAWODOWA W TARNOWIE INSTYTUT POLITECHNICZNY LABORATORIUM METROLOGII Instrukcja do wykonania ćwiczenia laboratoryjnego: POMIARY TENSOMETRYCZNE CZUJNIKI I APARATURA Tarnów 014 POMIARY

Bardziej szczegółowo

Wyznaczanie długości fali świetlnej za pomocą spektrometru siatkowego

Wyznaczanie długości fali świetlnej za pomocą spektrometru siatkowego Politechnika Łódzka FTIMS Kierunek: Informatyka rok akademicki: 2008/2009 sem. 2. grupa II Termin: 19 V 2009 Nr. ćwiczenia: 413 Temat ćwiczenia: Wyznaczanie długości fali świetlnej za pomocą spektrometru

Bardziej szczegółowo

WYZNACZANIE MODUŁU YOUNGA METODĄ STRZAŁKI UGIĘCIA

WYZNACZANIE MODUŁU YOUNGA METODĄ STRZAŁKI UGIĘCIA Ćwiczenie 58 WYZNACZANIE MODUŁU YOUNGA METODĄ STRZAŁKI UGIĘCIA 58.1. Wiadomości ogólne Pod działaniem sił zewnętrznych ciała stałe ulegają odkształceniom, czyli zmieniają kształt. Zmianę odległości między

Bardziej szczegółowo

Badanie i obliczanie kąta skręcenia wału maszynowego

Badanie i obliczanie kąta skręcenia wału maszynowego Zakład Podstaw Konstrukcji i Eksploatacji Maszyn Instytut Podstaw Budowy Maszyn Wydział Samochodów i Maszyn Roboczych Politechnika Warszawska dr inż. Szymon Dowkontt Laboratorium Podstaw Konstrukcji Maszyn

Bardziej szczegółowo

Uwaga. Łącząc układ pomiarowy należy pamiętać o zachowaniu zgodności biegunów napięcia z generatora i zacisków na makiecie przetwornika.

Uwaga. Łącząc układ pomiarowy należy pamiętać o zachowaniu zgodności biegunów napięcia z generatora i zacisków na makiecie przetwornika. PLANOWANIE I TECHNIKA EKSPERYMENTU Program ćwiczenia Temat: Badanie właściwości statycznych przetworników pomiarowych, badanie właściwości dynamicznych czujników temperatury Ćwiczenie 5 Spis przyrządów

Bardziej szczegółowo

(U.3) Podstawy formalizmu mechaniki kwantowej

(U.3) Podstawy formalizmu mechaniki kwantowej 3.10.2004 24. (U.3) Podstawy formalizmu mechanii wantowej 33 Rozdział 24 (U.3) Podstawy formalizmu mechanii wantowej 24.1 Wartości oczeiwane i dyspersje dla stanu superponowanego 24.1.1 Założenia wstępne

Bardziej szczegółowo

Badanie i obliczanie kąta skręcenia wału maszynowego

Badanie i obliczanie kąta skręcenia wału maszynowego Zakład Podstaw Konstrukcji i Budowy Maszyn Instytut Podstaw Budowy Maszyn Wydział Samochodów i Maszyn Roboczych Politechnika Warszawska dr inż. Szymon Dowkontt Laboratorium Podstaw Konstrukcji Maszyn Instrukcja

Bardziej szczegółowo

I Zastosowanie oscyloskopu do pomiarów kąta przesunięcia fazowego.

I Zastosowanie oscyloskopu do pomiarów kąta przesunięcia fazowego. I Zastosowanie oscyloskopu do pomiarów kąta przesunięcia fazowego. II Badanie charakterystyk statycznych elementów nieliniowych za pomocą oscyloskopu (realizacja tematyki na życzenie prowadzącego laboratorium)

Bardziej szczegółowo

Temat: Prawo Hooke a. Oscylacje harmoniczne. Zagadnienia: prawa dynamiki Newtona, siła sprężysta, prawo Hooke a, oscylacje harmoniczne,

Temat: Prawo Hooke a. Oscylacje harmoniczne. Zagadnienia: prawa dynamiki Newtona, siła sprężysta, prawo Hooke a, oscylacje harmoniczne, sg M 6-1 - Teat: Prawo Hooe a. Oscylacje haroniczne. Zagadnienia: prawa dynaii Newtona, siła sprężysta, prawo Hooe a, oscylacje haroniczne, ores oscylacji. Koncepcja: Sprężyna obciążana różnyi asai wydłuża

Bardziej szczegółowo

Wyznaczanie modułu Younga metodą strzałki ugięcia

Wyznaczanie modułu Younga metodą strzałki ugięcia Ćwiczenie M12 Wyznaczanie modułu Younga metodą strzałki ugięcia M12.1. Cel ćwiczenia Celem ćwiczenia jest wyznaczenie wartości modułu Younga różnych materiałów poprzez badanie strzałki ugięcia wykonanych

Bardziej szczegółowo

LABORATORIUM ELEKTROTECHNIKI POMIAR PRZESUNIĘCIA FAZOWEGO

LABORATORIUM ELEKTROTECHNIKI POMIAR PRZESUNIĘCIA FAZOWEGO POLITECHNIKA ŚLĄSKA WYDZIAŁ TRANSPORTU KATEDRA LOGISTYKI I TRANSPORTU PRZEMYSŁOWEGO NR 1 POMIAR PRZESUNIĘCIA FAZOWEGO Katowice, październik 5r. CEL ĆWICZENIA Poznanie zjawiska przesunięcia fazowego. ZESTAW

Bardziej szczegółowo

Pomiar wysokich napięć

Pomiar wysokich napięć Politechnika Lubelska Wydział Elektrotechniki i Informatyki Katedra Urządzeń Elektrycznych i TWN 0-68 Lublin, ul. Nadbystrzycka 8A www.kueitwn.pollub.pl LABORATORIUM TECHNIKI WYSOKICH NAPIĘĆ Instrukcja

Bardziej szczegółowo

przybliżeniema Definicja

przybliżeniema Definicja Podstawowe definicje Definicje i podstawowe pojęcia Opracowanie danych doświadczalnych Często zaokraglamy pewne wartości np. kupujac telewizor za999,99 zł. dr inż. Ireneusz Owczarek CMF PŁ ireneusz.owczarek@p.lodz.pl

Bardziej szczegółowo

Ćwiczenie 14. Sprawdzanie przyrządów analogowych i cyfrowych. Program ćwiczenia:

Ćwiczenie 14. Sprawdzanie przyrządów analogowych i cyfrowych. Program ćwiczenia: Ćwiczenie 14 Sprawdzanie przyrządów analogowych i cyfrowych Program ćwiczenia: 1. Sprawdzenie błędów podstawowych woltomierza analogowego 2. Sprawdzenie błędów podstawowych amperomierza analogowego 3.

Bardziej szczegółowo

Wyznaczanie współczynnika sprężystości sprężyn i ich układów

Wyznaczanie współczynnika sprężystości sprężyn i ich układów Ćwiczenie 63 Wyznaczanie współczynnika sprężystości sprężyn i ich układów 63.1. Zasada ćwiczenia W ćwiczeniu określa się współczynnik sprężystości pojedynczych sprężyn i ich układów, mierząc wydłużenie

Bardziej szczegółowo

STATYCZNA PRÓBA SKRĘCANIA

STATYCZNA PRÓBA SKRĘCANIA Mechanika i wytrzymałość materiałów - instrukcja do ćwiczenia laboratoryjnego: Wprowadzenie STATYCZNA PRÓBA SKRĘCANIA Opracowała: mgr inż. Magdalena Bartkowiak-Jowsa Skręcanie pręta występuje w przypadku

Bardziej szczegółowo

Ćw. 1&2: Wprowadzenie do obsługi przyrządów pomiarowych oraz analiza błędów i niepewności pomiarowych

Ćw. 1&2: Wprowadzenie do obsługi przyrządów pomiarowych oraz analiza błędów i niepewności pomiarowych Wydział: EAIiE Kierunek: Imię i nazwisko (e mail): Rok:. (2011/2012) Grupa: Zespół: Data wykonania: Zaliczenie: Podpis prowadzącego: Uwagi: LABORATORIUM METROLOGII Ćw. 1&2: Wprowadzenie do obsługi przyrządów

Bardziej szczegółowo

Colloquium 3, Grupa A

Colloquium 3, Grupa A Colloquium 3, Grupa A 1. Z zasobów obliczeniowych pewnego serwera orzysta dwóch użytowniów. Każdy z nich wysyła do serwera zawsze trzy programy naraz. Użytowni czea, aż serwer wyona obliczenia dotyczące

Bardziej szczegółowo

Wyznaczanie przyspieszenia ziemskiego za pomocą wahadła rewersyjnego (Katera)

Wyznaczanie przyspieszenia ziemskiego za pomocą wahadła rewersyjnego (Katera) Politechnika Łódzka FTIMS Kierunek: Informatyka rok akademicki: 2008/2009 sem. 2. grupa II Termin: 17 III 2009 Nr. ćwiczenia: 112 Temat ćwiczenia: Wyznaczanie przyspieszenia ziemskiego za pomocą wahadła

Bardziej szczegółowo

DRGANIA SWOBODNE UKŁADU O DWÓCH STOPNIACH SWOBODY. Rys Model układu

DRGANIA SWOBODNE UKŁADU O DWÓCH STOPNIACH SWOBODY. Rys Model układu Ćwiczenie 7 DRGANIA SWOBODNE UKŁADU O DWÓCH STOPNIACH SWOBODY. Cel ćwiczenia Doświadczalne wyznaczenie częstości drgań własnych układu o dwóch stopniach swobody, pokazanie postaci drgań odpowiadających

Bardziej szczegółowo

ĆWICZENIE 41 POMIARY PRZY UŻYCIU GONIOMETRU KOŁOWEGO. Wprowadzenie teoretyczne

ĆWICZENIE 41 POMIARY PRZY UŻYCIU GONIOMETRU KOŁOWEGO. Wprowadzenie teoretyczne ĆWICZENIE 4 POMIARY PRZY UŻYCIU GONIOMETRU KOŁOWEGO Wprowadzenie teoretyczne Rys. Promień przechodzący przez pryzmat ulega dwukrotnemu załamaniu na jego powierzchniach bocznych i odchyleniu o kąt δ. Jeżeli

Bardziej szczegółowo

Pomiary wielkości nieelektrycznych pomiary masy i temperatury

Pomiary wielkości nieelektrycznych pomiary masy i temperatury Ćwiczenie 17 Pomiary wielości nieeletrycznych pomiary masy i temperatry Program ćwiczenia: 1. Przygotowanie stanowisa pomiarowego. Waga z czjniiem tensometrycznym Kalibracja wagi Ważenie 3. Pomiar temperatry

Bardziej szczegółowo

Prawdopodobieństwo i statystyka

Prawdopodobieństwo i statystyka Zadanie Rozważmy następujący model strzelania do tarczy. Współrzędne puntu trafienia (, Y ) są niezależnymi zmiennymi losowymi o jednaowym rozładzie normalnym N ( 0, σ ). Punt (0,0) uznajemy za środe tarczy,

Bardziej szczegółowo

Ćw. 15 : Sprawdzanie watomierza i licznika energii

Ćw. 15 : Sprawdzanie watomierza i licznika energii Wydział: EAIiE Kierunek: Imię i nazwisko (e mail): Rok:. (2010/2011) Grupa: Zespół: Data wykonania: LABORATORIUM METROLOGII Ćw. 15 : Sprawdzanie watomierza i licznika energii Zaliczenie: Podpis prowadzącego:

Bardziej szczegółowo

Nazwisko i imię: Zespół: Data: Ćwiczenie nr 11: Moduł Younga

Nazwisko i imię: Zespół: Data: Ćwiczenie nr 11: Moduł Younga Nazwisko i imię: Zespół: Data: Ćwiczenie nr 11: Moduł Younga Cel ćwiczenia: Wyznaczenie modułu Younga i porównanie otrzymanych wartości dla różnych materiałów. Literatura [1] Wolny J., Podstawy fizyki,

Bardziej szczegółowo

ĆWICZENIE 6 POMIARY REZYSTANCJI

ĆWICZENIE 6 POMIARY REZYSTANCJI ĆWICZENIE 6 POMIAY EZYSTANCJI Opracowała: E. Dziuban I. Cel ćwiczenia Celem ćwiczenia jest wdrożenie umiejętności poprawnego wyboru metody pomiaru w zależności od wartości mierzonej rezystancji oraz postulowanej

Bardziej szczegółowo

Ćw. 5. Badanie ruchu wahadła sprężynowego sprawdzenie wzoru na okres drgań

Ćw. 5. Badanie ruchu wahadła sprężynowego sprawdzenie wzoru na okres drgań KAEDRA FIZYKI SOSOWANEJ PRACOWNIA 5 FIZYKI Ćw. 5. Badanie ruchu wahadła sprężynowego sprawdzenie wzoru na ores drgań Wprowadzenie Ruch drgający naeży do najbardziej rozpowszechnionych ruchów w przyrodzie.

Bardziej szczegółowo

Wyznaczanie współczynnika załamania światła za pomocą mikroskopu i pryzmatu

Wyznaczanie współczynnika załamania światła za pomocą mikroskopu i pryzmatu POLITECHNIKA BIAŁOSTOCKA KATEDRA ZARZĄDZANIA PRODUKCJĄ Instrukcja do zajęć laboratoryjnych z przedmiotu: MATEMATYKA Z ELEMENTAMI FIZYKI Kod przedmiotu: ISO73; INO73 Ćwiczenie Nr Wyznaczanie współczynnika

Bardziej szczegółowo

Ćw. 1: Wprowadzenie do obsługi przyrządów pomiarowych

Ćw. 1: Wprowadzenie do obsługi przyrządów pomiarowych Wydział: EAIiE Kierunek: Imię i nazwisko (e mail): Rok:. (2010/2011) Grupa: Zespół: Data wykonania: Zaliczenie: Podpis prowadzącego: Uwagi: LABORATORIUM METROLOGII Ćw. 1: Wprowadzenie do obsługi przyrządów

Bardziej szczegółowo

Wyniki pomiarów okresu drgań dla wahadła o długości l = 1,215 m i l = 0,5 cm.

Wyniki pomiarów okresu drgań dla wahadła o długości l = 1,215 m i l = 0,5 cm. 2 Wyniki pomiarów okresu drgań dla wahadła o długości l = 1,215 m i l = 0,5 cm. Nr pomiaru T[s] 1 2,21 2 2,23 3 2,19 4 2,22 5 2,25 6 2,19 7 2,23 8 2,24 9 2,18 10 2,16 Wyniki pomiarów okresu drgań dla wahadła

Bardziej szczegółowo

1. Sporządzić tabele z wynikami pomiarów oraz wyznaczonymi błędami pomiarów dotyczących pomiaru prędkości obrotowej zgodnie z poniższym przykładem.

1. Sporządzić tabele z wynikami pomiarów oraz wyznaczonymi błędami pomiarów dotyczących pomiaru prędkości obrotowej zgodnie z poniższym przykładem. Sporządzić tabele z wynikami pomiarów oraz wyznaczonymi błędami pomiarów dotyczących pomiaru prędkości obrotowej zgodnie z poniższym przykładem Tab Wyniki i błędy pomiarów U [V] U [V] f [Hz] U [V] δ U

Bardziej szczegółowo

Zadania do rozdziału 5

Zadania do rozdziału 5 Zadania do rozdziału 5 Zad.5.1. Udowodnij, że stosując równię pochyłą o dającym się zmieniać ącie nachylenia α można wyznaczyć współczynni tarcia statycznego µ o. ozwiązanie: W czasie zsuwania się po równi

Bardziej szczegółowo

Wyznaczanie momentu magnetycznego obwodu w polu magnetycznym

Wyznaczanie momentu magnetycznego obwodu w polu magnetycznym Ćwiczenie 11B Wyznaczanie momentu magnetycznego obwodu w polu magnetycznym 11B.1. Zasada ćwiczenia Na zamkniętą pętlę przewodnika z prądem, umieszczoną w jednorodnym polu magnetycznym, działa skręcający

Bardziej szczegółowo

Podstawy opracowania wyników pomiarów z elementami analizy niepewności pomiarowych

Podstawy opracowania wyników pomiarów z elementami analizy niepewności pomiarowych Podstawy opracowania wyników pomiarów z elementami analizy niepewności pomiarowych dla studentów Biologii A i B dr hab. Paweł Korecki e-mail: pawel.korecki@uj.edu.pl http://www.if.uj.edu.pl/pl/edukacja/pracownia_i/

Bardziej szczegółowo

Katedra Metrologii i Systemów Diagnostycznych Laboratorium Metrologii II. 2013/14. Grupa: Nr. Ćwicz.

Katedra Metrologii i Systemów Diagnostycznych Laboratorium Metrologii II. 2013/14. Grupa: Nr. Ćwicz. Politechnika Rzeszowska Katedra Metrologii i Systemów Diagnostycznych Laboratorium Metrologii II WYZNACZANIE WŁAŚCIWOŚCI STATYCZNYCH I DYNAMICZNYCH PRZETWORNIKÓW Grupa: Nr. Ćwicz. 9 1... kierownik 2...

Bardziej szczegółowo

Pomiary wielkości nieelektrycznych pomiary masy i temperatury

Pomiary wielkości nieelektrycznych pomiary masy i temperatury Ćwiczenie 17 Pomiary wielości nieeletrycznych pomiary masy i temperatry Program ćwiczenia: 1. Przygotowanie stanowisa pomiarowego. Waga z czjniiem tensometrycznym Kalibracja wagi wyznaczenie charaterystyi

Bardziej szczegółowo

wiczenie 15 ZGINANIE UKO Wprowadzenie Zginanie płaskie Zginanie uko nie Cel wiczenia Okre lenia podstawowe

wiczenie 15 ZGINANIE UKO Wprowadzenie Zginanie płaskie Zginanie uko nie Cel wiczenia Okre lenia podstawowe Ćwiczenie 15 ZGNANE UKOŚNE 15.1. Wprowadzenie Belką nazywamy element nośny konstrukcji, którego: - jeden wymiar (długość belki) jest znacznie większy od wymiarów przekroju poprzecznego - obciążenie prostopadłe

Bardziej szczegółowo

Laboratorium Podstaw Pomiarów

Laboratorium Podstaw Pomiarów Laboratorium Podstaw Pomiarów Ćwiczenie 5 Pomiary rezystancji Instrukcja Opracował: dr hab. inż. Grzegorz Pankanin, prof. PW Instytut Systemów Elektronicznych Wydział Elektroniki i Technik Informacyjnych

Bardziej szczegółowo

Tutaj powinny znaleźć się wyniki pomiarów (tabelki) potwierdzone przez prowadzacego zajęcia laboratoryjne i podpis dyżurujacego pracownika obsługi

Tutaj powinny znaleźć się wyniki pomiarów (tabelki) potwierdzone przez prowadzacego zajęcia laboratoryjne i podpis dyżurujacego pracownika obsługi Tutaj powinny znaleźć się wyniki pomiarów (tabelki) potwierdzone przez prowadzacego zajęcia laboratoryjne i podpis dyżurujacego pracownika obsługi technicznej. 1. Wstęp Celem ćwiczenia jest wyznaczenie

Bardziej szczegółowo

Ćw. 1: Wprowadzenie do obsługi przyrządów pomiarowych

Ćw. 1: Wprowadzenie do obsługi przyrządów pomiarowych Wydział: EAIiE Kierunek: Imię i nazwisko (e mail): Rok: 2018/2019 Grupa: Zespół: Data wykonania: Zaliczenie: Podpis prowadzącego: Uwagi: LABORATORIUM METROLOGII Ćw. 1: Wprowadzenie do obsługi przyrządów

Bardziej szczegółowo

Niepewność pomiaru. Wynik pomiaru X jest znany z możliwa do określenia niepewnością. jest bledem bezwzględnym pomiaru

Niepewność pomiaru. Wynik pomiaru X jest znany z możliwa do określenia niepewnością. jest bledem bezwzględnym pomiaru iepewność pomiaru dokładność pomiaru Wynik pomiaru X jest znany z możliwa do określenia niepewnością X p X X X X X jest bledem bezwzględnym pomiaru [ X, X X ] p Przedział p p nazywany jest przedziałem

Bardziej szczegółowo

Doświadczalne wyznaczanie współczynnika sztywności (sprężystości) sprężyny

Doświadczalne wyznaczanie współczynnika sztywności (sprężystości) sprężyny Doświadczalne wyznaczanie współczynnika sztywności (sprężystości) Wprowadzenie Wartość współczynnika sztywności użytej można wyznaczyć z dużą dokładnością metodą statyczną. W tym celu należy zawiesić pionowo

Bardziej szczegółowo

Uśrednianie napięć zakłóconych

Uśrednianie napięć zakłóconych Politechnika Rzeszowska Katedra Metrologii i Systemów Diagnostycznych Laboratorium Miernictwa Elektronicznego Uśrednianie napięć zakłóconych Grupa Nr ćwicz. 5 1... kierownik 2... 3... 4... Data Ocena I.

Bardziej szczegółowo

KARTA INFORMACYJNA PRZEDMIOTU

KARTA INFORMACYJNA PRZEDMIOTU Uniwersytet Rzeszowski WYDZIAŁ KIERUNEK Matematyczno-Przyrodniczy Fizyka techniczna SPECJALNOŚĆ RODZAJ STUDIÓW stacjonarne, studia pierwszego stopnia KARTA INFORMACYJNA PRZEDMIOTU NAZWA PRZEDMIOTU WG PLANU

Bardziej szczegółowo

Zastosowania programowalnych układów analogowych isppac

Zastosowania programowalnych układów analogowych isppac Zastosowania programowalnych uładów analogowych isppac 0..80 strutura uładu "uniwersalnego" isppac0 ułady nadzorujące na isppac0, 30 programowanie filtrów na isppac 80 analiza częstotliwościowa projetowanych

Bardziej szczegółowo

Wyznaczanie współczynnika załamania światła

Wyznaczanie współczynnika załamania światła Ćwiczenie O2 Wyznaczanie współczynnika załamania światła O2.1. Cel ćwiczenia Celem ćwiczenia jest wyznaczenie współczynnika załamania światła dla przeźroczystych, płaskorównoległych płytek wykonanych z

Bardziej szczegółowo

Zakres wymaganych wiadomości do testów z przedmiotu Metrologia. Wprowadzenie do obsługi multimetrów analogowych i cyfrowych

Zakres wymaganych wiadomości do testów z przedmiotu Metrologia. Wprowadzenie do obsługi multimetrów analogowych i cyfrowych Zakres wymaganych wiadomości do testów z przedmiotu Metrologia Ćwiczenie 1 Wprowadzenie do obsługi multimetrów analogowych i cyfrowych budowa i zasada działania przyrządów analogowych magnetoelektrycznych

Bardziej szczegółowo

Doświadczalne wyznaczanie współczynnika sztywności (sprężystości) sprężyn i współczynnika sztywności zastępczej

Doświadczalne wyznaczanie współczynnika sztywności (sprężystości) sprężyn i współczynnika sztywności zastępczej Doświadczalne wyznaczanie (sprężystości) sprężyn i zastępczej Statyczna metoda wyznaczania. Wprowadzenie Wartość użytej można wyznaczyć z dużą dokładnością metodą statyczną. W tym celu należy zawiesić

Bardziej szczegółowo

Państwowa Wyższa Szkoła Zawodowa w Kaliszu

Państwowa Wyższa Szkoła Zawodowa w Kaliszu Państwowa Wyższa Szkoła Zawodowa w Kaliszu Ć wiczenia laboratoryjne z fizyki Ćwiczenie 3 Wyznaczanie modułu sztywności metodą dynamiczną Kalisz, luty 2005 r. Opracował: Ryszard Maciejewski Doświadczenie

Bardziej szczegółowo

Ćwiczenie nr 254. Badanie ładowania i rozładowywania kondensatora. Ustawiony prąd ładowania I [ ma ]: t ł [ s ] U ł [ V ] t r [ s ] U r [ V ] ln(u r )

Ćwiczenie nr 254. Badanie ładowania i rozładowywania kondensatora. Ustawiony prąd ładowania I [ ma ]: t ł [ s ] U ł [ V ] t r [ s ] U r [ V ] ln(u r ) Nazwisko... Data... Wydział... Imię... Dzień tyg.... Godzina... Ćwiczenie nr 254 Badanie ładowania i rozładowywania kondensatora Numer wybranego kondensatora: Numer wybranego opornika: Ustawiony prąd ładowania

Bardziej szczegółowo

Skręcenie wektora polaryzacji w ośrodku optycznie czynnym

Skręcenie wektora polaryzacji w ośrodku optycznie czynnym WFiIS PRACOWNIA FIZYCZNA I i II Imię i nazwisko: 1.. TEMAT: ROK GRUPA ZESPÓŁ NR ĆWICZENIA ata wykonania: ata oddania: Zwrot do poprawy: ata oddania: ata zliczenia: OCENA Cel ćwiczenia: Celem ćwiczenia

Bardziej szczegółowo

Jak poprawnie napisać sprawozdanie z ćwiczeń laboratoryjnych z fizyki?

Jak poprawnie napisać sprawozdanie z ćwiczeń laboratoryjnych z fizyki? 1 Jak poprawnie napisać sprawozdanie z ćwiczeń laboratoryjnych z fizyki? Sprawozdania należny oddać na kolejnych zajęciach laboratoryjnych. Każde opóźnienie powoduje obniżenie oceny za sprawozdanie o 0,

Bardziej szczegółowo

Badanie widma fali akustycznej

Badanie widma fali akustycznej Politechnika Łódzka FTIMS Kierunek: Informatyka rok akademicki: 00/009 sem.. grupa II Termin: 10 III 009 Nr. ćwiczenia: 1 Temat ćwiczenia: Badanie widma fali akustycznej Nr. studenta: 6 Nr. albumu: 15101

Bardziej szczegółowo

Wyznaczanie współczynnika załamania światła za pomocą mikroskopu i pryzmatu

Wyznaczanie współczynnika załamania światła za pomocą mikroskopu i pryzmatu POLITECHNIKA BIAŁOSTOCKA KATEDRA ZARZĄDZANIA PRODUKCJĄ Instrukcja do zajęć laboratoryjnych z przedmiotu: FIZYKA Kod przedmiotu: KS037; KN037; LS037; LN037 Ćwiczenie Nr Wyznaczanie współczynnika załamania

Bardziej szczegółowo

Pomiary kąta metodami optycznymi

Pomiary kąta metodami optycznymi Pomiary kąta metodami optycznymi Badanym obiektem jest silnik skokowy reluktancyjny z użłobkowanym wirnikiem wykonanym ze stali magnetycznie miękkiej (wirnik bierny) o danych znamionowych: Typ: TDS 8 Napięcie

Bardziej szczegółowo

Optymalizacja harmonogramów budowlanych - problem szeregowania zadań

Optymalizacja harmonogramów budowlanych - problem szeregowania zadań Mieczysław OŁOŃSI Wydział Budownictwa i Inżynierii Środowisa, Szoła Główna Gospodarstwa Wiejsiego, Warszawa, ul. Nowoursynowsa 159 e-mail: mieczyslaw_polonsi@sggw.pl Założenia Optymalizacja harmonogramów

Bardziej szczegółowo

Temat 3 (2 godziny) : Wyznaczanie umownej granicy sprężystości R 0,05, umownej granicy plastyczności R 0,2 oraz modułu sprężystości podłużnej E

Temat 3 (2 godziny) : Wyznaczanie umownej granicy sprężystości R 0,05, umownej granicy plastyczności R 0,2 oraz modułu sprężystości podłużnej E Temat 3 (2 godziny) : Wyznaczanie umownej granicy sprężystości R,5, umownej granicy plastyczności R,2 oraz modułu sprężystości podłużnej E 3.1. Wstęp Nie wszystkie materiały posiadają wyraźną granicę plastyczności

Bardziej szczegółowo

Sterowanie Ciągłe. Używając Simulink a w pakiecie MATLAB, zasymulować układ z rysunku 7.1. Rys.7.1. Schemat blokowy układu regulacji.

Sterowanie Ciągłe. Używając Simulink a w pakiecie MATLAB, zasymulować układ z rysunku 7.1. Rys.7.1. Schemat blokowy układu regulacji. emat ćwiczenia nr 7: Synteza parametryczna uładów regulacji. Sterowanie Ciągłe Celem ćwiczenia jest orecja zadanego uładu regulacji wyorzystując następujące metody: ryterium amplitudy rezonansowej i metodę

Bardziej szczegółowo

Optymalizacja harmonogramów budowlanych - problem szeregowania zadań

Optymalizacja harmonogramów budowlanych - problem szeregowania zadań Mieczysław POŁOŃSKI Wydział Budownictwa i Inżynierii Środowisa, Szoła Główna Gospodarstwa Wiejsiego, Warszawa, ul. Nowoursynowsa 159 e-mail: mieczyslaw_polonsi@sggw.pl Założenia Optymalizacja harmonogramów

Bardziej szczegółowo

Wykład 21: Studnie i bariery cz.1.

Wykład 21: Studnie i bariery cz.1. Wyład : Studnie i bariery cz.. Dr inż. Zbigniew Szlarsi Katedra Eletronii, paw. C-, po.3 szla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szlarsi/ 3.6.8 Wydział Informatyi, Eletronii i Równanie Schrödingera

Bardziej szczegółowo

Ćwiczenie 7 POMIARY CZĘSTOTLIWOŚCI I INTERWAŁU CZASU Opracowała: A. Szlachta

Ćwiczenie 7 POMIARY CZĘSTOTLIWOŚCI I INTERWAŁU CZASU Opracowała: A. Szlachta Ćwiczenie 7 POMIARY CZĘSTOTLIWOŚCI I INTERWAŁU CZASU Opracowała: A. Szlachta I. Cel ćwiczenia Celem ćwiczenia jest poznanie podstawowych metod pomiaru częstotliwości. Metody analogowe, zasada cyfrowego

Bardziej szczegółowo

Temat: POMIAR SIŁ SKRAWANIA

Temat: POMIAR SIŁ SKRAWANIA AKADEMIA TECHNICZNO-HUMANISTYCZNA w Bielsku-Białej Katedra Technologii Maszyn i Automatyzacji Ćwiczenie wykonano: dnia:... Wykonał:... Wydział:... Kierunek:... Rok akadem.:... Semestr:... Ćwiczenie zaliczono:

Bardziej szczegółowo

CHARAKTERYSTYKA PIROMETRÓW I METODYKA PRZEPROWADZANIA POMIARÓW

CHARAKTERYSTYKA PIROMETRÓW I METODYKA PRZEPROWADZANIA POMIARÓW CHARAKTERYSTYKA PIROMETRÓW I METODYKA PRZEPROWADZANIA POMIARÓW Wykaz zagadnień teoretycznych, których znajomość jest niezbędna do wykonania ćwiczenia: Prawa promieniowania: Plancka, Stefana-Boltzmana.

Bardziej szczegółowo