Finanse ubezpieczeń społecznych
|
|
- Marcin Głowacki
- 7 lat temu
- Przeglądów:
Transkrypt
1 dr Grzorz Kula, Fia ubzpiczń połczyc ykład 2. Modl docodów w cyklu życia opodarwa Paul Diaod (977), A Frawork for Social Scuriy Aalyi, Joural of Public cooic, ol. 8,
2 dr Grzorz Kula, Cykl życia: wik, w kóry oiąay abilizację cza, po kóry przcodziy a ryurę cza od przjścia a ryurę do śirci
3 dr Grzorz Kula, Hipoza prao docodu: Dążyy w życiu do zacowaia wzlędi ało poziou koupcji. Ni jśy pwi przyzłyc docodów, więc ozczędzay. Ni ozacza o, ż docód j ały. Pray docód i odpowiada śrdiu docodowi w ciąu cało życia. Horyzo plaowaia opodarw doowyc j króki.
4 dr Grzorz Kula, - Jaki powio być świadczi ryal? - Taki, by użyczość była ała? Sopa zaąpiia: Proporcja poiędzy wyokością wyarodzia orzyywao przz okr akywości zawodowj a wyokością świadczia ryalo. Na oół przyjuj ię, ż opa zaąpiia powia wyoić 6%, albo ⅔.
5 dr Grzorz Kula, Sopa zaąpiia R /D, dzi świadczi ryal, D docód do dypozycji. Najprozy przypadk: D,co., co.,i,3 Jżli ozczędzay rulari przz cały cza, o ua azyc ozczędości(kapiał ryaly) wyoi: R, przz la a ryurz orzyujy świadczi (-), więc: ( ) ( ) 5 Z o wyika, ż 45 3 Souk zroadzoo kapiału do docodu w cwili przjścia a ryurę wyoi:
6 i i -dziijza warość zł za rok, -warość zł za la, -dziijza warość zł za la. dr Grzorz Kula, kula@w.uw.du.pl Dziijza warość ruiia płaości przz la: d d d d arość kuulowaj opy procowj za la: d d d d
7 arość kapiału odłożoo przz la wyoi: 7,3%, 24 zł roczi i i ziia ię, i 5%, 3. aki razi kapiał ryaly wyoi: Souk kapiału do roczo docodu wyoi: ,672 4, , dr Grzorz Kula, kula@w.uw.du.pl 24 Zdykoowaa warość ruiia świadczń w cwili przjścia a ryurę ui być rówa zaozczędzou kapiałowi: Przy ałyc ryurac, podawiając do wzorów, orzyujy:
8 dr Grzorz Kula, Po podawiiu dayc liczbowyc 24,24 zł. Sopa zaąpiia wyoi: R ( ) ( ),54 Dla porówaia abla pokazuj róż kobiacj opy procowj i opy ozczędości, przy kóryc oiąay opę zaąpiia rówą ⅔: % 2% 3% 4%,25,2,7,4,2 6 6,3 6 5,6 5,3 4,9
9 dr Grzorz Kula, Przyjijy, ż docody roą w pi roczi, a ryury o, al opa ozczędości j ała. yokość płacy po laac wyoi: Kapiał zbray przz la: y y dy dy ( ) ( ) y ( ) Przkzałcając wzór, w cwili przjścia a ryurę kapiał wyoi: ( ) ( ) arość przyzłyc ryur w cwili przjścia a ryurę o: y y dy ( ) y dy ( )
10 arość pirwzo świadczia oży wyliczyć, poiważ wiy, ż w oci przjścia a ryurę warość zaozczędzoo kapiału j rówa warości biżącj przyzłyc świadczń ryalyc: Sopa zaąpiia powia wyoić 2/3. yliczay opę procową, dr Grzorz Kula, kula@w.uw.du.pl Sopa zaąpiia powia wyoić 2/3. yliczay opę procową, izbędą do oiąięcia oczkiwao poziou ryury: 3 2 R
11 dr Grzorz Kula, Przykład liczbowy: w wiku 35 la roczy docód o 24 zł, wik ryaly 65 la, opa zaąpiia wyoi 2/3, płac roą o 2% roczi, a świadczia ryal o % roczi. akic warukac ay: 2% 3% 4% 5% 6% 7% 8% - % % 2% 3% 4% 5% 6% - % 2% 3% 4% 5% 6% 7% 23,64% 9,8% 6,38% 3,39%,82% 8,65% 6,85% zł 4373 zł 4373 zł 4373 zł 4373 zł 4373 zł 4373 zł 33 zł zł zł zł zł zł zł zł 2338 zł zł 2525 zł 26 zł zł 2756 zł 6 / 6 6,53 6,22 5,87 5,5 5,4 4,76 4,39
q s,t 1 r k 1 t k s q k 1 q k... q n 1 q n q 1 i ef e, v 1 q,
Maemayka finanowa i ubezpieczeniowa - 3 Przepływy pienięŝne 1 Warość akualna i przyzła przepływów dykrenych i ciągłych Oprocenowanie - dykonowanie ciągłe ze zmienną opą (iłą). 1. Sopy przedziałami ałe
Finanse ubezpieczeń społecznych
Finane ubezpieczeń połecznych Wykład 6. Reparycyjne ubezpieczenia emeryalno-renowe Avering 1994, Wiśniewki 1999 Kryeria oceniające rzeelność planu emeryalnego ze względu na poób kapializacji: 1. Kryerium
Bezrobocie. wysiłek. krzywa wysiłku pracownika E * płaca realna. w/p *
dr Barłomiej Rokicki Bezrobocie Jedym z główych powodów, dla kórych a ryku pracy obserwujemy poziom bezrobocia wyższy od auralego (czyli akiego, kórego zasadiczo ie da się obiżyć) jes o, iż płace wyzaczae
Finanse. cov. * i. 1. Premia za ryzyko. 2. Wskaźnik Treynora. 3. Wskaźnik Jensena
Finanse 1. Premia za ryzyko PR r m r f. Wskaźnik Treynora T r r f 3. Wskaźnik Jensena r [ rf ( rm rf ] 4. Porfel o minimalnej wariancji (ile procen danej spółki powinno znaleźć się w porfelu w a w cov,
Inwestycje. MPK = R/P = uc (1) gdzie uc - realny koszt pozyskania kapitału. Przyjmując, że funkcja produkcji ma postać Cobba-Douglasa otrzymamy: (3)
Dr Barłomij Rokicki Ćwiczia z Makrokoomii II Iwsycj Iwsycj są ym składikim PB, kóry wykazuj ajwiększą skłoość do flukuacji czyli wahań. Spadk popyu a dobra i usługi jaki js obsrwoway podczas rcsji zwykl
TRANZYSTORY POLOWE JFET I MOSFET
POLTECHNKA RZEZOWKA Kaedra Podsaw Elekroiki srukcja Nr5 F 00/003 sem. lei TRANZYTORY POLOWE JFET MOFET Cel ćwiczeia: Pomiar podsawowych charakerysyk i wyzaczeie paramerów określających właściwości razysora
Analiza opłacalności inwestycji logistycznej Wyszczególnienie
inwesycji logisycznej Wyszczególnienie Laa Dane w ys. zł 2 3 4 5 6 7 8 Przedsięwzięcie I Program rozwoju łańcucha (kanału) dysrybucji przewiduje realizację inwesycji cenrum dysrybucyjnego. Do oceny przyjęo
Marża zakupu bid (pkb) Marża sprzedaży ask (pkb)
Swap (IRS) i FRA Przykład. Sandardowy swap procenowy Dealer proponuje nasępujące sałe sopy dla sandardowej "plain vanilla" procenowej ransakcji swap. ermin wygaśnięcia Sopa dla obligacji skarbowych Marża
Wykorzystanie rozkładu GED do modelowania rozkładu stóp zwrotu spółek sektora transportowego
PUCZYŃSKI Jan CZYŻYCKI afał Wykorzyanie rozkładu GED do modelowania rozkładu óp zwrou półek ekora ranporowego WSTĘP Jednym z najczęściej prowadzonych badań doyczących rynku kapiałowego ą badania doyczące
Inwestycje. MPK = R/P = uc (1) gdzie uc - realny koszt pozyskania kapitału. Przyjmując, że funkcja produkcji ma postać Cobba-Douglasa otrzymamy: (3)
Dr Barłomij Rokicki Ćwiczia z Makrokoomii II Iwsycj Iwsycj są ym składikim PB, kóry wykazuj ajwiększą skłoość do flukuacji czyli wahań. Spadk popyu a dobra i usługi jaki js obsrwoway podczas rcsji zwykl
MATEMATYKA wykład 1. Ciągi. Pierwsze 2 ciągi są rosnące (do nieskończoności), zaś 3-i ciąg jest zbieŝny do zera. co oznaczamy przez
MATEMATYKA wkład Ciągi,, 2, 3, 4,,, 3, 5, 7, 9,,,,,,,,, są przkładami ciągów 2 4 6 8 Pierwsze 2 ciągi są rosące (do ieskończoości), zaś 3-i ciąg jes zbieŝ do zera co ozaczam przez lim a ch 2-óch ciągów,
INWESTYCJE. Makroekonomia II Dr Dagmara Mycielska Dr hab. Joanna Siwińska-Gorzelak
INWESTYCJE Makroekonomia II Dr Dagmara Mycielska Dr hab. Joanna Siwińska-Gorzelak Inwesycje Inwesycje w kapiał rwały: wydaki przedsiębiorsw na dobra używane podczas procesu produkcji innych dóbr Inwesycje
Przyjmijmy, że moment obciążenia jest równy zeru, otrzymamy:
aszyy prąy sałgo yaka Dla aszyy prą sałgo, ykorzysyaj jako l aoayk, yzaczy ybra rasacj. Sygał jścoy oż być p. apęc orka (la aszyy obcozbj) a sygał yjścoy prękość obrooa. óa Krchhoffa la obo orka oży apsać
BEZRYZYKOWNE BONY I LOKATY BANKOWE ALTERNATYWĄ DLA PRZYSZŁYCH EMERYTÓW. W tym krótkim i matematycznie bardzo prostym artykule pragnę osiągnąc 3 cele:
1 BEZRYZYKOWNE BONY I LOKATY BANKOWE ALTERNATYWĄ DLA PRZYSZŁYCH EMERYTÓW Leszek S. Zaremba (Polish Open Universiy) W ym krókim i maemaycznie bardzo prosym arykule pragnę osiągnąc cele: (a) pokazac że kupowanie
RACHUNEK EFEKTYWNOŚCI INWESTYCJI METODY ZŁOŻONE DYNAMICZNE
RACHUNEK EFEKTYWNOŚCI INWESTYCJI METODY ZŁOŻONE DYNAMICZNE PYTANIA KONTROLNE Czym charakeryzują się wskaźniki saycznej meody oceny projeku inwesycyjnego Dla kórego wskaźnika wyliczamy średnią księgową
CHARAKTERYSTYKI CZASOWE UKŁADÓW DYNAMICZNYCH
CHARAKERYSYKI CZASOWE UKŁADÓW DYNAMICZNYCH Zadani Chararyyi czaow uładów. Odpowidź oową wyznacza ię z wzoru: { } Problm: h L G X Wyznaczyć odpowidz oową i impulową całującgo z inrcją G h L G gdzi: Y X
WYCENA KONTRAKTÓW FUTURES, FORWARD I SWAP
Krzyszof Jajuga Kaedra Inwesycji Finansowych i Zarządzania Ryzykiem Uniwersye Ekonomiczny we Wrocławiu WYCENA KONRAKÓW FUURES, FORWARD I SWAP DWA RODZAJE SYMERYCZNYCH INSRUMENÓW POCHODNYCH Symeryczne insrumeny
L.Kowalski Systemy obsługi SMO
SMO Systy asow obsługi zastosowai procsu urodzń i śirci - przyłady: - ctrala tlfoicza, - staca bzyowa, - asa biltowa, - syst iforatyczy. Założia: - liczba staowis obsługi, - liczba isc w poczali. - struiń
LVIII Egzamin dla Aktuariuszy z 3 października 2011 r.
Komisja Egzamiacyja la Akuariuszy LIII Egzami la Akuariuszy z 3 paźzirika 0 r. Część II Mamayka ubzpiczń życiowych Imię i azwisko osoby gzamiowaj:... Czas gzamiu: 00 miu Warszawa, 3 paźzirika 0 r. Mamayka
Jerzy śyŝyński Matematyczne miary wzrostu a liczba e
Jrzy śyŝyński Maayczn iary wzrosu a liczba. Wzros w niskończni długi czasi Przyjijy, Ŝ chcy obliczyć, jaka js warość kapiału lub jakijkolwik innj rzczy, kóra charakryzuj się procs wzrosu w sały pi, po
Wykaz zmian wprowadzonych do skrótu prospektu informacyjnego KBC Parasol Funduszu Inwestycyjnego Otwartego w dniu 04 stycznia 2010 r.
Wykaz zmia wprowadzoych do skróu prospeku iformacyjego KBC Parasol Fuduszu Iwesycyjego Owarego w diu 0 syczia 200 r. Rozdział I Dae o Fuduszu KBC Subfudusz Papierów DłuŜych Brzmieie doychczasowe: 6. Podsawowe
i 0,T F T F 0 Zatem: oprocentowanie proste (kapitalizacja na koniec okresu umownego 0;N, tj. w momencie t N : F t F 0 t 0;N, F 0
Maemayka finansowa i ubezpieczeniowa - 1 Sopy procenowe i dyskonowe 1. Sopa procenowa (sopa zwrou, sopa zysku) (Ineres Rae). Niech: F - kapiał wypoŝyczony (zainwesowany) w momencie, F T - kapiał zwrócony
Wpływ rentowności skarbowych papierów dłużnych na finanse przedsiębiorstw i poziom bezrobocia
Wpływ renowności skarbowych papierów dłużnych na inanse przedsiębiorsw i poziom bezrocia Leszek S. Zaremba Sreszczenie W pracy ej wykażemy prawidłowość, kóra mówi, że im wyższa jes renowność bezryzykownych
A. Kasperski, M. Kulej, BO -Wyk lad 5, Optymalizacja sieciowa 1
A. Kaperki, M. Kulej, BO -Wyk lad, Opymalizacja ieciowa 1 Zagadnienie makymalnego przep lywu (MP). Przyk lad. W pewnym mieście inieje fragmen wodoci agów zadany w poaci naȩpuj acej ieci: 1 Luki oznaczaj
dr Bartłomiej Rokicki Katedra Makroekonomii i Teorii Handlu Zagranicznego Wydział Nauk Ekonomicznych UW
Kaedra Makroekonomii i Teorii Handlu Zagranicznego Wydział Nauk Ekonomicznych UW Sposoby usalania płac w gospodarce Jednym z głównych powodów, dla kórych na rynku pracy obserwujemy poziom bezrobocia wyższy
NIEPEWNOŚĆ POMIAROWA - WPROWADZENIE
NIEPENOŚĆ POMIAROA - PROADZENIE - bezwzęda iepewość poiarowa (dokładość poiaru). Jej źródłe oże bć: przpadkow rozrzu wików poiarów dokładość przrządu. Niepewości poiarowe ierzoe bezpośredio związae z dokładością
Metody oceny efektywności projektów inwestycyjnych
Opracował: Leszek Jug Wydział Ekoomiczy, ALMAMER Szkoła Wyższa Meody ocey efekywości projeków iwesycyjych Niezbędym warukiem urzymywaia się firmy a ryku jes zarówo skuecze bieżące zarządzaie jak i podejmowaie
MAKROEKONOMIA 2. Wykład 3. Dynamiczny model DAD/DAS, część 2. Dagmara Mycielska Joanna Siwińska - Gorzelak
MAKROEKONOMIA 2 Wykład 3. Dynamiczny model DAD/DAS, część 2 Dagmara Mycielska Joanna Siwińska - Gorzelak E i E E i r r 1 1 1 ) ( R. popyu R. Fishera Krzywa Phillipsa Oczekiwania Reguła poliyki monearnej
Szacowanie składki w ubezpieczeniu od ryzyka niesamodzielności
Skłaki w ubezpieczeiu o ryzyka iesamozielości EDYTA SIDOR-BANASZEK Szacowaie skłaki w ubezpieczeiu o ryzyka iesamozielości Kalkulacja skłaki w ubezpieczeiach jes barzo ważym zagaieiem związaym z maemayką
MAKROEKONOMIA 2. Wykład 3. Dynamiczny model DAD/DAS, część 2. Dagmara Mycielska Joanna Siwińska - Gorzelak
MAKROEKONOMIA 2 Wykład 3. Dynamiczny model DAD/DAS, część 2 Dagmara Mycielska Joanna Siwińska - Gorzelak ( ) ( ) ( ) E i E E i r r ν φ θ θ ρ ε ρ α 1 1 1 ) ( R. popyu R. Fishera Krzywa Phillipsa Oczekiwania
KONKURS MATEMATYCZNO FIZYCZNY 22 marca 2012 r. Klasa II
...... iię i nazwiko ucznia... klaa KONKURS MATEMATYCZNO FIZYCZNY arca r. Klaa II... ilość punktów Drogi uczniu! Przed Tobą zetaw 16 zadań. Pierwze 1 to zadania zaknięte. Rozwiązanie tych zadań polega
Efektywność projektów inwestycyjnych. Statyczne i dynamiczne metody oceny projektów inwestycyjnych
Efekywość projeków iwesycyjych Saycze i dyamicze meody ocey projeków iwesycyjych Źródła fiasowaia Iwesycje Rzeczowe Powiększeie mająku rwałego firmy, zysk spodzieway w dłuższym horyzocie czasowym. Fiasowe
Ekonomiczno-techniczne aspekty wykorzystania gazu w energetyce
Ekonomiczno-chniczn aspky wykorzysania gazu w nrgyc anusz oowicz Wydział Inżynirii i Ochrony Środowiska Polichnika Częsochowska zacowani nakładów inwsycyjnych na projky wykorzysania gazu w nrgyc anusz
Inwestycje. Makroekonomia II Dr hab. Joanna Siwińska-Gorzelak
Inwesycje Makroekonomia II Dr hab. Joanna Siwińska-Gorzelak CIASTECZOWY ZAWRÓT GŁOWY o akcja mająca miejsce w najbliższą środę (30 lisopada) na naszym Wydziale. Wydarzenie o związane jes z rwającym od
Podstawy Procesów i Konstrukcji Inżynierskich. Kinematyka
Podawy Proceów i Konrukcji Inżynierkich Kinemayka Prowadzący: Kierunek Wyróżniony rzez PKA Mechanika Kinemayka Dynamika Bada ruch ciał nie wnikając w rzyczyny warunkujące en ruch Bada ruch w związku z
Makroekonomia II. Plan
Makroekonomia II Wykład 5 INWESTYCJE Wyk. 5 Plan Inwesycje 1. Wsęp 2. Inwesycje w modelu akceleraora 2.1 Prosy model akceleraora 2.2 Niedosaki prosego modelu akceleraora 3. Neoklasyczna eoria inwesycji
Ćwiczenie 3. H 1 : p p 0 H 3 : p > p 0. b) dla małej próby statystykę testową oblicza się za pomocą wzoru:
Ćwiczeie ERYFIKACJA IPOTEZ Tesowaie hipoez: Zakładamy że wszyskie hipoezy będą weryfikowae a poziomie isoości α.. eryfikacja hipoezy o wskaźik srkry jedej zmieej losowej dyskreej Rozparjemy próbkę elemeową
Teoria Sygnałów. III rok Informatyki Stosowanej. Wykład 7 [ ] ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) Analiza częstotliwościowa dyskretnych sygnałów cyfrowych
ora Sygałów III ro Ioray Sosowaj Wyła Rozważy sończoy sygał () spróboway z częsolwoścą : Aalza częsolwoścowa ysrych sygałów cyrowych p óra js wa razy węsza o częsolwośc asyalj a. Oblczy jgo rasorację Fourra.
Matematyka ubezpieczeń majątkowych 9.10.2006 r. Zadanie 1. Rozważamy proces nadwyżki ubezpieczyciela z czasem dyskretnym postaci: n
Maemayka ubezpieczeń mająkowych 9.0.006 r. Zadaie. Rozważamy proces adwyżki ubezpieczyciela z czasem dyskreym posaci: U = u + c S = 0... S = W + W +... + W W W W gdzie zmiee... są iezależe i mają e sam
KRYTERIA OCENIANIA ODPOWIEDZI Próbna Matura z OPERONEM. Fizyka i astronomia Poziom podstawowy
RYTERIA OCENIANIA ODPOIEDZI Próbna Matura z OPERONEM Fizyka i atronoia Pozio podtawowy Litopad 03 niniejzy cheacie oceniania zadań otwartych ą prezentowane przykładowe poprawne odpowiedzi. tego typu ch
Zadania do rozdziału 2.
Zadania do rozdziału. Zad..1. Saochód na auoradzie poruza ię ruche jednoajny prooliniowy z prędkością υ100 k/odz. W jaki czaie przebędzie on droę 50 k? Rozwiązanie: Zad... υ 50 k / odz 0.5 odz. υ 100 k
Analiza instrumentów pochodnych
Analiza inrumenów pochonych Dr Wiolea owak Wykła 7 Wycena opcji na akcję bez ywieny moel Blacka-cholea z prawami o ywieny moel Merona Założenia moelu Blacka-cholea. Ceny akcji zachowują logarymiczno-normalnym.
Podstawy zarządzania finansami przedsiębiorstwa
Podsawy zarządzaia fiasami przedsiębiorswa I. Wprowadzeie 1. Gospodarowaie fiasami w przedsiębiorswie polega a: a) określeiu spodziewaych korzyści i koszów wyikających z form zaagażowaia środków fiasowych
kapitał trwały środki obrotowe
Obliczeia ekoomicze i ocea przesięwzięć iwesycyjych oraz racjoalizujących użykowaie eergii (J. Paska). Posawowe pojęcia rachuku ekoomiczego w elekroechice Całkowie akłay iwesycyje (wyaki kapiałowe - capial
Założenia metodyczne optymalizacji ekonomicznego wieku rębności drzewostanów Prof. dr hab. Stanisław Zając Dr inż. Emilia Wysocka-Fijorek
Założenia meodyczne opymalizacji ekonomicznego wieku rębności drzewosanów Prof. dr hab. Sanisław Zając Dr inż. Emilia Wysocka-Fijorek Plan 1. Wsęp 2. Podsawy eoreyczne opymalizacji ekonomicznego wieku
Obligacja i jej cena wewnętrzna
Obligacja i jej cea wewęrza Obligacja jes o isrume fiasowy (papier warościowy), w kórym jeda sroa, zwaa emieem obligacji, swierdza, że jes dłużikiem drugiej sroy, zwaej obligaariuszem (jes o właściciel
Matematyka finansowa 20.03.2006 r. Komisja Egzaminacyjna dla Aktuariuszy. XXXVIII Egzamin dla Aktuariuszy z 20 marca 2006 r.
Komisja Egzaminacyjna dla Akuariuszy XXXVIII Egzamin dla Akuariuszy z 20 marca 2006 r. Część I Maemayka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minu 1 1. Ile
Ś Ż ż Ż
Ś Ż ż Ż ż ć ć ć ć ć ć ż ż Ż ż Ż ż ż ć ż ż Ż Ż ż Ż ż Ż ż Ż Ż ż Ż ż ć ć ć ż ć ż ż ż ć Ż ć ć Ś ć Ż ć ż ź ż ż ż ć ż ż ż ż ć Ś ż Ż ż Ć Ć ć Ż ź ć ć ć ć ż ź ć ć Ść ć ż ź Ść ć ź Ś ć ć ć Ś ć ć ć ć ć ź ż ż ć ć
Jarosław Wróblewski Analiza Matematyczna 2, lato 2018/19
7 Wyzaczyć zbiór wszyskich warości rzeczywisych parameru p, dla kórych całka iewłaściwa jes zbieża x xe Dzieląc przedział całkowaia orzymujemy x x e x x e x x e Zbadamy, dla kórych warości parameru p całki
t - kwantyl rozkładu t-studenta rzędu p o f stopniach swobody
ZJAZD ANALIZA DANYCH CIĄGŁYCH ramach zajęć będą badae próbki pochodzące z poplacji w kórych badaa cecha ma rozkład ormaly N(μ σ). Na zajęciach będą: - wyzaczae przedziały fości dla warości średiej i wariacji
Management Systems in Production Engineering No 4(20), 2015
EKONOMICZNE ASPEKTY PRZYGOTOWANIA PRODUKCJI NOWEGO WYROBU Janusz WÓJCIK Fabryka Druu Gliwice Sp. z o.o. Jolana BIJAŃSKA, Krzyszof WODARSKI Poliechnika Śląska Sreszczenie: Realizacja prac z zakresu przygoowania
Stopy spot i stopy forward. Bootstrapping
Sop spo i sop orward. Boosrapping. Rnkowe a eorecne (implikowane) sop spo i sop orward. Zależności pomięd sopami spo a sopami orward. Sop orward dla insrumenów rnku kapiałowego. 4. Sop orward dla insrumenów
Gretl konstruowanie pętli Symulacje Monte Carlo (MC)
Grel kosruowaie pęli Symulacje Moe Carlo (MC) W Grelu, aby przyspieszyć pracę, wykoać iesadardową aalizę (ie do wyklikaia ) możliwe jes użycie pęli. Pęle realizuje komeda loop, kóra przyjmuje zesaw iych
Wykład 5. Kryzysy walutowe. Plan wykładu. 1. Spekulacje walutowe 2. Kryzysy I generacji 3. Kryzysy II generacji 4. Kryzysy III generacji
Wykład 5 Kryzysy waluowe Plan wykładu 1. Spekulacje waluowe 2. Kryzysy I generacji 3. Kryzysy II generacji 4. Kryzysy III generacji 1 1. Spekulacje waluowe 1/9 Kryzys waluowy: Spekulacyjny aak na warość
Wykład 6. Badanie dynamiki zjawisk
Wykład 6 Badanie dynamiki zjawisk TREND WYODRĘBNIANIE SKŁADNIKÓW SZEREGU CZASOWEGO 1. FUNKCJA TRENDU METODA ANALITYCZNA 2. ŚREDNIE RUCHOME METODA WYRÓWNYWANIA MECHANICZNEGO średnie ruchome zwykłe średnie
Makroekonomia 1 Wykład 13 Naturalna stopa bezrobocia i krzywa Phillipsa
Makroekonomia Wykład 3 Nauralna sopa bezrobocia i krzywa hillipsa Gabriela Grokowska Kaedra Makroekonomii i Teorii Handlu Zagranicznego Oryginalne badanie hillipsa A. W. hillips (LSE, 958: obserwacja empiryczna
Ocena ekonomicznej efektywności przedsięwzięć inwestycyjnych w elektrotechnice. 2. Podstawowe pojęcia obliczeń ekonomicznych w elektrotechnice
opracował: prof. dr hab. iż. Józef Paska, mgr iż. Pior Marchel POLITECHNIKA WARSZAWSKA Isyu Elekroeergeyki, Zakład Elekrowi i Gospodarki Elekroeergeyczej Ekoomika w elekroechice laboraorium Ćwiczeie r
Instrukcja do ćwiczenia z przedmiotu Optymalizacja Procesów Cieplnych. Temat: Optymalna grubość izolacji ściany budynku.
Inrucja do ćwczna z przdmou Opymalzacja Proców Cplnych ma: Opymalna grubość zolacj ścany budynu. Clm ćwczna j wyznaczn opymalnj grubośc warwy zolacyjnj ścany budynu op rując ę mnmalzacją ozów całowych.
Matematyka finansowa r. Komisja Egzaminacyjna dla Aktuariuszy. XXXIV Egzamin dla Aktuariuszy z 17 stycznia 2005 r.
Komisja Egzamiacyja dla Akuariuszy XXXIV Egzami dla Akuariuszy z 17 syczia 2005 r. Część I Maemayka fiasowa Imię i azwisko osoby egzamiowaej:... WERSJA TESTU A Czas egzamiu: 100 miu 1 1. Day jes ieskończoy
Parytet stóp procentowych a premia za ryzyko na przykładzie kursu EURUSD
Parye sóp procenowych a premia za ryzyko na przykładzie kursu EURUD Marcin Gajewski Uniwersye Łódzki 4.12.2008 Parye sóp procenowych a premia za ryzyko na przykładzie kursu EURUD Niezabazpieczony UIP)
Wykład 6 Pochodna, całka i równania różniczkowe w praktycznych zastosowaniach w elektrotechnice.
Wykład 6 Pochodna, całka i równania różniczkow w prakycznych zasosowaniach w lkrochnic. Przypomnini: Dfinicja pochodnj: Granica ilorazu różnicowgo-przyros warości funkcji do przyrosu argumnów-przy przyrości
1. Samochód jadący z szybkością 10 m/s na prostoliniowym odcinku trasy zwolnił i osiągnął szybkość 5 m/s.
Iię i nazwiko Daa Klaa Werja A Sprawdzian 1 opi ruchu poępowego 1. Saochód jadący z zybkością 1 / na prooliniowy odcinku ray zwolnił i oiągnął zybkość 5 /. 1 a. Przyro prędkości a warość 5 / i zwro zgodny
MATEMATYKA FINANSOWA. Zadanie 1 Od jakiej kwoty otrzymano 15 zł odsetek za okres 2 miesięcy przy stopie procentowej 18% w skali roku.
MATEMATYA FIASWA Rachuek osetek postych Wykozystyway w okesie kótki o 1 oku Wzó oóly * * t Wzó pzy uwzlęieiu oiesieia czasoweo t * * t * T p. w pzypaku okesu zieeo t * * 360 Zaaie 1 jakiej kwoty otzyao
Scenariusz lekcji. Wojciech Dindorf Elżbieta Krawczyk
Scenariusz lekcji Czy światło ma naturę falową Wojciech Dindorf Elżbieta Krawczyk? Doświadczenie Younga. Cele lekcji nasze oczekiwania: Chcemy, aby uczeń: postrzegał doś wiadczenie jako ostateczne rozstrzygnię
ZESTAW VI. ε, są składnikami losowymi. Oba modele są nieliniowe. Model (1) Y X Y = = Y X NIELINIOWE MODELE EKONOMETRYCZNE, FUNKCJA PRODUKCJI
NIELINIOWE MODELE EKONOMETRYCZNE, FUNKCJA PRODUKCJI ZESTAW VI Przykład: Weźmy pod uwagę dwa modele ednorównaniowe: () Y = a+ b + c, () Y = + g + g Z + ξ, Gdzie,Y,Z oznaczaą zmienne, a,b,c,,g paramery srukuralne
Modele zmienności aktywów ryzykownych. Model multiplikatywny Rozkład logarytmiczno-normalny Parametry siatki dwumianowej
Moele zmieości akywów ryzykowych Moel muliplikaywy Rozkła logarymiczo-ormay Paramery siaki wumiaowej Moel muliplikaywy zmieości akywów Rekurecyjy moel muliplikaywy: (=, (k+ = (k u(k, k=,, Cea akywa w chwili
Wzory z fizyki. 3, m- masa w kg, V- objętość w m. - Ciężar ciała w N, m- masa w kg, g- przyspieszenie ziemskie w
www.afiz34.republika.pl. Gęość ciała, ( ρ- czyaj ro) V r- gęość w 3, - aa w, V- objęość w 3. Ciężar ciała g ( lub Q g ) F g Fg - Ciężar ciała w N, - aa w, g- przypiezeie ziekie w 3. Ciśieie hydroaycze
WZROST GOSPODARCZY A BEZROBOCIE
Wojciech Pacho & WZROST GOSPODARCZ A BEZROBOCIE Celem niniejszego arykułu jes pokazanie związku pomiędzy ezroociem a dynamiką wzrosu zagregowanej produkcji. Poszukujemy oowiedzi na pyanie czy i jak silnie