KONKURS MATEMATYCZNO FIZYCZNY 22 marca 2012 r. Klasa II

Wielkość: px
Rozpocząć pokaz od strony:

Download "KONKURS MATEMATYCZNO FIZYCZNY 22 marca 2012 r. Klasa II"

Transkrypt

1 iię i nazwiko ucznia... klaa KONKURS MATEMATYCZNO FIZYCZNY arca r. Klaa II... ilość punktów Drogi uczniu! Przed Tobą zetaw 16 zadań. Pierwze 1 to zadania zaknięte. Rozwiązanie tych zadań polega na wybraniu jednej odpowiedzi. Za każdą poprawną odpowiedź otrzyaz 1 punkt. Cztery natępne zadania ą otwarte. Na rozwiązanie zadań az 60 inut. Powodzenia! Zadanie 1. (1p) Gdy garnek jet w 40% puty to zawiera o 1,5 litra więcej wody niż gdy jet w 40% napełniony. Jaka jet pojeność garnka? A. 5,5 litra B. 3,75 litra C. 7,5 litra D. 8,5 litra Zadanie. (1p) Wyjęte z zarażarki ięo iało teperaturę 16 o C. Po kilku godzinach oiągnęło teperaturę taką, jaka panowała w kuchni, tzn. 0 o C. Przyrot teperatury ięa wynoi: A. t = 3 o C B. t = 36 o C C. t = 38 o C D. t = 4 o C Zadanie 3.(1p) Pole przedtawionego na ryunku kwadratu jet równe a, pole każdego z kół jet równe b. Jakie jet pole ograniczone pogrubioną linią? A. 4 b a B. 3 a b C. a b D.,5a b Zadanie 4. (1p) Wartość ciężaru rebrnego nazyjnika o objętości c 3 wynoi 0,1 N. Gętość rebra użytego do wyrobu tego nazyjnika jet równa: g A. 9,6 3 c g B. 9,9 3 c g C. 10,1 3 c g D. 10,5 3 c Zadanie 5.(1p) Drabina alarka dwuraienna o długości 5 etrów zotała roztawiona na zerokość 8 etrów. O ile etrów trzeba zniejzyć roztawienie drabiny, żeby ięgała ona wyokości 4 etrów? A. 1 etr B. etry C. 3 etry D. 4 etry Zadanie 6 (1p) Saochód ruzył ruche jednotajnie przypiezony po linii protej i w pierwzej ekundzie tego ruchu przejechał. Ile etrów przejechał w trzeciej ekundzie tego ruchu? A. 0 B. 10 C. 6 D. 4

2 Zadanie 7. (1p) Jeżeli ześcian podzieliy na 7 identycznych ześcianów, to całkowite pole powierzchni zwiekzy ię A. 3 razy B. 9 razy C. 3 3 razy D. 7 razy Zadanie 8. (1p) Na ay 1 = 6,5 kg i = 3,5 kg działają iły F 1 = 5 N i F = 15 N. Przypiezenie układu a wynoi: A. 5,5 B. 1,0 C. 7,0 D. 4 Zadanie 9 (1p) Przekątna BD czworokąta ABCD jet średnicą okręgu opianego na ty czworokącie. Miara kąta α wynoi: A. 100 B. 110 C. 10 D. 130 Zadanie 10 (1p) Chłopiec o aie 55 kg toi w windzie, która ruza z iejca i poruza ię w górę. Wykre przedtawia zależność wartości prędkości windy od czau. Szybkość średnia całego ruchu wynoi: A. 5,5 B. C. 1,6 D. 1, Zadanie 11 (1p) 6 3 Wartość wyrażenia jet 1 A. równa 3 B. równa 3 C. równa 3 D. niejza od 1,5 Zadanie 1. (1p) Przygotowując ciato odważono kolejno: 80 dag ąki, 30 dag cukru i 15 dag ała. Jaka jet całkowita aa tych ubtancji, jeśli wiadoo, że każdą z nich oddzielnie ważono z dokładnością 1 dag? A. od 1 dag do 15 dag B. od 15 dag do 18 dag C. (15 ± 1) dag D. (15 ± 3) dag

3 Zadanie 13. (4p) Dany jet kwadrat ABCD. Punkt E jet środkie boku AB, natoiat punkt F jet środkie boku BC. Pole trójkąta DEF jet równe 3. Oblicz pole zakrekowanej części kwadratu. Zadanie 14. (3p) Schody ruchoe podnozą tojącego na nich paażera w ciągu inut. Po nieczynnych chodach ruchoych paażer wchodzi w ciągu 6 inut. Oblicz ile czau paażer będzie wchodził po czynnych chodach ruchoych? Załóż, że ruch chodów i ruch paażera jet jednotajny.

4 Zadanie 15. (3p) Po podwórzu chodzą indyki i króliki. Indyków jet o 1 więcej niż królików. Jeśli na podwórzu ay łącznie 3 łapy, to ile jet ta krzydeł? Zadanie 16. (3p) Dwie poruzające ię bez przezkód kule zderzają ię centralnie. W wyniku tego zderzenia kule łączą ię i dalej poruzają ię raze. May i prędkości kul ą odpowiednio równe: 1 = 0,3 kg, = 0,5 kg, v1 8, v 6. a) Oblicz wartość prędkości kul po zderzeniu. b) Określ, w którą tronę poruzają ię kule po zderzeniu.

5 iię i nazwiko ucznia... klaa KONKURS MATEMATYCZNO FIZYCZNY arca r. Klaa III... ilość punktów Drogi uczniu! Przed Tobą zetaw 16 zadań. Pierwze 1 to zadania zaknięte. Rozwiązanie tych zadań polega na wybraniu jednej odpowiedzi. Za każdą poprawną odpowiedź otrzyaz 1 punkt. Cztery natępne zadania ą otwarte. Na rozwiązanie zadań az 60 inut. Powodzenia! Zadanie 1. (1p) Jaki kąt rozwarty tworzą wkazówki (godzinowa i inutowa) zegara o godzinie 15 40? A. 150 B. 130 C. 165 D. 10 Zadanie. (1p) Aplitudę drgań wahadła zwiękzono razy. Okre jego drgań: A. wzrół razy B. wzrół 4 razy C. zalał 4 razy D. nie zienił ię Zadanie 3. (1p) Dane ą funkcje f ( x) 3x, g ( x) 4x 1, h( x) x b. Dla jakiej wartości b wykrey funkcji f, g, h przecinają ię w jedny punkcie? A. 5 B. -5 C. 1 D. - Zadanie 4. (1p) Potawienie łupa o aie 100 kg i wyokości 5 wyaga wykonania pracy: A. 500 J B J C. 50 J D. 500 J Zadanie 5. (1p) Czworokąt ABCD jet kwadrate o boku a, natoiat EB = GC =b. Pole trójkąta AEG wynoi: A. 0.5( a b)( a b) B. 0.5b ( a b) C. 0.5a ( a b) D. 0.5( a b) Zadanie 6. (1p) Krzeełka na obracającej ię karuzeli znajdują ię w odległości 6 od oi obrotu. Cza trwania jednego obrotu karuzeli wynoi 6 ekund. Z jaką prędkością poruzają ię krzeełka i jaka jet czętotliwość obrotów karuzeli? 1 1 A. π, B. 1, 6 C. π, Hz D. π, 6 Hz 6 6

6 Zadanie 7. (1p) Wartość wyrażenia jet równa: A B. 5 C. 5 D Zadanie 8. (1p) Do uzieionego etalowego walca, nie dotykając go, zbliżono pręt naelektryzowany ujenie. Po odłączeniu uzieienia i natępnie oddaleniu pręta, walec będzie: A. naelektryzowany ujenie B. naelektryzowany dodatnio C. naelektryzowany dodatnio lub ujenie, zależnie od etalu z jakiego zotał wykonany D. nadal nie naelektryzowany, gdyż w czaie zbliżania pręt był uzieiony Zadanie 9. (1p) Siedzi obie żuczek na zafie o wyokości etry, zerokości 1 etr i głębokości 1 etr. Potanowił nagle przejść z punktu A do punktu B, nie przeęczając ię nadiernie. Jaką ożliwie najkrótzą drogę ui przebyć? A. 1 5 B. C. 3 D. 10 Zadanie 10. (1p) Z działa okrętowego o aie t oddano trzał pocikie o aie 10 kg. Opuścił on lufę z prędkością 00. Prędkość odrzutu działa wynoiła: A. 1 B. C. 3 D. 4 Zadanie 11. (1p) Ania poadziła w ogrodzie 8 krzewów róż. Okazało ię, że a teraz pięciokrotnie więcej krzewów niż przed poadzenie. Ile krzewów a teraz Ania w ogrodzie? A. 0 B. 1 C. 10 D. 8 Zadanie 1. (1p) Zjedzenie tabliczki czekolady dotarcza na około 000 kj energii. Dzięki tej energii oglibyśy wnieść na wyokość 0 węgiel w ilości: A. 10 kg B. 100 kg C. 1 t D. 10 t

7 Zadanie 13. (p) Dwie iotry Kaia i Baia ą wpółwłaścicielkai działki, przy czy część Kai jet o 40% więkza od części Bai. Baia przeznaczyła na budowę altany 1% powierzchni wojej działki to jet 10 ². Oblicz pole powierzchni całej działki. Zadanie 14. (5p) Jaką ilość wody o teperaturze 0 o C ożna zagotować w ciągu 1 godziny dwiea grzałkai przytoowanyi do napięcia 0V o oporze 100 Ω każda przy połączeniu ich a) zeregowo b) równolegle? J Ciepło właściwe wody to 400. Straty energii poiń. Teperatura o kg C wrzenia wody 100 o C.

8 Zadanie 15. (4p) Trzech przyjaciół logików Paweł, Toek i Michał potkało ię po latach rozłąki. Paweł dochował ię trzech córek. Kiedy dwaj pozotali przyjaciele pytali go o wiek córek, ten w odpowiedzi dał i zagadkę. Podał obu iloczyn wieku córek (w latach), który wynoił 36. Natępnie Tokowi powiedział, ile wynoi ua wieku wzytkich córek, a Michałowi zdradził, że najtarza córka od roku opiekuje ię uroczy piekie. Michał wiedział, jaki rodzaj dodatkowej inforacji otrzyał Toek, ale nie znał konkretnej liczby (czyli uy wieku córek). Po chwili nayłu Michał powiedział: - Nie wie. Ma za ało danych. - Ja też nie wie. Również a za ało danych odezwał ię Toek. - A to ja już wie! rozproienił ię Michał i prawidłowo podał wiek każdej z córek Pawła. Ile lat liczyła obie każda z córek Pawła? Zadanie 16. (p) Ciało pada z wyokości 100. Oblicz prędkość tego ciała w chwili zderzenia z zieią, jeżeli 0 % energii potencjalnej tego ciała zotało zużyte na pokonanie oporu powietrza. Należy przyjąć g 10.

WOJEWÓDZKI KONKURS FIZYCZNY [ETAP SZKOLNY] ROK SZKOLNY

WOJEWÓDZKI KONKURS FIZYCZNY [ETAP SZKOLNY] ROK SZKOLNY MIEJSCE NA KOD UCZESTNIKA KONKURSU WOJEWÓDZKI KONKURS FIZYCZNY [ETAP SZKOLNY] ROK SZKOLNY 2010/2011 Cza trwania: 90 inut Tet kłada ię z dwóch części. W części pierwzej az do rozwiązania 15 zadań zakniętych,

Bardziej szczegółowo

PRZYGOTOWANIE DO EGZAMINU GIMNAZJALNEGO Z FIZYKI DZIAŁ III. SIŁA WPŁYWA NA RUCH

PRZYGOTOWANIE DO EGZAMINU GIMNAZJALNEGO Z FIZYKI DZIAŁ III. SIŁA WPŁYWA NA RUCH DZIAŁ III. SIŁA WPŁYWA NA RUCH Wielkość fizyczna nazwa ybol Przypiezenie (II zaada dynaiki) a Jednotka wielkości fizycznej Wzór nazwa ybol F N w a niuton na kilogra kg Ciężar Q Q g niuton N Przypiezenie

Bardziej szczegółowo

motocykl poruszał się ruchem

motocykl poruszał się ruchem Tet powtórzeniowy nr 1 W zadaniach 1 19 wtaw krzyżyk w kwadracik obok wybranej odpowiedzi Inforacja do zadań 1 5 Wykre przedtawia zależność prędkości otocykla od czau Grupa B 1 Dokończ zdanie, określając,

Bardziej szczegółowo

Zad. 4 Oblicz czas obiegu satelity poruszającego się na wysokości h=500 km nad powierzchnią Ziemi.

Zad. 4 Oblicz czas obiegu satelity poruszającego się na wysokości h=500 km nad powierzchnią Ziemi. Grawitacja Zad. 1 Ile muiałby wynoić okre obrotu kuli ziemkiej wokół włanej oi, aby iła odśrodkowa bezwładności zrównoważyła na równiku iłę grawitacyjną? Dane ą promień Ziemi i przypiezenie grawitacyjne.

Bardziej szczegółowo

KONKURS FIZYCZNY DLA UCZNIÓW GIMNAZJUM

KONKURS FIZYCZNY DLA UCZNIÓW GIMNAZJUM Konkury w województwie podkarpacki w roku zkolny 2005/2006... pieczątka nagłówkowa zkoły... kod pracy ucznia KONKURS FIZYCZNY DLA UCZNIÓW GIMNAZJUM ETAP SZKOLNY Drogi Uczniu, Witaj na I etapie konkuru

Bardziej szczegółowo

SPRAWDZIAN WIADOMOŚCI I UMIEJĘTNOŚCI Z DYNAMIKI KLASA I GIMNAZJUM GRUPA I

SPRAWDZIAN WIADOMOŚCI I UMIEJĘTNOŚCI Z DYNAMIKI KLASA I GIMNAZJUM GRUPA I SPRAWDZIAN WIADOMOŚCI I UMIEJĘTNOŚCI Z DYNAMIKI KLASA I GIMNAZJUM GRUPA I 1. (3p) Jaki rodzaj oddziaływań zachodzi w podanych ytuacjach? a) Spadanie jabłka z drzewa -... b) Uderzenie łotkie w gwóźdź...

Bardziej szczegółowo

Drobiną tą jest: A) proton B) neutron C) atom wodoru D) elektron

Drobiną tą jest: A) proton B) neutron C) atom wodoru D) elektron ŁÓDZKIE CENTRUM DOSKONALENIA NAUCZYCIELI I KSZTAŁCENIA PRAKTYCZNEGO Kod pracy Wypełnia Przewodniczący Wojewódzkiej Koiji Wojewódzkiego Konkuru Przediotowego z Fizyki Iię i nazwiko ucznia... Szkoła... Punkty

Bardziej szczegółowo

1 W ruchu jednostajnym prostoliniowym droga:

1 W ruchu jednostajnym prostoliniowym droga: TEST z działu: Kineatyka iię i nazwiko W zadaniac 8 każde twierdzenie lub pytanie a tylko jedną prawidłową odpowiedź Należy ją zaznaczyć data W rucu jednotajny protoliniowy droga: 2 jet wprot proporcjonalna

Bardziej szczegółowo

SPRAWDZIAN z działu: Dynamika. TEST W zadaniach 1 33 każde twierdzenie lub pytanie ma tylko jedną prawidłową odpowiedź. Należy ją zaznaczyć.

SPRAWDZIAN z działu: Dynamika. TEST W zadaniach 1 33 każde twierdzenie lub pytanie ma tylko jedną prawidłową odpowiedź. Należy ją zaznaczyć. SPRAWDZIAN z działu: Dynamika TEST W zadaniach 1 33 każde twierdzenie lub pytanie ma tylko jedną prawidłową odpowiedź. Należy ją zaznaczyć....... imię i nazwiko... klaa 1. Które z poniżzych zdań tanowi

Bardziej szczegółowo

LIGA ZADANIOWA z FIZYKI MAJ 2014

LIGA ZADANIOWA z FIZYKI MAJ 2014 Terin oddania prac: 4. VI. 2014 r. GIMNAZJUM NR 1 w KOŃSKICH Rok zkolny 2013 / 2014 LIGA ZADANIOWA z FIZYKI MAJ 2014 ZADANIA DLA UCZNIÓW KLAS PIERWSZYCH ZADANIE 1 Oblicz wartość iły nośnej balonu wypełnionego

Bardziej szczegółowo

WOJEWÓDZKI KONKURS FIZYCZNY [ETAP REJONOWY] ROK SZKOLNY 2009/2010 Czas trwania: 120 minut

WOJEWÓDZKI KONKURS FIZYCZNY [ETAP REJONOWY] ROK SZKOLNY 2009/2010 Czas trwania: 120 minut KOD UCZESTNIKA KONKURSU WOJEWÓDZKI KONKURS FIZYCZNY [ETAP REJONOWY] ROK SZKOLNY 009/010 Cza trwania: 10 inut Tet kłada ię z dwóch części. W części pierwzej az do rozwiązania 15 zadań zakniętych, za które

Bardziej szczegółowo

i odwrotnie: ; D) 20 km h

i odwrotnie: ; D) 20 km h 3A KIN Kinematyka Zadania tr 1/5 kin1 Jaś opowiada na kółku fizycznym o wojej wycieczce używając zwrotów: A) zybkość średnia w ciągu całej wycieczki wynoiła 0,5 m/ B) prędkość średnia w ciągu całej wycieczki

Bardziej szczegółowo

Blok 2: Zależność funkcyjna wielkości fizycznych

Blok 2: Zależność funkcyjna wielkości fizycznych Blok : Zależność funkcyjna wielkości fizycznych ZESTAW ZADAŃ NA ZAJĘCIA 1. Na podtawie wykreu oblicz średnią zybkość ciała w opianym ruchu.. Na ryunku przedtawiono wykre v(t) pewnego pojazdu jadącego po

Bardziej szczegółowo

KONKURS MATEMATYCZNO FIZYCZNY 11 marca 2010 r. Klasa II

KONKURS MATEMATYCZNO FIZYCZNY 11 marca 2010 r. Klasa II ...... kod ucznia... klasa KONKURS MATEMATYCZNO FIZYCZNY marca 200 r. Klasa II... ilość punktów Drogi uczniu! Przed Tobą zestaw 4 zadań. Pierwsze 0 to zadania zamknięte. Rozwiązanie tych zadań polega na

Bardziej szczegółowo

Zadania do sprawdzianu

Zadania do sprawdzianu Zadanie 1. (1 pkt) Na podtawie wykreu możemy twierdzić, że: Zadania do prawdzianu A) ciało I zaczęło poruzać ię o 4 później niż ciało II; B) ruch ciała II od momentu tartu do chwili potkania trwał 5 ;

Bardziej szczegółowo

KONKURS FIZYCZNY DLA UCZNIÓW GIMNAZJÓW WOJEWÓDZTWA MAZOWIECKIEGO

KONKURS FIZYCZNY DLA UCZNIÓW GIMNAZJÓW WOJEWÓDZTWA MAZOWIECKIEGO KOD UCZNIA KONKURS FIZYCZNY DLA UCZNIÓW GIMNAZJÓW WOJEWÓDZTWA MAZOWIECKIEGO I ETAP SZKOLNY 19 października 2017 r. Uczennico/Uczniu: 1. Na rozwiązanie wzytkich zadań az 90 inut. 2. Piz długopie/pióre -

Bardziej szczegółowo

1. Samochód jadący z szybkością 10 m/s na prostoliniowym odcinku trasy zwolnił i osiągnął szybkość 5 m/s.

1. Samochód jadący z szybkością 10 m/s na prostoliniowym odcinku trasy zwolnił i osiągnął szybkość 5 m/s. Iię i nazwiko Daa Klaa Werja A Sprawdzian 1 opi ruchu poępowego 1. Saochód jadący z zybkością 1 / na prooliniowy odcinku ray zwolnił i oiągnął zybkość 5 /. 1 a. Przyro prędkości a warość 5 / i zwro zgodny

Bardziej szczegółowo

KONKURS PRZEDMIOTOWY Z FIZYKI dla uczniów dotychczasowych gimnazjów. Schemat punktowania zadań

KONKURS PRZEDMIOTOWY Z FIZYKI dla uczniów dotychczasowych gimnazjów. Schemat punktowania zadań 1 KONKURS PRZEDMIOTOWY Z FIZYKI dla uczniów dotychczaowych ginazjów 0 tycznia 019 r. etap rejonowy Scheat punktowania zadań Makyalna liczba punktów 40. 85% 4pkt. Uwaga! 1. Za poprawne rozwiązanie zadania

Bardziej szczegółowo

SPRAWDZIAN NR Zaznacz poprawne dokończenie zdania. 2. Narysuj dowolny kąt rozwarty ABC, a następnie przy pomocy dwusiecznych skonstruuj kąt o

SPRAWDZIAN NR Zaznacz poprawne dokończenie zdania. 2. Narysuj dowolny kąt rozwarty ABC, a następnie przy pomocy dwusiecznych skonstruuj kąt o SPRAWDZIAN NR 1 ANNA KLAUZA IMIĘ I NAZWISKO: KLASA: GRUPA A 1. Średnica koła jest o 4 cm dłuższa od promienia. Pole tego koła jest równe 2. Narysuj dowolny kąt rozwarty ABC, a następnie przy pomocy dwusiecznych

Bardziej szczegółowo

KONKURS MATEMATYCZNO FIZYCZNY 22 listopada 2007r. Klasa II

KONKURS MATEMATYCZNO FIZYCZNY 22 listopada 2007r. Klasa II ...... iię i nazwisko ucznia... klasa KONKURS MATEMATYCZNO FIZYCZNY 22 listopada 2007r. Klasa II... ilość punktów Drogi uczniu! Przed Tobą zestaw 12 zadań. Pierwsze 8 to zadania zaknięte. Rozwiązanie tych

Bardziej szczegółowo

Konkurs fizyczny szkoła podstawowa. 2018/2019. Etap szkolny

Konkurs fizyczny szkoła podstawowa. 2018/2019. Etap szkolny UWAGA: W zadaniac o nuerac od 1 do 6 pośród podanyc propozycji odpowiedzi wybierz i zaznacz tą, która tanowi prawidłowe zakończenie otatniego zdania w zadaniu. Zadanie 1. (0 1pkt.) Lokootywa o aie 0 ton

Bardziej szczegółowo

POMOCNIK GIMNAZJALISTY

POMOCNIK GIMNAZJALISTY POMOCNIK GIMNAZJALISTY ważne wzory i definicje z fizyki opracowała gr Irena Keka KLASA I... 3 I. WIADOMOŚCI WSTĘPNE... 3 II. HYDROSTATYKA I AEROSTATYKA... 4 Klaa II... 5 I. KINEMATYKA... 5 II. DYNAMIKA...

Bardziej szczegółowo

KONKURS MATEMATYCZNO FIZYCZNY II etap Klasa II

KONKURS MATEMATYCZNO FIZYCZNY II etap Klasa II ...... iię i nazwisko ucznia... klasa KONKURS MATEMATYCZNO FIZYCZNY II etap Klasa II... ilość punktów Drogi uczniu! Przed Tobą zestaw 1 zadań. Pierwsze 8 to zadania zaknięte. Rozwiązanie tych zadań polega

Bardziej szczegółowo

Konkurs fizyczny - gimnazjum. 2018/2019. Etap szkolny

Konkurs fizyczny - gimnazjum. 2018/2019. Etap szkolny UWAGA: W zadaniac o nuerac od 1 do 6 pośród podanyc propozycji odpowiedzi wybierz i zaznacz tą, która tanowi prawidłowe zakończenie otatniego zdania w zadaniu. Zadanie 1. (0 1pkt.) Stojący na zynac wagon

Bardziej szczegółowo

KONKURS MATEMATYCZNO FIZYCZNY 26 listopada 2009 r. Klasa II

KONKURS MATEMATYCZNO FIZYCZNY 26 listopada 2009 r. Klasa II ...... imię i nazwisko ucznia... szkoła KONKURS MATEMATYCZNO FIZYCZNY 26 listopada 2009 r. Klasa II... ilość punktów Drogi uczniu! Przed Tobą zestaw 14 zadań. Pierwsze 10 to zadania zamknięte. Rozwiązanie

Bardziej szczegółowo

Układy inercjalne i nieinercjalne w zadaniach

Układy inercjalne i nieinercjalne w zadaniach FOTON 98 Jeień 007 53 Układy inercjalne i nieinercjalne w zadaniach Jadwia Salach Zadanie 1 Urzędnik pracujący w biurowcu wiadł do windy która ruzył dół i przez 1 ekundę jechała z przypiezenie o wartości

Bardziej szczegółowo

KONKURS MATEMATYCZNO FIZYCZNY 4 grudnia 2008 r. Klasa II

KONKURS MATEMATYCZNO FIZYCZNY 4 grudnia 2008 r. Klasa II ...... imię i nazwisko ucznia... klasa KONKURS MATEMATYCZNO FIZYCZNY 4 grudnia 008 r. Klasa II... ilość punktów Drogi uczniu! Przed Tobą zestaw 4 zadań. Pierwsze 0 to zadania zamknięte. Rozwiązanie tych

Bardziej szczegółowo

λ = 92 cm 4. C. Z bilansu cieplnego wynika, że ciepło pobrane musi być równe oddanemu

λ = 92 cm 4. C. Z bilansu cieplnego wynika, że ciepło pobrane musi być równe oddanemu Odpowiedzi i rozwiązania:. C. D (po włączeniu baterii w uzwojeniu pierwotny płynie prąd tały, nie zienia ię truień pola agnetycznego, nie płynie prąd indukcyjny) 3. A (w pozotałych przypadkach na trunie

Bardziej szczegółowo

Kuratorium Oświaty w Katowicach KONKURS PRZEDMIOTOWY Z FIZYKI I ASTRONOMII DLA UCZNIÓW SZKÓŁ GIMNAZJALNYCH. Etap I 25 listopada 2008 r.

Kuratorium Oświaty w Katowicach KONKURS PRZEDMIOTOWY Z FIZYKI I ASTRONOMII DLA UCZNIÓW SZKÓŁ GIMNAZJALNYCH. Etap I 25 listopada 2008 r. Kuratoriu Oświaty w Katowicach KONKURS PRZEDMIOTOWY Z FIZYKI I ASTRONOMII DLA UCZNIÓW SZKÓŁ GIMNAZJALNYCH Etap I 5 litopada 008 r. Drogi Uczetniku Konkuru Dziiaj przytępujez do pierwzego etapu Konkuru.

Bardziej szczegółowo

Zadania do rozdziału 3. Zad.3.1. Rozważmy klocek o masie m=2 kg ciągnięty wzdłuż gładkiej poziomej płaszczyzny

Zadania do rozdziału 3. Zad.3.1. Rozważmy klocek o masie m=2 kg ciągnięty wzdłuż gładkiej poziomej płaszczyzny Zadania do rozdziału 3. Zad.3.1. Rozważy klocek o aie kg ciągnięty wzdłuż gładkiej pozioej płazczyzny przez iłę P. Ile wynoi iła reakcji F N wywierana na klocek przez gładką powierzchnię? Oblicz iłę P,

Bardziej szczegółowo

POWODZENIA! ZDANIA ZAMKNIĘTE. WOJEWÓDZKI KONKURS FIZYCZNY [ETAP SZKOLNY] ROK SZKOLNY 2009/2010 Czas trwania: 90 minut KOD UCZESTNIKA KONKURSU.

POWODZENIA! ZDANIA ZAMKNIĘTE. WOJEWÓDZKI KONKURS FIZYCZNY [ETAP SZKOLNY] ROK SZKOLNY 2009/2010 Czas trwania: 90 minut KOD UCZESTNIKA KONKURSU. KOD UCZESTNIKA KONKURSU WOJEWÓDZKI KONKURS FIZYCZNY [ETAP SZKOLNY] ROK SZKOLNY 2009/2010 Czas trwania: 90 inut Test składa się z dwóch części. W części pierwszej asz do rozwiązania 15 zadań zakniętych,

Bardziej szczegółowo

SPRĘŻYNA DO RUCHU HARMONICZNEGO V 6 74

SPRĘŻYNA DO RUCHU HARMONICZNEGO V 6 74 Pracownia Dydaktyki Fizyki i Atronoii, Uniwerytet Szczecińki SPRĘŻYNA DO RUCHU HARMONICZNEGO V 6 74 Sprężyna jet przeznaczona do badania ruchu drgającego protego (haronicznego) na lekcji fizyki w liceu

Bardziej szczegółowo

Zasady dynamiki. 1. Jakie mogą być oddziaływania ciał? 2. Co dzieje się z ciałem, na które nie działają żadne siły?

Zasady dynamiki. 1. Jakie mogą być oddziaływania ciał? 2. Co dzieje się z ciałem, na które nie działają żadne siły? Zaady dynaiki. 1. Jakie ogą być oddziaływania ciał? Świat jet pełen rozaitych ciał. Ciała te nie ą od iebie niezależne, nieutannie na iebie działają. Objawy tego działania, czy też, jak ówią fizycy, oddziaływania

Bardziej szczegółowo

Zagadnienia na badanie wyników nauczani z fizyki kl II. [min]

Zagadnienia na badanie wyników nauczani z fizyki kl II. [min] Zagadnienia na badanie wyników nauczani z fizyki kl II Badanie wyników obejmuje natępujące działy: 1.Ruchy.Dynamika 3.Praca, moc, energia mechaniczna Przykładowe zadania Zad.1 (0-3pkt.) Jacek przez dwie

Bardziej szczegółowo

Matura 2011 maj. Zadanie 1. (1 pkt) Wskaż nierówność, którą spełnia liczba π A. x + 1 > 5 B. x 1 < 2 C. x D. x 1 3 3

Matura 2011 maj. Zadanie 1. (1 pkt) Wskaż nierówność, którą spełnia liczba π A. x + 1 > 5 B. x 1 < 2 C. x D. x 1 3 3 Matura 2011 maj Zadanie 1. (1 pkt) Wskaż nierówność, którą spełnia liczba π A. x + 1 > 5 B. x 1 < 2 C. x + 2 3 4 D. x 1 3 3 Zadanie 2. (1 pkt) Pierwsza rata, która stanowi 9% ceny roweru, jest równa 189

Bardziej szczegółowo

Kuratorium Oświaty w Lublinie KONKURS MATEMATYCZNY DLA UCZNIÓW SZKOŁY PODSTAWOWEJ ZESTAW ZADAŃ KONKURSOWYCH ROK SZKOLNY 2018/2019 ETAP TRZECI

Kuratorium Oświaty w Lublinie KONKURS MATEMATYCZNY DLA UCZNIÓW SZKOŁY PODSTAWOWEJ ZESTAW ZADAŃ KONKURSOWYCH ROK SZKOLNY 2018/2019 ETAP TRZECI Kuratorium Oświaty w Lublinie.. Imię i nazwisko ucznia Pełna nazwa szkoły Liczba uzyskanych punktów KONKURS MATEMATYCZNY DLA UCZNIÓW SZKOŁY PODSTAWOWEJ ZESTAW ZADAŃ KONKURSOWYCH ROK SZKOLNY 2018/2019 ETAP

Bardziej szczegółowo

PŁOCKA MIĘDZYSZKOLNA LIGA PRZEDMIOTOWA MATEMATYKA klasa V szkoła podstawowa 2016r.

PŁOCKA MIĘDZYSZKOLNA LIGA PRZEDMIOTOWA MATEMATYKA klasa V szkoła podstawowa 2016r. PŁOCKA MIĘDZYSZKOLNA LIGA PRZEDMIOTOWA MATEMATYKA klasa V szkoła podstawowa 2016r. KARTA PUNKTACJI ZADAŃ (wypełnia komisja konkursowa): Numer zadania Zad. 1 Zad. 2 Zad. 3 Zad. 4 SUMA PUNKTÓW Poprawna Zad.

Bardziej szczegółowo

Zasada ruchu środka masy i zasada d Alemberta 6

Zasada ruchu środka masy i zasada d Alemberta 6 Zaada ruchu środka ay i zaada d Aleerta 6 Wprowadzenie Zaada ruchu środka ay Środek ay układu punktów aterialnych poruza ię tak, jaky w ty punkcie yła kupiona cała aa układu i jaky do teo punktu przyłożone

Bardziej szczegółowo

KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH

KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH pieczątka WKK Kod ucznia - - Dzień Miesiąc Rok DATA URODZENIA UCZNIA KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH ETAP WOJEWÓDZKI Drogi Uczniu, witaj na III etapie konkursu matematycznego. Przeczytaj

Bardziej szczegółowo

KONKURS MATEMATYCZNO FIZYCZNY 2 grudnia 2010 r. Klasa II

KONKURS MATEMATYCZNO FIZYCZNY 2 grudnia 2010 r. Klasa II ...... iię i nazwisko ucznia... klasa KONKURS MATEMATYCZNO FIZYCZNY 2 grudnia 2010 r. Klasa II... ilość punktów Drogi uczniu! Przed Tobą zestaw 16 zadań. Pierwsze 12 to zadania zaknięte. Rozwiązanie tych

Bardziej szczegółowo

KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH 2010/2011

KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH 2010/2011 ... pieczątka szkoły... kod pracy ucznia KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH 2010/2011 ETAP SZKOLNY Drogi Uczniu! Witaj na I etapie konkursu z matematyki. Przeczytaj uważnie instrukcję

Bardziej szczegółowo

Września Dźwirzyno Września

Września Dźwirzyno Września Września Dźwirzyno Września 09.11.2012 11.11.2012 Ruch jednotajny W ruchu jednotajnym prędkość poruzającego ię ciała jet tała. W takim ruch zależność między prędkością, drogą i czaem opiuje wzór: v = t

Bardziej szczegółowo

EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM

EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. UZUPEŁNIA ZESPÓŁ NADZORUJĄCY KOD UCZNIA PESEL miejsce na naklejkę UZUPEŁNIA ZESPÓŁ NADZORUJĄCY Uprawnienia ucznia do: dostosowania

Bardziej szczegółowo

2. Załadowany pistolet spręŝynowy ustawiono pionowo w górę i oddano strzał. SpręŜyna

2. Załadowany pistolet spręŝynowy ustawiono pionowo w górę i oddano strzał. SpręŜyna Energia potencjalna pręŝytości 1. W kontrukcji pitoletu pręŝynowego uŝyto pręŝyny o wpółczynniku pręŝytości 100. Jaką aę a pocik pitoletu, jeśli odkztałcona o 6 c pręŝyna nadaje pocikowi w trakcie trzału

Bardziej szczegółowo

EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM CZĘŚĆ 2. MATEMATYKA

EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM CZĘŚĆ 2. MATEMATYKA Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. UZUPEŁNIA ZESPÓŁ NADZORUJĄCY KOD UCZNIA PESEL miejsce na naklejkę EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM CZĘŚĆ 2. MATEMATYKA Instrukcja

Bardziej szczegółowo

LVI Olimpiada Matematyczna

LVI Olimpiada Matematyczna LVI Olimpiada Matematyczna Rozwiązania zadań konkurowych zawodów topnia trzeciego 13 kwietnia 2005 r (pierwzy dzień zawodów) Zadanie 1 Wyznaczyć wzytkie trójki (x, y, n) liczb całkowitych dodatnich pełniające

Bardziej szczegółowo

Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu.

Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 2011 KOD UCZNIA UZUPEŁNIA ZESPÓŁ NADZORUJĄCY PESEL miejsce na naklejkę z

Bardziej szczegółowo

ZBIÓR ZADAŃ Z FIZYKI

ZBIÓR ZADAŃ Z FIZYKI ZBIÓR ZADAŃ Z FIZYKI OPRACOWANIE: Toaz Drohoirecki I RUCH JEDNOSTAJNY PROSTOLINIOWY 1. Tore ruchu wobodnie padającego jabłka z drzewa jet: A) parabola B) hiperbola C) prota D) półprota. W ciągu jednej

Bardziej szczegółowo

Modele odpowiedzi do arkusza Próbnej Matury z OPERONEM. Fizyka i astronomia Poziom podstawowy

Modele odpowiedzi do arkusza Próbnej Matury z OPERONEM. Fizyka i astronomia Poziom podstawowy Modele odpowiedzi do arkuza Próbnej Matury z OPERONEM Fizyka i atronoia Pozio podtawowy Litopad 00 W klu czu ą pre zen to wa ne przy kła do we pra wi dło we od po wie dzi. Na le ży rów nież uznać od po

Bardziej szczegółowo

KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH

KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH Kod ucznia - - Dzień Miesiąc Rok pieczątka WKK DATA URODZENIA UCZNIA KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH ETAP REJONOWY Drogi Uczniu, witaj na II etapie konkursu matematycznego. Przeczytaj

Bardziej szczegółowo

2a a a + 5 = 27 6a + 9 = % 18 = = 54

2a a a + 5 = 27 6a + 9 = % 18 = = 54 Wojewódzki Konkurs matematyczny dla uczniów szkół podstawowych od klas IV województwa pomorskiego, rok szkolny 2017/2018 Etap II - rejonowy W kluczu przedstawiono przykładowe rozwiązania oraz prawidłowe

Bardziej szczegółowo

MAŁOPOLSKI KONKURS MATEMATYCZNY dla gimnazjalistów Rok szkolny 2010 / 2011 ETAP SZKOLNY - 7 października 2010 roku

MAŁOPOLSKI KONKURS MATEMATYCZNY dla gimnazjalistów Rok szkolny 2010 / 2011 ETAP SZKOLNY - 7 października 2010 roku Kod ucznia... MAŁOPOLSKI KONKURS MATEMATYCZNY dla gimnazjalistów Rok szkolny 200 / 20 ETAP SZKOLNY - 7 października 200 roku. Przed Tobą zestaw 20 zadań konkursowych. 2. Na ich rozwiązanie masz 90 minut.

Bardziej szczegółowo

Odległośc w układzie współrzędnych. Środek odcinka.

Odległośc w układzie współrzędnych. Środek odcinka. GEOMETRIA ANALITYCZNA ZADANIA. Odległośc w układzie współrzędnych. Środek odcinka. Zad. 1 Wyznacz odległość między punktami A i B (długość odcinka AB) jeżeli: d = Zad. 2 a) A=(5,-3) B=(-2,3) b) A=(-2,2)

Bardziej szczegółowo

Zadania do rozdziału 2.

Zadania do rozdziału 2. Zadania do rozdziału. Zad..1. Saochód na auoradzie poruza ię ruche jednoajny prooliniowy z prędkością υ100 k/odz. W jaki czaie przebędzie on droę 50 k? Rozwiązanie: Zad... υ 50 k / odz 0.5 odz. υ 100 k

Bardziej szczegółowo

WOJEWÓDZKI KONKURS MATEMATYCZNY DLA SZKÓŁ PODSTAWOWYCH W ROKU SZKOLNYM 2012/2013

WOJEWÓDZKI KONKURS MATEMATYCZNY DLA SZKÓŁ PODSTAWOWYCH W ROKU SZKOLNYM 2012/2013 Etap wojewódzki 23 lutego 2013 r. Instrukcja dla ucznia Godzina 11.00 Kod ucznia 1. Sprawdź, czy zestaw zawiera 8 stron. Ewentualny brak stron lub inne usterki zgłoś nauczycielowi. 2. Na tej stronie i

Bardziej szczegółowo

Zadanie 2. ( 4p ) Czworokąt ABCD ma kąty proste przy wierzchołkach B i D. Ponadto AB = BC i BH = 1.

Zadanie 2. ( 4p ) Czworokąt ABCD ma kąty proste przy wierzchołkach B i D. Ponadto AB = BC i BH = 1. Zadanie 1. ( p ) Dodatnia liczba naturalna n ma tylko dwa dzielniki naturalne, podczas gdy liczba n + 1 ma trzy dzielniki naturalne. Liczba naturalna n + ma. dzielniki naturalne. Liczna n jest równa..

Bardziej szczegółowo

KONKURS FIZYCZNY. FASCYNUJĄCA FIZYKA Poziom gimnazjalny

KONKURS FIZYCZNY. FASCYNUJĄCA FIZYKA Poziom gimnazjalny II KONKURS FIZYCZNY FASCYNUJĄCA FIZYKA Pozio ginazjalny Organizator: STOWARZYSZENIE NAUCZYCIELI FIZYKI ZIEMI ŁÓDZKIEJ http://nf-lodz.cba.pl/ I. Cele konkuru Cele konkuru jet inpirowanie łodzieży zkół ginazjalnych

Bardziej szczegółowo

KONKURS PRZEDMIOTOWY Z MATEMATYKI dla uczniów szkół podstawowych województwa lubuskiego 14 stycznia 2012 r. zawody II stopnia (rejonowe)

KONKURS PRZEDMIOTOWY Z MATEMATYKI dla uczniów szkół podstawowych województwa lubuskiego 14 stycznia 2012 r. zawody II stopnia (rejonowe) Kod ucznia Ilość zdobytych punktów KONKURS PRZEDMIOTOWY Z MATEMATYKI dla uczniów szkół podstawowych województwa lubuskiego stycznia 0 r. zawody II stopnia (rejonowe) Drogi Uczniu, przed Tobą test składający

Bardziej szczegółowo

KONKURS PRZEDMIOTOWY Z FIZYKI dla uczniów gimnazjów. Schemat punktowania zadań

KONKURS PRZEDMIOTOWY Z FIZYKI dla uczniów gimnazjów. Schemat punktowania zadań 1 KONKURS PRZEDMIOTOWY Z FIZYKI dla uczniów gimnazjów 10 marca 2017 r. zawody III topnia (finałowe) Schemat punktowania zadań Makymalna liczba punktów 60. 90% 5pkt. Uwaga! 1. Za poprawne rozwiązanie zadania

Bardziej szczegółowo

Zestaw VI. Zadanie 1. (1 pkt) Wskaż nierówność, którą spełnia liczba π A. (x + 1) 2 > 18 B. (x 1) 2 < 5 C. (x + 4) 2 < 50 D.

Zestaw VI. Zadanie 1. (1 pkt) Wskaż nierówność, którą spełnia liczba π A. (x + 1) 2 > 18 B. (x 1) 2 < 5 C. (x + 4) 2 < 50 D. Zestaw VI Zadanie. ( pkt) Wskaż nierówność, którą spełnia liczba π A. (x + ) 2 > 8 B. (x ) 2 < C. (x + 4) 2 < 0 D. (x 2 )2 8 Zadanie 2. ( pkt) Pierwsza rata, która stanowi 8% ceny roweru, jest równa 92

Bardziej szczegółowo

ETAP I - szkolny. 24 listopada 2017 r. godz

ETAP I - szkolny. 24 listopada 2017 r. godz XVI WOJEWÓDZKI KONKURS Z FIZYKI DLA UCZNIÓW DOTYCHCZASOWYCH GIMNAZJÓW ORAZ KLAS DOTYCHCZASOWYCH GIMNAZJÓW PROWADZONYCH W SZKOŁACH INNEGO TYPU WOJEWÓDZTWA ŚWIĘTOKRZYSKIEGO W ROKU SZKOLNYM 2017/2018 ETAP

Bardziej szczegółowo

Kurs ZDAJ MATURĘ Z MATEMATYKI MODUŁ 11 Zadania planimetria

Kurs ZDAJ MATURĘ Z MATEMATYKI MODUŁ 11 Zadania planimetria 1 TEST WSTĘPNY 1. (1p) Wysokość rombu o boku długości 6 i kącie ostrym 60 o jest równa: A. 6 3 B. 6 C. 3 3 D. 3 2. (1p) W trójkącie równoramiennym długość ramienia wynosi 10 a podstawa 16. Wysokość opuszczona

Bardziej szczegółowo

XV WOJEWÓDZKI KONKURS Z MATEMATYKI

XV WOJEWÓDZKI KONKURS Z MATEMATYKI XV WOJEWÓDZKI KONKURS Z MATEMATYKI DLA UCZNIÓW DOTYCHCZASOWYCH GIMNAZJÓW ORAZ KLAS DOTYCHCZASOWYCH GIMNAZJÓW PROWADZONYCH W SZKOŁACH INNEGO TYPU WOJEWÓDZTWA ŚWIĘTOKRZYSKIEGO W ROKU SZKOLNYM 2017/2018 ETAP

Bardziej szczegółowo

KONKURS PRZEDMIOTOWY Z MATEMATYKI dla uczniów szkół podstawowych 9 stycznia 2016 r. zawody II stopnia (rejonowe)

KONKURS PRZEDMIOTOWY Z MATEMATYKI dla uczniów szkół podstawowych 9 stycznia 2016 r. zawody II stopnia (rejonowe) Kod ucznia Liczba zdobytych punktów KONKURS PRZEDMIOTOWY Z MATEMATYKI dla uczniów szkół podstawowych 9 stycznia 2016 r. zawody II stopnia (rejonowe) Drogi Uczniu, przed Tobą test składający się z 31 zadań.

Bardziej szczegółowo

3. RUCHY CIAŁ (KINEMATYKA) Pojęcie ruchu, układ odniesienia, tor, droga, przemieszczenie

3. RUCHY CIAŁ (KINEMATYKA) Pojęcie ruchu, układ odniesienia, tor, droga, przemieszczenie 3. RUCHY CIAŁ (KINEMATYKA) Zakre wiadomości Pojęcie ruchu, układ odnieienia, tor, droga, przemiezczenie Względność ruchu Klayfikacja ruchów Prędkość średnia i chwilowa Ruch jednotajny protoliniowy (równanie

Bardziej szczegółowo

Sprawdzian całoroczny kl. II Gr. A x

Sprawdzian całoroczny kl. II Gr. A x . Oblicz: a) (,5) 8 c) ( ) : ( ). Oblicz: Sprawdzian całoroczny kl. II Gr. A [ ] d) 6 a) ( : ) 5 6 6 8 50. Usuń niewymierność z mianownika: a). Oblicz obwód koła o polu,π dm. 5. Podane wyrażenia przedstaw

Bardziej szczegółowo

WOJEWÓDZKI KONKURS FIZYCZNY stopień rejonowy

WOJEWÓDZKI KONKURS FIZYCZNY stopień rejonowy KOD UCZNIA Białystok 08.02.2007r. WOJEWÓDZKI KONKURS FIZYCZNY stopień rejonowy Młody Fizyku! Przed Tobą stopień rejonowy Wojewódzkiego Konkursu Fizycznego. Masz do rozwiązania 15 zadań zakniętych i 3 otwarte.

Bardziej szczegółowo

WOJEWÓDZKI KONKURS FIZYCZNY stopień wojewódzki

WOJEWÓDZKI KONKURS FIZYCZNY stopień wojewódzki KOD UCZNIA Białytok 07.03.2007r. WOJEWÓDZKI KONKURS FIZYCZNY topień wojewódzki Młody Fizyku! Przed Tobą topień wojewódzki Wojewódzkiego Konkuru Fizycznego. Maz do rozwiązania 10 zadań zamkniętych i 3 otwarte.

Bardziej szczegółowo

ARKUSZ PRÓBNEJ MATURY Z OPERONEM FIZYKA I ASTRONOMIA

ARKUSZ PRÓBNEJ MATURY Z OPERONEM FIZYKA I ASTRONOMIA Miejce na identyfikację zkoły ARKUSZ PRÓBNEJ MATURY Z OPERONEM FIZYKA I ASTRONOMIA POZIOM PODSTAWOWY LISTOPAD 2010 Intrukcja dla zdającego Cza pracy 120 inut 1. Sprawdź, czy arkuz egzainacyjny zawiera

Bardziej szczegółowo

Wielka Księga Zadao Zbiór zadao z fizyki z rozwiązaniami Kinematyka

Wielka Księga Zadao Zbiór zadao z fizyki z rozwiązaniami Kinematyka iwiedza.net Wielka Kięga Zadao Zbiór zadao z fizyki z rozwiązaniai Kineatyka Kopletny zetaw zadao, opracowanych w poób, który pozwala na aodzielne zrozuienie i nauczenie ię rozwiązywania zadao. Dokonały

Bardziej szczegółowo

Bank zadań na egzamin pisemny (wymagania podstawowe; na ocenę dopuszczającą i dostateczną)

Bank zadań na egzamin pisemny (wymagania podstawowe; na ocenę dopuszczającą i dostateczną) Bank zadań na egzamin pisemny (wymagania podstawowe; na ocenę dopuszczającą i dostateczną) Zadania zamknięte (jedna poprawna odpowiedź) 1 punkt Wyrażenia algebraiczne Zadanie 1. Wartość wyrażenia 3 x 3x

Bardziej szczegółowo

Test na koniec nauki w klasie trzeciej gimnazjum

Test na koniec nauki w klasie trzeciej gimnazjum 8 Test na koniec nauki w klasie trzeciej gimnazjum imię i nazwisko ucznia...... data klasa Test 2 1 Na przeciwległych ścianach każdej z pięciu sześciennych kostek umieszczono odpowiednio liczby: 1 i 1,

Bardziej szczegółowo

Zadanie 1. W trapezie ABCD poprowadzono przekątne, które podzieliły go na cztery trójkąty. Mając dane pole S 1

Zadanie 1. W trapezie ABCD poprowadzono przekątne, które podzieliły go na cztery trójkąty. Mając dane pole S 1 Zadanie. W trapezie ABCD poprowadzono przekątne, które podzieliły go na cztery trójkąty. Mając dane pole S i S 2 obliczyć pole trapezu ABCD. Zadanie 2. Mamy trapez, w którym suma kątów przy dłuższej podstawie

Bardziej szczegółowo

PROPOZYCJE ZADAŃ EGZAMINACYJNYCH ZADANIA ZAMKNIĘTE. Zadanie zamknięte 1

PROPOZYCJE ZADAŃ EGZAMINACYJNYCH ZADANIA ZAMKNIĘTE. Zadanie zamknięte 1 PROPOZYCJE ZADAŃ EGZAMINACYJNYCH ZADANIA ZAMKNIĘTE Elżbieta Safaryn ZESPÓŁ SZKÓŁ W JAROSŁAWCU Zadanie zaknięte 1 Treść z PP 4. Opi ruchów protoliniowych. Ruch drgający (jakościowo), ruchy krzywoliniowe.

Bardziej szczegółowo

OBLICZENIA STATYCZNO-WYTRZYMAŁOŚCIOWE komina stalowego H = 52 m opartego na trójnogu MPGK Kraosno. - wysokość całkowita. - poziom pierścienia trójnogu

OBLICZENIA STATYCZNO-WYTRZYMAŁOŚCIOWE komina stalowego H = 52 m opartego na trójnogu MPGK Kraosno. - wysokość całkowita. - poziom pierścienia trójnogu OBLICZENIA STATYCZNO-WYTRZYMAŁOŚCIOWE koina talowego H opartego na trójnogu MPGK Kraono I. Dane geoetryczne koina: H H npt D z g i : - wyokość całkowita :. - pozio pierścienia trójnogu :. - wyokość podtawy

Bardziej szczegółowo

WOJEWÓDZKI KONKURS Z FIZYKI DLA UCZNIÓW GIMNAZJUM ROK SZKOLNY 2014/2015. Imię i nazwisko:

WOJEWÓDZKI KONKURS Z FIZYKI DLA UCZNIÓW GIMNAZJUM ROK SZKOLNY 2014/2015. Imię i nazwisko: (pieczątka szkoły) Imię i nazwisko:................................. Czas rozwiązywania zadań: 45 minut WOJEWÓDZKI KONKURS Z FIZYKI DLA UCZNIÓW GIMNAZJUM ROK SZKOLNY 2014/2015 ETAP I SZKOLNY Informacje:

Bardziej szczegółowo

PŁOCKA MIĘDZYSZKOLNA LIGA PRZEDMIOTOWA MATEMATYKA klasa VI marzec 2015

PŁOCKA MIĘDZYSZKOLNA LIGA PRZEDMIOTOWA MATEMATYKA klasa VI marzec 2015 PŁOCKA MIĘDZYSZKOLNA LIGA PRZEDMIOTOWA MATEMATYKA klasa VI marzec 205 KARTA PUNKTACJI ZADAŃ (wypełnia komisja konkursowa): Numer zadania Zad. Zad. 2 Zad. 3 Zad. 4 Zad. 5 Zad. 6 Zad. 7 Zad. 8 SUMA PUNKTÓW

Bardziej szczegółowo

Metody systemowe i decyzyjne w informatyce

Metody systemowe i decyzyjne w informatyce Metody ytemowe i decyzyjne w informatyce Ćwiczenia lita zadań nr 1 Prote zatoowania równań różniczkowych Zad. 1 Liczba potencjalnych użytkowników portalu połecznościowego wynoi 4 miliony oób. Tempo, w

Bardziej szczegółowo

Matura z matematyki 1920 r.

Matura z matematyki 1920 r. Matura z matematyki 1920 r. (źródło: Sprawozdanie Dyrekcji Państwowego Gimnazjum im. Karola Marcinkowskiego w Poznaniu: za 1-sze dziesięciolecie zakładu w niepodległej i wolnej ojczyźnie: 1919-1929) Żelazna

Bardziej szczegółowo

Konkurs dla gimnazjalistów Etap II 15 lutego 2012 roku

Konkurs dla gimnazjalistów Etap II 15 lutego 2012 roku Strona1 Konkurs dla gimnazjalistów Etap II 15 lutego 2012 roku Instrukcja dla ucznia 1. W zadaniach o numerach od 1. do 14. są podane cztery warianty odpowiedzi: A, B, C, D. Dokładnie jedna z nich jest

Bardziej szczegółowo

KONKURS PRZEDMIOTOWY Z FIZYKI dla uczniów gimnazjów. Schemat punktowania zadań

KONKURS PRZEDMIOTOWY Z FIZYKI dla uczniów gimnazjów. Schemat punktowania zadań KONKURS PRZEDMIOTOWY Z FIZYKI dla uczniów gimnazjów 7 stycznia 06 r. zawody II stopnia (rejonowe) Schemat punktowania zadań Maksymalna liczba punktów 60 Uwaga!. Za poprawne rozwiązanie zadania metodą,

Bardziej szczegółowo

KONKURS MATEMATYCZNY

KONKURS MATEMATYCZNY KOD UCZNIA KONKURS MATEMATYCZNY DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH WOJEWÓDZTWA MAZOWIECKIEGO II ETAP REJONOWY 6 listopada 2014 Ważne informacje: 1. Masz 90 minut na rozwiązanie wszystkich zadań. 2. Pisz długopisem

Bardziej szczegółowo

Równania prostych i krzywych; współrzędne punktu

Równania prostych i krzywych; współrzędne punktu Równania prostych i krzywych; współrzędne punktu Zad 1: Na paraboli o równaniu y = 1 x znajdź punkt P leŝący najbliŝej prostej o równaniu x + y = 0 Napisz równanie stycznej do tej paraboli, poprowadzonej

Bardziej szczegółowo

Wojewódzki Konkurs Przedmiotowy z Matematyki dla uczniów gimnazjów województwa śląskiego w roku szkolnym 2014/2015

Wojewódzki Konkurs Przedmiotowy z Matematyki dla uczniów gimnazjów województwa śląskiego w roku szkolnym 2014/2015 Wojewódzki Konkurs Przedmiotowy z Matematyki dla uczniów gimnazjów województwa śląskiego w roku szkolnym 2014/2015 KOD UCZNIA Etap: Data: Czas pracy: wojewódzki 4 marca 2015 r. 120 minut Informacje dla

Bardziej szczegółowo

KRYTERIA OCENIANIA ODPOWIEDZI Próbna Matura z OPERONEM. Fizyka i astronomia Poziom podstawowy

KRYTERIA OCENIANIA ODPOWIEDZI Próbna Matura z OPERONEM. Fizyka i astronomia Poziom podstawowy RYTERIA OCENIANIA ODPOIEDZI Próbna Matura z OPERONEM Fizyka i atronoia Pozio podtawowy Litopad 03 niniejzy cheacie oceniania zadań otwartych ą prezentowane przykładowe poprawne odpowiedzi. tego typu ch

Bardziej szczegółowo

Matematyka. Zadanie 1. Zadanie 2. Oblicz. Zadanie 3. Zadanie 4. Wykaż, że liczba. 2 2 jest podzielna przez 5. Zadanie 5.

Matematyka. Zadanie 1. Zadanie 2. Oblicz. Zadanie 3. Zadanie 4. Wykaż, że liczba. 2 2 jest podzielna przez 5. Zadanie 5. Matematyka Zadanie 1. Oblicz liczby Zadanie. Oblicz Zadanie 3. Wykaż, że liczba jest podzielna przez Zadanie 4. Wykaż, że liczba 30 0 jest podzielna przez 5. Zadanie 5. n 1 Uzasadnij, że prawdziwa jest

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI CZERWIEC 2010 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

EGZAMIN MATURALNY Z MATEMATYKI CZERWIEC 2010 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 2010 KOD WPISUJE ZDAJĄCY PESEL Miejsce na naklejkę z kodem EGZAMIN MATURALNY

Bardziej szczegółowo

PRÓBNY EGZAMIN GIMNAZJALNY

PRÓBNY EGZAMIN GIMNAZJALNY PRÓBNY EGZAMIN GIMNAZJALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO 16 KWIETNIA 2016 CZAS PRACY: 90 MINUT 1 Informacja do zadań 1 i 2 Każda z dwóch wind towarowych obsługujacych nowo

Bardziej szczegółowo

KONKURS PRZEDMIOTOWY Z MATEMATYKI DLA UCZNIÓW GIMNAZJUM

KONKURS PRZEDMIOTOWY Z MATEMATYKI DLA UCZNIÓW GIMNAZJUM ... kod pracy ucznia... pieczątka nagłówkowa szkoły KONKURS PRZEDMIOTOWY Z MATEMATYKI DLA UCZNIÓW GIMNAZJUM ETAP SZKOLNY Drogi Uczniu, witaj na I etapie konkursu matematycznego. Przeczytaj uważnie instrukcję

Bardziej szczegółowo

11. Znajdż równanie prostej prostopadłej do prostej k i przechodzącej przez punkt A = (2;2).

11. Znajdż równanie prostej prostopadłej do prostej k i przechodzącej przez punkt A = (2;2). 1. Narysuj poniższe figury: a), b), c) 2. Punkty A = (0;1) oraz B = (-1;0) należą do okręgu którego środek należy do prostej o równaniu x-2 = 0. Podaj równanie okręgu. 3. Znaleźć równanie okręgu przechodzącego

Bardziej szczegółowo

KONKURS ZOSTAŃ PITAGORASEM MUM. Podstawowe własności figur geometrycznych na płaszczyźnie

KONKURS ZOSTAŃ PITAGORASEM MUM. Podstawowe własności figur geometrycznych na płaszczyźnie KONKURS ZOSTAŃ PITAGORASEM MUM ETAP I TEST II Podstawowe własności figur geometrycznych na płaszczyźnie 1. A. Stosunek pola koła wpisanego w kwadrat o boku długości 6 do pola koła opisanego na tym kwadracie

Bardziej szczegółowo

Zadanie 1. ( 0-5. ) Oceń prawdziwość zdań. Wybierz P, jeśli zdanie jest prawdziwe lub F jeśli jest fałszywe.

Zadanie 1. ( 0-5. ) Oceń prawdziwość zdań. Wybierz P, jeśli zdanie jest prawdziwe lub F jeśli jest fałszywe. Zadanie 1. ( -5. ) Oceń prawdziwość zdań. Wybierz P, jeśli zdanie jest prawdziwe lub F jeśli jest fałszywe. a) Liczby: 1,15 i 3 1: są równe. P F b) Liczba 5 5 5 jest większa od liczby 6 6. 6 P F c) Średnia

Bardziej szczegółowo

Konkurs matematyczny 2013/ etap wojewódzki

Konkurs matematyczny 2013/ etap wojewódzki Konkurs matematyczny 2013/2014 - etap wojewódzki Kod ucznia Liczba uzyskanych punktów Nr zadania 1-10 (1p) Liczba punktów 11-14 (2p) 15 (4p) 16 (4p) 17 (4p) Drogi Uczniu! Przed Tobą wojewódzki etap konkursu.

Bardziej szczegółowo

STEREOMETRIA CZYLI GEOMETRIA W 3 WYMIARACH

STEREOMETRIA CZYLI GEOMETRIA W 3 WYMIARACH STEREOMETRIA CZYLI GEOMETRIA W 3 WYMIARACH Stereometria jest działem geometrii, którego przedmiotem badań są bryły przestrzenne oraz ich właściwości. WZAJEMNE POŁOŻENIE PROSTYCH W PRZESTRZENI 2 proste

Bardziej szczegółowo

ARKUSZ II

ARKUSZ II www.galileusz.com.pl ARKUSZ II W każdym z zadań 1.-24. wybierz i zaznacz jedną poprawną odpowiedź. Zadanie 1. (0-1 pkt) Liczba 30 to p% liczby 80, zatem A) p = 44,(4)% B) p > 44,(4)% C) p = 43,(4)% D)

Bardziej szczegółowo

ZADANIA ZAMKNIETE W zadaniach 1-25 wybierz i zaznacz na karcie odpowiedzi poprawna

ZADANIA ZAMKNIETE W zadaniach 1-25 wybierz i zaznacz na karcie odpowiedzi poprawna Arkusz A04 2 Poziom podstawowy ZADANIA ZAMKNIETE W zadaniach 1-25 wybierz i zaznacz na karcie odpowiedzi poprawna odpowiedź Zadanie 1. (0-1) Liczba π spełnia nierówność: A. + 1 > 5 B. 1 < 2 C. + 2 3 4

Bardziej szczegółowo

Planimetria Uczeń: a) stosuje zależności między kątem środkowym i kątem wpisanym, b) korzysta z własności stycznej do okręgu i własności okręgów

Planimetria Uczeń: a) stosuje zależności między kątem środkowym i kątem wpisanym, b) korzysta z własności stycznej do okręgu i własności okręgów Planimetria Uczeń: a) stosuje zależności między kątem środkowym i kątem wpisanym, b) korzysta z własności stycznej do okręgu i własności okręgów stycznych, c) rozpoznaje trójkąty podobne i wykorzystuje

Bardziej szczegółowo

KONKURS MATEMATYCZNO FIZYCZNY 3 marca 2009 r. Klasa II

KONKURS MATEMATYCZNO FIZYCZNY 3 marca 2009 r. Klasa II ...... imię i nazwisko ucznia... klasa KONKURS MATEMATYCZNO FIZYCZNY marca 2009 r. Klasa II... ilość punktów Drogi uczniu! Przed Tobą zestaw 14 zadań. Pierwsze 10 to zadania zamknięte. Rozwiązanie tych

Bardziej szczegółowo

KURS MATURA PODSTAWOWA Część 2

KURS MATURA PODSTAWOWA Część 2 KURS MATURA PODSTAWOWA Część 2 LEKCJA 7 Planimetria ZADANIE DOMOWE www.etrapez.pl Strona 1 Część 1: TEST Zaznacz poprawną odpowiedź (tylko jedna jest prawdziwa). Pytanie 1 Kąt na poniższym rysunku ma miarę:

Bardziej szczegółowo