Maszyna Turinga języki
|
|
- Kajetan Szymczak
- 7 lat temu
- Przeglądów:
Transkrypt
1 Maszyna Turinga języki Teoria automatów i języków formalnych Dr inż. Janusz Majewski Katedra Informatyki
2 Maszyna Turinga (1) b b b A B C B D A B C b b Q Zależnie od symbolu obserwowanego przez głowicę taśmy oraz stanu sterowania, maszyna Turinga w pojedynczym ruchu: a) zmienia stan, b) nadpisuje symbol w obserwowanej komórce taśmy, zastępując nim symbol uprzednio tam wpisany, c) przesuwa głowicę o jedną komórkę w lewo lub w prawo. Automat pracuje na NIESKOŃCZONEJ taśmie. Przyjmujemy, że cała taśma wypełniona jest symbolami pustymi ( blankami ). W momencie początkowym na środkowej części taśmy zapisane jest badane słowo i głowica ustawiona jest na pierwszym symbolu tego słowa.
3 Maszyna Turinga (2) b b b A B C B D A B C b b Maszynę Turinga definiujemy jako: A = <Q, q 0, F,, Σ, > A T Q skończony zbiór stanów q 0 stan początkowy F zbiór stanów końcowych skończony zbiór symboli taśmy Σ alfabet wejściowy b Σ symbol pusty (blank) : Q 2 Q {L,R} funkcja przejścia (L w lewo, R w prawo) Q
4 Maszyna Turinga (3) b b b A B C B D A B C b b Konfiguracja: (q, ) q stan niepusta część taśmy wskazanie położenia głowicy Przykład: Funkcja przejścia: (dla automatu deterministycznego) (q 1,C)=(q 2,D,R) (q 1,AB CABBBA) (q 2,ABD ABBBA) Q
5 Maszyna Turinga (4) Konfiguracja początkowa: (q 0, ), Σ* Maszyna Turinga A akceptuje język L Σ* gdy: L(A) = {x Σ* ( q F) ( y *) ((q 0, x) A * (q, y ))} przy czym: (q, y ) konfiguracja stopująca Twierdzenie: Klasa języków akceptowalnych przez maszyny Turinga L MT jest tożsama z klasą języków rekurencyjnie przeliczalnych L RP jest to klasa 0 w hierarchii Chomsky ego L MT = L RP
6 Równoważne wersje maszyny Turinga
7 Równoważne wersje maszyny Turinga
8 Przykład maszyny Turinga Q = { q 0, q 1, q 2, q 3, q 4 } F = { q 4 } q 0 = stan początkowy Γ = { 0, 1, X, Y, B } Σ = { 0, 1 } B - blank
9 Przykład maszyny Turinga
10 Przykład maszyny Turinga q 0 X q 1 X q 1 X q 1 X 0 0 Y 1 1 q 2 X 0 0 Y 1 1 q 2 X 0 0 Y 1 1 q 2 X 0 0 Y 1 1 q 0 X X 0 Y 1 1 q 1 X X 0 Y 1 1 q 1 X X 0 Y 1 1 q 1 X X 0 Y Y 1 q 2 X X 0 Y Y 1 q 2 X X 0 Y Y 1 q 2
11 Przykład maszyny Turinga X X 0 Y Y 1 q 0 X X X Y Y 1 q 1 X X X Y Y 1 q 1 X X X Y Y 1 q 1 X X X Y Y Y q 2 X X X Y Y Y q 2 X X X Y Y Y q 2 X X X Y Y Y q 0 X X X Y Y Y q 3 X X X Y Y Y q 3 X X X Y Y Y B q 3 X X X Y Y Y B B q 4 (akceptacja)
12 Deterministyczna maszyna Turinga Dla dowolnej niedeterministycznej maszyny Turinga istnieje równoważna jej maszyna deterministyczna. Maszyna deterministyczna będzie naśladować obliczenie maszyny niedeterministycznej, jednak w symulacji należy uniknąć nieskończonego obliczenia. Jeśli maszyna symulująca weszłaby w nieskończone obliczenie, to nie mogłaby sprawdzić innych możliwości obliczeń. Idea symulacji obliczeń maszyny niedeterministycznej wiąże się z przeglądaniem drzewa obliczeń maszyny niedeterministycznej wszerz.
13 Deterministyczna maszyna Turinga Jeśli w trakcie symulacji maszyna symulująca osiągnie konfigurację końcową akceptująca w maszynie niedeterministycznej, to maszyna symulująca zatrzyma się i zaakceptuje, w przeciwnym przypadku nastąpi przejście do kolejnego obliczenia wynikającego z przeglądania drzewa obliczeń maszyny niedeterministycznej wszerz. Zastąpienie maszyny niedeterministycznej symulującą ją maszyną deterministyczną zostaje okupione wykładniczym wzrostem złożoności obliczeń.
14 Niedeterministyczna maszyna Turinga
15 Drzewo obliczeń niedeterministycznej maszyny Turinga
16 Języki rozpoznawalne i rozstrzygalne w sensie Turinga Maszyna Turinga dla danego wejścia może: o zatrzymać się w stanie akceptującym akceptując wejście, o zatrzymać się w stanie nie będącym stanem akceptującym, czyli odrzucić wejście, o w ogóle nie zatrzymać się (wpaść w nieskończoną pętlę). Język akceptowany (rozpoznawany) przez maszynę Turinga jest zbiorem tych wszystkich słów, dla których maszyna zatrzymuje się w stanie akceptującym. Słowa nie należące do języka mogą zostać odrzucone (maszyna zatrzyma się w stanie nieakceptującym) lub maszyna zapetli się i w ogóle nie zatrzyma się dla takich słów. Takie języki nazywamy także językami rekurencyjnie przeliczalnymi
17 Języki rozpoznawalne i rozstrzygalne w sensie Turinga Maszyna Turinga dla danego wejścia może: o zatrzymać się w stanie akceptującym akceptując wejście, o zatrzymać się w stanie nie będącym stanem akceptującym, czyli odrzucić wejście, o w ogóle nie zatrzymać się (wpaść w nieskończoną pętlę). Maszyny Turinga, które zawsze się zatrzymują się na każdym wejściu nazywamy maszynami rozstrzygającymi lub maszynami z własnością stopu. Język rozstrzygalny przez maszynę Turinga jest zbiorem tych wszystkich słów, dla których rozstrzygająca maszyna Turinga (maszyna z własnością stopu) zatrzymuje się w stanie akceptującym. Takie języki nazywamy także językami rekurencyjnymi.
18 Rozstrzygające maszyny Turinga Maszyny Turinga, które zawsze się zatrzymują się na każdym wejściu nazywamy maszynami rozstrzygającymi lub maszynami z własnością stopu. Nie każda maszyna Turinga jest maszyną rozstrzygającą (z własnością stopu). Istnieją maszyny Turinga, które nie są maszynami rozstrzygającymi. Zbiór wszystkich rozstrzygających maszyn Turinga jest więc podzbiorem właściwym zbioru wszystkich maszyn Turinga.
19 Kodowanie maszyny Turinga Ograniczymy się do maszyn Turinga działających na alfabecie binarnym. Ponumerujemy stany maszyny zgodnie z ich indeksacją Symbolom alfabetu wejściowego {0,1} przypiszemy liczby 1 i 2 Symbolom alfabetu taśmy {0,1,B} przypiszemy liczby 1, 2 i 3 Symbolom kierunku ruchu {L,R} przypiszemy liczby 1 i 2 Poszczególne liczby reprezentujące symbole opisu maszyny Turinga będziemy zapisywać w postaci ciągu jedynek o długości równej wartości liczby (w systemie jedynkowym)
20 Kodowanie maszyny Turinga Każdy ruch określimy poprzez podanie wartości funkcji przejścia δ(q i, x)=(q k,y,a), którą będziemy kodować jako ciąg zerojedynkowy: 1 i 01 j 01 k 01 l 01 m gdzie: liczby i, j, k, l, m są kodami odpowiednio: stanu q i, symbolu taśmy X, stanu q k, symbolu taśmy Y, kierunku ruchu głowicy A
21 Kodowanie maszyny Turinga Maszynę Turinga M zakodujemy jako ciąg opisów poszczególnych wartości funkcji przejścia oddzielonych dwoma zerami, natomiast początek i koniec zakodowanego opisu maszyny Turinga oznaczymy potrójnymi zerami: 000 kod-ruchu-1 00 kod-ruchu kod-ruchu-m 000
22 Problem Czy istnieją języki, które nie są rozpoznawane (akceptowane) przez żadną maszynę Turinga? Prawdopodobnie tak, bo klasa wszystkich języków jest zbiorem nieprzeliczalnym, natomiast klasa języków akceptowanych przez maszyny Turinga jest przeliczalna (maszyny Turinga można zakodować skończonymi kodami, więc jest ich tylko przeliczalnie wiele).
23 Język przekątniowy (diagonalizacji) L d = { w i w i nie jest akceptowane przez maszynę Turinga M i } Język przekątniowy jest zbiorem tych słów w i, dla których, jeśli indeksem słowa w porządku standardowym jest liczba i, to maszyna Turinga o numerze i nie akceptuje słowa w.
24 Język przekątniowy (diagonalizacji) Rozważymy dwustronnie nieskończoną tablicę o wartościach binarnych. Kolumny tej tablicy indeksowane będą kolejnymi liczbami M 1, M 2,, których binarna reprezentacja jest poprawnym kodem maszyny Turinga. Wiersze tabeli będą indeksowane kolejnymi słowami nad alfabetem binarnym ustawionymi w porządku standardowym. Wartością R ij tej tabeli będzie jedynka, gdy maszyna o numerze j będzie akceptować słowo o numerze i. W przeciwnym wypadku wartością R ij będzie zero.
25 Język przekątniowy
26 Język przekątniowy
27 Problem Czy istnieją języki, które są rozpoznawane (akceptowane) przez maszyny Turinga, ale nie są rozstrzygalne? Prawdopodobnie tak, bo klasa maszyn Turinga z własnością stopu (maszyn rozstrzygających) jest podklasą właściwą klasy wszystkich maszyn Turinga
28 Język uniwersalny L u = { <M,w> maszyna M akceptuje słowo w } Można skonstruować uniwersalną maszynę Turinga M u, która na podstawie kodu maszyny M będzie symulować jej działanie dla słowa w. Wtedy i tylko wtedy, gdy słowo w jest akceptowane przez M, to maszyna symulująca M u się zatrzyma i zaakceptuje wejście <M,w>. Jeśli M nie zatrzymuje się dla w, to M u także się nie zatrzyma. L u jest przykładem języka rozpoznawalnego, ale nie rozstrzygalnego
Hierarchia Chomsky ego Maszyna Turinga
Hierarchia Chomsky ego Maszyna Turinga Języki formalne i automaty Dr inż. Janusz Majewski Katedra Informatyki Gramatyka Gramatyką G nazywamy czwórkę uporządkowaną gdzie: G = V skończony zbiór
Języki, automaty i obliczenia
Języki, automaty i obliczenia Wykład 10: Maszyny Turinga Sławomir Lasota Uniwersytet Warszawski 29 kwietnia 2015 Plan Maszyny Turinga (Niedeterministyczna) maszyna Turinga M = (A, Q, q 0, F, T, B, δ) A
Obliczenia inspirowane Naturą
Obliczenia inspirowane Naturą Wykład 01 Modele obliczeń Jarosław Miszczak IITiS PAN Gliwice 05/10/2016 1 / 33 1 2 3 4 5 6 2 / 33 Co to znaczy obliczać? Co to znaczy obliczać? Deterministyczna maszyna Turinga
Matematyczne Podstawy Informatyki
Matematyczne Podstawy Informatyki dr inż. Andrzej Grosser Instytut Informatyki Teoretycznej i Stosowanej Politechnika Częstochowska Rok akademicki 2013/2014 Automat ze stosem Automat ze stosem to szóstka
Automat ze stosem. Języki formalne i automaty. Dr inż. Janusz Majewski Katedra Informatyki
Automat ze stosem Języki formalne i automaty Dr inż. Janusz Majewski Katedra Informatyki Automat ze stosem (1) dno stosu Stos wierzchołek stosu Wejście # B B A B A B A B a b b a b a b $ q i Automat ze
Języki, automaty i obliczenia
Języki, automaty i obliczenia Wykład 12: Gramatyki i inne modele równoważne maszynom Turinga. Wstęp do złożoności obliczeniowej Sławomir Lasota Uniwersytet Warszawski 20 maja 2015 Plan 1 Gramatyki 2 Języki
Języki, automaty i obliczenia
Języki, automaty i obliczenia Wykład 11: Obliczalność i nieobliczalność Sławomir Lasota Uniwersytet Warszawski 6 maja 2015 Plan 1 Problemy częściowo rozstrzygalne 2 Problemy rozstrzygalne 3 Funkcje (częściowo)
Maszyna Turinga. Algorytm. czy program???? Problem Hilberta: Przykłady algorytmów. Cechy algorytmu: Pojęcie algorytmu
Problem Hilberta: 9 Czy istnieje ogólna mechaniczna procedura, która w zasadzie pozwoliłaby nam po kolei rozwiązać wszystkie matematyczne problemy (należące do odpowiednio zdefiniowanej klasy)? 2 Przykłady
Języki formalne i automaty Ćwiczenia 9
Języki formalne i automaty Ćwiczenia 9 Autor: Marcin Orchel Spis treści Spis treści... 1 Wstęp teoretyczny... 2 Maszyna Mealy'ego... 2 Maszyna Moore'a... 2 Automat ze stosem... 3 Konwersja gramatyki bezkontekstowej
Przykład: Σ = {0, 1} Σ - zbiór wszystkich skończonych ciagów binarnych. L 1 = {0, 00, 000,...,1, 11, 111,... } L 2 = {01, 1010, 001, 11}
Języki Ustalmy pewien skończony zbiór symboli Σ zwany alfabetem. Zbiór Σ zawiera wszystkie skończone ciagi symboli z Σ. Podzbiór L Σ nazywamy językiem a x L nazywamy słowem. Specjalne słowo puste oznaczamy
Hierarchia Chomsky ego
Hierarchia Chomsky ego Gramatyki nieograniczone Def. Gramatyką nieograniczoną (albo typu 0) nazywamy uporządkowaną czwórkę G= gdzie: % Σ - skończony alfabet symboli końcowych (alfabet, nad którym
Obliczenia inspirowane Naturą
Obliczenia inspirowane Naturą Wykład 01 Od maszyn Turinga do automatów komórkowych Jarosław Miszczak IITiS PAN Gliwice 03/03/2016 1 / 16 1 2 3 Krótka historia Znaczenie 2 / 16 Czego dowiedzieliśmy się
Imię, nazwisko, nr indeksu
Imię, nazwisko, nr indeksu (kod) (9 punktów) Wybierz 9 z poniższych pytań i wybierz odpowiedź tak/nie (bez uzasadnienia). Za prawidłowe odpowiedzi dajemy +1 punkt, za złe -1 punkt. Punkty policzymy za
Zadanie 1. (6 punktów) Słowo w nazwiemy anagramem słowa v jeśli w można otrzymać z v poprzez zamianę kolejności liter. Niech
Zadanie 1. (6 punktów) Słowo w nazwiemy anagramem słowa v jeśli w można otrzymać z v poprzez zamianę kolejności liter. Niech anagram(l) = {w : w jest anagaramem v dla pewnego v L}. (a) Czy jeśli L jest
PROBLEMY NIEROZSTRZYGALNE
PROBLEMY NIEROZSTRZYGALNE Zestaw 1: T Przykład - problem domina T Czy podanym zestawem kafelków można pokryć dowolny płaski obszar zachowując odpowiedniość kolorów na styku kafelków? (dysponujemy nieograniczoną
Języki i operacje na językach. Teoria automatów i języków formalnych. Definicja języka
Języki i operacje na językach Teoria automatów i języków formalnych Dr inŝ. Janusz Majewski Katedra Informatyki Definicja języka Definicja języka Niech Σ będzie alfabetem, Σ* - zbiorem wszystkich łańcuchów
Dopełnienie to można wyrazić w następujący sposób:
1. (6 punktów) Czy dla każdego regularnego L, język f(l) = {w : każdy prefiks w długości nieparzystej należy do L} też jest regularny? Odpowiedź. Tak, jęsli L jest regularny to też f(l). Niech A będzie
Efektywność Procedur Obliczeniowych. wykład 5
Efektywność Procedur Obliczeniowych wykład 5 Modele procesu obliczeń (8) Jedno-, wielotaśmowa MT oraz maszyna RAM są równoważne w przypadku, jeśli dany problem jest rozwiązywany przez jeden model w czasie
Języki formalne i automaty Ćwiczenia 7
Języki formalne i automaty Ćwiczenia 7 Autor: Marcin Orchel Spis treści Spis treści... 1 Wstęp teoretyczny... 2 Automaty... 2 Cechy automatów... 4 Łączenie automatów... 4 Konwersja automatu do wyrażenia
Maszyna Turinga (Algorytmy Część III)
Maszyna Turinga (Algorytmy Część III) wer. 9 z drobnymi modyfikacjami! Wojciech Myszka 2018-12-18 08:22:34 +0100 Upraszczanie danych Komputery są coraz szybsze i sprawniejsze. Na potrzeby rozważań naukowych
Maszyna Turinga, ang. Turing Machine (TM)
Maszyna Turinga, ang. Turing Machine (TM) Alan Turing wybitny angielski matematyk, logik i kryptolog, jeden z najważniejszych twórców informatyki teoretycznej, któremu zawdzięczamy pojęcie maszyny Turinga
ZLOŻONOŚĆ OBLICZENIOWA - WYK. 2
ZLOŻONOŚĆ OBLICZENIOWA - WYK. 2 1. Twierdzenie Sipsera: Dla dowolnej maszyny M działającej w pamięci S(n) istnieje maszyna M taka, że: L(M) = L(M ), M działa w pamięci S(n), M ma własność stopu. Dowód:
Gramatyki, wyprowadzenia, hierarchia Chomsky ego. Gramatyka
Gramatyki, wyprowadzenia, hierarchia Chomsky ego Teoria automatów i języków formalnych Dr inŝ. Janusz Majewski Katedra Informatyki Gramatyka Gramatyką G nazywamy czwórkę uporządkowaną gdzie: G =
10110 =
1. (6 punktów) Niedeterministyczny automat skończony nazwiemy jednoznacznym, jeśli dla każdego akceptowanego słowa istnieje dokładnie jeden bieg akceptujący. Napisać algorytm sprawdzający, czy niedeterministyczny
Elementy Teorii Obliczeń
Wykład 2 Instytut Matematyki i Informatyki Akademia Jana Długosza w Częstochowie 10 stycznia 2009 Maszyna Turinga uwagi wstępne Maszyna Turinga (1936 r.) to jedno z najpiękniejszych i najbardziej intrygujacych
Odmiany maszyny Turinga. dr hab. inż. Joanna Józefowska, prof. PP 1
Odmiany maszyny Turinga 1 Uniwersalna maszyna Turinga Uniwersalna maszyna U nad alfabetem A k jest to maszyna definiująca funkcje: f U, n+1 = {((w(i 1, I 2,..., I n )),y) w - opis maszyny T za pomocą słowa,
Wprowadzenie: języki, symbole, alfabety, łańcuchy Języki formalne i automaty. Literatura
Wprowadzenie: języki, symbole, alfabety, łańcuchy Języki formalne i automaty Dr inŝ. Janusz Majewski Katedra Informatyki Literatura Aho A. V., Sethi R., Ullman J. D.: Compilers. Principles, Techniques
Turing i jego maszyny
Turing Magdalena Lewandowska Politechnika Śląska, wydział MS, semestr VI 20 kwietnia 2016 1 Kim był Alan Turing? Biografia 2 3 Mrówka Langtona Bomba Turinga 4 Biografia Kim był Alan Turing? Biografia Alan
Symbol, alfabet, łańcuch
Łańcuchy i zbiory łańcuchów Teoria automatów i języków formalnych Dr inŝ. Janusz Majewski Katedra Informatyki Symbol, alfabet, łańcuch Symbol Symbol jest to pojęcie niedefiniowane (synonimy: znak, litera)
2.2. Gramatyki, wyprowadzenia, hierarchia Chomsky'ego
2.2. Gramatyki, wyprowadzenia, hierarchia Chomsky'ego Gramatyka Gramatyką G nazywamy czwórkę uporządkowaną G = gdzie: N zbiór symboli nieterminalnych, T zbiór symboli terminalnych, P zbiór
Struktura danych. Sposób uporządkowania informacji w komputerze.
Struktura danych Sposób uporządkowania informacji w komputerze. Algorytm Skończony, uporządkowany ciąg jasno zdefiniowanych czynności, koniecznych do wykonania pewnego zadania. Al-Khwarizmi perski matematyk
Klasyczne i kwantowe podejście do teorii automatów i języków formalnych p.1/33
Klasyczne i kwantowe podejście do teorii automatów i języków formalnych mgr inż. Olga Siedlecka olga.siedlecka@icis.pcz.pl Zakład Informatyki Stosowanej i Inżynierii Oprogramowania Instytut Informatyki
Rozwiązania około dwustu łatwych zadań z języków formalnych i złożoności obliczeniowej i być może jednego chyba trudnego (w trakcie tworzenia)
Rozwiązania około dwustu łatwych zadań z języków formalnych i złożoności obliczeniowej i być może jednego chyba trudnego (w trakcie tworzenia) Kamil Matuszewski 20 lutego 2017 22 lutego 2017 Zadania, które
Teoria obliczeń czyli czego komputery zrobić nie mogą
Teoria obliczeń czyli czego komputery zrobić nie mogą Marek Zaionc Uniwersytet Jagielloński Materiały do wykładu: P. Odifreddi, Classical Recursion Theory, North Holland 1989. J.H. Hopcroft, J.D. Ullman
Wprowadzenie do maszyny Turinga
Wprowadzenie do maszyny Turinga Deterministyczna Maszyna Turinga (DTM) jest pewną klasą abstrakcyjnych modeli obliczeń. W tej instrukcji omówimy konkretną maszynę Turinga, którą będziemy zajmować się podczas
Jaki język zrozumie automat?
Jaki język zrozumie automat? Wojciech Dzik Instytut Matematyki Uniwersytet Śląski Katowice wojciech.dzik@us.edu.pl 7. Forum Matematyków Polskich, 12-17 września 2016, Olsztyn Prosty Automat do kawy Przemawiamy
MASZYNA TURINGA UPRASZCZANIE DANYCH
MASZYNA TURINGA Maszyna Turinga jest prostym urządzeniem algorytmicznym, uderzająco prymitywnym w porównaniu z dzisiejszymi komputerami i językami programowania, a jednak na tyle silnym, że pozwala na
złożony ze słów zerojedynkowych o długości co najmniej 3, w których druga i trzecia litera od końca sa
Zadanie 1. Rozważmy jezyk złożony ze słów zerojedynkowych o długości co najmniej 3, w których druga i trzecia litera od końca sa równe. Narysować diagram minimalnego automatu deterministycznego akceptujacego
Języki, automaty i obliczenia
Języki, automaty i obliczenia Wykład 9: Własności języków bezkontekstowych Sławomir Lasota Uniwersytet Warszawski 27 kwietnia 2016 Plan 1 Pompowanie języków bezkontekstowych 2 Własności domknięcia 3 Obrazy
1 Maszyny Turinga. stan 1 litera 1 litera 2 ruch stan 2. Matematycznie P S (Q {B}) (Q {B}) {L, R, } S
1 Maszyny Turinga Mając pewną wiedze techniczną na temat budowy komputera trudno przyjąć model rozważany wcześniej. Należy też uświadomoć sobie, że prosty pomysł łatwiej zrealizować technicznie. Tę zaletę
Modele Obliczeń. Wykład 1 - Wprowadzenie. Marcin Szczuka. Instytut Matematyki, Uniwersytet Warszawski
Modele Obliczeń Wykład 1 - Wprowadzenie Marcin Szczuka Instytut Matematyki, Uniwersytet Warszawski Wykład fakultatywny w semestrze zimowym 2014/2015 Marcin Szczuka (MIMUW) Modele Obliczeń 2014/2015 1 /
R O Z D Z I A Ł V I I I
R O Z D Z I A Ł V I I I 1. Definicja maszyny Turinga Najprostszym narzędziem do rozpoznawania języków jest automat skończony. Nie ma on pamięci zewnętrznej, a jedynie wewnętrzną. Informacją pamiętaną z
ZADANIA Z AUTOMATU SKOŃCZONEGO SPRAWOZDANIE NR 4
ZADANIA Z AUTOMATU SKOŃCZONEGO SPRAWOZDANIE NR 4 Dla każdego zadania określić: graf przejść tablicę stanów automatu skończonego akceptującego określoną klasę słów podać dwa przykłady ilustrujące parę AS
JAO - Języki, Automaty i Obliczenia - Wykład 2. JAO - Języki, Automaty i Obliczenia - Wykład 2
Dowodzenie nieregularności języka [lemat o pompowaniu] Jeśli L regularny to istnieje stała c spełniająca : jeżeli z L, z c to istnieje dekompozycja w = u v x tak, że uv i x L dla każdego i 0 [lemat o skończonej
ZŁOŻONOŚĆ OBLICZENIOWA ALGORYTMÓW
ZŁOŻONOŚĆ OBLICZENIOWA ALGORYTMÓW RELACJE MIEDZY KLASAMI ZŁOŻONOŚCI Bartosz Zieliński Katedra Fizyki Teoretycznej i Informatyki Zima 2011-2012 KLASY ZŁOŻONOŚCI KLASE ZŁOŻONOŚCI OPISUJE SIE PODAJAC: Model
Niestandardowe modele obliczeń
Niestandardowe modele obliczeń Zadania kwalifikacyjne Adam Michalik 11 czerwca 2014 1 Uwagi ogólne Do kwalifikacji należy rozwiązać wszystkie zadania o maszynach Turinga, oraz kilka zadań matematycznych
Matematyczna wieża Babel. 4. Ograniczone maszyny Turinga o językach kontekstowych materiały do ćwiczeń
Matematyczna wieża Babel. 4. Ograniczone maszyny Turinga o językach kontekstowych materiały do ćwiczeń Projekt Matematyka dla ciekawych świata spisał: Michał Korch 4 kwietnia 2019 1 Dodajmy kontekst! Rozważaliśmy
Parsery LL(1) Teoria kompilacji. Dr inż. Janusz Majewski Katedra Informatyki
Parsery LL() Teoria kompilacji Dr inż. Janusz Majewski Katedra Informatyki Zadanie analizy generacyjnej (zstępującej, top-down) symbol początkowy już terminale wyprowadzenie lewostronne pierwszy od lewej
Automaty Büchi ego i równoważne modele obliczeń
Politechnika Krakowska im. Tadeusza Kościuszki Wydział Fizyki, Matematyki i Informatyki Kierunek Matematyka Paulina Barbara Rozwód Automaty Büchi ego i równoważne modele obliczeń praca magisterska studia
Maszyny Turinga. Jerzy Pogonowski. Funkcje rekurencyjne. Zakład Logiki Stosowanej UAM
Maszyny Turinga Jerzy Pogonowski Zakład Logiki Stosowanej UAM www.logic.amu.edu.pl pogon@amu.edu.pl Funkcje rekurencyjne Jerzy Pogonowski (MEG) Maszyny Turinga Funkcje rekurencyjne 1 / 29 Wprowadzenie
Temat: Algorytm kompresji plików metodą Huffmana
Temat: Algorytm kompresji plików metodą Huffmana. Wymagania dotyczące kompresji danych Przez M oznaczmy zbiór wszystkich możliwych symboli występujących w pliku (alfabet pliku). Przykład M = 2, gdy plik
TEORETYCZNE PODSTAWY INFORMATYKI
TEORETYCZNE PODSTAWY INFORMATYKI Podstawowe pojęcia teorii automatów i języków Zbiór grupa obiektów, nazywanych elementami zbioru, traktowana jako całość {0,5,7,21,57,12,18} Ciąg lista obiektów nazywanych
MODELOWANIE RZECZYWISTOŚCI
MODELOWANIE RZECZYWISTOŚCI Daniel Wójcik Instytut Biologii Doświadczalnej PAN d.wojcik@nencki.gov.pl tel. 022 5892 424 http://www.neuroinf.pl/members/danek/swps/ Podręcznik Iwo Białynicki-Birula Iwona
Języki regularne, rozpoznawanie wzorców regularnych, automaty skończone, wyrażenia regularne
Języki regularne, rozpoznawanie wzorców regularnych, automaty skończone, wyrażenia regularne Automat skończony (AS), ang. Finite Automaton (FA) Automat skończony (automat czytający, maszyna Rabina-Scotta)
Dowód pierwszego twierdzenia Gödela o. Kołmogorowa
Dowód pierwszego twierdzenia Gödela o niezupełności arytmetyki oparty o złożoność Kołmogorowa Grzegorz Gutowski SMP II rok opiekun: dr inż. Jerzy Martyna II UJ 1 1 Wstęp Pierwsze twierdzenie o niezupełności
Wyrażenia regularne.
Teoretyczne podstawy informatyki Wykład : Wyrażenia regularne. Prof. dr hab. Elżbieta Richter-Wąs.2.202 Wyrażenia regularne Wyrażenia regularne (ang. regular expressions) stanowią algebraiczny sposób definiowania
(j, k) jeśli k j w przeciwnym przypadku.
Zadanie 1. (6 punktów) Rozważmy język słów nad alfabetem {1, 2, 3}, w których podciąg z pozycji parzystych i podciąg z pozycji nieparzystych są oba niemalejące. Na przykład 121333 należy do języka, a 2111
1 Automaty niedeterministyczne
Szymon Toruńczyk 1 Automaty niedeterministyczne Automat niedeterministyczny A jest wyznaczony przez następujące składniki: Alfabet skończony A Zbiór stanów Q Zbiór stanów początkowych Q I Zbiór stanów
Teoretyczne podstawy informatyki
Teoretyczne podstawy informatyki Wykład 10: Opis wzorców - wyrażenia regularne. http://hibiscus.if.uj.edu.pl/~erichter/dydaktyka2010/tpi-2010 Prof. dr hab. Elżbieta Richter-Wąs 1 Wyrażenia regularne Wyrażenia
Podstawy Informatyki Maszyna Turinga
Podstawy Informatyki alina.momot@polsl.pl http://zti.polsl.pl/amomot/pi Plan wykładu 1 Czym jest Programowanie maszyny Turinga Teza Churcha-Turinga 2 3 4 Czym jest Programowanie maszyny Turinga Teza Churcha-Turinga,
O ALGORYTMACH I MASZYNACH TURINGA
O ALGORYTMACH I MASZYNACH TURINGA ALGORYTM (objaśnienie ogólne) Algorytm Pojęcie o rodowodzie matematycznym, oznaczające współcześnie precyzyjny schemat mechanicznej lub maszynowej realizacji zadań określonego
Monoidy wolne. alfabetem. słowem długością słowa monoidem wolnym z alfabetem Twierdzenie 1.
3. Wykłady 3 i 4: Języki i systemy dedukcyjne. Klasyczny rachunek zdań. 3.1. Monoidy wolne. Niech X będzie zbiorem niepustym. Zbiór ten będziemy nazywać alfabetem. Skończony ciąg elementów alfabetu X będziemy
Temat: Zastosowanie wyrażeń regularnych do syntezy i analizy automatów skończonych
Opracował: dr inż. Zbigniew Buchalski KATEDRA INFORMATYKI TECHNICZNEJ Ćwiczenia laboratoryjne z Logiki Układów Cyfrowych ćwiczenie Temat: Zastosowanie wyrażeń regularnych do syntezy i analizy automatów
Definicja: zmiennych zdaniowych spójnikach zdaniowych:
Definicja: Alfabet języka logiki zdań składa się z nieskończonego (najczęściej zakładamy: przeliczalnego) zbioru P, o którym myślimy jak o zbiorze zmiennych zdaniowych i skończonego zbioru symboli, o których
Automat Moore a. Teoria układów logicznych
Automat Moore a Automatem Moore a nazywamy uporządkowaną piątkę (Q,X,Y,δ, λ )gdzie Qjestskończonym zbiorem niepustym, nazwanym zbiorem stanów automatu, Xjestskończonym zbiorem niepustym, nazwanym alfabetem
ZŁOŻONOŚĆ OBLICZENIOWA ALGORYTMÓW
ZŁOŻONOŚĆ OBLICZENIOWA ALGORYTMÓW MASZYNY O DOSTEPIE SWOBODNYM (RAM) Bartosz Zieliński Katedra Fizyki Teoretycznej i Informatyki Zima 2011-2012 INSTRUKCJE MASZYNY RAM Instrukcja Argument Znaczenie READ
Złożoność obliczeniowa. wykład 1
Złożoność obliczeniowa wykład 1 Dwa wykłady: wtorek / środa różnice niewielkie Sprawy organizacyjne wtorek: trochę szybciej, parę dodatkowych rzeczy dedykowana grupa ćw. M. Pilipczuka - ale śmiało mogą
Języki formalne i automaty Ćwiczenia 1
Języki formalne i automaty Ćwiczenia Autor: Marcin Orchel Spis treści Spis treści... Wstęp teoretyczny... 2 Wprowadzenie do teorii języków formalnych... 2 Gramatyki... 5 Rodzaje gramatyk... 7 Zadania...
Złożoność obliczeniowa zadania, zestaw 2
Złożoność obliczeniowa zadania, zestaw 2 Określanie złożoności obliczeniowej algorytmów, obliczanie pesymistycznej i oczekiwanej złożoności obliczeniowej 1. Dana jest tablica jednowymiarowa A o rozmiarze
Matematyczne Podstawy Informatyki
Matematyczne Podstawy Informatyki dr inż. Andrzej Grosser Instytut Informatyki Teoretycznej i Stosowanej Politechnika Częstochowska Rok akademicki 2013/2014 Stany równoważne Stany p i q są równoważne,
Def. Kod jednoznacznie definiowalny Def. Kod przedrostkowy Def. Kod optymalny. Przykłady kodów. Kody optymalne
Załóżmy, że mamy źródło S, które generuje symbole ze zbioru S={x, x 2,..., x N } z prawdopodobieństwem P={p, p 2,..., p N }, symbolom tym odpowiadają kody P={c, c 2,..., c N }. fektywność danego sposobu
1. Synteza automatów Moore a i Mealy realizujących zadane przekształcenie 2. Transformacja automatu Moore a w automat Mealy i odwrotnie
Opracował: dr hab. inż. Jan Magott KATEDRA INFORMATYKI TECHNICZNEJ Ćwiczenia laboratoryjne z Logiki Układów Cyfrowych ćwiczenie 207 Temat: Automaty Moore'a i Mealy 1. Cel ćwiczenia Celem ćwiczenia jest
Algorytmy Równoległe i Rozproszone Część X - Algorytmy samostabilizujące.
Algorytmy Równoległe i Rozproszone Część X - Algorytmy samostabilizujące. Łukasz Kuszner pokój 209, WETI http://www.sphere.pl/ kuszner/ kuszner@sphere.pl Oficjalna strona wykładu http://www.sphere.pl/
Teoria układów logicznych
Automat Moore a Automatem Moore a nazywamy uporządkowaną piątkę ( Q, X,,, ) gdzie Q jest skończonym zbiorem niepustym, nazwanym zbiorem stanów automatu, X jest skończonym zbiorem niepustym, nazwanym alfabetem
AUTOMATY SKOŃCZONE. Automat skończony przedstawiamy formalnie jako uporządkowaną piątkę:
AUTOMATY SKOŃCZONE DETERMINISTYCZNY AUTOMAT SKOŃCZONY - DAS Automat skończony jest modelem matematycznym systemu o dyskretnych wejściach i wyjściach. System taki w danej chwili może znajdować się w jednym
KATEDRA INFORMATYKI TECHNICZNEJ. Ćwiczenia laboratoryjne z Logiki Układów Cyfrowych. ćwiczenie 204
Opracował: prof. dr hab. inż. Jan Kazimierczak KATEDA INFOMATYKI TECHNICZNEJ Ćwiczenia laboratoryjne z Logiki Układów Cyfrowych ćwiczenie 204 Temat: Hardware'owa implementacja automatu skończonego pełniącego
ZŁOŻONOŚĆ OBLICZENIOWA ALGORYTMÓW
ZŁOŻONOŚĆ OBLICZENIOWA ALGORYTMÓW NIEDETERMINISTYCZNE MASZYNY TURINGA Bartosz Zieliński Katedra Fizyki Teoretycznej i Informatyki Zima 2011-2012 NIEDETERMINISTYCZNE MASZYNY TURINGA DEFINICJA: NIEDETERMINISTYCZNA
Języki formalne i automaty Ćwiczenia 2
Języki formalne i automaty Ćwiczenia 2 Autor: Marcin Orchel Spis treści Spis treści... 1 Wstęp teoretyczny... 2 Metoda brute force... 2 Konwersja do postaci normalnej Chomskiego... 5 Algorytm Cocke a-youngera-kasamiego
Maszyny Turinga i problemy nierozstrzygalne. Maszyny Turinga i problemy nierozstrzygalne
Maszyny Turinga Maszyna Turinga jest automatem ta±mowym, skª da si z ta±my (tablicy symboli) potencjalnie niesko«czonej w prawo, zakªadamy,»e w prawie wszystkich (tzn. wszystkich poza sko«czon liczb )
Minimalizacja automatów niedeterministycznych na słowach skończonych i nieskończonych
Szczepan Hummel Minimalizacja automatów niedeterministycznych na słowach skończonych i nieskończonych 24.11.2005 1. Minimalizacja automatów deterministycznych na słowach skończonych (DFA) [HU] relacja
Informatyka. Michał Rad
Informatyka Michał Rad 13.10.2016 Co i po co będziemy robić Plan wykładów: Wstęp, historia Systemy liczbowe Co to jest system operacyjny i po co to jest Sprawy związane z tworzeniem i własnością oprogramowania
Teoretyczne podstawy informatyki
Teoretyczne podstawy informatyki Wykład 10b: Wzorce i automaty. http://hibiscus.if.uj.edu.pl/~erichter/dydaktyka2009/tpi-2009 Prof. dr hab. Elżbieta Richter-Wąs 1 Wzorce i automaty Problematyka wzorców
Jak należy się spodziewać, mamy. Zauważmy jednak, że nie zachodzi równość
11. Wykład 11: Rachunek λ. Obliczenia i obliczalność. Rachunek λ jest systemem pozornie bardzo prostym. Abstrakcja i aplikacja wydają się trywialnymi operacjami, i może się zdawać, że niczego ciekawego
Wyrażenie nawiasowe. Wyrażenie puste jest poprawnym wyrażeniem nawiasowym.
Wyrażenie nawiasowe Wyrażeniem nawiasowym nazywamy dowolny skończony ciąg nawiasów. Każdemu nawiasowi otwierającemu odpowiada dokładnie jeden nawias zamykający. Poprawne wyrażenie nawiasowe definiujemy
1. Maszyna Turinga, gramatyki formalne i ONP
1. Maszyna uringa, gramatyki formalne i OP 1.1.Maszyna uringa Automat skończony składa się ze skończonego zbioru stanów i zbioru przejść ze stanu do stanu, zachodzących przy różnych symbolach wejściowych
Kombinowanie o nieskończoności. 3. Jak policzyć nieskończone materiały do ćwiczeń
Kombinowanie o nieskończoności. 3. Jak policzyć nieskończone materiały do ćwiczeń Projekt Matematyka dla ciekawych świata spisał: Michał Korch 22 marzec 2018 Szybkie przypomnienie z wykładu Prezentacja
Struktury danych i złozoność obliczeniowa. Prof. dr hab. inż. Jan Magott
Struktury danych i złozoność obliczeniowa Prof. dr hab. inż. Jan Magott Formy zajęć: Wykład 1 godz., Ćwiczenia 1 godz., Projekt 2 godz.. Adres strony z materiałami do wykładu: http://www.zio.iiar.pwr.wroc.pl/sdizo.html
Matematyczne Podstawy Informatyki
Matematyczne Podstawy Informatyki dr inż. Andrzej Grosser Instytut Informatyki Teoretycznej i Stosowanej Politechnika Częstochowska Rok akademicki 2013/2014 Gramatyki bezkontekstowe I Gramatyką bezkontekstową
Zadanie 1. Czy prawdziwa jest następująca implikacja? Jeśli L A jest językiem regularnym, to regularnym językiem jest też. A = (A, Q, q I, F, δ)
Zadanie 1. Czy prawdziwa jest następująca implikacja? Jeśli L A jest językiem regularnym, to regularnym językiem jest też L = {vw : vuw L dla pewnego u A takiego, że u = v + w } Rozwiązanie. Niech A =
Obliczanie. dr hab. inż. Joanna Józefowska, prof. PP 1
Obliczanie 1 Obliczanie Co to jest obliczanie? Czy wszystko można obliczyć? Czy to, co intuicyjnie uznajemy za obliczalne można obliczyć za pomocą mechanicznej procedury? 2 Czym jest obliczanie? Dawid
Alan M. TURING. Matematyk u progu współczesnej informatyki
Alan M. TURING n=0 1 n! Matematyk u progu współczesnej informatyki Wykład 5. Alan Turing u progu współczesnej informatyki O co pytał Alan TURING? Czym jest algorytm? Czy wszystkie problemy da się rozwiązać
5. Maszyna Turinga. q 1 Q. Konfiguracja: (q,α β) q stan αβ niepusta część taśmy wskazanie położenia głowicy
5. Maszyna Turnga = T Q skończony zór stanów q 0 stan początkowy F zór stanów końcowych Γ skończony zór symol taśmy T Γ alfaet wejścowy T Γ symol pusty (lank) δ: Q Γ! 2 Q Γ {L,R} funkcja
JAO - Wprowadzenie do Gramatyk bezkontekstowych
JAO - Wprowadzenie do Gramatyk bezkontekstowych Definicja gramatyki bezkontekstowej Podstawowymi narzędziami abstrakcyjnymi do opisu języków formalnych są gramatyki i automaty. Gramatyka bezkontekstowa
Definicja 2. Twierdzenie 1. Definicja 3
INSTYTUT CYBERNETYKI TECHNICZNEJ POLITECHNIKI WROCŁAWSKIEJ ZAKŁAD SZTUCZNEJ INTELIGENCJI I AUTOMATÓW Ćwiczenia laboratoryjne z Logiki Układów Cyfrowych ćwiczenie 205 temat: ZASTOSOWANIE JĘZYKA WYRAŻEŃ
Informacja w perspektywie obliczeniowej. Informacje, liczby i obliczenia
Informacja w perspektywie obliczeniowej Informacje, liczby i obliczenia Cztery punkty odniesienia (dla pojęcia informacji) ŚWIAT ontologia fizyka UMYSŁ psychologia epistemologia JĘZYK lingwistyka nauki
TEORIA ZŁOŻONOŚCI PROBLEMY I ALGORYTMY OGRANICZENIE DOLNE I GÓRNE PROJEKTOWANIE ALGORYTMÓW I METODY SZTUCZNEJ INTELIGENCJI
PROJEKTOWANIE ALGORYTMÓW I METODY SZTUCZNEJ INTELIGENCJI TEORIA ZŁOŻONOŚCI I MASZYNA TURINGA TEORIA ZŁOŻONOŚCI Teoria złożoności poszukuje rozwiązania dla problemów, które są algorytmicznie trudne do rozwiązania
Algorytmy i struktury danych. wykład 2
Plan wykładu: Pojęcie algorytmu. Projektowanie wstępujące i zstępujące. Rekurencja. Pojęcie algorytmu Pojęcie algorytmu Algorytm skończony zbiór operacji, koniecznych do wykonania zadania z pewnej klasy
Typy algorytmów losowych. ALP520 - Wykład z Algorytmów Probabilistycznych p.2
Typy algorytmów losowych ALP520 - Wykład z Algorytmów Probabilistycznych p.2 Typy algorytmów losowych Las Vegas - zawsze daje prawidłowa odpowiedź (różny czas działania). Przykład: RandQuicksort ALP520
Języki programowania zasady ich tworzenia
Strona 1 z 18 Języki programowania zasady ich tworzenia Definicja 5 Językami formalnymi nazywamy każdy system, w którym stosując dobrze określone reguły należące do ustalonego zbioru, możemy uzyskać wszystkie
Część wspólna (przekrój) A B składa się z wszystkich elementów, które należą jednocześnie do zbioru A i do zbioru B:
Zbiory 1 Rozważmy dowolne dwa zbiory A i B. Suma A B składa się z wszystkich elementów, które należą do zbioru A lub do zbioru B: (x A B) (x A x B). Część wspólna (przekrój) A B składa się z wszystkich