Kodowanie i kompresja Streszczenie Studia dzienne Wykład 9,
|
|
- Wacława Kowalik
- 7 lat temu
- Przeglądów:
Transkrypt
1 1 Kody Tunstalla Kodowanie i kompresja Streszczenie Studia dzienne Wykład 9, Inne podejście: słowa kodowe mają ustaloną długość, lecz mogą kodować ciągi liter z alfabetu wejściowego o różnej długości. Niech n oznacza długość słowa kodowego (liczba słów kodowych musi być większa od rozmiaru alfabetu). Dane: alfabet a 1,..., a N i prawdopodobieństwa występowania symboli z alfabetu p 1,..., p N. Tworzenie kodu. 1. Przyporządkowanie symbolom alfabetu N różnych ciągów o długości n. 2. Dopóki liczba ciągów długości n, które nie są wykorzystane jest większa od N 1: wybierz element e książki kodowej o największym prawdopodobieństwie usuń e z książki kodowej dodaj do książki kodowej elementy powstałe przez połączenie e z a 1,..., a N. przyporządkuj prawdopodobieństwa nowym elementom książki kodowej: P (ea i ) = P (e)p (a i ). Przyklad 1 Niech P (a) = 0.6, P (b) = 0.3, P (c) = 0.1. Utwórz 3-bitowy kod Tunstalla. Uwaga: kodowanie końcówki tekstu wymaga specjalnej obsługi. Dlaczego? Dla sytuacji tej rezerwujemy słowo kodowe 1 n. Zaleta: błędy transmisji nie propagują się (dzięki temu, że długość słowa kodowego jest stała). 2 Kodowanie arytmetyczne Motywacje 1. średnia dlugość kodu Huffmana może odbiegać o p max od entropii, gdzie p max to największe z prawdopodobieństw występowania symboli - może to powodować duże odchylenia od wartości entropii 1
2 2. efekt ten można zniwelować poprzez zastosowanie kodów Huffmana, w którym alfabet stanowią ciągi symboli określonej długości - ale wtedy rośnie gwałtownie rozmiar alfabetu. Idea kodowania arytmetycznego: zastosowanie podejścia z punktu 2. bez konieczności tworzenia książki kodowej dla wszystkich ciągów symboli (w szczególności tych, które nie wystepują). Uogólnienie kodowania Shannona. Ogólna metoda kodowania: tekst zostaje odwzorowany na liczbę z przedziału [0, 1) nazywaną ZNACZNI- Kiem. zakodowaną postać tekstu tworzy ZNACZNIK, reprezetowany z odpowiednio dobraną dokładnością oraz n - długość kodowanego tekstu. Znacznik dla jednej litery alfabetu: elementy alfabetu numerujemy a 1, a 2,..., a n ; oznaczmy ich prawdopodobieństwa przez p 1, p 2,..., p n ; literze a i przyporządkowujemy dowolną liczbę z przedziału [F (i), F (i + 1)), gdzie F (i) = i 1 j=1 p i Kodowanie ciągu b 1... b n nad alfabetem a 1,..., a m : 1. z = [0, 1); l = 0; p = 1; 2. Dla i = 1, 2,..., n: (a) niech b i = a j (b) l = l + F (j)/(p l) (c) p = l + F (j + 1)/(p l) 3. znacznik = (l + p)/2 (lub dowolna liczba z przedziału [l, p)) Przyklad 2 P (a) = 0.7, P (b) = 0.1, P (c) = 0.2. Kodujemy tekst abc. Tekst Lewy Prawy Znacznik a b c
3 Lemat 1 Dla ustalonej długości tekstu n, każdy ciag jest odzorowany na przedział rozłaczny z przedziałami odpowiadajacymi innym ciagom. Gwarantuje to jednoznaczność kodowania. Dekodowanie ciągu o długości n ze znacznika z: 1. l = 0; p = 1; 2. Dla i = 1, 2,..., n: (a) wybierz j takie, że l + F (j)(p l) z < l + F (j + 1)(p l) (b) przyjmij, że b i = a j (c) l = l + F (j)(p l); p = l + F (j + 1)(p l). 3. Ciąg oryginalny to b 1... b n. Przyklad 3 Niech z = 0.55 dla P (a) = 0.7, P (b) = 0.1, P (c) = 0.2 i n = 3. Własności kodowania arytmetycznego: Tekst Lewy Prawy Znacznik 0 1 a b c Wygenerowanie znacznika dla konkretnego ciągu nie wymaga wyznaczania bądź pamiętania znaczników innych ciągów 2. Problem! Komputerowa reprezentacja znacznika może wymagać dużej pamięci - jak dobrać wartość znacznika aby zminimalizować potrzebną pamięć? Twierdzenie 1 Niech x = x 1... x n będzie ciagiem danych o prawdopodobieństwie wystapienia P (x) = n i=1 P (x i ). Zaokraglenie znacznika ciagu x do m(x) = log 1/P (x) + 1 bitów (polegajace na usunięciu dalszych bitów) gwarantuje jednoznaczność kodowania. Dowód. Wystarczy pokazać, że zaokrąglenie gwarantuje, że znacznik pozostanie w przedziale [l, p) dla l i p wyznaczonych przy omawianiu algorytmu. Jest to równoważne własności, że wartość bezwzględna różnicy między znacznikiem dokładnym ((l +p)/2) a jego zaokrągleniem jest mniejsza od odległości znacznika oryginalnego od końców przedziału - (p l)/2. Oznaczenia: z = (l+p)/2 - znacznik; z - zaokrąglenie do m = m(x) bitów. Zauważmy, że z < z < p oraz 0 <= z z < 2 m. Pozostaje lewy koniec przedziału, zauważmy: 3
4 z z p; p l = P (x) (dla ciągów jednoliterowych z definicji, dla dłuższych dowód indukcyjny) z(x) l = P (x)/2, z (x) > z(x) 1/2 m(x) > log(1/p (x))+1 z(x) 1/2 > z(x) 1/(2 1/P (x)) = z(x) P (x)/2 = (p + l)/2 (p l)/2 = l. Jednoznaczność dekodowania - wynika z rozłączności przedziałów. Twierdzenie 2 Kod arytmetyczny jest (dla ustalonej długości kodowanego tekstu) przy zaokraglaniu do log 1/P (x) + 1 bitów kodem prefiksowym. Dowód. Wynika z jednoznaczności i faktu, że przybliżenie z znacznika z do log 1/P (x) + 1 bitów znajduje się w przedziale przypisanym ciągowi x, a przedziały różnych ciągów są rozłączne. Z drugiej strony, każde słowo (liczba) o prefiksie z przybliżenia też mieści się w przedziale przypisanym ciągowi x. Przyklad 4 Znacznik dla P(a)=0.7, P(b)=0.1, P(c)=0.2 i tekstu abc to 0.553, binarnie Liczba potrzebnych bitów to (log 1/(1/10)) + 1 = 5. Czyli zakodowana postać tekstu to Efektywność kodowania arytmetycznego Średnia długość kodu dla ciągów o ustalonej długości n a entropia: {x x =n} P (x)m(x) = {x x =n} P (x)( log 1/P (x) + 1) {x x =n} P (x)(log(1/p (x)) ) = {x x =n} P (x) log P (x) + 2 {x x =n} P (x) = H(X (n) ) + 2 Wniosek 1 Kodowanie arytmetyczne gwarantuje, że średnia liczba bitów przypadaja- cych na 1 symbol tekstu źródłowego jest równa co najwyżej H(X) + 2/n, gdzie X to źródło danych, a n długość kodowanego tekstu. 4
5 2.2 Implementacja Problemy: wraz ze wzrostem długości ciągu potrzebna coraz większa precyzja reprezentacji liczb a arytmetyka (dokładna) wbudowana w języki programowania (i szybko działająca) jest ograniczona do liczb o stałej długości. Zatem powstają zaokrąglenia niszczące informacje o ciągu. Dla efektywności transmisji danych - potrzebny algorytm przyrostowy (znacznik powstaje wraz z wydłużaniem się ciągu, nie dopiero po przeczytaniu całego ciągu). Algorytm z przeskalowaniem 1. licznik := 0 2. Jeśli cały przedział zawarty w [0, 0.5): (a) Przesyłamy bit 0 i przeskalowujemy przedział funkcją E 1 (x) = 2x. (b) Przesyłamy ciąg jedynek o długości licznik (c) licznik := 0 3. Jeśli cały przedział zawarty w [0.5, 1): (a) Przesyłamy bit 1 i przeskalowujemy przedział używając funkcji E 2 (x) = 2(x 0.5) (b) Przesyłamy ciąg zer o długości licznik (c) licznik := 0 4. Wartość 0.5 zawiera się w aktualnym przedziale [l, p): Jeśli [l, p) zawiera się w [0.25, 0.75): (a) przeskalowujemy przedział używając funkcji E 3 (x) = 2(x 0.25) (b) licznik := licznik + 1; Lemat 2 Ciag przeskalowań E 1 E2 i jest równoważny E3E i 1. Podobnie, ciag przeskalowań E 2 E1 i jest równoważny E3E i 2 Przyklad 5 Kodowanie dla P (a) = 0.8, P (b) = 0.02 i P (c) = 0.18, kodujemy acba. Dekodowanie z przeskalowaniem: 5
6 1. Niech p = max ai log(1/p (a i )). Odczytujemy pierwsze p bitów znacznika i ustalamy pierwsze przybliżenie znacznika z i pierwszy symbol w tekście, a j. 2. l := F (j); r := F (j + 1); 3. licznik := 0; 4. Kontynuacja dekodowania: (a) zawsze gdy przedział, w którym jest z spełnia warunki dla przeskalowania E1 lub E2: i. przeskalowanie przedziału znacznika, ii. usuwamy 1 + licznik najbardziej znaczących bitów z i dołączamy kolejne 1 + licznik bitów jako najmniej znaczące bity z iii. licznik := 0 (b) jeśli przedział spełnia warunki dla E3: przeskalowanie przedziału i z i zwiększenie licznik o 1; (c) jeśli przedział nie spełnia żadnego z warunków dla E1, E2, E3: odczytujemy kolejne bity z tak aby było ich co najmniej p i jednoznacznie dekodowały kolejną literę; na podstawie z wyznaczamy literę tekstu i kolejny przedział. Przyklad 6 Dekodujemy ciag uzyskany w poprzednim przykładzie dla P (a) = 0.8, P (b) = 0.02 i P (c) = 0.18, czyli ciag Omówione też zostało zastosowanie kodowania arytmetycznego w standardzie JBIG. 6
Kodowanie informacji
Kodowanie informacji Tomasz Wykład 4: kodowanie arytmetyczne Motywacja Podstawy i własności Liczby rzeczywiste Motywacje 1 średnia długość kodu Huffmana może odbiegać o p max + 0.086 od entropii, gdzie
Bardziej szczegółowoKody Tunstalla. Kodowanie arytmetyczne
Kody Tunstalla. Kodowanie arytmetyczne Kodowanie i kompresja informacji - Wykład 3 8 marca 2010 Kody Tunstalla Wszystkie słowa kodowe maja ta sama długość ale jeden kod może kodować różna liczbę liter
Bardziej szczegółowoKodowanie i kompresja Tomasz Jurdziński Studia Wieczorowe Wykład Kody liniowe - kodowanie w oparciu o macierz parzystości
Kodowanie i kompresja Tomasz Jurdziński Studia Wieczorowe Wykład 13 1 Kody liniowe - kodowanie w oparciu o macierz parzystości Przykład Różne macierze parzystości dla kodu powtórzeniowego. Co wiemy z algebry
Bardziej szczegółowoGranica kompresji Kodowanie Shannona Kodowanie Huffmana Kodowanie ciągów Kodowanie arytmetyczne. Kody. Marek Śmieja. Teoria informacji 1 / 35
Kody Marek Śmieja Teoria informacji 1 / 35 Entropia Entropia określa minimalną statystyczną długość kodowania (przyjmijmy dla prostoty że alfabet kodowy A = {0, 1}). Definicja Niech X = {x 1,..., x n }
Bardziej szczegółowoKompresja Kodowanie arytmetyczne. Dariusz Sobczuk
Kompresja Kodowanie arytmetyczne Dariusz Sobczuk Kodowanie arytmetyczne (lata 1960-te) Pierwsze prace w tym kierunku sięgają początków lat 60-tych XX wieku Pierwszy algorytm Eliasa nie został opublikowany
Bardziej szczegółowoteoria informacji Entropia, informacja, kodowanie Mariusz Różycki 24 sierpnia 2015
teoria informacji Entropia, informacja, kodowanie Mariusz Różycki 24 sierpnia 2015 1 zakres materiału zakres materiału 1. Czym jest teoria informacji? 2. Wprowadzenie matematyczne. 3. Entropia i informacja.
Bardziej szczegółowoKompresja bezstratna. Entropia. Kod Huffmana
Kompresja bezstratna. Entropia. Kod Huffmana Kodowanie i bezpieczeństwo informacji - Wykład 10 29 kwietnia 2013 Teoria informacji Jeśli P(A) jest prawdopodobieństwem wystapienia informacji A to niech i(a)
Bardziej szczegółowoWstęp Statyczne kody Huffmana Dynamiczne kody Huffmana Praktyka. Kodowanie Huffmana. Dawid Duda. 4 marca 2004
4 marca 2004 Podstawowe oznaczenia i definicje Wymagania wobec kodu Podstawowa idea Podsumowanie Podstawowe oznaczenia i definicje Podstawowe oznaczenia i definicje: alfabet wejściowy: A = {a 1, a 2,...,
Bardziej szczegółowoPodstawowe pojęcia. Teoria informacji
Kodowanie i kompresja informacji - Wykład 1 22 luty 2010 Literatura K. Sayood, Kompresja danych - wprowadzenie, READ ME 2002 (ISBN 83-7243-094-2) Literatura K. Sayood, Kompresja danych - wprowadzenie,
Bardziej szczegółowoTeoria informacji i kodowania Ćwiczenia
Teoria informacji i kodowania Ćwiczenia Piotr Chołda, Andrzej Kamisiński Katedra Telekomunikacji Akademii Górniczo-Hutniczej Kod źródłowy Kodem źródłowym nazywamy funkcję różnowartościową, która elementom
Bardziej szczegółowoTemat: Algorytm kompresji plików metodą Huffmana
Temat: Algorytm kompresji plików metodą Huffmana. Wymagania dotyczące kompresji danych Przez M oznaczmy zbiór wszystkich możliwych symboli występujących w pliku (alfabet pliku). Przykład M = 2, gdy plik
Bardziej szczegółowoTeoria Informacji - wykład. Kodowanie wiadomości
Teoria Informacji - wykład Kodowanie wiadomości Definicja kodu Niech S={s 1, s 2,..., s q } oznacza dany zbiór elementów. Kodem nazywamy wówczas odwzorowanie zbioru wszystkich możliwych ciągów utworzonych
Bardziej szczegółowoAlgorytmy kompresji. Kodowanie Huffmana, kodowanie arytmetyczne
Algorytmy kompresji Kodowanie Huffmana, kodowanie arytmetyczne Kodowanie arytmetyczne Peter Elias 1923-2001 Kodowanie arytmetyczne to metoda kodowania źródłowego dyskretnych źródeł sygnałów, stosowana
Bardziej szczegółowoteoria informacji Kanały komunikacyjne, kody korygujące Mariusz Różycki 25 sierpnia 2015
teoria informacji Kanały komunikacyjne, kody korygujące Mariusz Różycki 25 sierpnia 2015 1 wczoraj Wprowadzenie matematyczne. Entropia i informacja. Kodowanie. Kod ASCII. Stopa kodu. Kody bezprefiksowe.
Bardziej szczegółowoNierówność Krafta-McMillana, Kodowanie Huffmana
Nierówność Krafta-McMillana, Kodowanie Huffmana Kodowanie i kompresja informacji - Wykład 2 1 marca 2010 Test na jednoznaczna dekodowalność Kod a jest prefiksem kodu b jeśli b jest postaci ax. x nazywamy
Bardziej szczegółowoEntropia Kodowanie. Podstawy kompresji. Algorytmy kompresji danych. Sebastian Deorowicz
Algorytmy kompresji danych 2007 02 27 Plan wykładu 1 Modelowanie i kodowanie 2 Modelowanie i kodowanie Plan wykładu 1 Modelowanie i kodowanie 2 Modelowanie i kodowanie definicja stowarzyszona ze zbiorem
Bardziej szczegółowoZałożenia i obszar zastosowań. JPEG - algorytm kodowania obrazu. Geneza algorytmu KOMPRESJA OBRAZÓW STATYCZNYCH - ALGORYTM JPEG
Założenia i obszar zastosowań KOMPRESJA OBRAZÓW STATYCZNYCH - ALGORYTM JPEG Plan wykładu: Geneza algorytmu Założenia i obszar zastosowań JPEG kroki algorytmu kodowania obrazu Założenia: Obraz monochromatyczny
Bardziej szczegółowo0-0000, 1-0001, 2-0010, 3-0011 itd... 9-1001.
KODOWANIE Jednym z problemów, z którymi spotykamy się w informatyce, jest problem właściwego wykorzystania pamięci. Konstruując algorytm staramy się zwykle nie tylko o zminimalizowanie kosztów czasowych
Bardziej szczegółowoKodowanie i kompresja Streszczenie Studia dzienne Wykład 6
Kodowanie i kompresja Streszczenie Studia dzienne Wykład 6 1 Kody cykliczne: dekodowanie Definicja 1 (Syndrom) Niech K będzie kodem cyklicznym z wielomianem generuja- cym g(x). Resztę z dzielenia słowa
Bardziej szczegółowomgr inż. Grzegorz Kraszewski SYSTEMY MULTIMEDIALNE wykład 4, strona 1. GOLOMBA I RICE'A
mgr inż. Grzegorz Kraszewski SYSTEMY MULTIMEDIALNE wykład 4, strona 1. KOMPRESJA ALGORYTMEM ARYTMETYCZNYM, GOLOMBA I RICE'A Idea algorytmu arytmetycznego Przykład kodowania arytmetycznego Renormalizacja
Bardziej szczegółowoWygra Polska czy Brazylia, czyli o tym jak zwięźle zapisywać informacje
Wygra Polska czy Brazylia, czyli o tym jak zwięźle zapisywać informacje Witold Tomaszewski Instytut Matematyki Politechniki Śląskiej e-mail: Witold.Tomaszewski@polsl.pl Je n ai fait celle-ci plus longue
Bardziej szczegółowoKodowanie i kompresja Streszczenie Studia Licencjackie Wykład 11,
1 Kwantyzacja skalarna Kodowanie i kompresja Streszczenie Studia Licencjackie Wykład 11, 10.05.005 Kwantyzacja polega na reprezentowaniu dużego zbioru wartości (być może nieskończonego) za pomocą wartości
Bardziej szczegółowoKodowanie i entropia
Kodowanie i entropia Marek Śmieja Teoria informacji 1 / 34 Kod S - alfabet źródłowy mocy m (np. litery, cyfry, znaki interpunkcyjne), A = {a 1,..., a n } - alfabet kodowy (symbole), Chcemy przesłać tekst
Bardziej szczegółowoZADANIE 1. Rozwiązanie:
EUROELEKTR Ogólnopolska Olimpiada Wiedzy Elektrycznej i Elektronicznej Rok szkolny 200/20 Rozwiązania zadań dla grupy teleinformatycznej na zawody II. stopnia ZNIE ramka logiczna w technologii MOS składa
Bardziej szczegółowo0 + 0 = 0, = 1, = 1, = 0.
5 Kody liniowe Jak już wiemy, w celu przesłania zakodowanego tekstu dzielimy go na bloki i do każdego z bloków dodajemy tak zwane bity sprawdzające. Bity te są w ścisłej zależności z bitami informacyjnymi,
Bardziej szczegółowoKompresja danych kodowanie Huffmana. Dariusz Sobczuk
Kompresja danych kodowanie Huffmana Dariusz Sobczuk Plan wykładu Kodowanie metodą Shannona-Fano Kodowanie metodą Huffmana Elementarny kod Golomba Kod Golomba Kod Rice a kompresja danych 2 Efektywny kod
Bardziej szczegółowoMatematyka dyskretna
Matematyka dyskretna Wykład 7: Kody korygujące błędy Gniewomir Sarbicki Błędy transmisji i kodowanie nadmiarowe Zakładamy, że przy pewnym małym prawdopodobieństwie ɛ przy transmisji bit zmienia wartość.
Bardziej szczegółowoDef. Kod jednoznacznie definiowalny Def. Kod przedrostkowy Def. Kod optymalny. Przykłady kodów. Kody optymalne
Załóżmy, że mamy źródło S, które generuje symbole ze zbioru S={x, x 2,..., x N } z prawdopodobieństwem P={p, p 2,..., p N }, symbolom tym odpowiadają kody P={c, c 2,..., c N }. fektywność danego sposobu
Bardziej szczegółowoKodowanie Huffmana. Platforma programistyczna.net; materiały do laboratorium 2014/15 Marcin Wilczewski
Kodowanie Huffmana Platforma programistyczna.net; materiały do laboratorium 24/5 Marcin Wilczewski Algorytm Huffmana (David Huffman, 952) Algorytm Huffmana jest popularnym algorytmem generującym optymalny
Bardziej szczegółowoDefinicja. Jeśli. wtedy
Definicja Jeśli wtedy Cel kompresji: zredukowanie do minimum oczekiwanego (średniego) kosztu gdzie l i jest długością słowa kodu c i kodującego symbol a i Definicja Definicje Efektywność kodowania określamy
Bardziej szczegółowoElementy teorii informacji i kodowania
i kodowania Entropia, nierówność Krafta, kodowanie optymalne Marcin Jenczmyk m.jenczmyk@knm.katowice.pl 17 kwietnia 2015 M. Jenczmyk Spotkanie KNM i kodowania 1 / 20 Niech S = {x 1,..., x q } oznacza alfabet,
Bardziej szczegółowoWstęp do Informatyki
Wstęp do Informatyki Bożena Woźna-Szcześniak bwozna@gmail.com Jan Długosz University, Poland Wykład 4 Bożena Woźna-Szcześniak (AJD) Wstęp do Informatyki Wykład 4 1 / 1 DZIELENIE LICZB BINARNYCH Dzielenie
Bardziej szczegółowoLZ77 LZ78. Kompresja danych. Tomasz Jurdziński. Wykład 5: kodowanie słownikowe
Tomasz Wykład 5: kodowanie słownikowe Motywacja Motywacje 1 zazwyczaj dane nie tworza ciagu wartości niezależnych, kolejny symbol jest zależny od poprzedzajacych go; 2 pewne sekwencje (słowa) często się
Bardziej szczegółowoMet Me ody numer yczne Wykład ykład Dr inż. Mic hał ha Łan Łan zon Instyt Ins ut Elektr Elektr echn iki echn i Elektrot Elektr echn olo echn
Metody numeryczne Wykład 2 Dr inż. Michał Łanczont Instytut Elektrotechniki i Elektrotechnologii E419, tel. 4293, m.lanczont@pollub.pl, http://m.lanczont.pollub.pl Zakres wykładu Arytmetyka zmiennopozycyjna
Bardziej szczegółowoSystemy liczbowe. 1. Przedstawić w postaci sumy wag poszczególnych cyfr liczbę rzeczywistą R = (10).
Wprowadzenie do inżynierii przetwarzania informacji. Ćwiczenie 1. Systemy liczbowe Cel dydaktyczny: Poznanie zasad reprezentacji liczb w systemach pozycyjnych o różnych podstawach. Kodowanie liczb dziesiętnych
Bardziej szczegółowoKodowanie predykcyjne
Kodowanie i kompresja informacji - Wykład 5 22 marca 2010 Motywacje W tekstach naturalnych symbole bardzo często zależa od siebie. Motywacje W tekstach naturalnych symbole bardzo często zależa od siebie.
Bardziej szczegółowoTeoria informacji i kodowania Ćwiczenia Sem. zimowy 2016/2017
Kody źródłowe jednoznacznie dekodowalne Zadanie Ile najwięcej słów kodowych może liczyć kod binarny jednoznacznie dekodowalny, którego najdłuższe słowo ma siedem liter? (Odp. 28) Zadanie 2 Zbiór sześciu
Bardziej szczegółowoAlgorytmy zachłanne. dr inż. Urszula Gałązka
Algorytmy zachłanne dr inż. Urszula Gałązka Algorytm zachłanny O Dokonuje wyboru, który w danej chwili wydaje się najkorzystniejszy. O Mówimy, że jest to wybór lokalnie optymalny O W rzeczywistości nie
Bardziej szczegółowoKodowanie informacji
Tomasz Wykład 4: kodowanie słownikowe Motywacja Motywacje 1 kodowane dane nie tworza ciagu wartości niezależnych, rozkład prawdopodobieństwa zależy od symboli poprzedzajacych symbol kodowany; 2 pewne sekwencje
Bardziej szczegółowoKodowanie Shannona-Fano
Kodowanie Shannona-Fano Kodowanie Shannona-Fano znane było jeszcze przed kodowaniem Huffmana i w praktyce można dzięki niemu osiągnąć podobne wyniki, pomimo, że kod generowany tą metodą nie jest optymalny.
Bardziej szczegółowoKODY SYMBOLI. Kod Shannona-Fano. Algorytm S-F. Przykład S-F
KODY SYMBOLI Kod Shannona-Fano KODOWANIE DANYCH, A.Przelaskowski Metoda S-F Kod Huffmana Adaptacyjne drzewo Huffmana Problemy implementacji Kod Golomba Podsumowanie Kod drzewa binarnego Na wejściu rozkład:
Bardziej szczegółowoAlgorytmy kodowania entropijnego
Algorytmy kodowania entropijnego 1. Kodowanie Shannona-Fano 2. Kodowanie Huffmana 3. Jednoznaczność kodów Huffmana. Kod o minimalnej wariancji 4. Dynamiczne kodowanie Huffmana Poprzedni wykład - podsumowanie
Bardziej szczegółowoPrzetwarzanie i transmisja danych multimedialnych. Wykład 5 Kodowanie słownikowe. Przemysław Sękalski.
Przetwarzanie i transmisja danych multimedialnych Wykład 5 Kodowanie słownikowe Przemysław Sękalski sekalski@dmcs.pl Politechnika Łódzka Katedra Mikroelektroniki i Technik Informatycznych DMCS Przemysław
Bardziej szczegółowoPrzetwarzanie i transmisja danych multimedialnych. Wykład 2 Podstawy kompresji. Przemysław Sękalski.
Przetwarzanie i transmisja danych multimedialnych Wykład Podstawy kompresji Przemysław Sękalski sekalski@dmcs.pl Politechnika Łódzka Katedra Mikroelektroniki i Technik Informatycznych DMCS Zawartość wykładu.
Bardziej szczegółowoKODY SYMBOLI. Materiały KODA, A.Przelaskowski. Koncepcja przedziałów nieskończonego alfabetu
KODY SYMBOLI Materiały KODA, A.Przelaskowski Koncepcja drzewa binarnego Metoda S-F Kod Huffmana Adaptacyjne drzewo Huffmana Problemy implementacji Koncepcja przedziałów nieskończonego alfabetu Proste kody
Bardziej szczegółowoKodowanie i kompresja Streszczenie Studia Licencjackie Wykład 14, Kryptografia: algorytmy asymetryczne (RSA)
Kodowanie i kompresja Streszczenie Studia Licencjackie Wykład 14, 7.06.2005 1 Kryptografia: algorytmy asymetryczne (RSA) Niech E K (x) oznacza szyfrowanie wiadomości x kluczem K (E od encrypt, D K (x)
Bardziej szczegółowoKodowanie informacji. Kody liczbowe
Wykład 2 2-1 Kodowanie informacji PoniewaŜ komputer jest urządzeniem zbudowanym z układów cyfrowych, informacja przetwarzana przez niego musi być reprezentowana przy pomocy dwóch stanów - wysokiego i niskiego,
Bardziej szczegółowoModulacja i kodowanie. Labolatorium. Kodowanie źródłowe Kod Huffman a
Modulacja i kodowanie Labolatorium Kodowanie źródłowe Kod Huffman a W tym ćwiczeniu zajmiemy się kodowaniem źródłowym (source coding). 1. Kodowanie źródłowe Głównym celem kodowanie źródłowego jest zmniejszenie
Bardziej szczegółowoKodowanie informacji. Przygotował: Ryszard Kijanka
Kodowanie informacji Przygotował: Ryszard Kijanka Komputer jest urządzeniem służącym do przetwarzania informacji. Informacją są liczby, ale także inne obiekty, takie jak litery, wartości logiczne, obrazy
Bardziej szczegółowo2 Kryptografia: algorytmy symetryczne
1 Kryptografia: wstęp Wyróżniamy algorytmy: Kodowanie i kompresja Streszczenie Wieczorowe Studia Licencjackie Wykład 14, 12.06.2007 symetryczne: ten sam klucz jest stosowany do szyfrowania i deszyfrowania;
Bardziej szczegółowoDane, informacja, programy. Kodowanie danych, kompresja stratna i bezstratna
Dane, informacja, programy Kodowanie danych, kompresja stratna i bezstratna DANE Uporządkowane, zorganizowane fakty. Główne grupy danych: tekstowe (znaki alfanumeryczne, znaki specjalne) graficzne (ilustracje,
Bardziej szczegółowoKompresja danych Streszczenie Studia Dzienne Wykład 10,
1 Kwantyzacja wektorowa Kompresja danych Streszczenie Studia Dzienne Wykład 10, 28.04.2006 Kwantyzacja wektorowa: dane dzielone na bloki (wektory), każdy blok kwantyzowany jako jeden element danych. Ogólny
Bardziej szczegółowoTeoretyczne Podstawy Informatyki
Teoretyczne Podstawy Informatyki cel zajęć Celem kształcenia jest uzyskanie umiejętności i kompetencji w zakresie budowy schematów blokowych algor ytmów oraz ocenę ich złożoności obliczeniowej w celu optymizacji
Bardziej szczegółowozłożony ze słów zerojedynkowych o długości co najmniej 3, w których druga i trzecia litera od końca sa
Zadanie 1. Rozważmy jezyk złożony ze słów zerojedynkowych o długości co najmniej 3, w których druga i trzecia litera od końca sa równe. Narysować diagram minimalnego automatu deterministycznego akceptujacego
Bardziej szczegółowoArytmetyka komputera
Arytmetyka komputera Systemy zapisu liczb System dziesiętny Podstawą układu dziesiętnego jest liczba 10, a wszystkie liczby można zapisywać dziesięcioma cyframi: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. Jednostka
Bardziej szczegółowoWstęp do informatyki- wykład 1 Systemy liczbowe
1 Wstęp do informatyki- wykład 1 Systemy liczbowe Treści prezentowane w wykładzie zostały oparte o: S. Prata, Język C++. Szkoła programowania. Wydanie VI, Helion, 2012 www.cplusplus.com Jerzy Grębosz,
Bardziej szczegółowoStan wysoki (H) i stan niski (L)
PODSTAWY Przez układy cyfrowe rozumiemy układy, w których w każdej chwili występują tylko dwa (zwykle) możliwe stany, np. tranzystor, jako element układu cyfrowego, może być albo w stanie nasycenia, albo
Bardziej szczegółowoWstęp do programowania. Reprezentacje liczb. Liczby naturalne, całkowite i rzeczywiste w układzie binarnym
Wstęp do programowania Reprezentacje liczb Liczby naturalne, całkowite i rzeczywiste w układzie binarnym System dwójkowy W komputerach stosuje się dwójkowy system pozycyjny do reprezentowania zarówno liczb
Bardziej szczegółowoKod IEEE754. IEEE754 (1985) - norma dotycząca zapisu binarnego liczb zmiennopozycyjnych (pojedynczej precyzji) Liczbę binarną o postaci
Kod IEEE754 IEEE Institute of Electrical and Electronics Engineers IEEE754 (1985) - norma dotycząca zapisu binarnego liczb zmiennopozycyjnych (pojedynczej precyzji) Liczbę binarną o postaci (-1) s 1.f
Bardziej szczegółowoZapis liczb binarnych ze znakiem
Zapis liczb binarnych ze znakiem W tej prezentacji: Zapis Znak-Moduł (ZM) Zapis uzupełnień do 1 (U1) Zapis uzupełnień do 2 (U2) Zapis Znak-Moduł (ZM) Koncepcyjnie zapis znak - moduł (w skrócie ZM - ang.
Bardziej szczegółowoKody blokowe Wykład 2, 10 III 2011
Kody blokowe Wykład 2, 10 III 2011 Literatura 1. R.M. Roth, Introduction to Coding Theory, 2006 2. W.C. Huffman, V. Pless, Fundamentals of Error-Correcting Codes, 2003 3. D.R. Hankerson et al., Coding
Bardziej szczegółowoKodowanie i kompresja Streszczenie Studia Licencjackie Wykład 15, Kryptografia: algorytmy asymetryczne (RSA)
Kodowanie i kompresja Streszczenie Studia Licencjackie Wykład 15, 19.06.2005 1 Kryptografia: algorytmy asymetryczne (RSA) Niech E K (x) oznacza szyfrowanie wiadomości x kluczem K (E od encrypt, D K (x)
Bardziej szczegółowoTechniki multimedialne
Techniki multimedialne Digitalizacja podstawą rozwoju systemów multimedialnych. Digitalizacja czyli obróbka cyfrowa oznacza przetwarzanie wszystkich typów informacji - słów, dźwięków, ilustracji, wideo
Bardziej szczegółowoNiech x 1,..., x n będzie ciągiem zdarzeń. ---
Matematyczne podstawy kryptografii, Ćw2 TEMAT 7: Teoria Shannona. Kody Huffmana, entropia. BIBLIOGRAFIA: [] Cz. Bagiński, cez.wipb.pl, [2] T. H. Cormen, C. E. Leiserson, R. L Rivest, Wprowadzenie do algorytmów,
Bardziej szczegółowoPrzetwarzanie i transmisja danych multimedialnych. Wykład 3 Kodowanie Shannona Fano i Huffmana. Przemysław Sękalski.
Przetwarzanie i transmisja danych multimedialnych Wykład 3 Kodowanie Shannona Fano i Huffmana Przemysław Sękalski sekalski@dmcs.pl Politechnika Łódzka Katedra Mikroelektroniki i Technik Informatycznych
Bardziej szczegółowoKodowanie predykcyjne
Studia Wieczorowe Wrocław, 27.03.2007 Kodowanie informacji Wykład 5 Kodowanie predykcyjne Idea: przewidujemy następny element ciągu i kodujemy różnicę między wartością przewidywaną i rzeczywistą, w oparciu
Bardziej szczegółowoPrzykład: Σ = {0, 1} Σ - zbiór wszystkich skończonych ciagów binarnych. L 1 = {0, 00, 000,...,1, 11, 111,... } L 2 = {01, 1010, 001, 11}
Języki Ustalmy pewien skończony zbiór symboli Σ zwany alfabetem. Zbiór Σ zawiera wszystkie skończone ciagi symboli z Σ. Podzbiór L Σ nazywamy językiem a x L nazywamy słowem. Specjalne słowo puste oznaczamy
Bardziej szczegółowoKompresja danych DKDA (7)
Kompresja danych DKDA (7) Marcin Gogolewski marcing@wmi.amu.edu.pl Uniwersytet im. Adama Mickiewicza w Poznaniu Poznań, 22 listopada 2016 1 Kwantyzacja skalarna Wprowadzenie Analiza jakości Typy kwantyzatorów
Bardziej szczegółowoKOMPRESJA OBRAZÓW STATYCZNYCH - ALGORYTM JPEG
KOMPRESJA OBRAZÓW STATYCZNYCH - ALGORYTM JPEG Joint Photographic Expert Group - 1986 ISO - International Standard Organisation CCITT - Comité Consultatif International de Téléphonie et Télégraphie Standard
Bardziej szczegółowoAlgorytmy i struktury danych
Cel ćwiczenia lgorytmy i struktury danych Instytut Sterowania i Systemów Informatycznych Wydział Elektrotechniki, Informatyki i Telekomunikacji Uniwersytet Zielonogórski Kompresja Ćwiczenie ma na celu
Bardziej szczegółowoTechnologie Informacyjne
System binarny Szkoła Główna Służby Pożarniczej Zakład Informatyki i Łączności October 7, 26 Pojęcie bitu 2 Systemy liczbowe 3 Potęgi dwójki 4 System szesnastkowy 5 Kodowanie informacji 6 Liczby ujemne
Bardziej szczegółowoAlgorytmy i struktury danych. wykład 8
Plan wykładu: Kodowanie. : wyszukiwanie wzorca w tekście, odległość edycyjna. Kodowanie Kodowanie Kodowanie jest to proces przekształcania informacji wybranego typu w informację innego typu. Kod: jest
Bardziej szczegółowo1.1. Pozycyjne systemy liczbowe
1.1. Pozycyjne systemy liczbowe Systemami liczenia nazywa się sposób tworzenia liczb ze znaków cyfrowych oraz zbiór reguł umożliwiających wykonywanie operacji arytmetycznych na liczbach. Dla dowolnego
Bardziej szczegółowoLICZBY ZMIENNOPRZECINKOWE
LICZBY ZMIENNOPRZECINKOWE Liczby zmiennoprzecinkowe są komputerową reprezentacją liczb rzeczywistych zapisanych w formie wykładniczej (naukowej). Aby uprościć arytmetykę na nich, przyjęto ograniczenia
Bardziej szczegółowoTeoria informacji i kodowania Ćwiczenia Sem. zimowy 2016/2017
Algebra liniowa Zadanie 1 Czy jeśli wektory x, y i z, należące do binarnej przestrzeni wektorowej nad ciałem Galois GF (2), są liniowo niezależne, to można to samo orzec o następujących trzech wektorach:
Bardziej szczegółowoSamodzielnie wykonaj następujące operacje: 13 / 2 = 30 / 5 = 73 / 15 = 15 / 23 = 13 % 2 = 30 % 5 = 73 % 15 = 15 % 23 =
Systemy liczbowe Dla każdej liczby naturalnej x Î N oraz liczby naturalnej p >= 2 istnieją jednoznacznie wyznaczone: liczba n Î N oraz ciąg cyfr c 0, c 1,..., c n-1 (gdzie ck Î {0, 1,..., p - 1}) taki,
Bardziej szczegółowoO oszczędnym dziennikarzu, czyli czym jest
O oszczędnym dziennikarzu, czyli czym jest informacja i jak ja mierzymy? Adam Doliwa doliwa@matman.uwm.edu.pl WYKŁAD DLA MŁODZIEŻY WYDZIAŁ MATEMATYKI I INFORMATYKI UWM Olsztyn, 9 lutego 2016 r. Adam Doliwa
Bardziej szczegółowoArchitektura komputerów Reprezentacja liczb. Kodowanie rozkazów.
Architektura komputerów Reprezentacja liczb. Kodowanie rozkazów. Prezentacja jest współfinansowana przez Unię Europejską w ramach Europejskiego Funduszu Społecznego w projekcie pt. Innowacyjna dydaktyka
Bardziej szczegółowoWprowadzenie do informatyki i użytkowania komputerów. Kodowanie informacji System komputerowy
1 Wprowadzenie do informatyki i użytkowania komputerów Kodowanie informacji System komputerowy Kodowanie informacji 2 Co to jest? bit, bajt, kod ASCII. Jak działa system komputerowy? Co to jest? pamięć
Bardziej szczegółowo12. Wprowadzenie Sygnały techniki cyfrowej Systemy liczbowe. Matematyka: Elektronika:
PRZYPOMNIJ SOBIE! Matematyka: Dodawanie i odejmowanie "pod kreską". Elektronika: Sygnały cyfrowe. Zasadę pracy tranzystorów bipolarnych i unipolarnych. 12. Wprowadzenie 12.1. Sygnały techniki cyfrowej
Bardziej szczegółowoPodstawy Informatyki dla Nauczyciela
Podstawy Informatyki dla Nauczyciela Bożena Woźna-Szcześniak bwozna@gmail.com Jan Długosz University, Poland Wykład 2 Bożena Woźna-Szcześniak (AJD) Podstawy Informatyki dla Nauczyciela Wykład 2 1 / 1 Informacja
Bardziej szczegółowoWstęp do informatyki- wykład 1
MATEMATYKA 1 Wstęp do informatyki- wykład 1 Systemy liczbowe Treści prezentowane w wykładzie zostały oparte o: S. Prata, Język C++. Szkoła programowania. Wydanie VI, Helion, 2012 www.cplusplus.com Jerzy
Bardziej szczegółowopobieramy pierwszą literę komunikatu i wypełniamy nią (wszystkie pozycje tą samą literą) bufor słownikowy.
komunikat do zakodowania: a a b a b b a b a c c a b a a a a a c a c b c b b c c a a c b a 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 przyjmujemy długość bufora słownikowego
Bardziej szczegółowoPodstawy Informatyki: Kody. Korekcja błędów.
Podstawy Informatyki: Kody. Korekcja błędów. Adam Kolany Instytut Techniczny adamkolany@pm.katowice.pl Adam Kolany (PWSZ Nowy Sącz, IT) Podstawy Informatyki: Kody. Korekcja błędów. 11 stycznia 2012 1 /
Bardziej szczegółowoZadanie 1. Czy prawdziwa jest następująca implikacja? Jeśli L A jest językiem regularnym, to regularnym językiem jest też. A = (A, Q, q I, F, δ)
Zadanie 1. Czy prawdziwa jest następująca implikacja? Jeśli L A jest językiem regularnym, to regularnym językiem jest też L = {vw : vuw L dla pewnego u A takiego, że u = v + w } Rozwiązanie. Niech A =
Bardziej szczegółowoTeoria przetwarzania A/C i C/A.
Teoria przetwarzania A/C i C/A. Autor: Bartłomiej Gorczyński Cyfrowe metody przetwarzania sygnałów polegają na przetworzeniu badanego sygnału analogowego w sygnał cyfrowy reprezentowany ciągiem słów binarnych
Bardziej szczegółowoMetody numeryczne I. Janusz Szwabiński. Metody numeryczne I (C) 2004 Janusz Szwabiński p.1/61
Metody numeryczne I Dokładność obliczeń numerycznych. Złożoność obliczeniowa algorytmów Janusz Szwabiński szwabin@ift.uni.wroc.pl Metody numeryczne I (C) 2004 Janusz Szwabiński p.1/61 ... the purpose of
Bardziej szczegółowoLICZBY ZMIENNOPRZECINKOWE
LICZBY ZMIENNOPRZECINKOWE Liczby zmiennoprzecinkowe są komputerową reprezentacją liczb rzeczywistych zapisanych w formie wykładniczej (naukowej). Aby uprościć arytmetykę na nich, przyjęto ograniczenia
Bardziej szczegółowoPodstawy kompresji danych
Podstawy kompresji danych Pojęcie kompresji W ogólności kompresja (kodowanie) jest procedurą (przekształceniem) zmiany reprezentacji wejściowego zbioru danych do postaci wymagającej mniejszej liczby bitów
Bardziej szczegółowoKody Huffmana. Konrad Wypyski. 11 lutego 2006 roku
Kody Huffmana Konrad Wypyski 11 lutego 2006 roku Spis treści 1 Rozdział 1 Kody Huffmana Kody Huffmana (ang. Huffman coding) to jedna z najprostszych i najłatwiejszych w implementacji metod kompresji bezstratnej;
Bardziej szczegółowoStruktury danych i złożoność obliczeniowa Wykład 5. Prof. dr hab. inż. Jan Magott
Struktury danych i złożoność obliczeniowa Wykład 5 Prof. dr hab. inż. Jan Magott DMT rozwiązuje problem decyzyjny π przy kodowaniu e w co najwyżej wielomianowym czasie, jeśli dla wszystkich łańcuchów wejściowych
Bardziej szczegółowoCyfrowy zapis informacji
F1-1 Cyfrowy zapis informacji Alfabet: uporządkowany zbiór znaków, np. A = {a,b,..., z} Słowa (ciągi) informacyjne: łańcuchy znakowe, np. A i = gdtr Długość słowa n : liczba znaków słowa, np. n(sbdy) =
Bardziej szczegółowoJoint Photographic Experts Group
Joint Photographic Experts Group Artur Drozd Uniwersytet Jagielloński 14 maja 2010 1 Co to jest JPEG? Dlaczego powstał? 2 Transformata Fouriera 3 Dyskretna transformata kosinusowa (DCT-II) 4 Kodowanie
Bardziej szczegółowoKodowanie transformacyjne. Plan 1. Zasada 2. Rodzaje transformacji 3. Standard JPEG
Kodowanie transformacyjne Plan 1. Zasada 2. Rodzaje transformacji 3. Standard JPEG Zasada Zasada podstawowa: na danych wykonujemy transformacje która: Likwiduje korelacje Skupia energię w kilku komponentach
Bardziej szczegółowoTeoria. a, jeśli a < 0.
Teoria Definicja 1 Wartością bezwzględną liczby a R nazywamy liczbę a określoną wzorem a, jeśli a 0, a = a, jeśli a < 0 Zgodnie z powyższym określeniem liczba a jest równa odległości liczby a od liczby
Bardziej szczegółowoHaszowanie (adresowanie rozpraszające, mieszające)
Haszowanie (adresowanie rozpraszające, mieszające) Tadeusz Pankowski H. Garcia-Molina, J.D. Ullman, J. Widom, Implementacja systemów baz danych, WNT, Warszawa, Haszowanie W adresowaniu haszującym wyróżniamy
Bardziej szczegółowoDla człowieka naturalnym sposobem liczenia jest korzystanie z systemu dziesiętnego, dla komputera natomiast korzystanie z zapisu dwójkowego
Arytmetyka cyfrowa Dla człowieka naturalnym sposobem liczenia jest korzystanie z systemu dziesiętnego, dla komputera natomiast korzystanie z zapisu dwójkowego (binarnego). Zapis binarny - to system liczenia
Bardziej szczegółowoMetody numeryczne. Janusz Szwabiński. nm_slides.tex Metody numeryczne Janusz Szwabiński 2/10/ :02 p.
Metody numeryczne Janusz Szwabiński szwabin@ift.uni.wroc.pl nm_slides.tex Metody numeryczne Janusz Szwabiński 2/10/2002 23:02 p.1/63 Plan wykładu 1. Dokładność w obliczeniach numerycznych 2. Złożoność
Bardziej szczegółowoArchitektura systemów komputerowych
Architektura systemów komputerowych Grzegorz Mazur Zak lad Metod Obliczeniowych Chemii Uniwersytet Jagielloński 12 kwietnia 2011 Grzegorz Mazur (ZMOCh UJ) Architektura systemów komputerowych 12 kwietnia
Bardziej szczegółowoDetekcja i korekcja błędów w transmisji cyfrowej
Detekcja i korekcja błędów w transmisji cyfrowej Błędy w transmisji cyfrowej pojedyncze wielokrotne. całkowita niepewność względem miejsca zakłóconych bitów oraz czy w ogóle występują paczkowe (grupowe)
Bardziej szczegółowo