Kodowanie i kompresja Streszczenie Studia dzienne Wykład 9,

Wielkość: px
Rozpocząć pokaz od strony:

Download "Kodowanie i kompresja Streszczenie Studia dzienne Wykład 9,"

Transkrypt

1 1 Kody Tunstalla Kodowanie i kompresja Streszczenie Studia dzienne Wykład 9, Inne podejście: słowa kodowe mają ustaloną długość, lecz mogą kodować ciągi liter z alfabetu wejściowego o różnej długości. Niech n oznacza długość słowa kodowego (liczba słów kodowych musi być większa od rozmiaru alfabetu). Dane: alfabet a 1,..., a N i prawdopodobieństwa występowania symboli z alfabetu p 1,..., p N. Tworzenie kodu. 1. Przyporządkowanie symbolom alfabetu N różnych ciągów o długości n. 2. Dopóki liczba ciągów długości n, które nie są wykorzystane jest większa od N 1: wybierz element e książki kodowej o największym prawdopodobieństwie usuń e z książki kodowej dodaj do książki kodowej elementy powstałe przez połączenie e z a 1,..., a N. przyporządkuj prawdopodobieństwa nowym elementom książki kodowej: P (ea i ) = P (e)p (a i ). Przyklad 1 Niech P (a) = 0.6, P (b) = 0.3, P (c) = 0.1. Utwórz 3-bitowy kod Tunstalla. Uwaga: kodowanie końcówki tekstu wymaga specjalnej obsługi. Dlaczego? Dla sytuacji tej rezerwujemy słowo kodowe 1 n. Zaleta: błędy transmisji nie propagują się (dzięki temu, że długość słowa kodowego jest stała). 2 Kodowanie arytmetyczne Motywacje 1. średnia dlugość kodu Huffmana może odbiegać o p max od entropii, gdzie p max to największe z prawdopodobieństw występowania symboli - może to powodować duże odchylenia od wartości entropii 1

2 2. efekt ten można zniwelować poprzez zastosowanie kodów Huffmana, w którym alfabet stanowią ciągi symboli określonej długości - ale wtedy rośnie gwałtownie rozmiar alfabetu. Idea kodowania arytmetycznego: zastosowanie podejścia z punktu 2. bez konieczności tworzenia książki kodowej dla wszystkich ciągów symboli (w szczególności tych, które nie wystepują). Uogólnienie kodowania Shannona. Ogólna metoda kodowania: tekst zostaje odwzorowany na liczbę z przedziału [0, 1) nazywaną ZNACZNI- Kiem. zakodowaną postać tekstu tworzy ZNACZNIK, reprezetowany z odpowiednio dobraną dokładnością oraz n - długość kodowanego tekstu. Znacznik dla jednej litery alfabetu: elementy alfabetu numerujemy a 1, a 2,..., a n ; oznaczmy ich prawdopodobieństwa przez p 1, p 2,..., p n ; literze a i przyporządkowujemy dowolną liczbę z przedziału [F (i), F (i + 1)), gdzie F (i) = i 1 j=1 p i Kodowanie ciągu b 1... b n nad alfabetem a 1,..., a m : 1. z = [0, 1); l = 0; p = 1; 2. Dla i = 1, 2,..., n: (a) niech b i = a j (b) l = l + F (j)/(p l) (c) p = l + F (j + 1)/(p l) 3. znacznik = (l + p)/2 (lub dowolna liczba z przedziału [l, p)) Przyklad 2 P (a) = 0.7, P (b) = 0.1, P (c) = 0.2. Kodujemy tekst abc. Tekst Lewy Prawy Znacznik a b c

3 Lemat 1 Dla ustalonej długości tekstu n, każdy ciag jest odzorowany na przedział rozłaczny z przedziałami odpowiadajacymi innym ciagom. Gwarantuje to jednoznaczność kodowania. Dekodowanie ciągu o długości n ze znacznika z: 1. l = 0; p = 1; 2. Dla i = 1, 2,..., n: (a) wybierz j takie, że l + F (j)(p l) z < l + F (j + 1)(p l) (b) przyjmij, że b i = a j (c) l = l + F (j)(p l); p = l + F (j + 1)(p l). 3. Ciąg oryginalny to b 1... b n. Przyklad 3 Niech z = 0.55 dla P (a) = 0.7, P (b) = 0.1, P (c) = 0.2 i n = 3. Własności kodowania arytmetycznego: Tekst Lewy Prawy Znacznik 0 1 a b c Wygenerowanie znacznika dla konkretnego ciągu nie wymaga wyznaczania bądź pamiętania znaczników innych ciągów 2. Problem! Komputerowa reprezentacja znacznika może wymagać dużej pamięci - jak dobrać wartość znacznika aby zminimalizować potrzebną pamięć? Twierdzenie 1 Niech x = x 1... x n będzie ciagiem danych o prawdopodobieństwie wystapienia P (x) = n i=1 P (x i ). Zaokraglenie znacznika ciagu x do m(x) = log 1/P (x) + 1 bitów (polegajace na usunięciu dalszych bitów) gwarantuje jednoznaczność kodowania. Dowód. Wystarczy pokazać, że zaokrąglenie gwarantuje, że znacznik pozostanie w przedziale [l, p) dla l i p wyznaczonych przy omawianiu algorytmu. Jest to równoważne własności, że wartość bezwzględna różnicy między znacznikiem dokładnym ((l +p)/2) a jego zaokrągleniem jest mniejsza od odległości znacznika oryginalnego od końców przedziału - (p l)/2. Oznaczenia: z = (l+p)/2 - znacznik; z - zaokrąglenie do m = m(x) bitów. Zauważmy, że z < z < p oraz 0 <= z z < 2 m. Pozostaje lewy koniec przedziału, zauważmy: 3

4 z z p; p l = P (x) (dla ciągów jednoliterowych z definicji, dla dłuższych dowód indukcyjny) z(x) l = P (x)/2, z (x) > z(x) 1/2 m(x) > log(1/p (x))+1 z(x) 1/2 > z(x) 1/(2 1/P (x)) = z(x) P (x)/2 = (p + l)/2 (p l)/2 = l. Jednoznaczność dekodowania - wynika z rozłączności przedziałów. Twierdzenie 2 Kod arytmetyczny jest (dla ustalonej długości kodowanego tekstu) przy zaokraglaniu do log 1/P (x) + 1 bitów kodem prefiksowym. Dowód. Wynika z jednoznaczności i faktu, że przybliżenie z znacznika z do log 1/P (x) + 1 bitów znajduje się w przedziale przypisanym ciągowi x, a przedziały różnych ciągów są rozłączne. Z drugiej strony, każde słowo (liczba) o prefiksie z przybliżenia też mieści się w przedziale przypisanym ciągowi x. Przyklad 4 Znacznik dla P(a)=0.7, P(b)=0.1, P(c)=0.2 i tekstu abc to 0.553, binarnie Liczba potrzebnych bitów to (log 1/(1/10)) + 1 = 5. Czyli zakodowana postać tekstu to Efektywność kodowania arytmetycznego Średnia długość kodu dla ciągów o ustalonej długości n a entropia: {x x =n} P (x)m(x) = {x x =n} P (x)( log 1/P (x) + 1) {x x =n} P (x)(log(1/p (x)) ) = {x x =n} P (x) log P (x) + 2 {x x =n} P (x) = H(X (n) ) + 2 Wniosek 1 Kodowanie arytmetyczne gwarantuje, że średnia liczba bitów przypadaja- cych na 1 symbol tekstu źródłowego jest równa co najwyżej H(X) + 2/n, gdzie X to źródło danych, a n długość kodowanego tekstu. 4

5 2.2 Implementacja Problemy: wraz ze wzrostem długości ciągu potrzebna coraz większa precyzja reprezentacji liczb a arytmetyka (dokładna) wbudowana w języki programowania (i szybko działająca) jest ograniczona do liczb o stałej długości. Zatem powstają zaokrąglenia niszczące informacje o ciągu. Dla efektywności transmisji danych - potrzebny algorytm przyrostowy (znacznik powstaje wraz z wydłużaniem się ciągu, nie dopiero po przeczytaniu całego ciągu). Algorytm z przeskalowaniem 1. licznik := 0 2. Jeśli cały przedział zawarty w [0, 0.5): (a) Przesyłamy bit 0 i przeskalowujemy przedział funkcją E 1 (x) = 2x. (b) Przesyłamy ciąg jedynek o długości licznik (c) licznik := 0 3. Jeśli cały przedział zawarty w [0.5, 1): (a) Przesyłamy bit 1 i przeskalowujemy przedział używając funkcji E 2 (x) = 2(x 0.5) (b) Przesyłamy ciąg zer o długości licznik (c) licznik := 0 4. Wartość 0.5 zawiera się w aktualnym przedziale [l, p): Jeśli [l, p) zawiera się w [0.25, 0.75): (a) przeskalowujemy przedział używając funkcji E 3 (x) = 2(x 0.25) (b) licznik := licznik + 1; Lemat 2 Ciag przeskalowań E 1 E2 i jest równoważny E3E i 1. Podobnie, ciag przeskalowań E 2 E1 i jest równoważny E3E i 2 Przyklad 5 Kodowanie dla P (a) = 0.8, P (b) = 0.02 i P (c) = 0.18, kodujemy acba. Dekodowanie z przeskalowaniem: 5

6 1. Niech p = max ai log(1/p (a i )). Odczytujemy pierwsze p bitów znacznika i ustalamy pierwsze przybliżenie znacznika z i pierwszy symbol w tekście, a j. 2. l := F (j); r := F (j + 1); 3. licznik := 0; 4. Kontynuacja dekodowania: (a) zawsze gdy przedział, w którym jest z spełnia warunki dla przeskalowania E1 lub E2: i. przeskalowanie przedziału znacznika, ii. usuwamy 1 + licznik najbardziej znaczących bitów z i dołączamy kolejne 1 + licznik bitów jako najmniej znaczące bity z iii. licznik := 0 (b) jeśli przedział spełnia warunki dla E3: przeskalowanie przedziału i z i zwiększenie licznik o 1; (c) jeśli przedział nie spełnia żadnego z warunków dla E1, E2, E3: odczytujemy kolejne bity z tak aby było ich co najmniej p i jednoznacznie dekodowały kolejną literę; na podstawie z wyznaczamy literę tekstu i kolejny przedział. Przyklad 6 Dekodujemy ciag uzyskany w poprzednim przykładzie dla P (a) = 0.8, P (b) = 0.02 i P (c) = 0.18, czyli ciag Omówione też zostało zastosowanie kodowania arytmetycznego w standardzie JBIG. 6

Kodowanie informacji

Kodowanie informacji Kodowanie informacji Tomasz Wykład 4: kodowanie arytmetyczne Motywacja Podstawy i własności Liczby rzeczywiste Motywacje 1 średnia długość kodu Huffmana może odbiegać o p max + 0.086 od entropii, gdzie

Bardziej szczegółowo

Kody Tunstalla. Kodowanie arytmetyczne

Kody Tunstalla. Kodowanie arytmetyczne Kody Tunstalla. Kodowanie arytmetyczne Kodowanie i kompresja informacji - Wykład 3 8 marca 2010 Kody Tunstalla Wszystkie słowa kodowe maja ta sama długość ale jeden kod może kodować różna liczbę liter

Bardziej szczegółowo

Kodowanie i kompresja Tomasz Jurdziński Studia Wieczorowe Wykład Kody liniowe - kodowanie w oparciu o macierz parzystości

Kodowanie i kompresja Tomasz Jurdziński Studia Wieczorowe Wykład Kody liniowe - kodowanie w oparciu o macierz parzystości Kodowanie i kompresja Tomasz Jurdziński Studia Wieczorowe Wykład 13 1 Kody liniowe - kodowanie w oparciu o macierz parzystości Przykład Różne macierze parzystości dla kodu powtórzeniowego. Co wiemy z algebry

Bardziej szczegółowo

Granica kompresji Kodowanie Shannona Kodowanie Huffmana Kodowanie ciągów Kodowanie arytmetyczne. Kody. Marek Śmieja. Teoria informacji 1 / 35

Granica kompresji Kodowanie Shannona Kodowanie Huffmana Kodowanie ciągów Kodowanie arytmetyczne. Kody. Marek Śmieja. Teoria informacji 1 / 35 Kody Marek Śmieja Teoria informacji 1 / 35 Entropia Entropia określa minimalną statystyczną długość kodowania (przyjmijmy dla prostoty że alfabet kodowy A = {0, 1}). Definicja Niech X = {x 1,..., x n }

Bardziej szczegółowo

Kompresja Kodowanie arytmetyczne. Dariusz Sobczuk

Kompresja Kodowanie arytmetyczne. Dariusz Sobczuk Kompresja Kodowanie arytmetyczne Dariusz Sobczuk Kodowanie arytmetyczne (lata 1960-te) Pierwsze prace w tym kierunku sięgają początków lat 60-tych XX wieku Pierwszy algorytm Eliasa nie został opublikowany

Bardziej szczegółowo

teoria informacji Entropia, informacja, kodowanie Mariusz Różycki 24 sierpnia 2015

teoria informacji Entropia, informacja, kodowanie Mariusz Różycki 24 sierpnia 2015 teoria informacji Entropia, informacja, kodowanie Mariusz Różycki 24 sierpnia 2015 1 zakres materiału zakres materiału 1. Czym jest teoria informacji? 2. Wprowadzenie matematyczne. 3. Entropia i informacja.

Bardziej szczegółowo

Kompresja bezstratna. Entropia. Kod Huffmana

Kompresja bezstratna. Entropia. Kod Huffmana Kompresja bezstratna. Entropia. Kod Huffmana Kodowanie i bezpieczeństwo informacji - Wykład 10 29 kwietnia 2013 Teoria informacji Jeśli P(A) jest prawdopodobieństwem wystapienia informacji A to niech i(a)

Bardziej szczegółowo

Wstęp Statyczne kody Huffmana Dynamiczne kody Huffmana Praktyka. Kodowanie Huffmana. Dawid Duda. 4 marca 2004

Wstęp Statyczne kody Huffmana Dynamiczne kody Huffmana Praktyka. Kodowanie Huffmana. Dawid Duda. 4 marca 2004 4 marca 2004 Podstawowe oznaczenia i definicje Wymagania wobec kodu Podstawowa idea Podsumowanie Podstawowe oznaczenia i definicje Podstawowe oznaczenia i definicje: alfabet wejściowy: A = {a 1, a 2,...,

Bardziej szczegółowo

Podstawowe pojęcia. Teoria informacji

Podstawowe pojęcia. Teoria informacji Kodowanie i kompresja informacji - Wykład 1 22 luty 2010 Literatura K. Sayood, Kompresja danych - wprowadzenie, READ ME 2002 (ISBN 83-7243-094-2) Literatura K. Sayood, Kompresja danych - wprowadzenie,

Bardziej szczegółowo

Teoria informacji i kodowania Ćwiczenia

Teoria informacji i kodowania Ćwiczenia Teoria informacji i kodowania Ćwiczenia Piotr Chołda, Andrzej Kamisiński Katedra Telekomunikacji Akademii Górniczo-Hutniczej Kod źródłowy Kodem źródłowym nazywamy funkcję różnowartościową, która elementom

Bardziej szczegółowo

Temat: Algorytm kompresji plików metodą Huffmana

Temat: Algorytm kompresji plików metodą Huffmana Temat: Algorytm kompresji plików metodą Huffmana. Wymagania dotyczące kompresji danych Przez M oznaczmy zbiór wszystkich możliwych symboli występujących w pliku (alfabet pliku). Przykład M = 2, gdy plik

Bardziej szczegółowo

Teoria Informacji - wykład. Kodowanie wiadomości

Teoria Informacji - wykład. Kodowanie wiadomości Teoria Informacji - wykład Kodowanie wiadomości Definicja kodu Niech S={s 1, s 2,..., s q } oznacza dany zbiór elementów. Kodem nazywamy wówczas odwzorowanie zbioru wszystkich możliwych ciągów utworzonych

Bardziej szczegółowo

Algorytmy kompresji. Kodowanie Huffmana, kodowanie arytmetyczne

Algorytmy kompresji. Kodowanie Huffmana, kodowanie arytmetyczne Algorytmy kompresji Kodowanie Huffmana, kodowanie arytmetyczne Kodowanie arytmetyczne Peter Elias 1923-2001 Kodowanie arytmetyczne to metoda kodowania źródłowego dyskretnych źródeł sygnałów, stosowana

Bardziej szczegółowo

teoria informacji Kanały komunikacyjne, kody korygujące Mariusz Różycki 25 sierpnia 2015

teoria informacji Kanały komunikacyjne, kody korygujące Mariusz Różycki 25 sierpnia 2015 teoria informacji Kanały komunikacyjne, kody korygujące Mariusz Różycki 25 sierpnia 2015 1 wczoraj Wprowadzenie matematyczne. Entropia i informacja. Kodowanie. Kod ASCII. Stopa kodu. Kody bezprefiksowe.

Bardziej szczegółowo

Nierówność Krafta-McMillana, Kodowanie Huffmana

Nierówność Krafta-McMillana, Kodowanie Huffmana Nierówność Krafta-McMillana, Kodowanie Huffmana Kodowanie i kompresja informacji - Wykład 2 1 marca 2010 Test na jednoznaczna dekodowalność Kod a jest prefiksem kodu b jeśli b jest postaci ax. x nazywamy

Bardziej szczegółowo

Entropia Kodowanie. Podstawy kompresji. Algorytmy kompresji danych. Sebastian Deorowicz

Entropia Kodowanie. Podstawy kompresji. Algorytmy kompresji danych. Sebastian Deorowicz Algorytmy kompresji danych 2007 02 27 Plan wykładu 1 Modelowanie i kodowanie 2 Modelowanie i kodowanie Plan wykładu 1 Modelowanie i kodowanie 2 Modelowanie i kodowanie definicja stowarzyszona ze zbiorem

Bardziej szczegółowo

Założenia i obszar zastosowań. JPEG - algorytm kodowania obrazu. Geneza algorytmu KOMPRESJA OBRAZÓW STATYCZNYCH - ALGORYTM JPEG

Założenia i obszar zastosowań. JPEG - algorytm kodowania obrazu. Geneza algorytmu KOMPRESJA OBRAZÓW STATYCZNYCH - ALGORYTM JPEG Założenia i obszar zastosowań KOMPRESJA OBRAZÓW STATYCZNYCH - ALGORYTM JPEG Plan wykładu: Geneza algorytmu Założenia i obszar zastosowań JPEG kroki algorytmu kodowania obrazu Założenia: Obraz monochromatyczny

Bardziej szczegółowo

0-0000, 1-0001, 2-0010, 3-0011 itd... 9-1001.

0-0000, 1-0001, 2-0010, 3-0011 itd... 9-1001. KODOWANIE Jednym z problemów, z którymi spotykamy się w informatyce, jest problem właściwego wykorzystania pamięci. Konstruując algorytm staramy się zwykle nie tylko o zminimalizowanie kosztów czasowych

Bardziej szczegółowo

Kodowanie i kompresja Streszczenie Studia dzienne Wykład 6

Kodowanie i kompresja Streszczenie Studia dzienne Wykład 6 Kodowanie i kompresja Streszczenie Studia dzienne Wykład 6 1 Kody cykliczne: dekodowanie Definicja 1 (Syndrom) Niech K będzie kodem cyklicznym z wielomianem generuja- cym g(x). Resztę z dzielenia słowa

Bardziej szczegółowo

mgr inż. Grzegorz Kraszewski SYSTEMY MULTIMEDIALNE wykład 4, strona 1. GOLOMBA I RICE'A

mgr inż. Grzegorz Kraszewski SYSTEMY MULTIMEDIALNE wykład 4, strona 1. GOLOMBA I RICE'A mgr inż. Grzegorz Kraszewski SYSTEMY MULTIMEDIALNE wykład 4, strona 1. KOMPRESJA ALGORYTMEM ARYTMETYCZNYM, GOLOMBA I RICE'A Idea algorytmu arytmetycznego Przykład kodowania arytmetycznego Renormalizacja

Bardziej szczegółowo

Wygra Polska czy Brazylia, czyli o tym jak zwięźle zapisywać informacje

Wygra Polska czy Brazylia, czyli o tym jak zwięźle zapisywać informacje Wygra Polska czy Brazylia, czyli o tym jak zwięźle zapisywać informacje Witold Tomaszewski Instytut Matematyki Politechniki Śląskiej e-mail: Witold.Tomaszewski@polsl.pl Je n ai fait celle-ci plus longue

Bardziej szczegółowo

Kodowanie i kompresja Streszczenie Studia Licencjackie Wykład 11,

Kodowanie i kompresja Streszczenie Studia Licencjackie Wykład 11, 1 Kwantyzacja skalarna Kodowanie i kompresja Streszczenie Studia Licencjackie Wykład 11, 10.05.005 Kwantyzacja polega na reprezentowaniu dużego zbioru wartości (być może nieskończonego) za pomocą wartości

Bardziej szczegółowo

Kodowanie i entropia

Kodowanie i entropia Kodowanie i entropia Marek Śmieja Teoria informacji 1 / 34 Kod S - alfabet źródłowy mocy m (np. litery, cyfry, znaki interpunkcyjne), A = {a 1,..., a n } - alfabet kodowy (symbole), Chcemy przesłać tekst

Bardziej szczegółowo

ZADANIE 1. Rozwiązanie:

ZADANIE 1. Rozwiązanie: EUROELEKTR Ogólnopolska Olimpiada Wiedzy Elektrycznej i Elektronicznej Rok szkolny 200/20 Rozwiązania zadań dla grupy teleinformatycznej na zawody II. stopnia ZNIE ramka logiczna w technologii MOS składa

Bardziej szczegółowo

0 + 0 = 0, = 1, = 1, = 0.

0 + 0 = 0, = 1, = 1, = 0. 5 Kody liniowe Jak już wiemy, w celu przesłania zakodowanego tekstu dzielimy go na bloki i do każdego z bloków dodajemy tak zwane bity sprawdzające. Bity te są w ścisłej zależności z bitami informacyjnymi,

Bardziej szczegółowo

Kompresja danych kodowanie Huffmana. Dariusz Sobczuk

Kompresja danych kodowanie Huffmana. Dariusz Sobczuk Kompresja danych kodowanie Huffmana Dariusz Sobczuk Plan wykładu Kodowanie metodą Shannona-Fano Kodowanie metodą Huffmana Elementarny kod Golomba Kod Golomba Kod Rice a kompresja danych 2 Efektywny kod

Bardziej szczegółowo

Matematyka dyskretna

Matematyka dyskretna Matematyka dyskretna Wykład 7: Kody korygujące błędy Gniewomir Sarbicki Błędy transmisji i kodowanie nadmiarowe Zakładamy, że przy pewnym małym prawdopodobieństwie ɛ przy transmisji bit zmienia wartość.

Bardziej szczegółowo

Def. Kod jednoznacznie definiowalny Def. Kod przedrostkowy Def. Kod optymalny. Przykłady kodów. Kody optymalne

Def. Kod jednoznacznie definiowalny Def. Kod przedrostkowy Def. Kod optymalny. Przykłady kodów. Kody optymalne Załóżmy, że mamy źródło S, które generuje symbole ze zbioru S={x, x 2,..., x N } z prawdopodobieństwem P={p, p 2,..., p N }, symbolom tym odpowiadają kody P={c, c 2,..., c N }. fektywność danego sposobu

Bardziej szczegółowo

Kodowanie Huffmana. Platforma programistyczna.net; materiały do laboratorium 2014/15 Marcin Wilczewski

Kodowanie Huffmana. Platforma programistyczna.net; materiały do laboratorium 2014/15 Marcin Wilczewski Kodowanie Huffmana Platforma programistyczna.net; materiały do laboratorium 24/5 Marcin Wilczewski Algorytm Huffmana (David Huffman, 952) Algorytm Huffmana jest popularnym algorytmem generującym optymalny

Bardziej szczegółowo

Definicja. Jeśli. wtedy

Definicja. Jeśli. wtedy Definicja Jeśli wtedy Cel kompresji: zredukowanie do minimum oczekiwanego (średniego) kosztu gdzie l i jest długością słowa kodu c i kodującego symbol a i Definicja Definicje Efektywność kodowania określamy

Bardziej szczegółowo

Elementy teorii informacji i kodowania

Elementy teorii informacji i kodowania i kodowania Entropia, nierówność Krafta, kodowanie optymalne Marcin Jenczmyk m.jenczmyk@knm.katowice.pl 17 kwietnia 2015 M. Jenczmyk Spotkanie KNM i kodowania 1 / 20 Niech S = {x 1,..., x q } oznacza alfabet,

Bardziej szczegółowo

Wstęp do Informatyki

Wstęp do Informatyki Wstęp do Informatyki Bożena Woźna-Szcześniak bwozna@gmail.com Jan Długosz University, Poland Wykład 4 Bożena Woźna-Szcześniak (AJD) Wstęp do Informatyki Wykład 4 1 / 1 DZIELENIE LICZB BINARNYCH Dzielenie

Bardziej szczegółowo

LZ77 LZ78. Kompresja danych. Tomasz Jurdziński. Wykład 5: kodowanie słownikowe

LZ77 LZ78. Kompresja danych. Tomasz Jurdziński. Wykład 5: kodowanie słownikowe Tomasz Wykład 5: kodowanie słownikowe Motywacja Motywacje 1 zazwyczaj dane nie tworza ciagu wartości niezależnych, kolejny symbol jest zależny od poprzedzajacych go; 2 pewne sekwencje (słowa) często się

Bardziej szczegółowo

Met Me ody numer yczne Wykład ykład Dr inż. Mic hał ha Łan Łan zon Instyt Ins ut Elektr Elektr echn iki echn i Elektrot Elektr echn olo echn

Met Me ody numer yczne Wykład ykład Dr inż. Mic hał ha Łan Łan zon Instyt Ins ut Elektr Elektr echn iki echn i Elektrot Elektr echn olo echn Metody numeryczne Wykład 2 Dr inż. Michał Łanczont Instytut Elektrotechniki i Elektrotechnologii E419, tel. 4293, m.lanczont@pollub.pl, http://m.lanczont.pollub.pl Zakres wykładu Arytmetyka zmiennopozycyjna

Bardziej szczegółowo

Systemy liczbowe. 1. Przedstawić w postaci sumy wag poszczególnych cyfr liczbę rzeczywistą R = (10).

Systemy liczbowe. 1. Przedstawić w postaci sumy wag poszczególnych cyfr liczbę rzeczywistą R = (10). Wprowadzenie do inżynierii przetwarzania informacji. Ćwiczenie 1. Systemy liczbowe Cel dydaktyczny: Poznanie zasad reprezentacji liczb w systemach pozycyjnych o różnych podstawach. Kodowanie liczb dziesiętnych

Bardziej szczegółowo

Kodowanie predykcyjne

Kodowanie predykcyjne Kodowanie i kompresja informacji - Wykład 5 22 marca 2010 Motywacje W tekstach naturalnych symbole bardzo często zależa od siebie. Motywacje W tekstach naturalnych symbole bardzo często zależa od siebie.

Bardziej szczegółowo

Teoria informacji i kodowania Ćwiczenia Sem. zimowy 2016/2017

Teoria informacji i kodowania Ćwiczenia Sem. zimowy 2016/2017 Kody źródłowe jednoznacznie dekodowalne Zadanie Ile najwięcej słów kodowych może liczyć kod binarny jednoznacznie dekodowalny, którego najdłuższe słowo ma siedem liter? (Odp. 28) Zadanie 2 Zbiór sześciu

Bardziej szczegółowo

Algorytmy zachłanne. dr inż. Urszula Gałązka

Algorytmy zachłanne. dr inż. Urszula Gałązka Algorytmy zachłanne dr inż. Urszula Gałązka Algorytm zachłanny O Dokonuje wyboru, który w danej chwili wydaje się najkorzystniejszy. O Mówimy, że jest to wybór lokalnie optymalny O W rzeczywistości nie

Bardziej szczegółowo

Kodowanie informacji

Kodowanie informacji Tomasz Wykład 4: kodowanie słownikowe Motywacja Motywacje 1 kodowane dane nie tworza ciagu wartości niezależnych, rozkład prawdopodobieństwa zależy od symboli poprzedzajacych symbol kodowany; 2 pewne sekwencje

Bardziej szczegółowo

Kodowanie Shannona-Fano

Kodowanie Shannona-Fano Kodowanie Shannona-Fano Kodowanie Shannona-Fano znane było jeszcze przed kodowaniem Huffmana i w praktyce można dzięki niemu osiągnąć podobne wyniki, pomimo, że kod generowany tą metodą nie jest optymalny.

Bardziej szczegółowo

KODY SYMBOLI. Kod Shannona-Fano. Algorytm S-F. Przykład S-F

KODY SYMBOLI. Kod Shannona-Fano. Algorytm S-F. Przykład S-F KODY SYMBOLI Kod Shannona-Fano KODOWANIE DANYCH, A.Przelaskowski Metoda S-F Kod Huffmana Adaptacyjne drzewo Huffmana Problemy implementacji Kod Golomba Podsumowanie Kod drzewa binarnego Na wejściu rozkład:

Bardziej szczegółowo

Algorytmy kodowania entropijnego

Algorytmy kodowania entropijnego Algorytmy kodowania entropijnego 1. Kodowanie Shannona-Fano 2. Kodowanie Huffmana 3. Jednoznaczność kodów Huffmana. Kod o minimalnej wariancji 4. Dynamiczne kodowanie Huffmana Poprzedni wykład - podsumowanie

Bardziej szczegółowo

Przetwarzanie i transmisja danych multimedialnych. Wykład 5 Kodowanie słownikowe. Przemysław Sękalski.

Przetwarzanie i transmisja danych multimedialnych. Wykład 5 Kodowanie słownikowe. Przemysław Sękalski. Przetwarzanie i transmisja danych multimedialnych Wykład 5 Kodowanie słownikowe Przemysław Sękalski sekalski@dmcs.pl Politechnika Łódzka Katedra Mikroelektroniki i Technik Informatycznych DMCS Przemysław

Bardziej szczegółowo

Przetwarzanie i transmisja danych multimedialnych. Wykład 2 Podstawy kompresji. Przemysław Sękalski.

Przetwarzanie i transmisja danych multimedialnych. Wykład 2 Podstawy kompresji. Przemysław Sękalski. Przetwarzanie i transmisja danych multimedialnych Wykład Podstawy kompresji Przemysław Sękalski sekalski@dmcs.pl Politechnika Łódzka Katedra Mikroelektroniki i Technik Informatycznych DMCS Zawartość wykładu.

Bardziej szczegółowo

KODY SYMBOLI. Materiały KODA, A.Przelaskowski. Koncepcja przedziałów nieskończonego alfabetu

KODY SYMBOLI. Materiały KODA, A.Przelaskowski. Koncepcja przedziałów nieskończonego alfabetu KODY SYMBOLI Materiały KODA, A.Przelaskowski Koncepcja drzewa binarnego Metoda S-F Kod Huffmana Adaptacyjne drzewo Huffmana Problemy implementacji Koncepcja przedziałów nieskończonego alfabetu Proste kody

Bardziej szczegółowo

Kodowanie i kompresja Streszczenie Studia Licencjackie Wykład 14, Kryptografia: algorytmy asymetryczne (RSA)

Kodowanie i kompresja Streszczenie Studia Licencjackie Wykład 14, Kryptografia: algorytmy asymetryczne (RSA) Kodowanie i kompresja Streszczenie Studia Licencjackie Wykład 14, 7.06.2005 1 Kryptografia: algorytmy asymetryczne (RSA) Niech E K (x) oznacza szyfrowanie wiadomości x kluczem K (E od encrypt, D K (x)

Bardziej szczegółowo

Kodowanie informacji. Kody liczbowe

Kodowanie informacji. Kody liczbowe Wykład 2 2-1 Kodowanie informacji PoniewaŜ komputer jest urządzeniem zbudowanym z układów cyfrowych, informacja przetwarzana przez niego musi być reprezentowana przy pomocy dwóch stanów - wysokiego i niskiego,

Bardziej szczegółowo

Modulacja i kodowanie. Labolatorium. Kodowanie źródłowe Kod Huffman a

Modulacja i kodowanie. Labolatorium. Kodowanie źródłowe Kod Huffman a Modulacja i kodowanie Labolatorium Kodowanie źródłowe Kod Huffman a W tym ćwiczeniu zajmiemy się kodowaniem źródłowym (source coding). 1. Kodowanie źródłowe Głównym celem kodowanie źródłowego jest zmniejszenie

Bardziej szczegółowo

Kodowanie informacji. Przygotował: Ryszard Kijanka

Kodowanie informacji. Przygotował: Ryszard Kijanka Kodowanie informacji Przygotował: Ryszard Kijanka Komputer jest urządzeniem służącym do przetwarzania informacji. Informacją są liczby, ale także inne obiekty, takie jak litery, wartości logiczne, obrazy

Bardziej szczegółowo

2 Kryptografia: algorytmy symetryczne

2 Kryptografia: algorytmy symetryczne 1 Kryptografia: wstęp Wyróżniamy algorytmy: Kodowanie i kompresja Streszczenie Wieczorowe Studia Licencjackie Wykład 14, 12.06.2007 symetryczne: ten sam klucz jest stosowany do szyfrowania i deszyfrowania;

Bardziej szczegółowo

Dane, informacja, programy. Kodowanie danych, kompresja stratna i bezstratna

Dane, informacja, programy. Kodowanie danych, kompresja stratna i bezstratna Dane, informacja, programy Kodowanie danych, kompresja stratna i bezstratna DANE Uporządkowane, zorganizowane fakty. Główne grupy danych: tekstowe (znaki alfanumeryczne, znaki specjalne) graficzne (ilustracje,

Bardziej szczegółowo

Kompresja danych Streszczenie Studia Dzienne Wykład 10,

Kompresja danych Streszczenie Studia Dzienne Wykład 10, 1 Kwantyzacja wektorowa Kompresja danych Streszczenie Studia Dzienne Wykład 10, 28.04.2006 Kwantyzacja wektorowa: dane dzielone na bloki (wektory), każdy blok kwantyzowany jako jeden element danych. Ogólny

Bardziej szczegółowo

Teoretyczne Podstawy Informatyki

Teoretyczne Podstawy Informatyki Teoretyczne Podstawy Informatyki cel zajęć Celem kształcenia jest uzyskanie umiejętności i kompetencji w zakresie budowy schematów blokowych algor ytmów oraz ocenę ich złożoności obliczeniowej w celu optymizacji

Bardziej szczegółowo

złożony ze słów zerojedynkowych o długości co najmniej 3, w których druga i trzecia litera od końca sa

złożony ze słów zerojedynkowych o długości co najmniej 3, w których druga i trzecia litera od końca sa Zadanie 1. Rozważmy jezyk złożony ze słów zerojedynkowych o długości co najmniej 3, w których druga i trzecia litera od końca sa równe. Narysować diagram minimalnego automatu deterministycznego akceptujacego

Bardziej szczegółowo

Arytmetyka komputera

Arytmetyka komputera Arytmetyka komputera Systemy zapisu liczb System dziesiętny Podstawą układu dziesiętnego jest liczba 10, a wszystkie liczby można zapisywać dziesięcioma cyframi: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. Jednostka

Bardziej szczegółowo

Wstęp do informatyki- wykład 1 Systemy liczbowe

Wstęp do informatyki- wykład 1 Systemy liczbowe 1 Wstęp do informatyki- wykład 1 Systemy liczbowe Treści prezentowane w wykładzie zostały oparte o: S. Prata, Język C++. Szkoła programowania. Wydanie VI, Helion, 2012 www.cplusplus.com Jerzy Grębosz,

Bardziej szczegółowo

Stan wysoki (H) i stan niski (L)

Stan wysoki (H) i stan niski (L) PODSTAWY Przez układy cyfrowe rozumiemy układy, w których w każdej chwili występują tylko dwa (zwykle) możliwe stany, np. tranzystor, jako element układu cyfrowego, może być albo w stanie nasycenia, albo

Bardziej szczegółowo

Wstęp do programowania. Reprezentacje liczb. Liczby naturalne, całkowite i rzeczywiste w układzie binarnym

Wstęp do programowania. Reprezentacje liczb. Liczby naturalne, całkowite i rzeczywiste w układzie binarnym Wstęp do programowania Reprezentacje liczb Liczby naturalne, całkowite i rzeczywiste w układzie binarnym System dwójkowy W komputerach stosuje się dwójkowy system pozycyjny do reprezentowania zarówno liczb

Bardziej szczegółowo

Kod IEEE754. IEEE754 (1985) - norma dotycząca zapisu binarnego liczb zmiennopozycyjnych (pojedynczej precyzji) Liczbę binarną o postaci

Kod IEEE754. IEEE754 (1985) - norma dotycząca zapisu binarnego liczb zmiennopozycyjnych (pojedynczej precyzji) Liczbę binarną o postaci Kod IEEE754 IEEE Institute of Electrical and Electronics Engineers IEEE754 (1985) - norma dotycząca zapisu binarnego liczb zmiennopozycyjnych (pojedynczej precyzji) Liczbę binarną o postaci (-1) s 1.f

Bardziej szczegółowo

Zapis liczb binarnych ze znakiem

Zapis liczb binarnych ze znakiem Zapis liczb binarnych ze znakiem W tej prezentacji: Zapis Znak-Moduł (ZM) Zapis uzupełnień do 1 (U1) Zapis uzupełnień do 2 (U2) Zapis Znak-Moduł (ZM) Koncepcyjnie zapis znak - moduł (w skrócie ZM - ang.

Bardziej szczegółowo

Kody blokowe Wykład 2, 10 III 2011

Kody blokowe Wykład 2, 10 III 2011 Kody blokowe Wykład 2, 10 III 2011 Literatura 1. R.M. Roth, Introduction to Coding Theory, 2006 2. W.C. Huffman, V. Pless, Fundamentals of Error-Correcting Codes, 2003 3. D.R. Hankerson et al., Coding

Bardziej szczegółowo

Kodowanie i kompresja Streszczenie Studia Licencjackie Wykład 15, Kryptografia: algorytmy asymetryczne (RSA)

Kodowanie i kompresja Streszczenie Studia Licencjackie Wykład 15, Kryptografia: algorytmy asymetryczne (RSA) Kodowanie i kompresja Streszczenie Studia Licencjackie Wykład 15, 19.06.2005 1 Kryptografia: algorytmy asymetryczne (RSA) Niech E K (x) oznacza szyfrowanie wiadomości x kluczem K (E od encrypt, D K (x)

Bardziej szczegółowo

Techniki multimedialne

Techniki multimedialne Techniki multimedialne Digitalizacja podstawą rozwoju systemów multimedialnych. Digitalizacja czyli obróbka cyfrowa oznacza przetwarzanie wszystkich typów informacji - słów, dźwięków, ilustracji, wideo

Bardziej szczegółowo

Niech x 1,..., x n będzie ciągiem zdarzeń. ---

Niech x 1,..., x n będzie ciągiem zdarzeń. --- Matematyczne podstawy kryptografii, Ćw2 TEMAT 7: Teoria Shannona. Kody Huffmana, entropia. BIBLIOGRAFIA: [] Cz. Bagiński, cez.wipb.pl, [2] T. H. Cormen, C. E. Leiserson, R. L Rivest, Wprowadzenie do algorytmów,

Bardziej szczegółowo

Przetwarzanie i transmisja danych multimedialnych. Wykład 3 Kodowanie Shannona Fano i Huffmana. Przemysław Sękalski.

Przetwarzanie i transmisja danych multimedialnych. Wykład 3 Kodowanie Shannona Fano i Huffmana. Przemysław Sękalski. Przetwarzanie i transmisja danych multimedialnych Wykład 3 Kodowanie Shannona Fano i Huffmana Przemysław Sękalski sekalski@dmcs.pl Politechnika Łódzka Katedra Mikroelektroniki i Technik Informatycznych

Bardziej szczegółowo

Kodowanie predykcyjne

Kodowanie predykcyjne Studia Wieczorowe Wrocław, 27.03.2007 Kodowanie informacji Wykład 5 Kodowanie predykcyjne Idea: przewidujemy następny element ciągu i kodujemy różnicę między wartością przewidywaną i rzeczywistą, w oparciu

Bardziej szczegółowo

Przykład: Σ = {0, 1} Σ - zbiór wszystkich skończonych ciagów binarnych. L 1 = {0, 00, 000,...,1, 11, 111,... } L 2 = {01, 1010, 001, 11}

Przykład: Σ = {0, 1} Σ - zbiór wszystkich skończonych ciagów binarnych. L 1 = {0, 00, 000,...,1, 11, 111,... } L 2 = {01, 1010, 001, 11} Języki Ustalmy pewien skończony zbiór symboli Σ zwany alfabetem. Zbiór Σ zawiera wszystkie skończone ciagi symboli z Σ. Podzbiór L Σ nazywamy językiem a x L nazywamy słowem. Specjalne słowo puste oznaczamy

Bardziej szczegółowo

Kompresja danych DKDA (7)

Kompresja danych DKDA (7) Kompresja danych DKDA (7) Marcin Gogolewski marcing@wmi.amu.edu.pl Uniwersytet im. Adama Mickiewicza w Poznaniu Poznań, 22 listopada 2016 1 Kwantyzacja skalarna Wprowadzenie Analiza jakości Typy kwantyzatorów

Bardziej szczegółowo

KOMPRESJA OBRAZÓW STATYCZNYCH - ALGORYTM JPEG

KOMPRESJA OBRAZÓW STATYCZNYCH - ALGORYTM JPEG KOMPRESJA OBRAZÓW STATYCZNYCH - ALGORYTM JPEG Joint Photographic Expert Group - 1986 ISO - International Standard Organisation CCITT - Comité Consultatif International de Téléphonie et Télégraphie Standard

Bardziej szczegółowo

Algorytmy i struktury danych

Algorytmy i struktury danych Cel ćwiczenia lgorytmy i struktury danych Instytut Sterowania i Systemów Informatycznych Wydział Elektrotechniki, Informatyki i Telekomunikacji Uniwersytet Zielonogórski Kompresja Ćwiczenie ma na celu

Bardziej szczegółowo

Technologie Informacyjne

Technologie Informacyjne System binarny Szkoła Główna Służby Pożarniczej Zakład Informatyki i Łączności October 7, 26 Pojęcie bitu 2 Systemy liczbowe 3 Potęgi dwójki 4 System szesnastkowy 5 Kodowanie informacji 6 Liczby ujemne

Bardziej szczegółowo

Algorytmy i struktury danych. wykład 8

Algorytmy i struktury danych. wykład 8 Plan wykładu: Kodowanie. : wyszukiwanie wzorca w tekście, odległość edycyjna. Kodowanie Kodowanie Kodowanie jest to proces przekształcania informacji wybranego typu w informację innego typu. Kod: jest

Bardziej szczegółowo

1.1. Pozycyjne systemy liczbowe

1.1. Pozycyjne systemy liczbowe 1.1. Pozycyjne systemy liczbowe Systemami liczenia nazywa się sposób tworzenia liczb ze znaków cyfrowych oraz zbiór reguł umożliwiających wykonywanie operacji arytmetycznych na liczbach. Dla dowolnego

Bardziej szczegółowo

LICZBY ZMIENNOPRZECINKOWE

LICZBY ZMIENNOPRZECINKOWE LICZBY ZMIENNOPRZECINKOWE Liczby zmiennoprzecinkowe są komputerową reprezentacją liczb rzeczywistych zapisanych w formie wykładniczej (naukowej). Aby uprościć arytmetykę na nich, przyjęto ograniczenia

Bardziej szczegółowo

Teoria informacji i kodowania Ćwiczenia Sem. zimowy 2016/2017

Teoria informacji i kodowania Ćwiczenia Sem. zimowy 2016/2017 Algebra liniowa Zadanie 1 Czy jeśli wektory x, y i z, należące do binarnej przestrzeni wektorowej nad ciałem Galois GF (2), są liniowo niezależne, to można to samo orzec o następujących trzech wektorach:

Bardziej szczegółowo

Samodzielnie wykonaj następujące operacje: 13 / 2 = 30 / 5 = 73 / 15 = 15 / 23 = 13 % 2 = 30 % 5 = 73 % 15 = 15 % 23 =

Samodzielnie wykonaj następujące operacje: 13 / 2 = 30 / 5 = 73 / 15 = 15 / 23 = 13 % 2 = 30 % 5 = 73 % 15 = 15 % 23 = Systemy liczbowe Dla każdej liczby naturalnej x Î N oraz liczby naturalnej p >= 2 istnieją jednoznacznie wyznaczone: liczba n Î N oraz ciąg cyfr c 0, c 1,..., c n-1 (gdzie ck Î {0, 1,..., p - 1}) taki,

Bardziej szczegółowo

O oszczędnym dziennikarzu, czyli czym jest

O oszczędnym dziennikarzu, czyli czym jest O oszczędnym dziennikarzu, czyli czym jest informacja i jak ja mierzymy? Adam Doliwa doliwa@matman.uwm.edu.pl WYKŁAD DLA MŁODZIEŻY WYDZIAŁ MATEMATYKI I INFORMATYKI UWM Olsztyn, 9 lutego 2016 r. Adam Doliwa

Bardziej szczegółowo

Architektura komputerów Reprezentacja liczb. Kodowanie rozkazów.

Architektura komputerów Reprezentacja liczb. Kodowanie rozkazów. Architektura komputerów Reprezentacja liczb. Kodowanie rozkazów. Prezentacja jest współfinansowana przez Unię Europejską w ramach Europejskiego Funduszu Społecznego w projekcie pt. Innowacyjna dydaktyka

Bardziej szczegółowo

Wprowadzenie do informatyki i użytkowania komputerów. Kodowanie informacji System komputerowy

Wprowadzenie do informatyki i użytkowania komputerów. Kodowanie informacji System komputerowy 1 Wprowadzenie do informatyki i użytkowania komputerów Kodowanie informacji System komputerowy Kodowanie informacji 2 Co to jest? bit, bajt, kod ASCII. Jak działa system komputerowy? Co to jest? pamięć

Bardziej szczegółowo

12. Wprowadzenie Sygnały techniki cyfrowej Systemy liczbowe. Matematyka: Elektronika:

12. Wprowadzenie Sygnały techniki cyfrowej Systemy liczbowe. Matematyka: Elektronika: PRZYPOMNIJ SOBIE! Matematyka: Dodawanie i odejmowanie "pod kreską". Elektronika: Sygnały cyfrowe. Zasadę pracy tranzystorów bipolarnych i unipolarnych. 12. Wprowadzenie 12.1. Sygnały techniki cyfrowej

Bardziej szczegółowo

Podstawy Informatyki dla Nauczyciela

Podstawy Informatyki dla Nauczyciela Podstawy Informatyki dla Nauczyciela Bożena Woźna-Szcześniak bwozna@gmail.com Jan Długosz University, Poland Wykład 2 Bożena Woźna-Szcześniak (AJD) Podstawy Informatyki dla Nauczyciela Wykład 2 1 / 1 Informacja

Bardziej szczegółowo

Wstęp do informatyki- wykład 1

Wstęp do informatyki- wykład 1 MATEMATYKA 1 Wstęp do informatyki- wykład 1 Systemy liczbowe Treści prezentowane w wykładzie zostały oparte o: S. Prata, Język C++. Szkoła programowania. Wydanie VI, Helion, 2012 www.cplusplus.com Jerzy

Bardziej szczegółowo

pobieramy pierwszą literę komunikatu i wypełniamy nią (wszystkie pozycje tą samą literą) bufor słownikowy.

pobieramy pierwszą literę komunikatu i wypełniamy nią (wszystkie pozycje tą samą literą) bufor słownikowy. komunikat do zakodowania: a a b a b b a b a c c a b a a a a a c a c b c b b c c a a c b a 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 przyjmujemy długość bufora słownikowego

Bardziej szczegółowo

Podstawy Informatyki: Kody. Korekcja błędów.

Podstawy Informatyki: Kody. Korekcja błędów. Podstawy Informatyki: Kody. Korekcja błędów. Adam Kolany Instytut Techniczny adamkolany@pm.katowice.pl Adam Kolany (PWSZ Nowy Sącz, IT) Podstawy Informatyki: Kody. Korekcja błędów. 11 stycznia 2012 1 /

Bardziej szczegółowo

Zadanie 1. Czy prawdziwa jest następująca implikacja? Jeśli L A jest językiem regularnym, to regularnym językiem jest też. A = (A, Q, q I, F, δ)

Zadanie 1. Czy prawdziwa jest następująca implikacja? Jeśli L A jest językiem regularnym, to regularnym językiem jest też. A = (A, Q, q I, F, δ) Zadanie 1. Czy prawdziwa jest następująca implikacja? Jeśli L A jest językiem regularnym, to regularnym językiem jest też L = {vw : vuw L dla pewnego u A takiego, że u = v + w } Rozwiązanie. Niech A =

Bardziej szczegółowo

Teoria przetwarzania A/C i C/A.

Teoria przetwarzania A/C i C/A. Teoria przetwarzania A/C i C/A. Autor: Bartłomiej Gorczyński Cyfrowe metody przetwarzania sygnałów polegają na przetworzeniu badanego sygnału analogowego w sygnał cyfrowy reprezentowany ciągiem słów binarnych

Bardziej szczegółowo

Metody numeryczne I. Janusz Szwabiński. Metody numeryczne I (C) 2004 Janusz Szwabiński p.1/61

Metody numeryczne I. Janusz Szwabiński. Metody numeryczne I (C) 2004 Janusz Szwabiński p.1/61 Metody numeryczne I Dokładność obliczeń numerycznych. Złożoność obliczeniowa algorytmów Janusz Szwabiński szwabin@ift.uni.wroc.pl Metody numeryczne I (C) 2004 Janusz Szwabiński p.1/61 ... the purpose of

Bardziej szczegółowo

LICZBY ZMIENNOPRZECINKOWE

LICZBY ZMIENNOPRZECINKOWE LICZBY ZMIENNOPRZECINKOWE Liczby zmiennoprzecinkowe są komputerową reprezentacją liczb rzeczywistych zapisanych w formie wykładniczej (naukowej). Aby uprościć arytmetykę na nich, przyjęto ograniczenia

Bardziej szczegółowo

Podstawy kompresji danych

Podstawy kompresji danych Podstawy kompresji danych Pojęcie kompresji W ogólności kompresja (kodowanie) jest procedurą (przekształceniem) zmiany reprezentacji wejściowego zbioru danych do postaci wymagającej mniejszej liczby bitów

Bardziej szczegółowo

Kody Huffmana. Konrad Wypyski. 11 lutego 2006 roku

Kody Huffmana. Konrad Wypyski. 11 lutego 2006 roku Kody Huffmana Konrad Wypyski 11 lutego 2006 roku Spis treści 1 Rozdział 1 Kody Huffmana Kody Huffmana (ang. Huffman coding) to jedna z najprostszych i najłatwiejszych w implementacji metod kompresji bezstratnej;

Bardziej szczegółowo

Struktury danych i złożoność obliczeniowa Wykład 5. Prof. dr hab. inż. Jan Magott

Struktury danych i złożoność obliczeniowa Wykład 5. Prof. dr hab. inż. Jan Magott Struktury danych i złożoność obliczeniowa Wykład 5 Prof. dr hab. inż. Jan Magott DMT rozwiązuje problem decyzyjny π przy kodowaniu e w co najwyżej wielomianowym czasie, jeśli dla wszystkich łańcuchów wejściowych

Bardziej szczegółowo

Cyfrowy zapis informacji

Cyfrowy zapis informacji F1-1 Cyfrowy zapis informacji Alfabet: uporządkowany zbiór znaków, np. A = {a,b,..., z} Słowa (ciągi) informacyjne: łańcuchy znakowe, np. A i = gdtr Długość słowa n : liczba znaków słowa, np. n(sbdy) =

Bardziej szczegółowo

Joint Photographic Experts Group

Joint Photographic Experts Group Joint Photographic Experts Group Artur Drozd Uniwersytet Jagielloński 14 maja 2010 1 Co to jest JPEG? Dlaczego powstał? 2 Transformata Fouriera 3 Dyskretna transformata kosinusowa (DCT-II) 4 Kodowanie

Bardziej szczegółowo

Kodowanie transformacyjne. Plan 1. Zasada 2. Rodzaje transformacji 3. Standard JPEG

Kodowanie transformacyjne. Plan 1. Zasada 2. Rodzaje transformacji 3. Standard JPEG Kodowanie transformacyjne Plan 1. Zasada 2. Rodzaje transformacji 3. Standard JPEG Zasada Zasada podstawowa: na danych wykonujemy transformacje która: Likwiduje korelacje Skupia energię w kilku komponentach

Bardziej szczegółowo

Teoria. a, jeśli a < 0.

Teoria. a, jeśli a < 0. Teoria Definicja 1 Wartością bezwzględną liczby a R nazywamy liczbę a określoną wzorem a, jeśli a 0, a = a, jeśli a < 0 Zgodnie z powyższym określeniem liczba a jest równa odległości liczby a od liczby

Bardziej szczegółowo

Haszowanie (adresowanie rozpraszające, mieszające)

Haszowanie (adresowanie rozpraszające, mieszające) Haszowanie (adresowanie rozpraszające, mieszające) Tadeusz Pankowski H. Garcia-Molina, J.D. Ullman, J. Widom, Implementacja systemów baz danych, WNT, Warszawa, Haszowanie W adresowaniu haszującym wyróżniamy

Bardziej szczegółowo

Dla człowieka naturalnym sposobem liczenia jest korzystanie z systemu dziesiętnego, dla komputera natomiast korzystanie z zapisu dwójkowego

Dla człowieka naturalnym sposobem liczenia jest korzystanie z systemu dziesiętnego, dla komputera natomiast korzystanie z zapisu dwójkowego Arytmetyka cyfrowa Dla człowieka naturalnym sposobem liczenia jest korzystanie z systemu dziesiętnego, dla komputera natomiast korzystanie z zapisu dwójkowego (binarnego). Zapis binarny - to system liczenia

Bardziej szczegółowo

Metody numeryczne. Janusz Szwabiński. nm_slides.tex Metody numeryczne Janusz Szwabiński 2/10/ :02 p.

Metody numeryczne. Janusz Szwabiński. nm_slides.tex Metody numeryczne Janusz Szwabiński 2/10/ :02 p. Metody numeryczne Janusz Szwabiński szwabin@ift.uni.wroc.pl nm_slides.tex Metody numeryczne Janusz Szwabiński 2/10/2002 23:02 p.1/63 Plan wykładu 1. Dokładność w obliczeniach numerycznych 2. Złożoność

Bardziej szczegółowo

Architektura systemów komputerowych

Architektura systemów komputerowych Architektura systemów komputerowych Grzegorz Mazur Zak lad Metod Obliczeniowych Chemii Uniwersytet Jagielloński 12 kwietnia 2011 Grzegorz Mazur (ZMOCh UJ) Architektura systemów komputerowych 12 kwietnia

Bardziej szczegółowo

Detekcja i korekcja błędów w transmisji cyfrowej

Detekcja i korekcja błędów w transmisji cyfrowej Detekcja i korekcja błędów w transmisji cyfrowej Błędy w transmisji cyfrowej pojedyncze wielokrotne. całkowita niepewność względem miejsca zakłóconych bitów oraz czy w ogóle występują paczkowe (grupowe)

Bardziej szczegółowo