Ród Bernoullich. przygotowali: Rafał Staszek vel Staszewski Jakub Szymczuk Daniel Waszkiewicz Rafał Woźniak
|
|
- Leszek Marszałek
- 9 lat temu
- Przeglądów:
Transkrypt
1 Ród Bernoullich przygotowali: Rafał Staszek vel Staszewski Jakub Szymczuk Daniel Waszkiewicz Rafał Woźniak
2 Ród Bernoullich
3 Jakub Bernoulli ( ) Urodzony w Bazylei w Szwajcarii 27 grudnia Najstarszy w swoim pokoleniu. Za namową ojca studiował teologię, ucząc się równolegle matematyki i astronomii. Podróżował po Europie w latach ucząc się matematyki. Pracował wówczas z Robertem Boylem i Robertem Hookiem.
4 Jakub Bernoulli ( ) W 1682 odrzucił propozycję objęcia stanowiska pastora w Strasburgu. W 1682 założył szkołę dla matematyków. Od 1683 wykładał na bazylejskim uniwersytecie fizykę, a od 1687 matematykę. Od 1687 korespondował z Leibnizem. Zmarł w Bazylei 16 sierpnia 1705.
5 Osiągnięcia naukowe i badania Twórca podstaw rachunku prawdopodobieństwa. Badał teorię szeregów. Stosował rachunek różniczkowy do rozwiązywania zagadnień z dziedziny mechaniki. Używał współrzędnych biegunowych. Badanie krzywej łańcuchowej. Badanie spirali logarytmicznej. Zajmował się figurami izoperymetrycznymi. Wraz z bratem Janem zapoczątkował rachunek wariacyjny.
6 Osiągnięcia naukowe i badania Ocenił ogłoszoną przez Leibniza w 1684 roku pracę o algorytmie różniczkowym, czym przyczynił się do zapoczątkowania rachunku różniczkowego. W roku 1694 w czasopiśmie naukowym Acta Eruditorum zamieścił opis krzywej zwanej lemniskatą. Napisał dzieło Ars Conjectandi z rachunku prawdopodobieństwa, wydane pośmiertnie w W pierwszej części tego dzieła przedrukowany jest traktat Huygensa o grach losowych, dalsze części dotyczą permutacji i kombinacji, a głównym wynikiem jest twierdzenie Bernoulliego o rozkładzie dwumianowym.
7 Stwierdzenie istnienia e jako granicy Jakub Bernoulli stwierdził istnienie granicy. Rozważył przypadek włożenia na lokatę stuprocentową jednego dolara na okres roku. Jeśli kapitalizacja ma miejsce 1 raz, po roku otrzymamy $2.00. Jeżeli kapitalizacja ma miejsce 2 razy: $ ² = $2.25. Przy kwartalnej kapitalizacji: $ = $ A przy miesięcznej: $1.00 ( ) 12 = $ Bernoulli zauważył, że przy częstych kapitalizacjach wyrażenie ma granicę. Przy kapitalizacji tygodniowej: otrzymamy $ , a przy dziennej $ Co w rezultacie daje 2 centy różnicy. Bernoulli odkrył, że przy ciągłym naliczaniu odsetek otrzymamy $
8 Próba Bernoulliego W swojej Sztuce Przewidywania Bernoulli wprowadził podstawy rachunku prawdopodobieństwa. Pojęciem próby Bernoulliego nazywamy jednorazowy eksperyment mogący zakończyć się sukcesem lub porażką. Ciąg takich prób nazywa się procesem Bernoulliego.
9 Rozkład Bernoulliego Funkcja zwraca prawdopodobieństwo wystąpienia k sukcesów w n próbach doświadczenia o prawdopodobieństwie p.
10 Liczby Bernoulliego Liczbami Bernoulliego nazywa się kolejne współczynniki występujące w rozwinięciu w szereg Taylowa funkcji: Szereg ten jest zbieżny dla x <2π. Pierwsze 21 liczb Bernoulliego:
11 Brachistochrona Brachistochrona to krzywa, po której czas staczania się masy punktowej od punktu A do punktu B pod wpływem stałej siły (siły ciężkości) jest najkrótszy. Problem znalezienia krzywej najszybszego spadku postawiony przez Jakub Bernoulliego został rozwiązany niezależnie przez Leibniza, Newtona, Jana Bernoulliego oraz de L'Hospitala. Okazało się, że brachistochroną jest fragment cykloidy.
12 Brachistochrona Rodzina funkcji spełniająca założenia problemu jest opisana: Gdzie jest długością krzywej, a v=y (x) jest prędkością, którą można wyznaczyć z zasady zachowania energii: Podstawiamy do wyjściowej całki ds i v: Nie zmniejszając ogólności rozważań przyjmujemy punkt A jako A = (0,0), co uprości dalsze rachunki. Załóżmy również, że oś y skierowana jest do dołu. Zatem aby rozwiązać postawione zagadnienie należy wyznaczyć ekstremum (minimum) funkcjonału:
13 Brachistochrona Zastosujemy tożsamość Beltramiego: Jest to równanie różniczkowe, którego rozwiązaniem jest cykloida postaci:
14 Spirala logarytmiczna Spirala logarytmiczna jest to krzywa płaska przecinająca pod jednakowym, stałym kątem α wszystkie półproste wychodzące z ustalonego punktu, zwanego biegunem spirali.
15 Spirala logarytmiczna Spirala logarytmiczna: Spirala Archimedesa:
16 Spirala logarytmiczna
17 Lemniskata Bernoulliego
18 Johann Bernoulli ( ) Urodzony 27 lipca 1667 w Bazylei w Szwajcarii. Zmarł 01 stycznia 1748 w Bazylei. Był dziesiątym dzieckiem Mikołaja i Margarethy Bernoullich, a także bratem Jakuba Bernoulliego. Jakub był pierwszym nauczycielem młodszego brata.
19 Johann Bernoulli ( ) Rodzice pochodzili z wpływowych i zamożnych rodzin. Johann otrzymał przykładne wykształcenie. Rodzice początkowo namawiali go do kariery biznesowej w rodzinnym interesie w handlu przyprawami. Przejął go w wieku 15 lat i pracował rok.
20 Początki na Uniwersytecie Johann studiował w Bazylei, o dziwo była to medycyna. Jednak cały czas jego brat Jacob uczył go matematyki. Już po dwóch latach osiągnął poziom swojego brata. Pierwsza publikacja w 1690 roku z fermentacji. Rok później udał się do Genewy gdzie wykładał rachunek różniczkowy.
21 de l Hospital Z Genewy wybrał się do Paryża, gdzie uczył de l Hopitala. Uczył go i innych paryskich matematyków rachunku różniczkowego. Gdy powrócił do Bazylei kontynuował lekcje korespondencyjnie. De l Hopital opublikował te wykłady w swojej książce Analyse des infiniment petits pour l'inteligencji des Lignes courbes (1696).
22 Korespondencje W Paryżu poznał Varignon a, z którym się zaprzyjaźnił i często z nim pisał. Jego korespondencja z Leibnizem była jedną z bardziej poważnych i owocnych jakie ten drugi prowadził.
23 Badania Johann rozwiązał problem sieci trakcyjnej postawiony przez jego brata w 1691r. W 1692 i 93 pracuje z bratem nad caustic curves. Jednak ze względu na łączącą ich wrogość nie publikują razem prac. W 1694 roku zajmował się badaniem funkcji y = x x metodą całkowania przez części. Opracował twierdzenia dla funkcji trygonometrycznych i hiperbolicznych.
24 Groningen W 1695 roku dostał katedrę matematyki w Groningen połączoną z możliwoscią praktykowania medycyny. Został tam oskarżony o negacje zmartwychwstania ciała oparte na swojej medycznej opinii. W 1702 roku został oskarżony o przeciwstawianie się kalwińskiej wierze.
25 Powrót do Bazylei Przez okres pracy w Holandii ciągle rywalizował z bratem. Poddaje pod dysputę problem brachristochrony. W 1705 roku wraca do swojej rodzinnej miejscowości i obejmuje katedrę matematyki. W 1713 roku uczestniczył po stronie Leibniza oraz Descartes a w sporze z Newtonem.
26 Współpraca z synem Pracował w mechanice nad energia kinetyczna. Opublikował Hydraulica, która to książka była kradzieżą pracy jego syna o tytule Hydrodynamica. Na jego grobie wyryto napis Archimedes swego wieku w uznaniu jego zasług.
27 Daniel Bernoulli ( ) Urodził się 6 lutego 1700 roku w Groningen w Holandii. Był synem Jana Bernoulliego i bratankiem Jakuba Bernoulliego. Na prośbę ojca uczył się zawodu kupiekiego. W 1721 roku otrzymał dyplom w zakresie medycyny na Uniwersytecie w Bazylei. W 1723 roku udał się do Wenecji aby zacząć praktykować zdobytą wiedzę.
28 Daniel Bernoulli ( ) W 1724 roku wydał swoją pierwszą pracę matematyczną Exercitationes. W latach wykładał matematykę w Akademii Nauk w Petersburgu. W 1733r. został profesorem anatomii i botaniki w Bazylei. W 1738r. wydał swoje największe dzieło Hydrodynamika oraz był autorem Specimen theoriae novae de mensura sortis (Ekspozycja nowej teorii na temat pomiaru ryzyka).
29 Daniel Bernoulli ( ) W 1750r. objął katedrę fizyki w Bazylei. W maju 1750 roku został wybrany członkiem Towarzystwa Królewskiego w Londynie. Zmarł 17 marca 1782 roku w Bazylei.
30 Publikacje
31 Badania naukowe Daniel Bernoulli zajmował się: - rachunkiem prawdopodobieństwa, - równaniami różniczkowymi, - mechaniką statystyczną, - medycyną.
32 Osiągnięcia Podał równanie ruchu stacjonarnego cieczy idealnej zwane równaniem Bernoulliego. Zauważył, że szybko poruszającego się płynu wzrasta, to jego ciśnienie maleje. Znalazł rozwiązanie paradoksu Petersburskiego.
33 Równanie Bernoulliego Szczególna postać równania: Założenia: - ciecz jest nieściśliwa, - ciecz nie jest lepka, - przepływ jest stacjonarny i bezwirowy. Przy powyższych założeniach równanie przyjmuje postać: Gdzie: em - energia jednostki masy płynu, ρ - gęstość płynu, v prędkość płynu w rozpatrywanym miejscu, h - wysokość w układzie odniesienia, w którym liczona jest energia potencjalna, g - przyspieszenie grawitacyjne, p - ciśnienie płynu w rozpatrywanym miejscu.
34 Nicolaus Bernoulli ( ) Urodzony 21 października 1687 w Bazylei. Bratanek Jakuba i Johanna Bernoullich. W 1704 ukończył studia na Uniwersytecie Bazylejskim, a pięć lat później uzyskał tam doktorat za pracę z dziedziny teorii prawdopodobieństwa. W 1716 objął katedrę fizyki na uniwersytecie w Padwie. Zajmował się tam m.in. równaniami różniczkowymi i geometrią. W 1722 wrócił do Szwajcarii, gdzie na swoim macierzystym uniwersytecie objął katedrę logiki.
35 Nicolaus Bernoulli ( ) Największe osiągnięcia Mikołaja Bernoulliego zawarte są w jego korespondencji, zwłaszcza z francuskim matematykiem Piotrem de Montmort. W listach tych jako pierwszy opisał problem tzw. paradoksu petersburskiego. Mikołaj Bernoulli utrzymywał też kontakty z Godfrydem Leibnizem i Leonardem Eulerem. Zmarł 29 listopada 1759 w Bazylei.
36 Nicolaus II Bernoulli Nicolaus II Bernoulli urodził się 6 lutego 1695 w Bazylei. Zmarł 31 lipca 1726 w Petersburgu. Podobnie jak jego ojciec, Johann i jeden z jego braci, Daniel, był matematykiem szwajcarskim. Z tym ostatnim dyskutował nad paradoksem petersburskim. Mikołaj II Bernoulli zajmował się głównie zagadnieniami prawdopodobieństwa, krzywych i równań różniczkowych. Wniósł wkład w rozwój dynamiki płynów.
37 Paradoks petersburski Paradoks petersburski, inaczej gra petersburska, to pojęcie używane w teorii decyzji i rachunku prawdopodobieństwa opisujące grę losową, która mimo posiadania nieskończonej wartości oczekiwanej posiada jednocześnie ograniczoną wartość pieniężną dla większości ludzi. Problem został po raz pierwszy sformułowany przez Daniela Bernoulliego w 1738 roku, który jednocześnie zaproponował jego wyjaśnienie przy pomocy funkcji użyteczności. Mimo nazwy, nie jest to paradoks w ścisłym sensie tego słowa, ale raczej ilustracja tego, że ludzie zazwyczaj w warunkach niepewności nie podejmują decyzji kierując się kryterium maksymalizacji pieniężnej wartości oczekiwanej. Problem ten położył podwaliny pod współczesną teorię oczekiwanej użyteczności.
38 Johann II Bernoulli ( ) W wieku 14 lat uzyskał stopień magistra filozofii. Wraz z Johanem stopień magistra otrzymał o 3 lata starszy Euler. Po śmierci ojca przejął katedrę matematyki którą kierował przez 42 lata. Johann II był członkiem Berlińskiej i Paryskiej Akademii Nauk. Akademia Paryska czterokrotnie przyznawała mu nagrody między innymi za prace o rozchodzeniu światła i o magnetyzmie.
39 Johann III Bernoulli ( ) Podobnie jak ojciec w wieku 14 lat uzyskał stopień magistra filozofii. Tradycyjnie dla rodu Bernoullich miał wykształcenie prawnicze i matematyczne. Od 1767 został dyrektorem Akademii Berlińskiej. Johann dużo jeździł po Europie był także w Warszawie. Napisał liczne prace z matematyki, astronomii, geografii i ekonomi. Przetłumaczył na język francuski Algebrę Eulera. Był członkiem Sztokholmskiej i Petersburskiej Akademii Nauk
40 Jakub II Bernoulli ( ) Na uniwersytecie studiował prawo, a u ojca i wuja Daniela matematykę. Po studiach stawał do konkursów na różne katedry, ale bezskutecznie dlatego opuścił Bazyleę i udał się do Włoch. Został członkiem Turyńskiej Akademii. Publikował swoje rezultaty między innymi w rozprawach Berlińskiej Akademii Nauk. Od 1787 był członkiem Petersburskiej Akademii Nauk. Brał udział w przeróżnych ekspedycjach i był członkiem rozmaitych komisji. Pełnił funkcję astronoma w rosyjskiej flocie wojennej.
41 Bibliografia
Leonhard Euler ur. 15 kwietnia 1707 w Bazylei zm. 18 września 1783 w Petersburgu uważany za jednego z najbardziej produktywnych matematyków w historii
Leonhard Euler Leonhard Euler ur. 15 kwietnia 1707 w Bazylei zm. 18 września 1783 w Petersburgu uważany za jednego z najbardziej produktywnych matematyków w historii Dzieciństwo i młodość przeprowadzka
Fakty wstępne Problem brachistochrony Literatura. Rachunek wariacyjny. Bartosz Wróblewski
26.10.13 - dziedzina analizy matematycznej zajmująca się znajdowaniem ekstremów i wartości stacjonarnych funkcjonałów. Powstał jako odpowiedź na pewne szczególne rozważania w mechanice teoretycznej. Swą
Guillaume François Antoine de l Hospital notka biograficzna. Nina Ulicka 22 stycznia 2019
Guillaume François Antoine de l Hospital notka biograficzna Nina Ulicka 22 stycznia 2019 1 1 Biografia Guillaume Francois Antoine de l Hospital, markiz de Saint-Mesme, urodził się w 1661 roku w Paryżu,
Historia Rachunku Prawdopodobieństwa i Statystyki WYKŁAD III: Jakub Bernoulli i jego Ars Conjectandi. Abraham de Moivre.
Historia Rachunku Prawdopodobieństwa i Statystyki WYKŁAD III: Jakub Bernoulli i jego Ars Conjectandi. Abraham de Moivre. MiNI PW, semestr zimowy 2017/2018 Rodzina Bernoullich Rodzina Bernoullich przybyła
Matematyka I i II - opis przedmiotu
Matematyka I i II - opis przedmiotu Informacje ogólne Nazwa przedmiotu Matematyka I i II Kod przedmiotu Matematyka 02WBUD_pNadGenB11OM Wydział Kierunek Wydział Budownictwa, Architektury i Inżynierii Środowiska
01, 02, 03 i kolejne numer efektu kształcenia. Załącznik 1 i 2
Efekty kształcenia dla kierunku studiów Studia Przyrodnicze i Technologiczne (z językiem wykładowym angielskim) - studia I stopnia, stacjonarne, profil ogólnoakademicki - i ich odniesienia do efektów kształcenia
Spis treści: 3. Geometrii innych niż euklidesowa.
Matematyka Geometria Spis treści: 1. Co to jest geometria? 2. Kiedy powstała geometria? 3. Geometrii innych niż euklidesowa. 4. Geometrii różniczkowej. 5. Geometria. 6. Matematyka-konieckoniec Co to jest
WYKŁADY Z MATEMATYKI DLA STUDENTÓW UCZELNI EKONOMICZNYCH
WYKŁADY Z MATEMATYKI DLA STUDENTÓW UCZELNI EKONOMICZNYCH Pod redakcją Anny Piweckiej Staryszak Autorzy poszczególnych rozdziałów Anna Piwecka Staryszak: 2-13; 14.1-14.6; 15.1-15.4; 16.1-16.3; 17.1-17.6;
- prędkość masy wynikająca z innych procesów, np. adwekcji, naprężeń itd.
4. Równania dyfuzji 4.1. Prawo zachowania masy cd. Równanie dyfuzji jest prostą konsekwencją prawa zachowania masy, a właściwie to jest to prawo zachowania masy zapisane dla procesu dyfuzji i uwzględniające
Plan. Zakres badań teorii optymalizacji. Teoria optymalizacji. Teoria optymalizacji a badania operacyjne. Badania operacyjne i teoria optymalizacji
Badania operacyjne i teoria optymalizacji Instytut Informatyki Poznań, 2011/2012 1 2 3 Teoria optymalizacji Teoria optymalizacji a badania operacyjne Teoria optymalizacji zajmuje się badaniem metod optymalizacji
Pierre Simon Laplace notka biograficzna. Nina Ulicka 22 stycznia 2019
Pierre Simon Laplace notka biograficzna Nina Ulicka 22 stycznia 2019 1 1 Biografia Pierre Simon Laplace urodził się 23.03.1749 roku w Beaumont-en-Auge w Normandii. Jego rodzice: Pierre Laplace i Marie-Anne
Spis treści. Rozdział I. Wstęp do matematyki Rozdział II. Ciągi i szeregi... 44
Księgarnia PWN: Ryszard Rudnicki, Wykłady z analizy matematycznej Spis treści Rozdział I. Wstęp do matematyki... 13 1.1. Elementy logiki i teorii zbiorów... 13 1.1.1. Rachunek zdań... 13 1.1.2. Reguły
Liczby całkowite są dane od Boga, wszystkie inne wymyślili ludzie.
Leopold Kronecker Kinga Zaręba 11 czerwca 2019 Liczby całkowite są dane od Boga, wszystkie inne wymyślili ludzie. 1 1 Historia 7 XII 1823 - urodził się w Legnicy 1841r.- Kronecker podjął studia na uniwersytecie
Fizyka dla Informatyków Wykład 8 Mechanika cieczy i gazów
Fizyka dla Informatyków Wykład 8 Katedra Informatyki Stosowanej PJWSTK 2008 Spis treści Spis treści 1 Podstawowe równania hydrodynamiki 2 3 Równanie Bernoulliego 4 Spis treści Spis treści 1 Podstawowe
Zadania o numerze 4 z zestawów licencjat 2014.
Zadania o numerze 4 z zestawów licencjat 2014. W nawiasie przy zadaniu jego występowanie w numerze zestawu Spis treści (Z1, Z22, Z43) Definicja granicy ciągu. Obliczyć granicę:... 3 Definicja granicy ciągu...
Dwuletnie studia indywidualne II stopnia na kierunku fizyka, specjalność Fizyka matematyczna
Dwuletnie studia indywidualne II stopnia na kierunku fizyka, specjalność Fizyka matematyczna 1. CHARAKTERYSTYKA STUDIÓW Specjalność Fizyka matematyczna ma charakter interdyscyplinarny. Obejmuje wiedzę
Tydzień nr 9-10 (16 maja - 29 maja), Równania różniczkowe, wartości własne, funkcja wykładnicza od operatora - Matematyka II 2010/2011L
Tydzień nr 9-10 (16 maja - 29 maja) Równania różniczkowe wartości własne funkcja wykładnicza od operatora - Matematyka II 2010/2011L Wszelkie pytania oraz uwagi o błędach proszę kierować na przemek.majewski@gmail.com
Matematyki i Nauk Informacyjnych, Zakład Procesów Stochastycznych i Matematyki Finansowej B. Ogólna charakterystyka przedmiotu
Kod przedmiotu TR.SIK205 Nazwa przedmiotu Matematyka II Wersja przedmiotu 2015/16 A. Usytuowanie przedmiotu w systemie studiów Poziom kształcenia Studia I stopnia Forma i tryb prowadzenia studiów Stacjonarne
Carl Friderich Gauss notka biograficzna. Nina Ulicka 22 stycznia 2019
Carl Friderich Gauss notka biograficzna Nina Ulicka 22 stycznia 2019 1 1 Biografia Carl Friderich Gauss urodził się 30.04.1777 roku w Brunszwiku, a zmarł 23.02.1855 roku w Getyndze. Był niemieckim matematykiem,
Kryteria oceniania z matematyki Klasa III poziom rozszerzony
Kryteria oceniania z matematyki Klasa III poziom rozszerzony Zakres Dopuszczający Dostateczny Dobry Bardzo dobry Funkcja potęgowa - zna i stosuje tw. o potęgach - zna wykresy funkcji potęgowej o dowolnym
Elementy logiki (4 godz.)
Elementy logiki (4 godz.) Spójniki zdaniotwórcze, prawa de Morgana. Wyrażenie implikacji za pomocą alternatywy i negacji, zaprzeczenie implikacji. Prawo kontrapozycji. Podstawowe prawa rachunku zdań. Uczestnik
Indukcja matematyczna. Matematyka dyskretna
Indukcja matematyczna Matematyka dyskretna Indukcja matematyczna Indukcja matematyczna będzie przez nas używana jako metoda dowodzenia twierdzeń. Zazwyczaj są to twierdzenia dotyczące liczb naturalnych,
O "światopogladzie wariacyjnym"
O "światopogladzie wariacyjnym" Paweł Urbański u rb a n ski@fuw.ed u.p l Kat edra Met od Mat ematycznych Fizyki Uniwersyt et Warszawski Olsztyn, 17.02.2005 p. 1/26 Inaczej Podstawy rachunku wariacyjnego
Z52: Algebra liniowa Zagadnienie: Zastosowania algebry liniowej Zadanie: Operatory różniczkowania, zagadnienie brzegowe.
Z5: Algebra liniowa Zagadnienie: Zastosowania algebry liniowej Zadanie: Operatory różniczkowania zagadnienie brzegowe Dyskretne operatory różniczkowania Numeryczne obliczanie pochodnych oraz rozwiązywanie
KAROL BORSUK ( )
KAROL BORSUK (1905 1982) AUTORZY: Justyna Piekarska Marlena Trokowicz Tomasz Wacowski Krótki kurs historii matematyki Rok akademicki: 2014/2015 Semestr IV KAROL BORSUK Karol Borsuk urodził się 8 maja 1905
Tadeusz Lesiak. Dynamika punktu materialnego: Praca i energia; zasada zachowania energii
Mechanika klasyczna Tadeusz Lesiak Wykład nr 4 Dynamika punktu materialnego: Praca i energia; zasada zachowania energii Energia i praca T. Lesiak Mechanika klasyczna 2 Praca Praca (W) wykonana przez stałą
Wyprowadzenie wzoru na krzywą łańcuchową
Wyprowadzenie wzoru na krzywą łańcuchową Daniel Pęcak 16 sierpnia 9 1 Wstęp Być może zastanawiałeś się kiedyś drogi czytelniku nad kształtem, jaki kształt przyjmuje zwisający swobodnie łańcuch lub sznur
Dydaktyka matematyki III-IV etap edukacyjny (wykłady) Wykład nr 11: Funkcje w matematyce szkolnej Semestr zimowy 2018/2019
Dydaktyka matematyki III-IV etap edukacyjny (wykłady) Wykład nr 11: Funkcje w matematyce szkolnej Semestr zimowy 2018/2019 Funkcje uwagi historyczne Wprowadzenie liczb rzeczywistych i liczb zespolonych
Statystyka z elementami rachunku prawdopodobieństwa
Statystyka z elementami rachunku prawdopodobieństwa dr hab. Tomasz Górecki tomasz.gorecki@amu.edu.pl Zakład Rachunku Prawdopodobieństwa i Statystyki Matematycznej Wydział Matematyki i Informatyki Uniwersytet
Matematyka zajęcia fakultatywne (Wyspa inżynierów) Dodatkowe w ramach projektu UE
PROGRAM ZAJĘĆ FAKULTATYWNYCH Z MATEMATYKI DLA STUDENTÓW I ROKU SYLABUS Nazwa uczelni: Wyższa Szkoła Przedsiębiorczości i Administracji w Lublinie ul. Bursaki 12, 20-150 Lublin Kierunek Rok studiów Informatyka
1.1. Rachunek zdań: alternatywa, koniunkcja, implikacja i równoważność zdań oraz ich zaprzeczenia.
1. Elementy logiki i algebry zbiorów 1.1. Rachunek zdań: alternatywa, koniunkcja, implikacja i równoważność zdań oraz ich zaprzeczenia. Funkcje zdaniowe. Zdania z kwantyfikatorami oraz ich zaprzeczenia.
Opis przedmiotu: Matematyka II
24.09.2013 Karta - Matematyka II Opis : Matematyka II Kod Nazwa Wersja TR.NIK203 Matematyka II 2012/13 A. Usytuowanie w systemie studiów Poziom Kształcenia Stopień Rodzaj Kierunek studiów Profil studiów
OPIS MODUŁ KSZTAŁCENIA (SYLABUS)
OPIS MODUŁ KSZTAŁCENIA (SYLABUS) I. Informacje ogólne: 1 Nazwa modułu Matematyka 1 2 Kod modułu 04-A-MAT1-60-1Z 3 Rodzaj modułu obowiązkowy 4 Kierunek studiów astronomia 5 Poziom studiów I stopień 6 Rok
Prawdopodobieństwo i statystyka Wykład I: Nieco historii
Prawdopodobieństwo i statystyka Wykład I: Nieco historii 6 października 2015 Prawdopodobieństwo i statystyka Wykład I: Nieco historii Zasady zaliczenia przedmiotu: Zaliczenie ćwiczeń rachunkowych. Zdanie
SPIS TREŚCI PRZEDMOWA... 13
SPIS TREŚCI PRZEDMOWA... 13 CZĘŚĆ I. ALGEBRA ZBIORÓW... 15 ROZDZIAŁ 1. ZBIORY... 15 1.1. Oznaczenia i określenia... 15 1.2. Działania na zbiorach... 17 1.3. Klasa zbiorów. Iloczyn kartezjański zbiorów...
Spis treści. Skróty i oznaczenia Przedmowa...19
Skróty i oznaczenia...13 Przedmowa...19 I. Polska w średniowieczu (wieki XI XV)...25 1. Wprowadzenie...25 2. Prehistoria...26 3. Średniowiecze...27 4. Uniwersytety...29 5. Matematyka w Europie przed 1400
Zajęcia fakultatywne z matematyki (Wyspa inżynierów) Dodatkowe w ramach projektu UE
PROGRAM ZAJĘĆ FAKULTATYWNYCH Z MATEMATYKI DLA STUDENTÓW I ROKU SYLABUS Nazwa uczelni: Wyższa Szkoła Przedsiębiorczości i Administracji w Lublinie ul. Bursaki 12, 20-150 Lublin Kierunek Rok studiów Architektura
Wykład 2. Przykład zastosowania teorii prawdopodobieństwa: procesy stochastyczne (Markova)
Wykład 2 Przykład zastosowania teorii prawdopodobieństwa: procesy stochastyczne (Markova) 1. Procesy Markova: definicja 2. Równanie Chapmana-Kołmogorowa-Smoluchowskiego 3. Przykład dyfuzji w kapilarze
Definicje i przykłady
Rozdział 1 Definicje i przykłady 1.1 Definicja równania różniczkowego 1.1 DEFINICJA. Równaniem różniczkowym zwyczajnym rzędu n nazywamy równanie F (t, x, ẋ, ẍ,..., x (n) ) = 0. (1.1) W równaniu tym t jest
MECHANIKA KLASYCZNA I RELATYWISTYCZNA Cele kursu
MECHANIKA KLASYCZNA I RELATYWISTYCZNA Cele kursu Karol Kołodziej Instytut Fizyki Uniwersytet Śląski, Katowice http://kk.us.edu.pl Karol Kołodziej Mechanika klasyczna i relatywistyczna 1/8 Cele kursu Podstawowe
Podstawianie zmiennej pomocniczej w równaniach i nie tylko
Tomasz Grębski Matematyka Podstawianie zmiennej pomocniczej w równaniach i nie tylko Zadania z rozwiązaniami Spis treści Wstęp... Typowe podstawienia... 6 Symbole używane w zbiorze... 7. Podstawienie zmiennej
Biostatystyka, # 3 /Weterynaria I/
Biostatystyka, # 3 /Weterynaria I/ dr n. mat. Zdzisław Otachel Uniwersytet Przyrodniczy w Lublinie Katedra Zastosowań Matematyki i Informatyki ul. Głęboka 28, p. 221 bud. CIW, e-mail: zdzislaw.otachel@up.lublin.pl
Wstęp do równań różniczkowych
Wstęp do równań różniczkowych Wykład 1 Lech Sławik Instytut Matematyki PK Literatura 1. Arnold W.I., Równania różniczkowe zwyczajne, PWN, Warszawa, 1975. 2. Matwiejew N.M., Metody całkowania równań różniczkowych
Leonhard Euler szwajcarski komputer
Leonhard Euler szwajcarski komputer Leonhard (Leonard) Euler (707 783 ) znalazł się w świecie wielkich matematyków przez szczęśliwy przypadek. Jego ojciec, protestancki duchowny z okolic Bazylei, wysłał
ECTS Razem 30 Godz. 330
3-letnie stacjonarne studia licencjackie kier. Matematyka profil: ogólnoakademicki Semestr 1 Przedmioty wspólne Algebra liniowa z geometrią analityczną I 7 30 30 E Analiza matematyczna I 13 60 60 E Technologie
Wymagania edukacyjne z matematyki klasa IV technikum
Wymagania edukacyjne z matematyki klasa IV technikum Poziom rozszerzony Obowiązują wymagania z zakresu podstawowego oraz dodatkowo: FUNKCJE TRYGONOMETRYCZNE zaznacza kąt w układzie współrzędnych, wskazuje
SYLABUS. Studia Kierunek studiów Poziom kształcenia Forma studiów. stopnia. rachunkowe
SYLABUS Nazwa przedmiotu Mechanika Techniczna Nazwa jednostki prowadzącej Wydział Matematyczno Przyrodniczy, Katedra przedmiot Fizyki Teoretycznej Kod przedmiotu Studia Kierunek studiów Poziom kształcenia
Podstawy fizyki wykład 5
Podstawy fizyki wykład 5 Dr Piotr Sitarek Instytut Fizyki, Politechnika Wrocławska Grawitacja Pole grawitacyjne Prawo powszechnego ciążenia Pole sił zachowawczych Prawa Keplera Prędkości kosmiczne Czarne
RÓWNANIA RÓŻNICZKOWE WYKŁAD 1
RÓWNANIA RÓŻNICZKOWE WYKŁAD 1 Przedmiot realizowany w układzie wykład 2 godz. tygodniowo ćwiczenia 2 godz. tygodniowo Regulamin zaliczeń www.mini.pw.edu.pl/~figurny 2 Program zajęć Równania różniczkowe
Propozycje rozwiązań zadań z matematyki - matura rozszerzona
Jacek Kredenc Propozycje rozwiązań zadań z matematyki - matura rozszerzona Zadanie 1 Zastosujmy trójkąt Paskala 1 1 1 1 2 1 1 3 3 1 Przy iloczynie będzie stał współczynnik 3. Zatem Odpowiedź : C Zadanie
E-N-1112-s1 MATEMATYKA Mathematics
KARTA MODUŁU / KARTA PRZEDMIOTU E-N-1112-s1 MATEMATYKA Mathematics Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2012/13 A. USYTUOWANIE MODUŁU W SYSTEMIE STUDIÓW
Uniwersytet Śląski w Katowicach str. 1 Wydział Informatyki i Nauki o Materiałach. opis efektu kształcenia
Uniwersytet Śląski w Katowicach str.. Nazwa kierunku informatyka 2. Cykl rozpoczęcia 207/208Z 3. Poziom kształcenia studia pierwszego stopnia (inżynierskie) 4. Profil kształcenia ogólnoakademicki 5. Forma
1. BILANSOWANIE WIELKOŚCI FIZYCZNYCH
1. BILANSOWANIE WIELKOŚCI FIZYCZNYCH Ośrodki materialne charakteryzują dwa rodzaje różniących się zasadniczo od siebie wielkości fizycznych: globalne (ekstensywne) przypisane obszarowi przestrzeni fizycznej,
Analiza matematyczna. Mechanika i Budowa Maszyn I stopień ogólnoakademicki studia stacjonarne wszystkie Katedra Matematyki dr Beata Maciejewska
Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Calculus Obowiązuje od roku akademickiego
Rok akademicki: 2013/2014 Kod: EIB s Punkty ECTS: 6. Poziom studiów: Studia I stopnia Forma i tryb studiów: Stacjonarne
Nazwa modułu: Matematyka I Rok akademicki: 2013/2014 Kod: EIB-1-110-s Punkty ECTS: 6 Wydział: Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej Kierunek: Inżynieria Biomedyczna Specjalność:
zna metody matematyczne w zakresie niezbędnym do formalnego i ilościowego opisu, zrozumienia i modelowania problemów z różnych
Grupa efektów kierunkowych: Matematyka stosowana I stopnia - profil praktyczny (od 17 października 2014) Matematyka Stosowana I stopień spec. Matematyka nowoczesnych technologii stacjonarne 2015/2016Z
Marek Zakrzewski Wydział Matematyki Politechnika Wrocławska. Lekarstwo na kłopoty z Cardanem: Róbta co Vieta.
Marek Zakrzewski Wydział Matematyki Politechnika Wrocławska Lekarstwo na kłopoty z Cardanem: Róbta co Vieta. Rozwiązywanie równań sześciennych - wzory Cardana Każde równanie sześcienne można sprowadzić
Prawa wielkich liczb, centralne twierdzenia graniczne
, centralne twierdzenia graniczne Katedra matematyki i ekonomii matematycznej 17 maja 2012, centralne twierdzenia graniczne Rodzaje zbieżności ciągów zmiennych losowych, centralne twierdzenia graniczne
Opis przedmiotu. Karta przedmiotu - Matematyka II Katalog ECTS Politechniki Warszawskiej
Kod przedmiotu TR.NIK203 Nazwa przedmiotu Matematyka II Wersja przedmiotu 2015/16 A. Usytuowanie przedmiotu w systemie studiów Poziom kształcenia Studia I stopnia Forma i tryb prowadzenia studiów Niestacjonarne
Zagadnienia na egzamin licencjacki
Zagadnienia na egzamin licencjacki Kierunek: matematyka, specjalność: nauczanie matematyki i informatyki w zakresie zajęć komputerowych Zaleca się, by egzamin dyplomowy składał się z co najmniej trzech
PRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: Kierunek: Mechatronika Rodzaj przedmiotu: obowiązkowy przedmiot podstawowy Rodzaj zajęć: Wykład, Ćwiczenia I KARTA PRZEDMIOTU CEL PRZEDMIOTU PRZEWODNIK PO PRZEDMIOCIE C1. Uzyskanie przez
18. Siły bezwładności Siła bezwładności w ruchu postępowych Siła odśrodkowa bezwładności Siła Coriolisa
Kinematyka 1. Podstawowe własności wektorów 5 1.1 Dodawanie (składanie) wektorów 7 1.2 Odejmowanie wektorów 7 1.3 Mnożenie wektorów przez liczbę 7 1.4 Wersor 9 1.5 Rzut wektora 9 1.6 Iloczyn skalarny wektorów
3-letnie (6-semestralne) stacjonarne studia licencjackie kier. matematyka stosowana profil: ogólnoakademicki. Semestr 1. Przedmioty wspólne
3-letnie (6-semestralne) stacjonarne studia licencjackie kier. matematyka stosowana profil: ogólnoakademicki Semestr 1 Przedmioty wspólne Nazwa przedmiotu ECTS W Ć L P S Zal. Algebra liniowa z geometrią
Dział Rozdział Liczba h
MATEMATYKA ZR Ramowy rozkład materiału w kolejnych tomach podręczników 1. Działania na liczbach Tom I część 1 1.1. Ćwiczenia w działaniach na ułamkach 1.. Obliczenia procentowe 1.3. Potęga o wykładniku
Analiza matematyczna. Wzornictwo Przemysłowe I stopień Ogólnoakademicki studia stacjonarne wszystkie specjalności Katedra Matematyki dr Monika Skóra
Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Analiza matematyczna Nazwa modułu w języku angielskim Calculus Obowiązuje
Spis treści. Przedmowa do wydania piątego
Zadania z matematyki wyższej. Cz. 1, [Logika, równania liniowe, wektory, proste i płaszczyzny, ciągi, szeregi, rachunek różniczkowy, funkcje uwikłane, krzywe i powierzchnie] / Roman Leitner, Wojciech Matuszewski,
Krzywe stożkowe Lekcja II: Okrąg i jego opis w różnych układach współrzędnych
Krzywe stożkowe Lekcja II: Okrąg i jego opis w różnych układach współrzędnych Wydział Matematyki Politechniki Wrocławskiej Okrąg Okrąg jest szczególną krzywą stożkową. Wyznacza nam koło, które jest podstawą
Prawdopodobieństwo i statystyka Wykład I: Przestrzeń probabilistyczna
9 października 2018 Zasady zaliczenia przedmiotu: Zaliczenie ćwiczeń rachunkowych. Zdanie egzaminu ustnego z treści wykładu. Literatura J. Jakubowski i R. Sztencel, Wstęp do teorii prawdopodobieństwa.
Matematyka. Wzornictwo Przemysłowe I stopień ogólno akademicki studia stacjonarne wszystkie specjalności Katedra Matematyki dr Monika Skóra
Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Matematyka Nazwa modułu w języku angielskim Mathematics Obowiązuje od roku
Zasady zachowania, równanie Naviera-Stokesa. Mariusz Adamski
Zasady zachowania, równanie Naviera-Stokesa Mariusz Adamski 1. Zasady zachowania. Znaczna część fizyki, a w szczególności fizyki klasycznej, opiera się na sformułowaniach wypływających z zasad zachowania.
Wykład FIZYKA I. 5. Energia, praca, moc. http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html. Dr hab. inż. Władysław Artur Woźniak
Wykład FIZYKA I 5. Energia, praca, moc Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html ENERGIA, PRACA, MOC Siła to wielkość
Inżynieria Środowiska I stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny)
Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Matematyka 1 Nazwa modułu w języku angielskim Mathematics 1 Obowiązuje od
Matematyka II. Bezpieczeństwo jądrowe i ochrona radiologiczna Semestr letni 2018/2019 wykład 13 (27 maja)
Matematyka II Bezpieczeństwo jądrowe i ochrona radiologiczna Semestr letni 208/209 wykład 3 (27 maja) Całki niewłaściwe przedział nieograniczony Rozpatrujemy funkcje ciągłe określone na zbiorach < a, ),
EGZAMIN MAGISTERSKI, 18 września 2013 Biomatematyka
Biomatematyka Liczebność populacji pewnego gatunku jest modelowana przez równanie różnicowe w którym N k stałymi. rn 2 n N n+1 =, A+Nn 2 oznacza liczebność populacji w k tej generacji, a r i A są dodatnimi
MECHANIKA II. Praca i energia punktu materialnego
MECHANIKA II. Praca i energia punktu materialnego Daniel Lewandowski Politechnika Wrocławska, Wydział Mechaniczny, Katedra Mechaniki i Inżynierii Materiałowej http://kmim.wm.pwr.edu.pl/lewandowski/ daniel.lewandowski@pwr.edu.pl
MATEMATYKA MATHEMATICS. Forma studiów: studia niestacjonarne. Liczba godzin/zjazd: 3W E, 3Ćw. PRZEWODNIK PO PRZEDMIOCIE semestr 1
Nazwa przedmiotu: Kierunek: Rodzaj przedmiotu: Podstawowy obowiązkowy Rodzaj zajęć: wykład, ćwiczenia Inżynieria Materiałowa Poziom studiów: studia I stopnia MATEMATYKA MATHEMATICS Forma studiów: studia
Równanie Pella Sławomir Cynk
Równanie Pella Sławomir Cynk 22 listopada 2001 roku John Pell ur. 1 marca 1611 w Southwick, Sussex, Anglia zm. 12 grudnia 1685 w Londynie. Matematyk oraz astronom brytyjski, podobno główny (współ-)autor
Sylabus do programu kształcenia obowiązującego od roku akademickiego 2014/15
Sylabus do programu kształcenia obowiązującego od roku akademickiego 201/15 (1) Nazwa Rachunek różniczkowy i całkowy I (2) Nazwa jednostki prowadzącej Wydział Matematyczno - Przyrodniczy przedmiot (3)
Analiza matematyczna Mathematical analysis. Transport I stopień (I stopień / II stopień) Ogólnoakademicki (ogólno akademicki / praktyczny)
KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2013/2014 Analiza matematyczna Mathematical analysis A. USYTUOWANIE MODUŁU W SYSTEMIE
Wstęp do równań różniczkowych
Wstęp do równań różniczkowych Wykład 1 Lech Sławik Instytut Matematyki PK Literatura 1. Arnold W.I., Równania różniczkowe zwyczajne, PWN, Warszawa, 1975. 2. Matwiejew N.M., Metody całkowania równań różniczkowych
Następnie przypominamy (dla części studentów wprowadzamy) podstawowe pojęcia opisujące funkcje na poziomie rysunków i objaśnień.
Zadanie Należy zacząć od sprawdzenia, co studenci pamiętają ze szkoły średniej na temat funkcji jednej zmiennej. Na początek można narysować kilka krzywych na tle układu współrzędnych (funkcja gładka,
Zasada działania maszyny przepływowej.
Zasada działania maszyny przepływowej. Przyrost ciśnienia statycznego. Rys. 1. Izotermiczny schemat wirnika maszyny przepływowej z kanałem miedzy łopatkowym. Na rys.1. pokazano schemat wirnika maszyny
Kryteria oceniania z matematyki dla klasy M+ (zakres rozszerzony) Klasa III
Kryteria oceniania z matematyki dla klasy M+ (zakres rozszerzony) Klasa III Zakres Dopuszczający Dostateczny Dobry Bardzo dobry Funkcja potęgowa - zna i stosuje tw. o potęgach - zna wykresy funkcji potęgowej
Wykłady z Fizyki. Hydromechanika
Wykłady z Fizyki 03 Zbigniew Osiak Hydromechanika OZ ACZE IA B notka biograficzna C ciekawostka D propozycja wykonania doświadczenia H informacja dotycząca historii fizyki I adres strony internetowej K
Inżynierskie metody numeryczne II. Konsultacje: wtorek 8-9:30. Wykład
Inżynierskie metody numeryczne II Konsultacje: wtorek 8-9:30 Wykład Metody numeryczne dla równań hiperbolicznych Równanie przewodnictwa cieplnego. Prawo Fouriera i Newtona. Rozwiązania problemów 1D metodą
Matematyki i Nauk Informacyjnych, Zakład Procesów Stochastycznych i Matematyki Finansowej B. Ogólna charakterystyka przedmiotu
Kod przedmiotu TR.SIK103 Nazwa przedmiotu Matematyka I Wersja przedmiotu 2015/16 A. Usytuowanie przedmiotu w systemie studiów Poziom kształcenia Studia I stopnia Forma i tryb prowadzenia studiów Stacjonarne
Karta (sylabus) przedmiotu Kierunek studiów Mechatronika Studia pierwszego stopnia. Mechanika Techniczna Rodzaj przedmiotu: Podstawowy Kod przedmiotu:
Karta (sylabus) przedmiotu Kierunek studiów Mechatronika Studia pierwszego stopnia Przedmiot: Mechanika Techniczna Rodzaj przedmiotu: Podstawowy Kod przedmiotu: MT 1 S 0 2 14-0_1 Rok: I Semestr: II Forma
PLAN STUDIÓW STACJONARNYCH PIERWSZEGO STOPNIA DLA KIERUNKU MATEMATYKA NA WYDZIALE MATEMATYKI, INFORMATYKI I EKONOMETRII UNIWERSYTETU ZIELONOGÓRSKIEGO
PLAN STUDIÓW STACJONARNYCH PIERWSZEGO STOPNIA DLA KIERUNKU MATEMATYKA NA WYDZIALE MATEMATYKI, INFORMATYKI I EKONOMETRII UNIWERSYTETU ZIELONOGÓRSKIEGO rekrutacja w roku akademickim 2011/2012 Zatwierdzono:
Elementy rachunku różniczkowego i całkowego
Elementy rachunku różniczkowego i całkowego W paragrafie tym podane zostaną elementarne wiadomości na temat rachunku różniczkowego i całkowego oraz przykłady jego zastosowania w fizyce. Małymi literami
Opis efektów kształcenia dla modułu zajęć
Nazwa modułu: Analiza matematyczna Rok akademicki: 2018/2019 Kod: BIT-1-101-s Punkty ECTS: 6 Wydział: Geologii, Geofizyki i Ochrony Środowiska Kierunek: Informatyka Stosowana Specjalność: Poziom studiów:
Leonhard Euler. Leonard Euler w wieku 49 lat
Katarzyna Dobrzyńska MS sem. IX Leonhard Euler Leonard Euler w wieku 49 lat DZIECIŃSTWO I MŁODOŚĆ Leohnard Euler (pierwotnie nazwisko pisano Ewler lub Öwler) urodził się 15 kwietnia 1707r w Bazylei w rodzinie
Poradnik encyklopedyczny
I.N.Bronsztejn K.A.Siemiendiajew Poradnik encyklopedyczny Tłumaczyli Stefan Czarnecki, Robert Bartoszyński Wydanie dziesiąte Wydawnictwo Naukowe PWN Warszawa 1995 SPIS RZECZY Przedmowa 5 Oznaczenia matematyczne
Spis treści 3 SPIS TREŚCI
Spis treści 3 SPIS TREŚCI PRZEDMOWA... 1. WNIOSKOWANIE STATYSTYCZNE JAKO DYSCYPLINA MATEMATYCZNA... Metody statystyczne w analizie i prognozowaniu zjawisk ekonomicznych... Badania statystyczne podstawowe
Wykład 6 Centralne Twierdzenie Graniczne. Rozkłady wielowymiarowe
Wykład 6 Centralne Twierdzenie Graniczne. Rozkłady wielowymiarowe Nierówność Czebyszewa Niech X będzie zmienną losową o skończonej wariancji V ar(x). Wtedy wartość oczekiwana E(X) też jest skończona i
Z-ID-102 Analiza matematyczna I
KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Calculus I Obowiązuje od roku akademickiego 2015/2016 Z-ID-102 Analiza matematyczna I A. USYTUOWANIE MODUŁU W SYSTEMIE
PRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: Kierunek: ENERGETYKA Rodzaj przedmiotu: Kierunkowy ogólny Rodzaj zajęć: Wykład, ćwiczenia MECHANIKA Mechanics Forma studiów: studia stacjonarne Poziom kwalifikacji: I stopnia Liczba godzin/tydzień:
II. Równania autonomiczne. 1. Podstawowe pojęcia.
II. Równania autonomiczne. 1. Podstawowe pojęcia. Definicja 1.1. Niech Q R n, n 1, będzie danym zbiorem i niech f : Q R n będzie daną funkcją określoną na Q. Równanie różniczkowe postaci (1.1) x = f(x),
MECHANIKA PŁYNÓW Płyn
MECHANIKA PŁYNÓW Płyn - Każda substancja, która może płynąć, tj. pod wpływem znikomo małych sił dowolnie zmieniać swój kształt w zależności od naczynia, w którym się znajduje, oraz może swobodnie się przemieszczać
Funkcje liniowe i wieloliniowe w praktyce szkolnej. Opracowanie : mgr inż. Renata Rzepińska
Funkcje liniowe i wieloliniowe w praktyce szkolnej Opracowanie : mgr inż. Renata Rzepińska . Wprowadzenie pojęcia funkcji liniowej w nauczaniu matematyki w gimnazjum. W programie nauczania matematyki w
Opis przedmiotu: Matematyka I
24.09.2013 Karta - Matematyka I Opis : Matematyka I Kod Nazwa Wersja TR.NIK102 Matematyka I 2012/13 A. Usytuowanie w systemie studiów Poziom Kształcenia Stopień Rodzaj Kierunek studiów Profil studiów Specjalność