Dydaktyka matematyki III-IV etap edukacyjny (wykłady) Wykład nr 11: Funkcje w matematyce szkolnej Semestr zimowy 2018/2019
|
|
- Aniela Piekarska
- 5 lat temu
- Przeglądów:
Transkrypt
1 Dydaktyka matematyki III-IV etap edukacyjny (wykłady) Wykład nr 11: Funkcje w matematyce szkolnej Semestr zimowy 2018/2019
2 Funkcje uwagi historyczne Wprowadzenie liczb rzeczywistych i liczb zespolonych (Bombelli XVI w., Stifel XV-XVI w.). Stworzenie algebry symboli (Viète XVI w., Kartezjusz XVII w.). Badanie ruchu jako centralnego problemu nauki (Kepler XVI-XVII w., Galileusz XVI-XVII w.). Połączenie geometrii i algebry (Fermat XVII w., Kartezjusz). Rozwinięty w XVII wieku rachunek różniczkowy i całkowy (Newton, Leibniz) omijał precyzyjną definicję funkcji, zajmował się krzywymi. W 1692 roku Leibniz traktował funkcję jako obiekt związany z krzywą.
3 Funkcje definicje (historia) W 1718 roku Johann Bernoulli podał następującą definicję: Funkcją wielkości zmiennej nazywamy analityczne wyrażenie utworzone w dowolny sposób za pomocą tej wielkości oraz stałych. W Introductio in Analysin Infinitorum (1748) Euler napisał: Funkcją wielkości zmiennej nazywamy analityczne wyrażenie utworzone w dowolny sposób za pomocą tej wielkości oraz za pomocą liczb i wielkości stałych. Kolejny etap to definicja Dirichleta: y jest funkcją zmiennej x określonej na przedziale a < x < b, jeśli każdej wartości x z tego przedziału odpowiada jednoznacznie określona wartość y. Ponadto, nie ma znaczenia, w jaki sposób określono to przyporządkowanie.
4 Zasada trzech etapów w nauczaniu funkcji etap enaktywny Przykłady (nauczanie wczesnoszkolne)
5 Zasada trzech etapów w nauczaniu Przykłady (SP) funkcji etap enaktywny
6 Zasada trzech etapów w nauczaniu funkcji etap enaktywny Przykłady (SŚ) Uczniowie, podzieleni na grupy, obserwują swobodny spadek ciał, przyporządkowując wysokości, z jakiej spada np. kulka plasteliny, czas tego spadania. Wyniki pomiarów mogą zapisywać w wybrany przez siebie sposób. Do tej wersji doświadczenia potrzebny jest CBR (urządzenie do rejestracji i analizy ruchu) oraz kalkulator TI 83. Urządzenie CBR (Calculator Based Ranger) emituje fale, które, odbijając się od obiektu poruszającego się na linii emisji fal, wracają do CBR; zebrane dane przesyłane są do kalkulatora, w którym można wyświetlić funkcje: odległość obiektu od CBR w zależności od czasu, prędkość tego obiektu i przyśpieszenie.
7 CBR Uczniowie w zeszytach wykonują wykres obrazujący zależność przebytej drogi od czasu w ruchu jednostajnym. Uczniowie w zeszytach za pomocą wykresu ilustrują zmiany prędkości w zależności od czasu w ruchu jednostajnym. Uczniowie za pomocą wykresu ilustrują zmiany prędkości w zależności od czasu w ruchu jednostajnie przyśpieszonym. Uczniowie na wykresie próbują zilustrować zmiany przebytej odległości w zależności od czasu w ruchu jednostajnie przyśpieszonym. CBR: rejestracja ruchu dwóch obiektów: nieruchomej ściany oraz poruszającego się ucznia. Uczniowie na ekranie mogą zobaczyć trzy wykresy obrazujące zależność odległości (drogi), prędkości i przyśpieszenia przy zmieniającym się czasie. CBR (opcja MATCH): Program RANGER zainstalowany w kalkulatorze generuje różne wykresy przedstawiające zależność odległości poruszającego się obiektu przy zmieniającym się czasie. Zadaniem uczniów jest poruszanie się tak, aby ich ruch jak najdokładniej przypominał ruch wygenerowany przez kalkulator.
8 Funkcje w szkole odczytywanie danych i własności z wykresu, etap ikoniczny Pierwsze kontakty z funkcjami (dawniej trzecia klasa gimnazjum) powinny dotyczyć wykresów, nie mówimy jeszcze o funkcji, używamy sformułowania Wykres przedstawia, jak zmienia się.... Wiadomo, że woda podczas ogrzewania od 0 0 do 4 0 zmniejsza swoją objętość, a gdy ogrzewamy ją dalej objętość się powiększa. Który z powyższych wykresów opisuje to zjawisko?
9 Przykłady cd.
10 Przygotowanie do wprowadzenia formalnej definicji
11 Funkcje etap symboliczny
12 Funkcje etap symboliczny
13 Funkcje etap symboliczny
14 Definicja funkcji wykładniczej w podręcznikach Przykład 1 (podręcznik GWO, II klasa)
15 Definicja funkcji wykładniczej w podręcznikach Przykład 2 ( Matematyka się liczy, klasa 3, 2004) Na kilka miesięcy przed rozpoczęciem sezonu wędkarskiego liczba ryb w pewnym stawie zaczyna się zwiększać o 12% miesięcznie. Jeśli t oznacza liczbę miesięcy, które upłynęły od początku sezonu, to zależność N t = ,12 t modeluje liczbę ryb w tym okresie. Ile ryb było na początku sezonu? Ile ryb będzie 3,5 miesiąca później? A ile ich było miesiąc przed rozpoczęciem sezonu? Po zadaniu pojawia się typowa definicja funkcji wykładniczej, z tą różnicą, że w stosunku do definicji z przykładu 1 zakłada się, że w f x = a x liczba a jest różna od 1.
16 Stefan Straszewicz 1985 r., podręcznik licealny WSiP Kolejne etapy wprowadzania potęgi: potęga a n, gdzie n jest liczbą naturalną dodatnią: a 1 = 1, a n+1 = a n a potęga o wykładniku zerowym lub ujemnym: a 0 = 1 dla a 0, a n = 1/a n dla n N {0} potęga o wykładniku wymiernym: dla dowolnego a > 0 i dowolnych liczba całkowitych m, n, przy czym n 0 definiujemy: a m/n = (a 1 n ) m dla n > 0 oraz a m/n = a m/ n = (a 1/ n ) m dla n < 0 potęga o wykładniku rzeczywistym Wprowadzenie tej definicji zostało poprzedzone uzasadnieniem następującej własności potęg o wykładniku wymiernym: Potęga liczby większej od 1 zwiększa się, gdy zwiększamy wykładnik. Na przykładzie potęgi 2 π pokazuje się jak określić tę liczbę: przybliżamy liczbę π z góry i z dołu przez zbiegające do niej przybliżenia, na przykład: 3, 3.1, 3.14, < π < 4, 3.2, 3.15, Dalej otrzymuje się nierówności 2 r < 2 π < 2 r, gdzie r to dowolna liczba ze zbioru {3, 3.1, 3.14, } a liczba r należy do zbioru {4, 3.2, 3.15, }. Pojawia się liczba g kres górny liczb 2 r oraz liczb g kres dolny liczb 2 r. Końcowe stwierdzenie zacytujemy dokładnie: Ponieważ liczby 2 r i 2 r różnią się dowolnie mało, o ile tylko różnica r r jest dostatecznie mała (stwierdzimy to, jak poprzednio), więc g i g są jedną i tą samą liczbą, tj. g = g. Liczbę tę nazywamy 2 π. W kolejnym rozdziale pojawia się definicja funkcji wykładniczej: Funkcja f określona dla danego a > 0 wzorem f(x) = a x dla każdego x R nazywa się funkcją wykładniczą o podstawie a, a jej wykres krzywą wykładniczą.
17 Egzamin 4 lutego, godz , aula 1 Opisz metody szukania zer wielomianów. Wprowadzanie i definiowanie matematycznych pojęć. Twierdzenia i ich dowody w matematyce szkolnej. Nauczanie algorytmów w szkole. Matematyczne modelowanie w szkole. Etapy definiowania pola figury płaskiej. DGS: charakterystyka wybranego programu, blaski i cienie. Funkcje w matematyce szkolnej. Etapy definicji funkcji wykładniczej. Prawdopodobieństwo w szkole.
18 Uwaga W prezentacjach do wykładów często nie ma szczegółów rozpatrywanych przykładów, ale są one ważną częścią wykładów i będą wymagane na egzaminie.
Modelowanie wybranych pojęć matematycznych. semestr letni, 2016/2017 Wykład 8 Funkcje w matematyce szkolnej
Modelowanie wybranych pojęć matematycznych semestr letni, 2016/2017 Wykład 8 Funkcje w matematyce szkolnej Co to jest objętość? Wyniki ankiety Objętość jest to przestrzeń jaką zajmuje dana figura. Ilość
Bardziej szczegółowoModelowanie wybranych pojęć matematycznych. semestr letni, 2016/2017 Wykład 10 Własności funkcji cd.
Modelowanie wybranych pojęć matematycznych semestr letni, 206/207 Wykład 0 Własności funkcji cd. Ciągłość funkcji zastosowania Przybliżone rozwiązywanie równań Znajdziemy przybliżone rozwiązanie równania
Bardziej szczegółowoPojęcie funkcji. Funkcja liniowa
Pojęcie funkcji. Funkcja liniowa dr Mariusz Grzadziel Katedra Matematyki, Uniwersytet Przyrodniczy we Wrocławiu Wykład 2; rok akademicki 2016/2017 Zależności funkcyjne w naukach przyrodniczych Rozwój algebry
Bardziej szczegółowoGIMNAZJUM Wymagania edukacyjne z matematyki na poszczególne oceny półroczne i roczne w roku szkolnym
GIMNAZJUM Wymagania edukacyjne z matematyki na poszczególne oceny półroczne i roczne w roku szkolnym 2013-2014 Ocenę celującą otrzymuje uczeń, który: wykorzystuje na lekcjach matematyki wiadomości z innych
Bardziej szczegółowoPróbny egzamin z matematyki dla uczniów klas II LO i III Technikum. w roku szkolnym 2012/2013
Próbny egzamin z matematyki dla uczniów klas II LO i III Technikum w roku szkolnym 2012/2013 I. Zakres materiału do próbnego egzaminu maturalnego z matematyki: 1) liczby rzeczywiste 2) wyrażenia algebraiczne
Bardziej szczegółowoMINIMUM PROGRAMOWE DLA SŁUCHACZY CKU NR 1
MINIMUM PROGRAMOWE DLA SŁUCHACZY CKU NR 1 Rozkład materiału nauczania wraz z celami kształcenia oraz osiągnięciami dla słuchaczy CKU Nr 1 ze specyficznymi potrzebami edukacyjnymi ( z podziałem na semestry
Bardziej szczegółowoDydaktyka matematyki (II etap edukacyjny) II rok matematyki Semestr letni 2016/2017 Ćwiczenia nr 1
Dydaktyka matematyki (II etap edukacyjny) II rok matematyki Semestr letni 2016/2017 Ćwiczenia nr 1 https://mat.ug.edu.pl/~matpz/ Ocena nieobecności jedna nieusprawiedliwiona aktywność na ćwiczeniach (5
Bardziej szczegółowoPrzedmiotowe Ocenianie Z Matematyki Liceum Ogólnokształcące obowiązuje w roku szkolnym 2016 / 2017
Przedmiotowe Ocenianie Z Matematyki Liceum Ogólnokształcące obowiązuje w roku szkolnym 2016 / 2017 1. Rok szkolny dzieli się na dwa semestry. Każdy semestr kończy się klasyfikacją. 2. Na początku roku
Bardziej szczegółowoSpis treści Wstęp Zadania maturalne Szkice rozwiązań.
Spis treści Wstęp.... Zadania maturalne......................................................... 5. Liczby. Potęgi.... 5. Logarytmy.... Procenty.... Wartość bezwzględna... 7 5. Równania. Nierówności...
Bardziej szczegółowoTemat (rozumiany jako lekcja) Propozycje środków dydaktycznych. Liczba godzin. Uwagi
Roczny plan dydaktyczny z matematyki dla pierwszej klasy szkoły branżowej I stopnia dla uczniów będących absolwentami ośmioletniej szkoły podstawowej, uwzględniający kształcone umiejętności i treści podstawy
Bardziej szczegółowoPojęcie funkcji. Funkcja liniowa
Pojęcie funkcji. Funkcja liniowa dr Mariusz Grządziel Wykład 1; 1 października 2013 1 Matematyka w naukach przyrodniczych Zależności funkcyjne w naukach przyrodniczych Rozwój algebry i analiza matematycznej
Bardziej szczegółowoAnaliza matematyczna i algebra liniowa Wprowadzenie Ciągi liczbowe
Analiza matematyczna i algebra liniowa Wprowadzenie Ciągi liczbowe Wojciech Kotłowski Instytut Informatyki Politechniki Poznańskiej email: imię.nazwisko@cs.put.poznan.pl pok. 2 (CW) tel. (61)665-2936 konsultacje:
Bardziej szczegółowoFunkcje liniowe i wieloliniowe w praktyce szkolnej. Opracowanie : mgr inż. Renata Rzepińska
Funkcje liniowe i wieloliniowe w praktyce szkolnej Opracowanie : mgr inż. Renata Rzepińska . Wprowadzenie pojęcia funkcji liniowej w nauczaniu matematyki w gimnazjum. W programie nauczania matematyki w
Bardziej szczegółowoROZKŁAD MATERIAŁU DLA KLASY I LICEUM I TECHNIKUM (ZAKRES PODSTAWOWY I ROZSZERZONY) A WYMAGANIA PODSTAWY PROGRAMOWEJ
ROZKŁAD MATERIAŁU DLA KLASY I LICEUM I TECHNIKUM (ZAKRES PODSTAWOWY I ROZSZERZONY) A WYMAGANIA PODSTAWY PROGRAMOWEJ ZBIORY TEMAT LICZBA GODZIN LEKCYJNYCH WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ Z
Bardziej szczegółowoPRÓBNA NOWA MATURA z WSiP. Matematyka dla klasy 2 Poziom podstawowy. Zasady oceniania zadań
PRÓBNA NOWA MATURA z WSiP Matematyka dla klasy Poziom podstawowy Zasady oceniania zadań Copyright by Wydawnictwa Szkolne i Pedagogiczne sp. z o.o., Warszawa 0 Matematyka dla klasy Poziom podstawowy Kartoteka
Bardziej szczegółowoRozkład materiału a wymagania podstawy programowej dla I klasy czteroletniego liceum i pięcioletniego technikum. Zakres rozszerzony
Rozkład materiału a wymagania podstawy programowej dla I klasy czteroletniego liceum i pięcioletniego technikum. Zakres rozszerzony ZBIORY TEMAT LICZBA GODZIN LEKCYJNYCH WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY
Bardziej szczegółowoWykłady 11 i 12: Całka oznaczona
Wykłady 11 i 12: Całka oznaczona dr Mariusz Grzadziel Katedra Matematyki, Uniwersytet Przyrodniczy we Wrocławiu semestr zimowy; rok akademicki 2016/2017 Pole trójkata parabolicznego Problem. Chcemy obliczyć
Bardziej szczegółowoKup książkę Poleć książkę Oceń książkę. Księgarnia internetowa Lubię to!» Nasza społeczność
Kup książkę Poleć książkę Oceń książkę Księgarnia internetowa Lubię to!» Nasza społeczność Spis treści WSTĘP 5 ROZDZIAŁ 1. Matematyka Europejczyka. Program nauczania matematyki w szkołach ponadgimnazjalnych
Bardziej szczegółowoEGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2015/2016 CZĘŚĆ 2. ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ
EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2015/2016 CZĘŚĆ 2. MATEMATYKA ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZ GM-M7 KWIECIEŃ 2016 Zadanie 1. (0 1) I. Wykorzystanie i tworzenie informacji. 8.
Bardziej szczegółowoOd autorów... 7 Zamiast wstępu zrozumieć symbolikę... 9 Zdania Liczby rzeczywiste i ich zbiory... 15
Spis treści Od autorów........................................... 7 Zamiast wstępu zrozumieć symbolikę................... 9 Zdania............................................... 10 1. Liczby rzeczywiste
Bardziej szczegółowoCiagi liczbowe wykład 4
Ciagi liczbowe wykład 4 dr Mariusz Grzadziel Katedra Matematyki, Uniwersytet Przyrodniczy we Wrocławiu semestr zimowy, r. akad. 2016/2017 Definicja (ciagu liczbowego) Ciagiem liczbowym nazywamy funkcję
Bardziej szczegółowoZakres na egzaminy poprawkowe w r. szk. 2013/14 /nauczyciel M.Tatar/
Zakres na egzaminy poprawkowe w r. szk. 2013/14 /nauczyciel M.Tatar/ MATEMATYKA Klasa III ZAKRES PODSTAWOWY Dział programu Temat Wymagania. Uczeń: 1. Miara łukowa kąta zna pojęcia: kąt skierowany, kąt
Bardziej szczegółowoCiągi liczbowe wykład 3
Ciągi liczbowe wykład 3 dr Mariusz Grządziel 3 kwietnia 203 Definicja (ciągu liczbowego). Ciagiem liczbowym nazywamy funkcję odwzorowuja- ca zbiór liczb naturalnych w zbiór liczb rzeczywistych. Wartość
Bardziej szczegółowoAnaliza wyników egzaminu gimnazjalnego przeprowadzonego w roku szkolnym 2011/2012 w części matematyczno przyrodniczej z zakresu matematyki
Analiza wyników egzaminu gimnazjalnego przeprowadzonego w roku szkolnym 2011/2012 w części matematyczno przyrodniczej z zakresu matematyki Zestaw zadań egzaminacyjnych zawierał 23, w tym 20 zadań zamkniętych
Bardziej szczegółowoMATeMAtyka 3. Propozycja przedmiotowego systemu oceniania wraz z określeniem wymagań edukacyjnych. Zakres podstawowy i rozszerzony
Agnieszka Kamińska, Dorota Ponczek MATeMAtyka 3 Propozycja przedmiotowego systemu oceniania wraz z określeniem wymagań edukacyjnych Zakres podstawowy i rozszerzony Wyróżnione zostały następujące wymagania
Bardziej szczegółowoWymagania edukacyjne z matematyki klasa IV technikum
Wymagania edukacyjne z matematyki klasa IV technikum Poziom rozszerzony Obowiązują wymagania z zakresu podstawowego oraz dodatkowo: FUNKCJE TRYGONOMETRYCZNE zaznacza kąt w układzie współrzędnych, wskazuje
Bardziej szczegółowoROZKŁAD MATERIAŁU NAUCZANIA KLASA 1, ZAKRES PODSTAWOWY
ROZKŁAD MATERIAŁU NAUCZANIA KLASA 1, ZAKRES PODSTAWOWY Numer lekcji 1 2 Nazwa działu Lekcja organizacyjna. Zapoznanie z programem nauczania i kryteriami wymagań Zbiór liczb rzeczywistych i jego 3 Zbiór
Bardziej szczegółowoUłamki i działania 20 h
Propozycja rozkładu materiału Klasa I Razem h Ułamki i działania 0 h I. Ułamki zwykłe II. Ułamki dziesiętne III. Ułamki zwykłe i dziesiętne. Przypomnienie wiadomości o ułamkach zwykłych.. Dodawanie i odejmowanie
Bardziej szczegółowoPRZEWODNIK PO PRZEDMIOCIE
PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Obliczenia symboliczne Symbolic computations Kierunek: Rodzaj przedmiotu: obowiązkowy w ramach treści wspólnych z kierunkiem Informatyka Rodzaj zajęć: wykład,
Bardziej szczegółowoWymagania edukacyjne. Hasło z podstawy programowej 1. Liczby naturalne 1 Liczby naturalne, cechy podzielności. Liczba godzin
. Liczby rzeczywiste (3 h) PRZEDMIOT: Matematyka KLASA: I zasadnicza szkoła zawodowa Dział programowy Temat Wymagania edukacyjne Liczba godzin Hasło z podstawy programowej. Liczby naturalne Liczby naturalne,
Bardziej szczegółowoFunkcje: wielomianowa, wykładnicza, logarytmiczna wykład 2
Funkcje: wielomianowa, wykładnicza, logarytmiczna wykład 2 dr Mariusz Grządziel semestr zimowy 2013 Potęgowanie Dla dowolnej liczby dodatniej a oraz liczy wymiernej w = p/q definiujemy: a w (a 1/q ) p.
Bardziej szczegółowoTechnikum Nr 2 im. gen. Mieczysława Smorawińskiego w Zespole Szkół Ekonomicznych w Kaliszu
Technikum Nr 2 im. gen. Mieczysława Smorawińskiego w Zespole Szkół Ekonomicznych w Kaliszu Wymagania edukacyjne niezbędne do uzyskania poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych z obowiązkowych
Bardziej szczegółowoRozkład wyników ogólnopolskich
Rozkład wyników ogólnopolskich 1 9 8 7 procent uczniów 6 5 4 3 2 1 1 2 3 4 5 6 7 8 9 1 11 12 13 14 15 16 17 18 19 2 21 22 23 24 25 26 27 28 29 3 31 32 33 34 35 36 37 38 39 4 41 42 43 44 45 46 47 48 49
Bardziej szczegółowoE-N-1112-s1 MATEMATYKA Mathematics
KARTA MODUŁU / KARTA PRZEDMIOTU E-N-1112-s1 MATEMATYKA Mathematics Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2012/13 A. USYTUOWANIE MODUŁU W SYSTEMIE STUDIÓW
Bardziej szczegółowoKOD UCZNIA KONKURS FIZYCZNY DLA UCZNIÓW GIMNAZJÓW I ETAP SZKOLNY. 7 października 2015
KOD UCZNIA KONKURS FIZYCZNY DLA UCZNIÓW GIMNAZJÓW I ETAP SZKOLNY 7 października 2015 Ważne informacje: 1. Masz 60 minut na rozwiązanie wszystkich zadań. 2. Zapisuj szczegółowe obliczenia i komentarze do
Bardziej szczegółowoTreści programowe. Matematyka. Efekty kształcenia. Warunki zaliczenia. Literatura. Funkcje elementarne. Katarzyna Trąbka-Więcław
Treści programowe Matematyka Katarzyna Trąbka-Więcław Funkcje elementarne. Granica funkcji, własności granic, wyrażenia nieoznaczone, ciągłość funkcji. Pochodna funkcji w punkcie i w przedziale, pochodne
Bardziej szczegółowoPRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI DLA KLASY 1LO i 1TI ROK SZKOLNY 2018/2019
PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI DLA KLASY 1LO i 1TI ROK SZKOLNY 2018/2019 Przedmiotowy system oceniania jest zgodny z Rozporządzeniem Ministra Edukacji Narodowej z dnia 10 czerwca 2015 r. w
Bardziej szczegółowoKlasa 1 technikum. Poniżej przedstawiony został podział wymagań na poszczególne oceny szkolne:
Klasa 1 technikum Przedmiotowy system oceniania wraz z wymaganiami edukacyjnymi Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające (R), dopełniające (D) i
Bardziej szczegółowoWymagania edukacyjne: Matematyka Zasadnicza Szkoła Zawodowa
ymagania edukacyjne: Matematyka Zasadnicza Szkoła Zawodowa Oznaczenia: wymagania konieczne (ocena dopuszczająca), wymagania podstawowe (ocena dostateczna), wymagania rozszerzające (ocena dobra) D wymagania
Bardziej szczegółowoMatematyka I. Bezpieczeństwo jądrowe i ochrona radiologiczna Semestr zimowy 2018/2019 Wykład 12
Matematyka I Bezpieczeństwo jądrowe i ochrona radiologiczna Semestr zimowy 2018/2019 Wykład 12 Egzamin Termin: 28.01, godz. 10.15-11.45, sala 309 3 pytania teoretyczne 2 zadania wybór pytań i wybór zadań
Bardziej szczegółowoDydaktyka matematyki III-IV etap edukacyjny (wykłady)
Dydaktyka matematyki III-IV etap edukacyjny (wykłady) Wykład nr 2: Szukanie zer funkcji. Operacje umysłowe w uczeniu się matematyki Semestr zimowy 2018/2019 PPM szkoła średnia zakres podstawowy. Uczeń:
Bardziej szczegółowoElementy rachunku różniczkowego i całkowego
Elementy rachunku różniczkowego i całkowego W paragrafie tym podane zostaną elementarne wiadomości na temat rachunku różniczkowego i całkowego oraz przykłady jego zastosowania w fizyce. Małymi literami
Bardziej szczegółowoPojęcie funkcji. Funkcje: liniowa, logarytmiczna, wykładnicza
Pojęcie funkcji. Funkcje: liniowa, logarytmiczna, wykładnicza dr Mariusz Grządziel Wykład 1; 10 marca 2013 1 Matematyka w naukach przyrodniczych Zależności funkcyjne w naukach przyrodniczych Rozwój algebry
Bardziej szczegółowoKLUCZ PUNKTOWANIA ODPOWIEDZI
Egzamin maturalny maj 009 MATEMATYKA POZIOM PODSTAWOWY KLUCZ PUNKTOWANIA ODPOWIEDZI Zadanie 1. Matematyka poziom podstawowy Wyznaczanie wartości funkcji dla danych argumentów i jej miejsca zerowego. Zdający
Bardziej szczegółowoRuch jednostajnie zmienny prostoliniowy
Ruch jednostajnie zmienny prostoliniowy Przyspieszenie w ruchu jednostajnie zmiennym prostoliniowym Jest to taki ruch, w którym wektor przyspieszenia jest stały, co do wartości (niezerowej), kierunku i
Bardziej szczegółowoMATEMATYKA. kurs uzupełniający dla studentów 1. roku PWSZ. w ramach»europejskiego Funduszu Socjalnego« Adam Kolany.
MATEMATYKA kurs uzupełniający dla studentów 1. roku PWSZ w ramach»europejskiego Funduszu Socjalnego«Adam Kolany rozkład materiału Projekt finansowany przez Unię Europejską w ramach Europejskiego Funduszu
Bardziej szczegółowoDydaktyka matematyki (III etap edukacyjny) IV rok matematyki Semestr letni 2017/2018 Ćwiczenia nr 1
Dydaktyka matematyki (III etap edukacyjny) IV rok matematyki Semestr letni 2017/2018 Ćwiczenia nr 1 https://mat.ug.edu.pl/~matpz/ matpz@mat.ug.edu.pl Ocena aktywność na ćwiczeniach (ekstra punkty 5 p.)
Bardziej szczegółowoWymagania edukacyjne niezbędne do uzyskania śródrocznych i rocznych ocen klasyfikacyjnych. z matematyki dla uczniów klasy I LO poziom podstawowy
Wymagania edukacyjne niezbędne do uzyskania śródrocznych i rocznych ocen klasyfikacyjnych Nauczyciel: mgr Karolina Bębenek z matematyki dla uczniów klasy I LO poziom podstawowy 1. Wprowadzenie do matematyki.
Bardziej szczegółowoAnaliza wyników egzaminu gimnazjalnego 2013 r. Test matematyczno-przyrodniczy (matematyka) Test GM-M1-132
Analiza wyników egzaminu gimnazjalnego 2013 r. Test matematyczno-przyrodniczy (matematyka) Test GM-M1-132 Zestaw zadań z zakresu matematyki posłużył w dniu 24 kwietnia 2013 roku do sprawdzenia u uczniów
Bardziej szczegółowoEgzamin gimnazjalny z matematyki 2016 analiza
Egzamin gimnazjalny z matematyki 2016 analiza Arkusz zawierał 23 zadania: 20 zamkniętych i 3 otwarte. Dominowały zadania wyboru wielokrotnego, w których uczeń wybierał jedną z podanych odpowiedzi. W pięciu
Bardziej szczegółowoMATeMAtyka 1. Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych. Zakres podstawowy i rozszerzony Klasa pierwsza
MATeMAtyka 1 Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych Zakres podstawowy i rozszerzony Klasa pierwsza Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe
Bardziej szczegółowoFUNKCJA POTĘGOWA, WYKŁADNICZA I LOGARYTMICZNA
FUNKCJA POTĘGOWA, WYKŁADNICZA I LOGARYTMICZNA POTĘGA, DZIAŁANIA NA POTĘGACH Potęga o wykładniku naturalnym. Jest to po prostu pomnożenie przez siebie danej liczby tyle razy ile wynosi wykładnik. Zapisujemy
Bardziej szczegółowoWymagania edukacyjne z matematyki Klasa III zakres rozszerzony
Wymagania edukacyjne z matematyki Klasa III zakres rozszerzony Program nauczania zgodnie z: Kurczab M., Kurczab E., Świda E., Program nauczania w liceach i technikach. Zakres Rozszerzony., Oficyna Edukacyjna
Bardziej szczegółowoMatematyka do liceów i techników Szczegółowy rozkład materiału Zakres podstawowy
Matematyka do liceów i techników Szczegółowy rozkład materiału Zakres podstawowy Wariant nr (klasa I 4 godz., klasa II godz., klasa III godz.) Klasa I 7 tygodni 4 godziny = 48 godzin Lp. Tematyka zajęć
Bardziej szczegółowoWYMAGANIA PROGRAMOWE Z MATEMATYKI GIMNAZJUM
WYMAGANIA PROGRAMOWE Z MATEMATYKI GIMNAZJUM I. Wymagania na poszczególne oceny semestralne i roczne Ocenę celującą otrzymuje uczeń, który: wykorzystuje na lekcjach matematyki wiadomości z innych przedmiotów,
Bardziej szczegółowoLogarytmy. Historia. Definicja
Logarytmy Historia Logarytmy po raz pierwszy pojawiły się w książce szkockiego matematyka - Johna Nepera "Opis zadziwiających tablic logarytmów" z 1614 roku. Szwajcarski astronom i matematyk Jost Burgi
Bardziej szczegółowoMATeMAtyka 3. Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych. Zakres podstawowy i rozszerzony. Zakres podstawowy i rozszerzony
MATeMAtyka 3 Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych Zakres podstawowy i rozszerzony Zakres podstawowy i rozszerzony Wyróżnione zostały następujące wymagania programowe: konieczne
Bardziej szczegółowoRAMOWY ROZKŁAD MATERIAŁU Z MATEMATYKI DLA KLAS I-III LICEUM OGÓLNOKSZTAŁCĄCEGO PRZY CKU NR 1
RAMOWY ROZKŁAD MATERIAŁU Z MATEMATYKI DLA KLAS I-III LICEUM OGÓLNOKSZTAŁCĄCEGO PRZY CKU NR 1 Zakres podstawowy Kl. 1-60 h ( 30 h w semestrze) Kl. 2-60 h (30 h w semestrze) Kl. 3-90 h (45 h w semestrze)
Bardziej szczegółowoRAPORT WSKAŹNIK EDUKACYJNEJ WARTOŚCI DODANEJ PO EGZAMINIE GIMNAZJALNYM W ROKU SZKOLNYM 2012/2013
RAPORT WSKAŹNIK EDUKACYJNEJ WARTOŚCI DODANEJ PO EGZAMINIE GIMNAZJALNYM W ROKU SZKOLNYM 2012/2013 ZESPÓŁ SZKÓŁ NR 14 W BYDGOSZCZY GIMNAZJUM NR 37 INTEGRACYJNE Opracowanie A. Tarczyńska- Pajor na podstawie
Bardziej szczegółowoFUNKCJA I JEJ WŁASNOŚCI
FUNKCJA I JEJ WŁASNOŚCI Niech i oznaczają dwa dowolne niepuste zbiory. DEFINICJA (odwzorowanie zbioru (funkcja)) Odwzorowaniem zbioru w zbiór nazywamy przyporządkowanie każdemu elementowi zbioru dokładnie
Bardziej szczegółowoM A T E M A T Y K A 8 KURSÓW OPISY KURSÓW. Rok szkolny 2015/2016. klasa III Zakres Trymestr I. Podstawowy 104 105 300
M A T E M A T Y K A Podział kursów w procesie nauczania: -podstawowe 5 kursów (300 godzin) -rozszerzone 8 kursów (480 godzin) MATURA zakres podstawowy 5 KURSÓW PP: 101,102,103,104,105 MATURA zakres rozszerzony
Bardziej szczegółowoTreści programowe. Matematyka 1. Efekty kształcenia. Literatura. Warunki zaliczenia. Ogólne własności funkcji. Definicja 1. Funkcje elementarne.
Treści programowe Matematyka 1 Katarzyna Trąbka-Więcław Funkcje elementarne. Granica funkcji, własności granic, wyrażenia nieoznaczone, ciągłość funkcji. Pochodna funkcji w punkcie i w przedziale, pochodne
Bardziej szczegółowoZAGADNIENIA PROGRAMOWE I WYMAGANIA EDUKACYJNE DO TESTU PRZYROSTU KOMPETENCJI Z MATEMATYKI DLA UCZNIA KLASY II
ZAGADNIENIA PROGRAMOWE I WYMAGANIA EDUKACYJNE DO TESTU PRZYROSTU KOMPETENCJI Z MATEMATYKI DLA UCZNIA KLASY II POZIOM ROZSZERZONY Równania i nierówności z wartością bezwzględną. rozwiązuje równania i nierówności
Bardziej szczegółowoMatematyka z kluczem. Układ treści w klasach 4 8 szkoły podstawowej. KLASA 4 (126 h) część 1 (59 h) część 2 (67 h)
Matematyka z kluczem Układ treści w klasach 4 8 szkoły podstawowej KLASA 4 (126 h) część 1 (59 h) I. LICZBY NATURALNE część 1 (23) 1. Jak się uczyć matematyki (1) 2. Oś liczbowa 3. Jak zapisujemy liczby
Bardziej szczegółowoPojęcie funkcji i jej podstawowe własności.
Konspekt lekcji matematyki w klasie II gimnazjum Pojęcie funkcji i jej podstawowe własności. Opracowała mgr Iwona Żuk Gimnazjum nr 2 w Świętoniowej I. Umiejscowienie lekcji w jednostce metodycznej: Pojęcie
Bardziej szczegółowoOPIS MODUŁ KSZTAŁCENIA (SYLABUS)
OPIS MODUŁ KSZTAŁCENIA (SYLABUS) I. Informacje ogólne: 1 Nazwa modułu Matematyka 1 2 Kod modułu 04-A-MAT1-60-1Z 3 Rodzaj modułu obowiązkowy 4 Kierunek studiów astronomia 5 Poziom studiów I stopień 6 Rok
Bardziej szczegółowoPrzedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych (zakres rozszerzony)
Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych (zakres rozszerzony) Wymagania konieczne (K) dotyczą zagadnień elementarnych, stanowiących swego rodzaju podstawę, zatem powinny być
Bardziej szczegółowoV. WYMAGANIA EGZAMINACYJNE
V. WYMAGANIA EGZAMINACYJNE Standardy wymagań egzaminacyjnych Zdający posiada umiejętności w zakresie: POZIOM PODSTAWOWY POZIOM ROZSZERZONY 1. wykorzystania i tworzenia informacji: interpretuje tekst matematyczny
Bardziej szczegółowoWymagania edukacyjne z matematyki w klasie III A LP
Wymagania edukacyjne z matematyki w klasie III A LP Zakres rozszerzony Kryteria Znajomość pojęć, definicji, własności oraz wzorów objętych programem nauczania. Umiejętność zastosowania wiedzy teoretycznej
Bardziej szczegółowoWYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY MATEMATYKA STOSOWANA - KLASA II I. POWTÓRZENIE I UTRWALENIE WIADOMOŚCI Z ZAKRESU KLASY PIERWSZEJ
WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY MATEMATYKA STOSOWANA - KLASA II I. POWTÓRZENIE I UTRWALENIE WIADOMOŚCI Z ZAKRESU KLASY PIERWSZEJ zna i potrafi stosować przekształcenia wykresów funkcji zna i
Bardziej szczegółowoPodstawa programowa matematyki dla liceum i technikum (zakres podstawowy) podpisana przez Ministra Edukacji Narodowej 23 sierpnia 2007 roku
Podstawa programowa matematyki dla liceum i technikum (zakres podstawowy) podpisana przez Ministra Edukacji Narodowej 23 sierpnia 2007 roku C e l e e d u k a c y j n e 1. Przygotowanie do świadomego i
Bardziej szczegółowoWYMAGANIA EDUKACYJNE Z MATEMATYKI dla klasy I ba Rok szk. 2012/2013
Dział LICZBY RZECZYWISTE Uczeń otrzymuje ocenę dopuszczającą lub dostateczną, jeśli: podaje przykłady liczb: naturalnych, całkowitych, wymiernych, niewymiernych, pierwszych i złożonych oraz przyporządkowuje
Bardziej szczegółowoGEODEZJA I KARTOGRAFIA I stopień (I stopień / II stopień) Ogólnoakademicki (ogólnoakademicki / praktyczny)
KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Matematyka I Nazwa modułu w języku angielskim Mathematics I Obowiązuje od roku akademickiego 2012/2013 A. USYTUOWANIE MODUŁU W SYSTEMIE STUDIÓW Kierunek
Bardziej szczegółowoK P K P R K P R D K P R D W
KLASA II TECHNIKUM POZIOM PODSTAWOWY I ROZSZERZONY PROPOZYCJA POZIOMÓW WYMAGAŃ Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające (R), dopełniające (D) i
Bardziej szczegółowoEGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2017/2018 CZĘŚĆ 2. ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ
EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2017/2018 CZĘŚĆ 2. MATEMATYKA ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZ GM-M7 KWIECIEŃ 2018 Zadanie 1. (0 1) I. Wykorzystanie i tworzenie informacji. 8.
Bardziej szczegółowoROZKŁAD MATERIAŁU DO II KLASY LICEUM (ZAKRES ROZSZERZONY) A WYMAGANIA PODSTAWY PROGRAMOWEJ.
ROZKŁAD MATERIAŁU DO II KLASY LICEUM (ZAKRES ROZSZERZONY) A WYMAGANIA PODSTAWY PROGRAMOWEJ. LICZBA TEMAT GODZIN LEKCYJNYCH Potęgi, pierwiastki i logarytmy (8 h) Potęgi 3 Pierwiastki 3 Potęgi o wykładnikach
Bardziej szczegółowoMatematyka 2 wymagania edukacyjne
Matematyka wymagania edukacyjne Zakres podstawowy POZIOMY WYMAGAŃ Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające (R), dopełniające (D) i wykraczające
Bardziej szczegółowoOpis przedmiotu: Matematyka I
24.09.2013 Karta - Matematyka I Opis : Matematyka I Kod Nazwa Wersja TR.NIK102 Matematyka I 2012/13 A. Usytuowanie w systemie studiów Poziom Kształcenia Stopień Rodzaj Kierunek studiów Profil studiów Specjalność
Bardziej szczegółowoDydaktyka matematyki III-IV etap edukacyjny (wykłady) Wykład nr 3: Wprowadzanie i definiowanie matematycznych pojęć Semestr zimowy 2018/2019
Dydaktyka matematyki III-IV etap edukacyjny (wykłady) Wykład nr 3: Wprowadzanie i definiowanie matematycznych pojęć Semestr zimowy 2018/2019 Zasada trzech etapów (jeszcze raz) Trzy etapy, enaktywny, ikoniczny
Bardziej szczegółowoPROGRAM ZAJĘĆ WYRÓWNAWCZYCH Z MATEMATYKI NA KIERUNKU MATEMATYKA
PROGRAM ZAJĘĆ WYRÓWNAWCZYCH Z MATEMATYKI NA KIERUNKU MATEMATYKA UNIWERSYTET PRZYRODNICZO HUMANISTYCZNY Instytut Matematyki i Fizyki Siedlce 2011 Dział matematyki Szczegółowy program Liczba godz. I. ELEMENTY
Bardziej szczegółowoMetody numeryczne I Równania nieliniowe
Metody numeryczne I Równania nieliniowe Janusz Szwabiński szwabin@ift.uni.wroc.pl Metody numeryczne I (C) 2004 Janusz Szwabiński p.1/66 Równania nieliniowe 1. Równania nieliniowe z pojedynczym pierwiastkiem
Bardziej szczegółowoEGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2017/2018 CZĘŚĆ 2. ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ
EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2017/2018 CZĘŚĆ 2. MATEMATYKA ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZE: GM-MX1, GM-M2, GM-M4, GM-M5 KWIECIEŃ 2018 Zadanie 1. (0 1) I. Wykorzystanie i
Bardziej szczegółowoIII. STRUKTURA I FORMA EGZAMINU
III. STRUKTURA I FORMA EGZAMINU Egzamin maturalny z matematyki jest egzaminem pisemnym sprawdzającym wiadomości i umiejętności określone w Standardach wymagań egzaminacyjnych i polega na rozwiązaniu zadań
Bardziej szczegółowoPropozycja szczegółowego rozkładu materiału dla 4-letniego technikum
LICZBY (20 godz.) Propozycja szczegółowego rozkładu materiału dla 4-letniego technikum Wg podręczników serii Prosto do matury KLASA I (60 godz.) 1. Zapis dziesiętny liczby rzeczywistej 1 2. Wzory skróconego
Bardziej szczegółowoII. Funkcje. Pojęcia podstawowe. 1. Podstawowe definicje i fakty.
II. Funkcje. Pojęcia podstawowe. 1. Podstawowe definicje i fakty. Definicja 1.1. Funkcją określoną na zbiorze X R o wartościach w zbiorze Y R nazywamy przyporządkowanie każdemu elementowi x X dokładnie
Bardziej szczegółowoPrzedmiotowe Ocenianie Z Matematyki - Technikum. obowiązuje w roku szkolnym 2016 / 2017
Przedmiotowe Ocenianie Z Matematyki - Technikum obowiązuje w roku szkolnym 2016 / 2017 1. Rok szkolny dzieli się na dwa semestry. Każdy semestr kończy się klasyfikacją. 2. Na początku roku szkolnego informuję
Bardziej szczegółowoTechnikum Nr 2 im. gen. Mieczysława Smorawińskiego w Zespole Szkół Ekonomicznych w Kaliszu
Technikum Nr 2 im. gen. Mieczysława Smorawińskiego w Zespole Szkół Ekonomicznych w Kaliszu Wymagania edukacyjne niezbędne do uzyskania poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych z obowiązkowych
Bardziej szczegółowoAKADEMIA GÓRNICZO-HUTNICZA Wydział Matematyki Stosowanej ROZKŁAD NORMALNY ROZKŁAD GAUSSA
AKADEMIA GÓRNICZO-HUTNICZA Wydział Matematyki Stosowanej KATEDRA MATEMATYKI TEMAT PRACY: ROZKŁAD NORMALNY ROZKŁAD GAUSSA AUTOR: BARBARA MARDOSZ Kraków, styczeń 2008 Spis treści 1 Wprowadzenie 2 2 Definicja
Bardziej szczegółowowymagania programowe z matematyki kl. II gimnazjum
wymagania programowe z matematyki kl. II gimnazjum Umie obliczyć potęgę liczby wymiernej o wykładniku naturalnym. 1. Arytmetyka występują potęgi o wykładniku naturalnym. Umie zapisać i porównać duże liczby
Bardziej szczegółowoZastosowania pochodnych
Zastosowania pochodnych Zbigniew Koza Wydział Fizyki i Astronomii Wrocław, 2015 SZACOWANIE NIEPEWNOŚCI POMIAROWEJ Przykład: objętość kuli Kulka z łożyska tocznego ma średnicę 2,3 mm, co oznacza, że objętość
Bardziej szczegółowowymagania programowe z matematyki kl. III gimnazjum
wymagania programowe z matematyki kl. III gimnazjum 1. Liczby i wyrażenia algebraiczne Zna pojęcie notacji wykładniczej. Umie zapisać liczbę w notacji wykładniczej. Umie porównywać liczy zapisane w różny
Bardziej szczegółowoKoordynator przedmiotu dr Artur Bryk, wykł., Wydział Transportu Politechniki Warszawskiej B. Ogólna charakterystyka przedmiotu
Kod przedmiotu TR.NIK102 Nazwa przedmiotu Matematyka I Wersja przedmiotu 2015/16 A. Usytuowanie przedmiotu w systemie studiów Poziom kształcenia Studia I stopnia Forma i tryb prowadzenia studiów Niestacjonarne
Bardziej szczegółowoFunkcja kwadratowa. f(x) = ax 2 + bx + c,
Funkcja kwadratowa. Funkcją kwadratową nazywamy funkcję f : R R określoną wzorem gdzie a, b, c R, a 0. f(x) = ax 2 + bx + c, Szczególnym przypadkiem funkcji kwadratowej jest funkcja f(x) = ax 2, a R \
Bardziej szczegółowoStopień dobry otrzymuje uczeń, który spełnia wymagania na stopień dostateczny oraz:
KRYTERIA OCEN Z MATEMATYKI DLA UCZNIÓW KLASY I ZASADNICZEJ SZKOŁY ZAWODOWEJ (IF, IA/L) (zgodny z wymaganiami nowej podstawy programowej z grudnia 2008) Rok szkolny 2015/2016 Stopień dopuszczający potrafi:
Bardziej szczegółowoZbiory liczbowe i funkcje wykład 1
Zbiory liczbowe i funkcje wykład 1 dr Mariusz Grządziel 6 października 2008 1 Matematyka w naukach przyrodniczych Zależności funkcyjne w naukach przyrodniczych Rozwój algebry i analiza matematycznej w
Bardziej szczegółowoStandardy wymagań maturalnych z matematyki - matura
Standardy wymagań maturalnych z matematyki - matura 2011-2014 STANDARDY WYMAGAŃ BĘDĄCE PODSTAWĄ PRZEPROWADZANIA EGZAMINU MATURALNEGO Zdający posiada umiejętności w zakresie: POZIOM PODSTAWOWY 1. wykorzystania
Bardziej szczegółowoPakiet edukacyjny do nauki przedmiotów ścisłych i kształtowania postaw przedsiębiorczych
ZESPÓŁ SZKÓŁ HANDLOWO-EKONOMICZNYCH IM. MIKOŁAJA KOPERNIKA W BIAŁYMSTOKU Pakiet edukacyjny do nauki przedmiotów ścisłych i kształtowania postaw przedsiębiorczych Mój przedmiot matematyka spis scenariuszy
Bardziej szczegółowoPOZIOMY WYMAGAŃ EDUKACYJNYCH: K ocena dopuszczająca (2) P ocena dostateczna (3) R ocena dobra (4) D ocena bardzo dobra (5) W ocena celująca (6)
YMAGANIA EDUACYJNE MATEMATYA LASA 3LO ZARES ROZSZERZONY OZIOMY YMAGAŃ EDUACYJNYCH: ocena dopuszczająca (2) ocena dostateczna (3) R ocena dobra (4) D ocena bardzo dobra (5) ocena celująca (6) Temat lekcji
Bardziej szczegółowoPrzedmiotowy system oceniania z matematyki klasa I i II ZSZ 2013/2014
I. Liczby rzeczywiste K-2 P-3 R-4 D-5 W-6 Rozpoznaje liczby: naturalne (pierwsze i złożone),całkowite, wymierne, niewymierne, rzeczywiste Stosuje cechy podzielności liczb przez 2, 3,5, 9 Podaje dzielniki
Bardziej szczegółowo