Defekty. Defekty strukturalne. Kryształ idealny nie istnieje

Wielkość: px
Rozpocząć pokaz od strony:

Download "Defekty. Defekty strukturalne. Kryształ idealny nie istnieje"

Transkrypt

1 Defekty Kryształ idealny nie istnieje Defekty strukturalne Każde zaburzenie periodycznego uporządkowania atomów w krysztale jest defektem. Może to być zaburzenie: Położenia atomów Typu atomów Typ i rodzaj defektów zależy od materiału, warunków (np. temperatura) i sposobu, w jaki materiał został wytworzony. 1

2 Znaczenie defektów. Mają ogromny wpływ na właściwości materiału. Bez defektów: Nie istniałaby eletronika; Metale byłyby sliniejsze; Ceramiki nie pękałyby; Wiele minerałów nie miałoby koloru (np. rubin, szafir); Rodzaje defektów (ze względu na ich wymiarowość) Punktowe (0D): wakanse, atomy międzywęzłowe, domieszki, Liniowe (1D): dyslokacje krawędziowe i śrubowe, Powierzchniowe (2D): granice międzyziarnowe, mikropęknięcia, Objętościowe (3D): puste miejsca, wtrącenia obcych faz. 2

3 Defekty punktowe (c) 2003 Brooks/Cole Publishing / Thomson Learning (a) wakans, (b) (obcy) atom międzywęzłowy, (c) mały atom domieszki, (d) duży atom domieszki, (e) defekt Frenkela, (f) Defekt Schottky ego. Defekty punktowe Defekty punktowe są termodynamicznie stabilne, tzn. w danej temperaturze istnieje jakaś równowagowa koncentracja defektów punktowych. Na przykładzie wakansów: Założenie: kryształ zawiera N atomów. Jeżeli jest on idealny (chociaż skończony),to jego entropię konfiguracyjną można przyjąć za równą zeru. Usuwamy n atomów z ich położeń węzłowych i przeniesiemy je do innych położeń węzłowych. Można zrobić to na w sposobów N w = N n 3

4 Defekty punktowe To, z kolei, prowadzi do powstania niezerowej entropii konfiguracyjnej: N N! S = k ln = k ln N n n!( N n)! Utworzenie każdego wakansu kosztuje energię E V. Niech F jest różnicą energii swobodnej między stanem z n wakansami, a stanem idealnym. F = U T S Defekty punktowe Podstawiając: F = ne V N! kt ln n!( N n)! Korzystając z wzoru Stirlinga (lnx!=xlnx x), otrzymujemy: F = ne = ne V V kt kt (lnn! lnn! ln( N n)!) = ( N lnn nlnn ( N n)ln( N n) ) 4

5 Defekty punktowe Szukamy minimum F: F = ne = ne V V kt kt (lnn! lnn! ln( N n)!) = ( N lnn nlnn ( N n)ln( N n) ) n = e N n E V kt Ponieważ n<<n, można przyjąć, że: n = Ne E V kt Koncentracja defektów punktowych Koncentracja defektów punktowych jest zazwyczaj między 0.1% i 1% atomów kryształu, możliwe jest wytworzenie bardzo czystych kryształów (Si, gdzie jest 1 atom zanieczyszczenia na Si!) 5

6 Wakanse Wakans: brak atomu w węźle sieci krystalicznej. Powoduje odkształcenie sieci krystalicznej w najbliższym otoczeniu wakansu. Powoduje zmniejszenie gęstości kryształu. (c) 2003 Brooks/Cole Publishing / Thomson Learning Wakanse w krysztale jonowym Defekt Schottky ego = para wakansów: kationowego i anionowego Obojętność elektryczna! Defekt Frenkla = Para wakans atom międzywęzłowy 6

7 Domieszki Domieszka: obcy atom w węźle sieci krystalicznej. Również powoduje odkształcenie sieci krystalicznej w swoim najbliższym otoczeniu. (c) 2003 Brooks/Cole Publishing / Thomson Learning Domieszki Niektóre atomy (o zbliżonym promieniu i takiej samej wartościowości mogą się wzajemnie zastępować w położeniach węzłowych. Tworzą tzw roztwory stałe ( np. miedź i nikiel). 7

8 Domieszki w krysztale jonowym Domieszki zastępujące jon: Sprawa jest prosta, gdy mają taki sam ładunek: Gdy podstawnik ma inny ładunek: wakans Atomy międzywęzłowe Atom międzywęzłowy: albo rodzimy, albo obcy atom w położeniu międzywęzłowym. Również powoduje odkształcenie sieci krystalicznej w swoim najbliższym otoczeniu. (c) 2003 Brooks/Cole Publishing / Thomson Learning 8

9 Położenia międzywęzłowe Położenia międzywęzłowe (luka międzywęzłowa) Położenia pomiędzy normalnymi atomami i jonami w krysztale w których inny atom lub jon może się znajdować. Zazwyczaj, rozmiar położenia międzywęzłowego jest mniejszy niż wprowadzony jon lub atom. Luka sześcienna Atom międzywęzłowy ma liczbę koordynacyjną osiem. Luka oktaedryczna - Atom międzywęzłowy ma liczbę koordynacyjną sześć. Luka tetraedryczna - Atom międzywęzłowy ma liczbę koordynacyjną cztery. Położenia międzywęzłowe (c) 2003 Brooks/Cole Publishing / Thomson Learning 9

10 Przykład: luki oktaedryczne w komórce fcc (c) 2003 Brooks/Cole Publishing / Thomson Learning Wpływ defektów punktowych na właściwości fizyczne kryształów Właściwości elektryczne Kolor 10

11 Właściwości elektryczne. Defekty mogą wpłynąć w dwojaki sposób na przewodnictwo elektryczne: I. mogą zmniejszyć przewodnictwo metalu (zwiększyć jego opór) II mogą zwiększyć przewodnictwo: 1. mogą zwiększyć przewodnictwo elektronowe (w półprzewodnikach, czyli materiałach kowalencyjnych); 2. mogą zwiększyć przewodnictwo jonowe (w materiałach jonowych); Domieszki w półprzewodnikach 0,01% Sb powoduje, że przewodność Ge rośnie razy n Gdy pierwiastek grupy V (np. As) lub III (np. B) zastąpi Si, wówczas pojawia się albo nadmiarowy elektron, albo elektronu brakuje. Taki elektron (dziura) jest słabo związany i może łatwo zostać wzbudzony do odpowiedniego pasma. p 11

12 Przewodnictwo kryształu jonowego. Przewodnictwo w krysztale jonowym zachodzi wskutek dyfuzji jonów: Defekty są niezbędne! 2003 Brooks/Cole, a division of Thomson Learning, Inc. Thomson Learning is a trademark used herein under license Brooks/Cole, a division of Thomson Learning, Inc. Thomson Learning is a trademark used herein under license. Podstawowe mechanizmy dyfuzji: za pośrednictwem wakansów oraz położeń międzywęzłowych. 12

13 Kolor wynikający z istnienia domieszek Domieszki absorbują (i emitują) światło o innej długości fali niż idealna substancja krystaliczna. Wskutek tego domieszki mogą zmienić kolor kryształu Ametyst: domieszka Fe Domieszki jonów metali Ważnym czynnikiem jest stopień utlenienia jonów (np. Fe 2+ lub Fe 3+ ) Np. : ogrzewanie zielonego lub niebieskiego berylu redukuje jony żelaza i beryl staje się niebieski (Co znacznie zwiększa jego wartość) 13

14 Domieszki jonów metali Te same domieszki różnie zabarwiają różne minerały rubin (czerwony) i szmaragd (zielony) zawdzięczają swój kolor jonom Cr 3+ w otoczeniu oktaedrycznym Domieszki jonów metali 14

15 Domieszki jonów metali Przyczyną, dla której różne kryształy domieszkowane tym samym jonem mają różne kolory jest pole krystaliczne. Przeskok ładunku między atomami Elektron absorbując foton przechodzi od jednego atomu do innego Np. między tlenem a jonem metalu Między kationami tego samego pierwiastka (Fe 2+ -Fe 3+ ) Między różnymi kationami; Np. niebieski kolor szafiru wynika z absorpcji czerwonego światła aby: Fe 2+ i Ti 4+ Fe 3+ and Ti

16 Centra barwne Centra barwne są to defekty (punktowe) w krysztale, które absorbują światło z zakresu widzialnego. Centra barwne często powstają wskutek napromieniowania kryształu. Promieniowanie może być naturalne (w minerałach: U, Th, K) lub sztuczne. Polega to na tym, że promieniowanie wybija elektron z jakiegoś atomu a defekt (np. brak jonu ujemnego) wiąże ten elektron. Układ związany: defekt i elektron może absorbować światło. Centra F Wakans po jonie ujemnym jest dodatni. Wiąże elektron. Układ związany: wakans elektron jest centrum F. Przejścia pomiędzy poziomami energetycznymi takiego centrum są odpowiedzialne za absorpcję w zakresie widzialnym. Na Na Na Na Na Na e Na Na Na Na Na Na 16

17 Centra H Powstają przy wygrzewaniu chlorków w parach chloru. Tworzy się jon 2 - Na Na Na Na Na - Na Na Na Na Na Na Na Centra barwne Gdy elektronowi uda się uciec z pułapki, wówczas centrum zanika i kolor też. Może to nastąpić albo spontanicznie, albo wskutek ogrzania kryształu 17

18 Centra barwne Cyrkon jest bezbarwny, cyrkon zawierający domieszkę U jest niebieski Cyrkon zniszczony promieniowaniem U jest brązowoczerwony Wskutek ogrzewania brązowy cyrkon staje się znowu niebieski! Dyslokacje krawędziowe mieszane śrubowe Dyslokacje przypadkowe strukturalne 18

19 Dyslokacja śrubowa Symbol (a) idealny kryształ (b) i (c) kryształ przecinamy do połowy i na jedną jego część działamy siłą równoległą do przecięcia, tak że ją przesuwamy względem drugiej o jedną stałą sieci. Płaszczyzny sieciowe tworzą powierzchnię śruby. Dyslokacja śrubowa Screw Dislocation Dislocation line Burgers vector b (a) b (b) 19

20 Dyslokacja krawędziowa Symbol (a) idealny kryształ (b) i (c) kryształ przecinamy do połowy i wstawiamy dodatkową płaszczyznę sieciową. Krawędziowe, śrubowe i mieszane dyslokacje mieszana krawędziowa Adapted from Fig. 4.5, Callister 7e. śrubowa 20

21 Dyslokacje Dyslokacje opisuje się za pomocą: Osi (linii) dyslokacji; Wektora Burgersa (b); Wektora stycznego do linii dyslokacji (t); Ilość dyslokacji w krysztale określa się za pomocą koncentracji (gęstości) dyslokacji. Linia dyslokacji Linia dyslokacji śrubowej: oś śruby 21

22 Linia dyslokacji Linia dyslokacji krawędziowej: linia, wzdłuż której kończy się dodatkowa płaszczyzna sieciowa Linia dyslokacji Linie dyslokacji mogą kończyć się: na zewnętrznej powierzchni kryształu na wewnętrznych powierzchniach może tworzyć zamkniętą pętlę może kończyć się w punktach przecięcia linii dyslokacji 22

23 Wektor Burgersa W krysztale idealnym, jeżeli będziemy przemieszczać się np. tak: 4 stałe sieci w prawo 5 stałych sieci w dół 4 stałe sieci w lewo 5 stałych sieci w górę To trafimy do punktu początkowego Wektor Burgersa W krysztale z dyslokacją po takich samych translacjach: 4 stałe sieci w prawo 5 stałych sieci w dół 4 stałe sieci w lewo 5 stałych sieci w górę NIE trafimy do punktu początkowego. Wektor potrzebny do zamknięcia obwodu to WEKTOR BURGERSA 23

24 Linia dyslokacji i wektor Burgersa Dyslokacja śrubowa: wektor Burgersa jest równoległy do linii linii dyslokacji. Linia dyslokacji i wektor Burgersa Dyslokacja krawędziowa: wektor Burgersa jest prostopadły do linii dyslokacji. 24

25 Linia dyslokacji i wektor Burgersa Dyslokacja krawędziowa: wektor Burgersa jest prostopadły do linii dyslokacji. Linia dyslokacji: linia, wzdłuż której kończy się dodatkowa płaszczyzna sieciowa Dyslokacja śrubowa: wektor Burgersa jest równoległy do linii dyslokacji. Linia dyslokacji: oś śruby Wektory Burgersa w kryształach regularnych jednoatomowy FCC jednoatomowy BCC jednoatomowy SC struktura Na struktura Cs ½<110> ½<111> <100> ½<110> <100> 25

26 Gęstość dyslokacji Ilość dyslokacji w krysztale określa się poprzez: gęstość dyslokacji = długość linii dyslokacji w jednostce objętości kryształu; gęstość dyslokacji = liczba linii dyslokacji przebijająca jednostkową powierzchnią kryształu. Obie definicje są sobie równoważne. Gęstość dyslokacji Metale powoli chłodzone: 10 3 mm -2 Metale silnie zdeformowane: mm -2 Metale wygrzewane: mm- 2 Ceramika: mm -2 Kryształy jonowe: 10 3 mm -2 Monokrystaliczny krzem: mm -2 26

27 Dyslokacje Z obecnością dyslokacji w materiale wiąże się zniekształcenia sieci krystalicznej. Niektóre miejsca kryształu są rozciągnięte, inne ściśnięte. Dyslokacje Dyslokacja krawędziowa: powyżej linii dyslokacji kryształ jest ściśnięty a poniżej rozciągnięty. Dyslokacja śrubowa: naprężenie ścinające. Naprężenie maleje wraz z odległością od linii dyslokacji. 27

28 Dyslokacje Ze zniekształceniem sieci krystalicznej wiąże się to, że: Na atomy znajdujące się w tych obszarach działają siły; Z obecnością dyslokacji związana jest energia sprężystości. Energia dyslokacji Energia na jednostkę długości G (µ) moduł sztywności b b E 1 Gb

29 Energia dyslokacji 1 Gb 2 E 2 Dyslokacje mają możliwie najmniejsze b Oddziaływanie między dyslokacjami Pole naprężeń wokół dyslokacji powoduje oddziaływanie między dyslokacjami. Mogą się odpychać i przyciągać. 29

30 Oddziaływanie między dyslokacjami Dwie takie same dyslokacje odpychają się Przeciwne dyslokacje przyciągają się i gdy się spotkają anihilują. Odpychanie Przyciąganie Dyslokacje mogą się poruszać Wspinanie: linia dyslokacji przemieszcza się w górę lub w dół wskutek oddziaływania z defektami punktowymi. 30

31 Poślizg Aby kryształ odkształcić plastycznie, trzeba działać siłą na tyle dużą, aby przesunąć jedną płaszczyznę sieciową względem drugiej o minimum jedną stałą sieci. Shear stress a b Shearing stress ( τ ) τ m Displacement W krysztale, σ musi mieć okresowość sieci krystalicznej. Rzeczywistość x σ ( x) = σ 0 sin(2π ) b 31

32 Poślizg x σ ( x) = σ 0 sin(2π ) b Górna płaszczyzna musi przejść przez położenie nierównowagowe, bardzo niekorzystne energetycznie. Odpowiada to maksymalnemu naprężeniu σ 0. Aby kryształ odkształcić plastycznie, musi być spełniony warunek: σ σ 0 Poślizg x σ ( x) = σ 0 sin(2π ) b Z drugiej strony, związek pomiędzy naprężeniem ścinającym a odpowiednim modułem sprężystości (G) jest następujący: Shear stress x σ = G d a b σ x d Można przyjąć, że d jest rzędu a. Zatem: 32

33 Poślizg σ x ( x ) = G x a σ ( x) = σ sin(2 ) 0 π b Dla małych x, prawe równanie można rozwinąć w szereg: x σ ( x) σ 02π b Porównując obydwa równania, otrzymujemy: x x G = σ 0 2π a b G b G σ 0 > 2π a 2π Poślizg Teoretyczna wytrzymałość na ścinanie: naprężenie (Gpa) Cu 1.2 Na 2.84 kwarc 4.4 diament 121 W rzeczywistości, naprężenie potrzebne do odkształcenia niektórych materiałów jest razy mniejsze! W szczególności metale są dużo bardziej plastyczne, niż teoretyczne przewidywania. 33

34 Przyczyną są dyslokacje W taki sposób poślizg odbywa się tylko w krysztale idealnym (bez dyslokacji). Gdy siła działa na kryształ z dyslokacją (a), wówczas atomy znajdujące się na linii dyslokacji przemieszczają się, powodując przemieszczenie się dyslokacji w kierunku poślizgu o wektor Burgersa (b). Ciągłe działanie siły powoduje powstanie stopnia (c), i kryształ jest zdeformowany plastycznie. 34

35 Slip plane 2 Poślizg dyslokacji śrubowej b Slip plane 1 Linia dyslokacji może przemieścić się z jednaj płaszczyzny poślizgu na inną Dyslokacje Jeśli setki tysięcy dyslokacji przemieszcza się przez kryształ, powstają stopnie, jak na rysunku poniżej. 35

36 Układy poślizgu Istnieją kierunki krystalograficzne, w których dyslokacje poruszają się łatwiej niż w innych kierunkach (systemy poślizgu); Płaszczyzny poślizgu to płaszczyzny o dużej gęstości upakowania. Kierunki poślizgu to kierunki o dużej gęstości upakowania. Układ poślizgu to kombinacja płaszczyzny i kierunku poślizgu. Układy poślizgu FCC (Al, Cu, Ni, Ag, Au) Płaszczyzny gęsto upakowane: {111}, np. ADF Kierunki: <110>, np., AD, DF, AF Układ poślizgu: {111}<110> (12 niezależnych układów) 36

37 Układy poślizgu BCC (Fe, W, Mo): {110}<111> (12 układów) HCP (Zn, Cd, Mg, Ti, Be): 3 układy poślizgu Metale FCC i BCC : kowalne, HCP : kruche Poślizg dyslokacji w monokryształach Odkształcenie plastyczne jest spowodowane naprężeniem ścinającym. Co najmniej składowa naprężenia musi być ścinająca. 37

38 Poślizg dyslokacji w polikryształach σ Płaszczyzny i kierunki poślizgu zmieniają się od kryształu do kryształu Pierwszy ulegnie deformacji kryształ, na który działa naprężenie w odpowiednim kierunku. Adapted from Fig. 7.10, Callister 6e. (Fig is courtesy of C. Brady, National Bureau of Standards [now the National Institute of Standards and Technology, Gaithersburg, MD].) 300 µm Kierunki poślizgu 38

39 Dyslokacje można oglądać Dislocation line cm Jak powstają dyslokacje? A double spiral on the surface of a crystal of silicon carbide centred on the site of the emergence of a pair of screw dislocations W.J. Moore Physical Chemistry Powstają w czasie wzrostu kryształów oraz można je wprowadzić wskutek obróbki mechanicznej (naprężenia). 39

40 Jak powstają dyslokacje? Powstają w czasie wzrostu kryształów oraz można je wprowadzić wskutek obróbki mechanicznej (naprężenia). Granice międzyziarnowe. Atomy w pobliżu granicy ziarna nie znajdują się w położeniach równowagowych. Stal nierdzewna 40

41 Granice międzyziarnowe W zależności od tego, jak bardzo są niedopasowane obszary graniczne pomiędzy sąsiednimi krystalitami, rozróżniamy granice: Wąskokątowe; Szerokokątowe. Granice międzyziarnowe Kąt pomiędzy orientacją krystalograficzną sąsiednich ziaren. 41

42 Granice międzyziarnowe Szeroko- i wąskokątowe Granice międzyziarnowe Na granicach między sąsiednimi ziarnami można znaleźć atomy wspólne dla obu ziaren. 42

43 Granice wąskokątowe Granice wąskokątowe (do około 10 ). Można je traktować jak szereg dyslokacji. θ (c) 2003 Brooks/Cole Publishing / Thomson Learning Granice szerokokątowe Jeżeli kąt niedopasowania jest większy niż kilka stopni, wówczas mamy granice szerokokątowe. Są one charakterystyczne dla polikryształów. 43

44 Granice międzyziarnowe Granice międzyziarnowe w polikrysztale powstają w czasie jego wzrostu. Granice bliźniacze Istnieje szczególny rodzaj granic między krystalitami. Występują one w monokryształach i są to tzw. granice bliźniacze. 44

45 Granice bliźniacze Bliźniakami nazywamy dwa monokryształy zrośnięte ze sobą tak, że sieć jednego z nich można przekształcić w sieć drugiego przez przekształcenie symetrii (obrót, odbicie, itd. ) (c) 2003 Brooks/Cole Publishing / Thomson Learning Granice bliźniacze mogą powstać w czasie wzrostu kryształu oraz można je wytworzyć działając siłą. 45

46 Wpływ granic międzyziarnowych na właściwości: Fakt, że krystality są różnie zorientowane powoduje, że polikryształ jest izotropowy (właściwości nie zależą od kierunku). W pobliżu granic ziaren atomy są rzadziej upakowane: tamtędy zachodzi dyfuzja, tam koncentrują się zanieczyszczenia; Wpływ granic międzyziarnowych na właściwości: Ilość granic międzyziarnowych (która zależy od wielkości ziarna krystalicznego) ma wpływ na właściwości mechaniczne. (c) 2003 Brooks/Cole Publishing / Thomson Learning 46

47 (c)2003 Brooks/Cole, a division of Thomson Learning, Inc. Thomson Learning is a trademark used herein under license. Obecność wszystkich defektów jednocześnie wpływa na właściwości mechaniczne: Ruch dyslokacji A i B jest blokowany przez inne defekty. Defekty elektronowe Ekscyton: stan związany elektronu i dziury (stan wzbudzony elektronu w atomie); Plazmon: kwant drgań podłużnych gazu elektronowego; Magnon: wzbudzenie układu spinów. Kwant fali spinowej związanej z fluktuacją namagnesowania spowodowaną zmianą spinu atomów; 47

Defekty. Każde zaburzenie periodyczności kryształu jest defektem.

Defekty. Każde zaburzenie periodyczności kryształu jest defektem. Defekty Każde zaburzenie periodyczności kryształu jest defektem. Może to być zaburzenie geometryczne, lub fizyczne: Położenia atomów Typu atomów Uporządkowania spinów, koncentracji elektronów itd. Zaburzenie

Bardziej szczegółowo

Nauka o Materiałach Wykład II Monokryształy Jerzy Lis

Nauka o Materiałach Wykład II Monokryształy Jerzy Lis Wykład II Monokryształy Jerzy Lis Treść wykładu: 1. Wstęp stan krystaliczny 2. Budowa kryształów - krystalografia 3. Budowa kryształów rzeczywistych defekty WPROWADZENIE Stan krystaliczny jest podstawową

Bardziej szczegółowo

INŻYNIERIA NOWYCH MATERIAŁÓW

INŻYNIERIA NOWYCH MATERIAŁÓW INŻYNIERIA NOWYCH MATERIAŁÓW Wykład: 15 h Seminarium 15 h Laboratorium 45 h Świat materiałów Metale Ceramika, szkło Kompozyty Polimery, elastomery Pianki Materiały naturalne Znaczenie różnych materiałów

Bardziej szczegółowo

Dyslokacje w kryształach. ach. Keshra Sangwal, Politechnika Lubelska. Literatura

Dyslokacje w kryształach. ach. Keshra Sangwal, Politechnika Lubelska. Literatura Dyslokacje w kryształach ach Keshra Sangwal, Politechnika Lubelska I. Wprowadzenie do defektów II. Dyslokacje: podstawowe pojęcie III. Własności mechaniczne kryształów IV. Źródła i rozmnażanie się dyslokacji

Bardziej szczegółowo

DEFEKTY STRUKTURY KRYSTALICZNEJ. Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego

DEFEKTY STRUKTURY KRYSTALICZNEJ. Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego DEFEKTY STRUKTURY KRYSTALICZNEJ Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Defekty struktury krystalicznej są to każdego rodzaju odchylenia od

Bardziej szczegółowo

NIEDOSKONAŁOŚCI BUDOWY CIAŁA STAŁEGO KRYSZTAŁY RZECZYWISTE.

NIEDOSKONAŁOŚCI BUDOWY CIAŁA STAŁEGO KRYSZTAŁY RZECZYWISTE. NIEDOSKONAŁOŚCI BUDOWY CIAŁA STAŁEGO KRYSZTAŁY RZECZYWISTE http://home.agh.edu.pl/~grzesik KRYSZTAŁY IDEALNE Kryształ idealny ciało stałe, w którym atomy, jony lub cząsteczki wykazują idealne uporządkowanie

Bardziej szczegółowo

Dyslokacje w kryształach. ach. Keshra Sangwal Zakład Fizyki Stosowanej, Instytut Fizyki Politechnika Lubelska

Dyslokacje w kryształach. ach. Keshra Sangwal Zakład Fizyki Stosowanej, Instytut Fizyki Politechnika Lubelska Dyslokacje w kryształach ach Keshra Sangwal Zakład Fizyki Stosowanej, Instytut Fizyki Politechnika Lubelska I. Wprowadzenie do defektów II. Dyslokacje: Podstawowe pojęcie III. Własności mechaniczne kryształów

Bardziej szczegółowo

DEFEKTY STRUKTURY KRYSTALICZNEJ

DEFEKTY STRUKTURY KRYSTALICZNEJ DEFEKTY STRUKTURY KRYSTALICZNEJ Rodzaje defektów (wad) budowy krystalicznej Punktowe Liniowe Powierzchniowe Defekty punktowe Wakanse: wolne węzły Atomy międzywęzłowe Liczba wad punktowych jest funkcją

Bardziej szczegółowo

WŁAŚCIWOŚCI MECHANICZNE PLASTYCZNOŚĆ. Zmiany makroskopowe. Zmiany makroskopowe

WŁAŚCIWOŚCI MECHANICZNE PLASTYCZNOŚĆ. Zmiany makroskopowe. Zmiany makroskopowe WŁAŚCIWOŚCI MECHANICZNE PLASTYCZNOŚĆ Zmiany makroskopowe Zmiany makroskopowe R e = R 0.2 - umowna granica plastyczności (0.2% odkształcenia trwałego); R m - wytrzymałość na rozciąganie (plastyczne); 1

Bardziej szczegółowo

MATERIAŁOZNAWSTWO Wydział Mechaniczny, Mechatronika, sem. I. dr inż. Hanna Smoleńska

MATERIAŁOZNAWSTWO Wydział Mechaniczny, Mechatronika, sem. I. dr inż. Hanna Smoleńska MATERIAŁOZNAWSTWO Wydział Mechaniczny, Mechatronika, sem. I dr inż. Hanna Smoleńska Defekty struktury Defekty struktury krystalicznej są to każdego rodzaju odchylenia od idealnej struktury. Najczęściej

Bardziej szczegółowo

Elementy teorii powierzchni metali

Elementy teorii powierzchni metali Prof. dr hab. Adam Kiejna Elementy teorii powierzchni metali Wykład dla studentów fizyki Rok akademicki 2017/18 (30 godz.) Wykład 1 Plan wykładu Struktura periodyczna kryształów, sieć odwrotna Struktura

Bardziej szczegółowo

STRUKTURA IDEALNYCH KRYSZTAŁÓW

STRUKTURA IDEALNYCH KRYSZTAŁÓW BUDOWA WEWNĘTRZNA MATERIAŁÓW METALICZNYCH Zakres tematyczny y 1 STRUKTURA IDEALNYCH KRYSZTAŁÓW 2 1 Sieć przestrzenna kryształu TRANSLACJA WĘZŁA TRANSLACJA PROSTEJ SIECIOWEJ TRANSLACJA PŁASZCZYZNY SIECIOWEJ

Bardziej szczegółowo

Zaburzenia periodyczności sieci krystalicznej

Zaburzenia periodyczności sieci krystalicznej Zaburzenia periodyczności sieci krystalicznej Defekty liniowe dyslokacja krawędziowa dyslokacja śrubowa dyslokacja mieszana Defekty punktowe obcy atom w węźle luka w sieci (defekt Schottky ego) obcy atom

Bardziej szczegółowo

Transport jonów: kryształy jonowe

Transport jonów: kryształy jonowe Transport jonów: kryształy jonowe JONIKA I FOTONIKA MICHAŁ MARZANTOWICZ Jodek srebra AgI W 42 K strukturalne przejście fazowe I rodzaju do fazy α stopiona podsieć kationowa. Fluorek ołowiu PbF 2 zdefektowanie

Bardziej szczegółowo

Nauka o Materiałach. Wykład IX. Odkształcenie materiałów właściwości plastyczne. Jerzy Lis

Nauka o Materiałach. Wykład IX. Odkształcenie materiałów właściwości plastyczne. Jerzy Lis Nauka o Materiałach Wykład IX Odkształcenie materiałów właściwości plastyczne Jerzy Lis Nauka o Materiałach Treść wykładu: 1. Odkształcenie plastyczne 2. Parametry makroskopowe 3. Granica plastyczności

Bardziej szczegółowo

Właściwości kryształów

Właściwości kryształów Właściwości kryształów Związek pomiędzy właściwościami, strukturą, defektami struktury i wiązaniami chemicznymi Skład i struktura Skład materiału wpływa na wszystko, ale głównie na: właściwości fizyczne

Bardziej szczegółowo

Absorpcja związana z defektami kryształu

Absorpcja związana z defektami kryształu W rzeczywistych materiałach sieć krystaliczna nie jest idealna występują różnego rodzaju defekty. Podział najważniejszych defektów ze względu na właściwości optyczne: - inny atom w węźle sieci: C A atom

Bardziej szczegółowo

Wykład IX: Odkształcenie materiałów - właściwości plastyczne

Wykład IX: Odkształcenie materiałów - właściwości plastyczne Wykład IX: Odkształcenie materiałów - właściwości plastyczne JERZY LIS Wydział Inżynierii Materiałowej i Ceramiki Katedra Technologii Ceramiki i Materiałów Ogniotrwałych Treść wykładu: 1. Odkształcenie

Bardziej szczegółowo

WIĄZANIA. Co sprawia, że ciała stałe istnieją i są stabilne? PRZYCIĄGANIE ODPYCHANIE

WIĄZANIA. Co sprawia, że ciała stałe istnieją i są stabilne? PRZYCIĄGANIE ODPYCHANIE WIĄZANIA Co sprawia, że ciała stałe istnieją i są stabilne? PRZYCIĄGANIE ODPYCHANIE Przyciąganie Wynika z elektrostatycznego oddziaływania między elektronami a dodatnimi jądrami atomowymi. Może to być

Bardziej szczegółowo

Materiały Reaktorowe. Właściwości mechaniczne

Materiały Reaktorowe. Właściwości mechaniczne Materiały Reaktorowe Właściwości mechaniczne Naprężenie i odkształcenie F A 0 l i l 0 l 0 l l 0 a. naprężenie rozciągające b. naprężenie ściskające c. naprężenie ścinające d. Naprężenie torsyjne Naprężenie

Bardziej szczegółowo

INŻYNIERIA MATERIAŁOWA w elektronice

INŻYNIERIA MATERIAŁOWA w elektronice Wydział Elektroniki Mikrosystemów i Fotoniki Politechniki Wrocławskiej... INŻYNIERIA MATERIAŁOWA w elektronice... Dr hab. inż. JAN FELBA Profesor nadzwyczajny PWr 1 PROGRAM WYKŁADU Struktura materiałów

Bardziej szczegółowo

Defekty punktowe II. M. Danielewski

Defekty punktowe II. M. Danielewski Defekty punktowe II 2008 M. Danielewski Defekty, niestechiometria, roztwory stałe i przewodnictwo jonowe w ciałach stałych Atkins, Shriver, Mrowec i inni Defekty w kryształach: nie można wytworzyć kryształu

Bardziej szczegółowo

7. Defekty samoistne Typy defektów Zdefektowanie samoistne w związkach stechiometrycznych

7. Defekty samoistne Typy defektów Zdefektowanie samoistne w związkach stechiometrycznych 7. Defekty samoistne 7.1. Typy defektów Zgodnie z trzecią zasadą termodynamiki, tylko w temperaturze 0[K] kryształ może mieć zerową entropię. Oznacza to, że jeśli temperatura jest wyższa niż 0[K] to w

Bardziej szczegółowo

Nauka o Materiałach. Wykład VI. Odkształcenie materiałów właściwości sprężyste i plastyczne. Jerzy Lis

Nauka o Materiałach. Wykład VI. Odkształcenie materiałów właściwości sprężyste i plastyczne. Jerzy Lis Nauka o Materiałach Wykład VI Odkształcenie materiałów właściwości sprężyste i plastyczne Jerzy Lis Nauka o Materiałach Treść wykładu: 1. Właściwości materiałów -wprowadzenie 2. Statyczna próba rozciągania.

Bardziej szczegółowo

Fizyka Ciała Stałego

Fizyka Ciała Stałego Wykład III Struktura krystaliczna Fizyka Ciała Stałego Ciała stałe można podzielić na: Krystaliczne, o uporządkowanym ułożeniu atomów lub molekuł tworzącym sieć krystaliczną. Amorficzne, brak uporządkowania,

Bardziej szczegółowo

Elektryczne własności ciał stałych

Elektryczne własności ciał stałych Elektryczne własności ciał stałych Do sklasyfikowania różnych materiałów ze względu na ich własności elektryczne trzeba zdefiniować kilka wielkości Oporność właściwa (albo przewodność) ładunek [C] = 1/

Bardziej szczegółowo

Półprzewodniki samoistne. Struktura krystaliczna

Półprzewodniki samoistne. Struktura krystaliczna Półprzewodniki samoistne Struktura krystaliczna Si a5.43 A GaAs a5.63 A ajczęściej: struktura diamentu i blendy cynkowej (ZnS) 1 Wiązania chemiczne Wiązania kowalencyjne i kowalencyjno-jonowe 0K wszystkie

Bardziej szczegółowo

Orientacyjny plan zajęć (semestr VI)

Orientacyjny plan zajęć (semestr VI) Orientacyjny plan zajęć (semestr VI) 1. Wprowadzenie 2. Wiadomości wstępne Struktura, defekty, wiązania a właściwości; Podstawy termodynamiczne; Dyfuzja; Reakcje w fazie stałej. Orientacyjny plan zajęć

Bardziej szczegółowo

Chemia nieorganiczna. Copyright 2000 by Harcourt, Inc. All rights reserved.

Chemia nieorganiczna. Copyright 2000 by Harcourt, Inc. All rights reserved. Chemia nieorganiczna 1. Układ okresowy metale i niemetale 2. Oddziaływania inter- i intramolekularne 3. Ciała stałe rodzaje sieci krystalicznych 4. Przewodnictwo ciał stałych Pierwiastki 1 1 H 3 Li 11

Bardziej szczegółowo

Wykład IV. Półprzewodniki samoistne i domieszkowe

Wykład IV. Półprzewodniki samoistne i domieszkowe Wykład IV Półprzewodniki samoistne i domieszkowe Półprzewodniki (Si, Ge, GaAs) Konfiguracja elektronowa Si : 1s 2 2s 2 2p 6 3s 2 3p 2 = [Ne] 3s 2 3p 2 4 elektrony walencyjne Półprzewodnik samoistny Talent

Bardziej szczegółowo

BUDOWA KRYSTALICZNA CIAŁ STAŁYCH. Stopień uporządkowania struktury wewnętrznej ciał stałych decyduje o ich podziale

BUDOWA KRYSTALICZNA CIAŁ STAŁYCH. Stopień uporządkowania struktury wewnętrznej ciał stałych decyduje o ich podziale BUDOWA KRYSTALICZNA CIAŁ STAŁYCH Stopień uporządkowania struktury wewnętrznej ciał stałych decyduje o ich podziale na: kryształy ciała o okresowym regularnym uporządkowaniu atomów, cząsteczek w całej swojej

Bardziej szczegółowo

Fizyka Ciała Stałego. Struktura krystaliczna. Struktura amorficzna

Fizyka Ciała Stałego. Struktura krystaliczna. Struktura amorficzna Wykład II Struktura krystaliczna Fizyka Ciała Stałego Ciała stałe można podzielić na: Amorficzne, brak uporządkowania, np. szkła; Krystaliczne, o uporządkowanym ułożeniu atomów lub molekuł tworzącym sieć

Bardziej szczegółowo

Materiały Reaktorowe. - Struktura pasmowa - Defekty sieci

Materiały Reaktorowe. - Struktura pasmowa - Defekty sieci Materiały Reaktorowe - Struktura pasmowa - Defekty sieci Struktura pasmowa Właściwości elektronów w ciałach stałych wynikają z ich oddziaływania między sobą i oddziaływania z atomami (jonami) sieci. Jednakże

Bardziej szczegółowo

Przewodność elektryczna ciał stałych. Elektryczne własności ciał stałych Izolatory, metale i półprzewodniki

Przewodność elektryczna ciał stałych. Elektryczne własności ciał stałych Izolatory, metale i półprzewodniki Przewodność elektryczna ciał stałych Elektryczne własności ciał stałych Izolatory, metale i półprzewodniki Elektryczne własności ciał stałych Do sklasyfikowania różnych materiałów ze względu na ich własności

Bardziej szczegółowo

Chemia nieorganiczna. Pierwiastki. niemetale Be. 27 Co. 28 Ni. 26 Fe. 29 Cu. 45 Rh. 44 Ru. 47 Ag. 46 Pd. 78 Pt. 76 Os.

Chemia nieorganiczna. Pierwiastki. niemetale Be. 27 Co. 28 Ni. 26 Fe. 29 Cu. 45 Rh. 44 Ru. 47 Ag. 46 Pd. 78 Pt. 76 Os. Chemia nieorganiczna 1. Układ okresowy metale i niemetale 2. Oddziaływania inter- i intramolekularne 3. Ciała stałe rodzaje sieci krystalicznych 4. Przewodnictwo ciał stałych Copyright 2000 by Harcourt,

Bardziej szczegółowo

STRUKTURA CIAŁA STAŁEGO

STRUKTURA CIAŁA STAŁEGO STRUKTURA CIAŁA STAŁEGO Podział ciał stałych Ciała - bezpostaciowe (amorficzne) Szkła, żywice, tłuszcze, niektóre proszki. Nie wykazują żadnych regularnych płaszczyzn ograniczających, nie można w nich

Bardziej szczegółowo

Wykład XIV: Właściwości optyczne. JERZY LIS Wydział Inżynierii Materiałowej i Ceramiki Katedra Technologii Ceramiki i Materiałów Ogniotrwałych

Wykład XIV: Właściwości optyczne. JERZY LIS Wydział Inżynierii Materiałowej i Ceramiki Katedra Technologii Ceramiki i Materiałów Ogniotrwałych Wykład XIV: Właściwości optyczne JERZY LIS Wydział Inżynierii Materiałowej i Ceramiki Katedra Technologii Ceramiki i Materiałów Ogniotrwałych Treść wykładu: Treść wykładu: 1. Wiadomości wstępne: a) Załamanie

Bardziej szczegółowo

Fizyka Ciała Stałego. Struktura krystaliczna. Struktura amorficzna

Fizyka Ciała Stałego. Struktura krystaliczna. Struktura amorficzna Wykład II Struktura krystaliczna Fizyka Ciała Stałego Ciała stałe można podzielić na: Amorficzne, brak uporządkowania, np. szkła; Krystaliczne, o uporządkowanym ułożeniu atomów lub molekuł tworzącym sieć

Bardziej szczegółowo

Stany skupienia materii

Stany skupienia materii Stany skupienia materii Ciała stałe - ustalony kształt i objętość - uporządkowanie dalekiego zasięgu - oddziaływania harmoniczne Ciecze -słabo ściśliwe - uporządkowanie bliskiego zasięgu -tworzą powierzchnię

Bardziej szczegółowo

Czym jest prąd elektryczny

Czym jest prąd elektryczny Prąd elektryczny Ruch elektronów w przewodniku Wektor gęstości prądu Przewodność elektryczna Prawo Ohma Klasyczny model przewodnictwa w metalach Zależność przewodności/oporności od temperatury dla metali,

Bardziej szczegółowo

Integralność konstrukcji

Integralność konstrukcji 1 Integralność konstrukcji Wykład Nr 1 Mechanizm pękania Wydział Inżynierii Mechanicznej i Robotyki Katedra Wytrzymałości, Zmęczenia Materiałów i Konstrukcji Konspekty wykładów dostępne na stronie: http://zwmik.imir.agh.edu.pl/dydaktyka/imir/index.htm

Bardziej szczegółowo

S. Baran - Podstawy fizyki materii skondensowanej Wiązania chemiczne w ciałach stałych. Wiązania chemiczne w ciałach stałych

S. Baran - Podstawy fizyki materii skondensowanej Wiązania chemiczne w ciałach stałych. Wiązania chemiczne w ciałach stałych Wiązania chemiczne w ciałach stałych Wiązania chemiczne w ciałach stałych typ kowalencyjne jonowe metaliczne Van der Waalsa wodorowe siła* silne silne silne pochodzenie uwspólnienie e- (pary e-) przez

Bardziej szczegółowo

Materiały Reaktorowe. Efekty fizyczne uszkodzeń radiacyjnych c.d.

Materiały Reaktorowe. Efekty fizyczne uszkodzeń radiacyjnych c.d. Materiały Reaktorowe Efekty fizyczne uszkodzeń radiacyjnych c.d. Luki (pory) i pęcherze Powstawanie i formowanie luk zostało zaobserwowane w 1967 r. Podczas formowania luk w materiale następuje jego puchnięcie

Bardziej szczegółowo

Repeta z wykładu nr 3. Detekcja światła. Struktura krystaliczna. Plan na dzisiaj

Repeta z wykładu nr 3. Detekcja światła. Struktura krystaliczna. Plan na dzisiaj Repeta z wykładu nr 3 Detekcja światła Sebastian Maćkowski Instytut Fizyki Uniwersytet Mikołaja Kopernika Adres poczty elektronicznej: mackowski@fizyka.umk.pl Biuro: 365, telefon: 611-3250 Konsultacje:

Bardziej szczegółowo

Wykład 5. Komórka elementarna. Sieci Bravais go

Wykład 5. Komórka elementarna. Sieci Bravais go Wykład 5 Komórka elementarna Sieci Bravais go Doskonały kryształ składa się z atomów jonów, cząsteczek) uporządkowanych w sieci krystalicznej opisanej przez trzy podstawowe wektory translacji a, b, c,

Bardziej szczegółowo

Właściwości optyczne. Oddziaływanie światła z materiałem. Widmo światła widzialnego MATERIAŁ

Właściwości optyczne. Oddziaływanie światła z materiałem. Widmo światła widzialnego MATERIAŁ Właściwości optyczne Oddziaływanie światła z materiałem hν MATERIAŁ Transmisja Odbicie Adsorpcja Załamanie Efekt fotoelektryczny Tradycyjnie właściwości optyczne wiążą się z zachowaniem się materiałów

Bardziej szczegółowo

Budowa ciał stałych. sieć krystaliczna układy krystalograficzne sieć realna defekty wiązania w ciałach stałych

Budowa ciał stałych. sieć krystaliczna układy krystalograficzne sieć realna defekty wiązania w ciałach stałych Budowa ciał stałych sieć krystaliczna układy krystalograficzne sieć realna defekty wiązania w ciałach stałych Ciała stałe to substancje o regularnej, przestrzennej budowie krystalicznej, czyli regularnym

Bardziej szczegółowo

Teoria pasmowa. Anna Pietnoczka

Teoria pasmowa. Anna Pietnoczka Teoria pasmowa Anna Pietnoczka Opis struktury pasmowej we współrzędnych r, E Zmiana stanu elektronów przy zbliżeniu się atomów: (a) schemat energetyczny dla atomów sodu znajdujących się w odległościach

Bardziej szczegółowo

Krystalografia. Typowe struktury pierwiastków i związków chemicznych

Krystalografia. Typowe struktury pierwiastków i związków chemicznych Krystalografia Typowe struktury pierwiastków i związków chemicznych Wiązania w kryształach jonowe silne, bezkierunkowe kowalencyjne silne, kierunkowe metaliczne słabe lub silne, bezkierunkowe van der Waalsa

Bardziej szczegółowo

Elektrolity wykazują przewodnictwo jonowe Elektrolity ciekłe substancje rozpadające się w roztworze na jony

Elektrolity wykazują przewodnictwo jonowe Elektrolity ciekłe substancje rozpadające się w roztworze na jony Elektrolity wykazują przewodnictwo jonowe Elektrolity ciekłe substancje rozpadające się w roztworze na jony Przewodniki jonowe elektrolity stałe duża przewodność jonowa w stanie stałym; mały wkład elektronów

Bardziej szczegółowo

Rozszczepienie poziomów atomowych

Rozszczepienie poziomów atomowych Rozszczepienie poziomów atomowych Poziomy energetyczne w pojedynczym atomie Gdy zbliżamy atomy chmury elektronowe nachodzą na siebie (inaczej: funkcje falowe elektronów zaczynają się przekrywać) Na skutek

Bardziej szczegółowo

Wykład V Wiązanie kowalencyjne. Półprzewodniki

Wykład V Wiązanie kowalencyjne. Półprzewodniki Wykład V Wiązanie kowalencyjne. Półprzewodniki Wiązanie kowalencyjne molekuła H 2 Tworzenie wiązania kowalencyjnego w molekule H 2 : elektron w jednym atomie przyciągany jest przez jądro drugiego. Wiązanie

Bardziej szczegółowo

Stan Krystaliczny Stan krystaliczny. Stan krystaliczny

Stan Krystaliczny Stan krystaliczny. Stan krystaliczny Stan Krystaliczny Stan krystaliczny Stan krystaliczny jest podstawową formą występowania nieorganicznych ciał stałych w przyrodzie (dlaczego?). Cechą wyróżniającą kryształy jest ich uporządkowana, periodyczna

Bardziej szczegółowo

półprzewodniki Plan na dzisiaj Optyka nanostruktur Struktura krystaliczna Dygresja Sebastian Maćkowski

półprzewodniki Plan na dzisiaj Optyka nanostruktur Struktura krystaliczna Dygresja Sebastian Maćkowski Plan na dzisiaj Optyka nanostruktur Sebastian Maćkowski Instytut Fizyki Uniwersytet Mikołaja Kopernika Adres poczty elektronicznej: mackowski@fizyka.umk.pl Biuro: 365, telefon: 611-3250 półprzewodniki

Bardziej szczegółowo

Podstawy krystalografii

Podstawy krystalografii Podstawy krystalografii Kryształy Pojęcie kryształu znane było już w starożytności. Nazywano tak ciała o regularnych kształtach i gładkich ścianach. Już wtedy podejrzewano, że te cechy związane są ze szczególną

Bardziej szczegółowo

STRUKTURA PASM ENERGETYCZNYCH

STRUKTURA PASM ENERGETYCZNYCH PODSTAWY TEORII PASMOWEJ Struktura pasm energetycznych Teoria wa Struktura wa stałych Półprzewodniki i ich rodzaje Półprzewodniki domieszkowane Rozkład Fermiego - Diraca Złącze p-n (dioda) Politechnika

Bardziej szczegółowo

Model wiązania kowalencyjnego cząsteczka H 2

Model wiązania kowalencyjnego cząsteczka H 2 Model wiązania kowalencyjnego cząsteczka H 2 + Współrzędne elektronu i protonów Orbitale wiążący i antywiążący otrzymane jako kombinacje orbitali atomowych Orbital wiążący duża gęstość ładunku między jądrami

Bardziej szczegółowo

MATERIA. = m i liczby całkowite. ciała stałe. - kryształy - ciała bezpostaciowe (amorficzne) - ciecze KRYSZTAŁY. Periodyczność

MATERIA. = m i liczby całkowite. ciała stałe. - kryształy - ciała bezpostaciowe (amorficzne) - ciecze KRYSZTAŁY. Periodyczność MATERIA ciała stałe - kryształy - ciała bezpostaciowe (amorficzne) - ciecze - gazy KRYSZTAŁY Periodyczność Kryształ (idealny) struktura zbudowana z powtarzających się w przestrzeni periodycznie identycznych

Bardziej szczegółowo

Materiały Reaktorowe. Fizyczne podstawy uszkodzeń radiacyjnych cz. 1.

Materiały Reaktorowe. Fizyczne podstawy uszkodzeń radiacyjnych cz. 1. Materiały Reaktorowe Fizyczne podstawy uszkodzeń radiacyjnych cz. 1. Uszkodzenie radiacyjne Uszkodzenie radiacyjne przekaz energii od cząstki inicjującej do materiału oraz rozkład jonów w ciele stałym

Bardziej szczegółowo

Ciała stałe. Literatura: Halliday, Resnick, Walker, t. 5, rozdz. 42 Orear, t. 2, rozdz. 28 Young, Friedman, rozdz

Ciała stałe. Literatura: Halliday, Resnick, Walker, t. 5, rozdz. 42 Orear, t. 2, rozdz. 28 Young, Friedman, rozdz Ciała stałe Podstawowe własności ciał stałych Struktura ciał stałych Przewodnictwo elektryczne teoria Drudego Poziomy energetyczne w krysztale: struktura pasmowa Metale: poziom Fermiego, potencjał kontaktowy

Bardziej szczegółowo

Nauka o Materiałach. Wykład XI. Właściwości cieplne. Jerzy Lis

Nauka o Materiałach. Wykład XI. Właściwości cieplne. Jerzy Lis Nauka o Materiałach Wykład XI Właściwości cieplne Jerzy Lis Nauka o Materiałach Treść wykładu: 1. Stabilność termiczna materiałów 2. Pełzanie wysokotemperaturowe 3. Przewodnictwo cieplne 4. Rozszerzalność

Bardziej szczegółowo

TEORIA PASMOWA CIAŁ STAŁYCH

TEORIA PASMOWA CIAŁ STAŁYCH TEORIA PASMOWA CIAŁ STAŁYCH Skolektywizowane elektrony w metalu Weźmy pod uwagę pewną ilość atomów jakiegoś metalu, np. sodu. Pojedynczy atom sodu zawiera 11 elektronów o konfiguracji 1s 2 2s 2 2p 6 3s

Bardziej szczegółowo

Funkcja rozkładu Fermiego-Diraca w różnych temperaturach

Funkcja rozkładu Fermiego-Diraca w różnych temperaturach Funkcja rozkładu Fermiego-Diraca w różnych temperaturach 1 f FD ( E) = E E F exp + 1 kbt Styczna do krzywej w punkcie f FD (E F )=0,5 przecina oś energii i prostą f FD (E)=1 w punktach odległych o k B

Bardziej szczegółowo

WIĄZANIA. Co sprawia, że ciała stałe istnieją i są stabilne? PRZYCIĄGANIE ODPYCHANIE

WIĄZANIA. Co sprawia, że ciała stałe istnieją i są stabilne? PRZYCIĄGANIE ODPYCHANIE WIĄZANIA Co sprawia, że ciała stałe istnieją i są stabilne? PRZYCIĄGANIE ODPYCHANIE 1 Przyciąganie Wynika z elektrostatycznego oddziaływania między elektronami a dodatnimi jądrami atomowymi. Może to być

Bardziej szczegółowo

Diagramy fazowe graficzna reprezentacja warunków równowagi

Diagramy fazowe graficzna reprezentacja warunków równowagi Diagramy fazowe graficzna reprezentacja warunków równowagi Faza jednorodna część układu, oddzielona od innych części granicami faz, na których zachodzi skokowa zmiana pewnych własności fizycznych. B 0

Bardziej szczegółowo

Elektryczne własności ciał stałych

Elektryczne własności ciał stałych Elektryczne własności ciał stałych Izolatory (w temperaturze pokojowej) w praktyce - nie przewodzą prądu elektrycznego. Ich oporność jest b. duża. Np. diament ma oporność większą od miedzi 1024 razy Metale

Bardziej szczegółowo

Wstęp. Krystalografia geometryczna

Wstęp. Krystalografia geometryczna Wstęp Przedmiot badań krystalografii. Wprowadzenie do opisu struktury kryształów. Definicja sieci Bravais go i bazy atomowej, komórki prymitywnej i elementarnej. Podstawowe typy komórek elementarnych.

Bardziej szczegółowo

Model elektronów swobodnych w metalu

Model elektronów swobodnych w metalu Model elektronów swobodnych w metalu Stany elektronu w nieskończonej trójwymiarowej studni potencjału - dozwolone wartości wektora falowego k Fale stojące - warunki brzegowe znikanie funkcji falowej na

Bardziej szczegółowo

Pasmowa teoria przewodnictwa. Anna Pietnoczka

Pasmowa teoria przewodnictwa. Anna Pietnoczka Pasmowa teoria przewodnictwa elektrycznego Anna Pietnoczka Wpływ rodzaju wiązań na przewodność próbki: Wiązanie jonowe - izolatory Wiązanie metaliczne - przewodniki Wiązanie kowalencyjne - półprzewodniki

Bardziej szczegółowo

Teoria pasmowa ciał stałych

Teoria pasmowa ciał stałych Teoria pasmowa ciał stałych Poziomy elektronowe atomów w cząsteczkach ulegają rozszczepieniu. W kryształach zjawisko to prowadzi do wytworzenia się pasm. Klasyfikacja ciał stałych na podstawie struktury

Bardziej szczegółowo

CZĄSTECZKA. Do opisu wiązań chemicznych stosuje się najczęściej jedną z dwóch metod (teorii): metoda wiązań walencyjnych (VB)

CZĄSTECZKA. Do opisu wiązań chemicznych stosuje się najczęściej jedną z dwóch metod (teorii): metoda wiązań walencyjnych (VB) CZĄSTECZKA Stanislao Cannizzaro (1826-1910) cząstki - elementy mikroświata, termin obejmujący zarówno cząstki elementarne, jak i atomy, jony proste i złożone, cząsteczki, rodniki, cząstki koloidowe; cząsteczka

Bardziej szczegółowo

III.4 Gaz Fermiego. Struktura pasmowa ciał stałych

III.4 Gaz Fermiego. Struktura pasmowa ciał stałych III.4 Gaz Fermiego. Struktura pasmowa ciał stałych Jan Królikowski Fizyka IVBC 1 Gaz Fermiego Gaz Fermiego to gaz swobodnych, nie oddziałujących, identycznych fermionów w objętości V=a 3. Poszukujemy N(E)dE

Bardziej szczegółowo

Niektóre zagadnienia inżynierii materiałowej, w których dyfuzja odgrywa podstawową rolę.

Niektóre zagadnienia inżynierii materiałowej, w których dyfuzja odgrywa podstawową rolę. Niektóre zagadnienia inżynierii materiałowej, w których dyfuzja odgrywa podstawową rolę. 1. Przewodnictwo jonowe. 2. Domieszkowanie półprzewodników. 3. Dyfuzja reakcyjna. 4. Synteza w fazie stałej. 5.

Bardziej szczegółowo

Cz. I Materiał powtórzeniowy do sprawdzianu dla klas II LO - Wiązania chemiczne + przykładowe zadania i proponowane rozwiązania

Cz. I Materiał powtórzeniowy do sprawdzianu dla klas II LO - Wiązania chemiczne + przykładowe zadania i proponowane rozwiązania Cz. I Materiał powtórzeniowy do sprawdzianu dla klas II LO - Wiązania chemiczne + przykładowe zadania i proponowane rozwiązania I. Elektroujemność pierwiastków i elektronowa teoria wiązań Lewisa-Kossela

Bardziej szczegółowo

Konwersatorium 1. Zagadnienia na konwersatorium

Konwersatorium 1. Zagadnienia na konwersatorium Konwersatorium 1 Zagadnienia na konwersatorium 1. Omów reguły zapełniania powłok elektronowych. 2. Podaj konfiguracje elektronowe dla atomów Cu, Ag, Au, Pd, Pt, Cr, Mo, W. 3. Wyjaśnij dlaczego występują

Bardziej szczegółowo

Repeta z wykładu nr 4. Detekcja światła. Dygresja. Plan na dzisiaj

Repeta z wykładu nr 4. Detekcja światła. Dygresja. Plan na dzisiaj Repeta z wykładu nr 4 Detekcja światła Sebastian Maćkowski Instytut Fizyki Uniwersytet Mikołaja Kopernika Adres poczty elektronicznej: mackowski@fizyka.umk.pl Biuro: 365, telefon: 611-3250 Konsultacje:

Bardziej szczegółowo

Ciała stałe. Ciała krystaliczne. Ciała amorficzne. Bardzo często mamy do czynienia z ciałami polikrystalicznymi, rzadko monokryształami.

Ciała stałe. Ciała krystaliczne. Ciała amorficzne. Bardzo często mamy do czynienia z ciałami polikrystalicznymi, rzadko monokryształami. Ciała stałe Ciała krystaliczne Ciała amorficzne Bardzo często mamy do czynienia z ciałami polikrystalicznymi, rzadko monokryształami. r T = Kryształy rosną przez regularne powtarzanie się identycznych

Bardziej szczegółowo

Sieć przestrzenna. c r. b r. a r. komórka elementarna. r r

Sieć przestrzenna. c r. b r. a r. komórka elementarna. r r Sieć przestrzenna c r b r r r u a r vb uvw = + + w c v a r komórka elementarna V = r r a ( b c) v Układy krystalograficzne (7) i Sieci Bravais (14) Triclinic (P) a b c, α β γ 90 ο Monoclinic (P) a b c,

Bardziej szczegółowo

2. Półprzewodniki. Istnieje duża jakościowa różnica między właściwościami elektrofizycznymi półprzewodników, przewodników i dielektryków.

2. Półprzewodniki. Istnieje duża jakościowa różnica między właściwościami elektrofizycznymi półprzewodników, przewodników i dielektryków. 2. Półprzewodniki 1 Półprzewodniki to materiały, których rezystywność jest większa niż rezystywność przewodników (metali) oraz mniejsza niż rezystywność izolatorów (dielektryków). Przykłady: miedź - doskonały

Bardziej szczegółowo

Podstawy fizyki ciała stałego półprzewodniki domieszkowane

Podstawy fizyki ciała stałego półprzewodniki domieszkowane Podstawy fizyki ciała stałego półprzewodniki domieszkowane Półprzewodnik typu n IV-Ge V-As Jeżeli pięciowartościowy atom V-As zastąpi w sieci atom IV-Ge to cztery elektrony biorą udział w wiązaniu kowalentnym,

Bardziej szczegółowo

Inżynieria materiałowa: wykorzystywanie praw termodynamiki a czasem... walka z termodynamiką

Inżynieria materiałowa: wykorzystywanie praw termodynamiki a czasem... walka z termodynamiką Inżynieria materiałowa: wykorzystywanie praw termodynamiki a czasem... walka z termodynamiką Kilka definicji Faza Stan materii jednorodny wewnętrznie, nie tylko pod względem składu chemicznego, ale również

Bardziej szczegółowo

I. PROMIENIOWANIE CIEPLNE

I. PROMIENIOWANIE CIEPLNE I. PROMIENIOWANIE CIEPLNE - lata '90 XIX wieku WSTĘP Widmo promieniowania elektromagnetycznego zakres "pokrycia" różnymi rodzajami fal elektromagnetycznych promieniowania zawartego w danej wiązce. rys.i.1.

Bardziej szczegółowo

WŁASNOŚCI CIAŁ STAŁYCH I CIECZY

WŁASNOŚCI CIAŁ STAŁYCH I CIECZY WŁASNOŚCI CIAŁ STAŁYCH I CIECZY Polimery Sieć krystaliczna Napięcie powierzchniowe Dyfuzja 2 BUDOWA CIAŁ STAŁYCH Ciała krystaliczne (kryształy): monokryształy, polikryształy Ciała amorficzne (bezpostaciowe)

Bardziej szczegółowo

CZĄSTECZKA. Do opisu wiązań chemicznych stosuje się najczęściej metodę (teorię): metoda wiązań walencyjnych (VB)

CZĄSTECZKA. Do opisu wiązań chemicznych stosuje się najczęściej metodę (teorię): metoda wiązań walencyjnych (VB) CZĄSTECZKA Stanislao Cannizzaro (1826-1910) cząstki - elementy mikroświata, termin obejmujący zarówno cząstki elementarne, jak i atomy, jony proste i złożone, cząsteczki, rodniki, cząstki koloidowe; cząsteczka

Bardziej szczegółowo

S 2, C 2h,D 2h,D 3d,D 4h, D 6h, O h

S 2, C 2h,D 2h,D 3d,D 4h, D 6h, O h Są tylko 32 grupy punktowe, które spełniają ten warunek, Można je pogrupować w 7 typów grup (spośród omówionych 12- tu), które spełniają powyższe własności S 2, C 2h,D 2h,D 3d,D 4h, D 6h, O h nazywają

Bardziej szczegółowo

Wprowadzenie do ekscytonów

Wprowadzenie do ekscytonów Proces absorpcji można traktować jako tworzenie się, pod wpływem zewnętrznego pola elektrycznego, pary elektron-dziura, które mogą być opisane w przybliżeniu jednoelektronowym. Dokładniejszym podejściem

Bardziej szczegółowo

Laboratorium inżynierii materiałowej LIM

Laboratorium inżynierii materiałowej LIM Laboratorium inżynierii materiałowej LIM wybrane zagadnienia fizyki ciała stałego czyli skrót skróconego skrótu dr hab. inż.. Ryszard Pawlak, P prof. PŁP Fizyka Ciała Stałego I. Wstęp Związki Fizyki Ciała

Bardziej szczegółowo

Wykład VI. Teoria pasmowa ciał stałych

Wykład VI. Teoria pasmowa ciał stałych Wykład VI Teoria pasmowa ciał stałych Energia elektronu (ev) Powstawanie pasm w krysztale sodu pasmo walencyjne (zapełnione częściowo) Konfiguracja w izolowanym atomie Na: 1s 2 2s 2 2p 6 3s 1 Ne Położenie

Bardziej szczegółowo

Temat 1: Budowa atomu zadania

Temat 1: Budowa atomu zadania Budowa atomu Zadanie 1. (0-1) Dany jest atom sodu Temat 1: Budowa atomu zadania 23 11 Na. Uzupełnij poniższą tabelkę. Liczba masowa Liczba powłok elektronowych Ładunek jądra Liczba nukleonów Zadanie 2.

Bardziej szczegółowo

Wiązania chemiczne. Związek klasyfikacji ciał krystalicznych z charakterem wiązań atomowych. 5 typów wiązań

Wiązania chemiczne. Związek klasyfikacji ciał krystalicznych z charakterem wiązań atomowych. 5 typów wiązań Wiązania chemiczne Związek klasyfikacji ciał krystalicznych z charakterem wiązań atomowych 5 typów wiązań wodorowe A - H - A, jonowe ( np. KCl ) molekularne (pomiędzy atomami gazów szlachetnych i małymi

Bardziej szczegółowo

Przejścia promieniste

Przejścia promieniste Przejście promieniste proces rekombinacji elektronu i dziury (przejście ze stanu o większej energii do stanu o energii mniejszej), w wyniku którego następuje emisja promieniowania. E Długość wyemitowanej

Bardziej szczegółowo

METALE. Cu 8.50 1.35 1.56 7.0 8.2 Ag 5.76 1.19 1.38 5.5 6.4 Au 5.90 1.2 1.39 5.5 6.4

METALE. Cu 8.50 1.35 1.56 7.0 8.2 Ag 5.76 1.19 1.38 5.5 6.4 Au 5.90 1.2 1.39 5.5 6.4 MAL Zestawienie właściwości gazu elektronowego dla niektórych metali: n cm -3 k cm -1 v cm/s ε e ε /k Li 4.6 10 1.1 10 8 1.3 10 8 4.7 5.5 10 4 a.5 0.9 1.1 3.1 3.7 K 1.34 0.73 0.85.1.4 Rb 1.08 0.68 0.79

Bardziej szczegółowo

Wykład III. Teoria pasmowa ciał stałych

Wykład III. Teoria pasmowa ciał stałych Wykład III Teoria pasmowa ciał stałych Energia elektronu (ev) Powstawanie pasm w krysztale sodu pasmo walencyjne (zapełnione częściowo) Konfiguracja w izolowanym atomie Na: 1s 2 2s 2 2p 6 3s 1 Ne Położenie

Bardziej szczegółowo

STRUKTURA KRYSTALICZNA

STRUKTURA KRYSTALICZNA PODSTAWY KRYSTALOGRAFII Struktura krystaliczna Wektory translacji sieci Komórka elementarna Komórka elementarna Wignera-Seitza Jednostkowy element struktury Sieci Bravais go 2D Sieci przestrzenne Bravais

Bardziej szczegółowo

Promieniowanie rentgenowskie. Podstawowe pojęcia krystalograficzne

Promieniowanie rentgenowskie. Podstawowe pojęcia krystalograficzne Promieniowanie rentgenowskie Podstawowe pojęcia krystalograficzne Krystalografia - podstawowe pojęcia Komórka elementarna (zasadnicza): najmniejszy, charakterystyczny fragment sieci przestrzennej (lub

Bardziej szczegółowo

STRUKTURA MATERIAŁÓW

STRUKTURA MATERIAŁÓW STRUKTURA MATERIAŁÓW ELEMENTY STRUKTURY MATERIAŁÓW 1. Wiązania miedzy atomami 2. Układ atomów w przestrzeni 3. Mikrostruktura 4. Makrostruktura 1. WIĄZANIA MIĘDZY ATOMAMI Siły oddziaływania między atomami

Bardziej szczegółowo

31/01/2018. Wykład II: Monokryształy. Treść wykładu: Wstęp - stan krystaliczny

31/01/2018. Wykład II: Monokryształy. Treść wykładu: Wstęp - stan krystaliczny Wykład II: Monokryształy JERZY LIS Wydział Inżynierii Materiałowej i Ceramiki Katedra Ceramiki i Materiałów Ogniotrwałych Treść wykładu: 1. Wstęp stan krystaliczny 2. Budowa kryształów 2.1. Budowa kryształów,

Bardziej szczegółowo

Podstawy Nauki o Materiałach II Wydział Inżynierii Materiałowej Politechniki Warszawskiej

Podstawy Nauki o Materiałach II Wydział Inżynierii Materiałowej Politechniki Warszawskiej Podstawy Nauki o Materiałach II Wydział Inżynierii Materiałowej Politechniki Warszawskiej Zbigniew Pakieła Klasyfikacja defektów struktury krystalicznej wg wymiarów elementów 0 - wymiarowe (defekty punktowe)

Bardziej szczegółowo

BUDOWA STOPÓW METALI

BUDOWA STOPÓW METALI BUDOWA STOPÓW METALI Stopy metali Substancje wieloskładnikowe, w których co najmniej jeden składnik jest metalem, wykazujące charakter metaliczny. Składnikami stopów mogą być pierwiastki lub substancje

Bardziej szczegółowo