MATERIAŁOZNAWSTWO Wydział Mechaniczny, Mechatronika, sem. I. dr inż. Hanna Smoleńska
|
|
- Grzegorz Ciesielski
- 6 lat temu
- Przeglądów:
Transkrypt
1 MATERIAŁOZNAWSTWO Wydział Mechaniczny, Mechatronika, sem. I dr inż. Hanna Smoleńska
2 Defekty struktury
3 Defekty struktury krystalicznej są to każdego rodzaju odchylenia od idealnej struktury. Najczęściej stosowana klasyfikacja dzieli defekty w zależności od ich charakterystycznego wymiaru na: defekty punktowe, defekty liniowe, defekty powierzchniowe. Występowanie defektów struktury jest odpowiedzialne za szereg charakterystycznych cech ciał krystalicznych: defekty punktowe odpowiadają za szybkość dyfuzji atomów w sieci, defekty liniowe za odkształcanie tworzyw metalowych pod wpływem sił znacznie niższych od powodujących zniszczenie (dekohezję) materiału, ale także za plastyczność metali, defekty powierzchniowe w pewnej mierze za umocnienie materiału, tj. wzrost oporu materiału stawiany działającej sile w trakcie odkształcenia plastycznego.
4 Defekty punktowe Wakanse: wolne węzły Atomy międzywęzłowe W stopach: atomy domieszek (obce)
5 Defekty punktowe w kryształach jonowych
6 Defekty punktowe to wakanse (luki) i atomy (jony) miedzywęzłowe Wakans to brak atomu (jonu) w węźle sieci krystalicznej. W danej temperaturze istnieje zawsze określona liczba wakansów. Defekty te powstają w wyniku drgań sieci, o amplitudzie wzrastającej z temperaturą, które powodują wypadanie pewnej liczby atomów (jonów) ze swoich położeń równowagi. Tworzy się zawsze para defektów atom (jon) międzywęzłowy (wytrącony) wakans.
7 Ruch atomów
8 Kation międzywęzłowy Wakans kationowy Wakans anionowy
9 Mechanizm powstawania wakansów zależy od miejsca zajmowanego przez atom (jon) wytrącony z położenia równowagi. W modelu Schottky`ego dokonuje on wyjścia na swobodną powierzchnię kryształu, natomiast w modelu Frenkla atom z węzła sieci zajmuje położenie międzywęzłowe. Defekt Schottky ego Defekt Frenkla
10 Zanieczyszczenia międzywęzłowe anionowe Różnowęzłowe anionowe różnowęzłowe kationowe
11 Wady struktury krystalicznej defekty punktowe
12 Wady struktury krystalicznej - punktowe wakans i kontrakcja sieci T 20 =10-18 T t =10-4 defekty Frenkla Atomy (jony) międzywęzłowe wywołują wzrost parametru sieci (ekspansję) i lokalne naprężenia ściskające. Atomy (jony) substytucyjne większe od atomów rozpuszczalnika wywołują ekspansję i naprężenia ściskające, a mniejsze kontrakcję i naprężenia rozciągające.
13 Wady struktury krystalicznej defekty punktowe
14 Wady struktury krystalicznej defekty punktowe
15 Dyslokacje Główne rodzaje: krawędziowe, śrubowe, mieszane Dyslokacje całkowite (doskonałe) i częściowe Kontur Burgersa i wektor Burgersa: wektor zamykający kontur Burgersa
16 Dyslokacja krawędziowa zaburzenie struktury kryształu powstające wskutek utworzenia się dodatkowej półpłaszczyzny (lub wyjęcie takiej półpłaszczyzny), zwanej ekstrapłaszczyzną. Szereg atomów kończących półpłaszczyznę nazywa się osią dyslokacji. W zależności od położenia dodatkowej półpłaszczyzny, dyslokacje mogą być dodatnie i ujemne T.
17 Wielkość dyslokacji i wywołane nią odkształcenie charakteryzuje wektor Burgersa b. Jeżeli w krysztale wokół osi dyslokacji wykreślić kontur Burgersa, to pozostanie on niedomknięty. Domknięcie można uzyskać wykreślając wektor Burgersa skierowany przeciwnie do kierunku ostatniego odcinka. Kierunek wektora Burgersa jest prostopadły do linii dyslokacji krawędziowej i w przypadku dyslokacji doskonałej ma wartość równą odległości między dwoma najbliższymi atomami. Liczba dyslokacji (gęstość dyslokacji) - łączna ilość linii wszystkich dyslokacji w jednostce objętości. Wartości w metalach: od 1 dyslokacji śrubowej w wiskerach, poprzez 10 6 dyslokacji w 1 cm 3 w metalach wyżarzonych, do dyslokacji w 1 cm 3 w silnie zdeformowanych.
18 Wady struktury krystalicznej liniowe dyslokacja krawędziowa b wektor Burgersa D C Kierunek poślizgu A B Pod wpływem przyłożonego naprężenia następuje w krysztale poślizg obejmujący nie całą płaszczyznę, a tylko jej część ABCD. Granica strefy poślizgu AD prostopadła do wektora Burgersa stanowi dyslokację krawędziową.
19
20 Ruch dyslokacji krawędziowej Poślizg Wspinanie (zstępowanie)
21
22 Wspinanie dodatnie w wyniku dyfuzji wakansów do dyslokacji
23 Wspinanie dodatnie w wyniku dyfuzji atomów do dyslokacji
24 Dyslokacja śrubowa Wektor Burgersa równoległy do linii dyslokacji Prawo- i lewoskrętne
25 Wady struktury krystalicznej liniowe cd. τ B A Q b D C τ Jeżeli część kryształu przesuniemy względem pozostałej części wzdłuż płaszczyzny Q równolegle do jej krawędzi CD o wielkość jednego parametru sieciowego to płaszczyzny sieciowe doznają ugięcia, przy czym krawędź każdej z tych płaszczyzn pokryje się z krawędzią najbliższej dolnej płaszczyzny. W krysztale powstanie jak gdyby 1 płaszczyzna atomowa, skręcona na kształt spirali, której osią jest prosta CD, stanowiąca linię dyslokacji.
26 Przemieszczanie dyslokacji śrubowej
27 Dyslokacje mieszane B mieszana śrubowa mieszana A krawędziowa kierunek poślizgu krawędziowa A B mieszana śrubowa mieszana
28
29 Dyslokacja krawędziowa [110]
30 Dyslokacja krawędziowa [111]
31 Sposób zapisywania wektora Burgersa dyslokacji b = ca u v w Gdzie: c ułamek określający translację sieci w danym kierunku a parametr sieci Kierunek i zwrot określany jest przez wskaźniki sieciowe kierunku. W krysztale sieci A1 wektor Burgersa może łączyćśrodek atomu w narożu komórki ze środkiem atomu centrującego ścianę. W jednym z takich przypadków wektor Burgersa można zapisać jako b = a/
32 Sposób zapisywania wektora Burgersa dyslokacji cd. b = a/ /2 y Długość wektora Burgersa określana jest przez wyrażenie: 1/2 b = ca (u 2 +v 2 +w 2 ) ½ b 2 a a = = a 2 x
33 Sposób zapisywania wektora Burgersa dyslokacji cd. [001] [221] [111] b = b = b = a 111 a a 001 Energia dyslokacji jest proporcjonalna do wektora Burgersa w kwadracie Dyslokacje o mniejszej wartości w. Burgersa są bardziej ruchliwe
34 Naprężenie tarcia sieci Naprężenie tarcia sieci Peierlsa-Nabarro: τ o = 2µ/K exp (-2πd/Kb) K = 1 dla dysl. krawędziowej, K=1-ν (wsp.poissona) dla śrubowej, µ - moduł sprężystości postaciowej, d odległość między płaszczyznami poślizgu, b wektor Burgersa Krytyczne naprężenie poślizgu jest większe od naprężenia tarcia sieci, jeżeli dyslokacja napotyka na przeszkody: węzły dyslokacyjne, atomy obce, wydzielenia faz
35 Oddziaływanie między dyslokacjami Dwie jednoimienne dyslokacje w tej samej płaszczyźnie poślizgu odpychają się, dwie dyslokacje o przeciwnych wektorach Burgersa przyciągają się. Uskok na linii dyslokacji leżący w płaszczyźnie poślizgu dyslokacji przegięcie, natomiast powodujący przesunięcie dyslokacji z jednej płaszczyzny na drugą próg. Węzły dyslokacyjne są wynikiem spotkań dyslokacji, podobnie siatka dyslokacji
36
37 Uskoki dyslokacyjne Dyslokacje przemieszczające się w nierównoległych płaszczyznach poślizgu przecinają się wzajemnie tworząc w każdej z płaszczyzn uskok. Wyróżnia się dwa rodzaje uskoków: przegięcia i progi. - uskok na linii dyslokacji leżący w płaszczyźnie poślizgu dyslokacji próg uskok na linii dyslokacji powodujący przesunięcie dyslokacji z jednej płaszczyzny poślizgu na inną Dyslokacje obarczone uskokami są mniej ruchliwe, gdyż wleczenie uskoków wytwarza rzędy wakansów i atomów międzywęzłowych
38 Rozmnażanie dyslokacji Gęstość dyslokacji: długość linii dyslokacyjnych na jednostkę objętości kryształu (warunki równowagi) do m -2 (w zaburzonej równowadze np. po obróbce plastycznej) Mechanizmy: źródła Franka-Reada, poślizg poprzeczny
39 źródło Franka-Reada Odcinek krzywoliniowy pętli dyslokacji ABCD przemieszczającej się w płaszczyźnie poślizgu napotyka wydzielenia obcej fazy i punkty B i C ulegają zakotwiczeniu na nich. Przyłożone naprężenie styczne powoduje wygięcie się zakotwiczonego odcinka BC aż do zetknięcia się przeciwległych odcinków utworzonej pętli i jej zamknięcia. Jednocześnie między punktami BC tworzy się nowy zakotwiczony odcinek dyslokacji, który powoduje wytworzenie następnej pętli.
40 Inny mechanizm powstawania dyslokacji Koniec A jest zakotwiczony a drugi koniec wychodzi na powierzchnię swobodną kryształu. Po przyłożeniu naprężenia stycznego niezakotwiczony koniec porusza się wielokrotnie wokół zakotwiczonego końca co powoduje duże poślizgi w płaszczyźnie dyslokacji AB
41 Defekty powierzchniowe Błędy ułożenia, Powierzchnie wewnętrzne kryształów (np. granice ziaren, granice bliźniaków i granice międzyfazowe), Powierzchnie zewnętrzne kryształów.
42 Błędy ułożenia Powstają wskutek: kondensacji wakansów, zaburzonego wzrostu kryształu, odkształcenia plastycznego Mogą być: zewnętrzne i wewnętrzne
43
44
45 Energia Błędu Ułożenia (EBU) niektórych metali i stopów o sieci A1 i A2 Im mniejsza EBU: - tym większa jego szerokość, - tym mniejsza możliwość zajścia poślizgu poprzecznego, - tym większy współczynnik umocnienia metalu podczas odkształcania na zimno.
46 Reakcje i bariery dyslokacyjne Dyslokacje całkowite (doskonałe); ruch nie powoduje zmian w pozycjach atomów Dyslokacje częściowe (kątowe); ruch powoduje zmiany położeń atomów Dysocjacja dyslokacji całkowitych (rozszczepienie na dyslokacje częściowe) Rekombinacja dyslokacji częściowych (łączenie w dyslokację całkowitą) Bariery dyslokacyjne reakcje między dyslokacjami znajdującymi się na różnych płaszczyznach poślizgu i spotykającymi się na ich przecięciu- sieci A1 Reakcje dyslokacyjne- j.w. sieci A2 i A3
47 Dyslokacje całkowite i częściowe b wektor Burgersa D C Kierunek poślizgu A B
48 Schemat rozszczepienia dyslokacji Warunek dysocjacji: b 1 2 > b b 3 2 Warunek rekombinacji: b b 2 2 > b 3 2
49 Polikrystaliczna struktura metali Monokryształy i polikryształy Ziarna: części kryształu o prawidłowej strukturze krystalicznej o osiach nachylonych względem siebie o kąt dezorientacji Granice wąskokątowe i szerokokątowe Granice koherentne, niekoherentne i półkoherentne
50 Monokryształy charakteryzują się prawidłowym rozmieszczeniem przestrzennym atomów z zachowaniem jednakowej orientacji wszystkich elementarnych komórek sieciowych w całej objętości kryształu. Są to ciała anizotropowe. Materiały rzadko wykazują strukturę monokryształów. Materiały techniczne są zwykle polikryształami, składającymi się z ziaren, z których każde ma w przybliżeniu prawidłową prawidłową strukturę krystaliczną. Przypadkowa orientacja krystaliczna poszczególnych ziaren powoduje, że polikryształy są ciałami quasi-izotropowymi. Wielkość ziaren w metalach technicznych µm. W obrębie ziarna można wyróżnić poddziarna, ułożone względem siebie pod małymi kątami, od kilku minut do kilku stopni.
51 Struktura polikrystaliczne metali
52 Defekty złożone - granice ziaren oddzielają ziarna różniące się orientacją krystaliczną a także składem: a) granice wąskokątowe b) granice szerokokątowe Łączy kryształy o wspólnym kierunku krystalograficznym do granicy Łączy kryształy o wspólnym kierunku sieciowym do granicy
53 Wąskokątowa granica daszkowa o kącie dezorientacji Θ Wąskokątowe granice ziaren - obszary dwóch sieci krystalicznych stykających się ze sobą pod kątem nie większym niż kilkanaście minut do 2. Są to najczęściej zespoły dyslokacji krawędziowych jednakowego znaku, położonych jedna nad drugą.
54 Szerokokątowe granice ziaren - obszary o grubości kilku odległości międzyatomowych. Atomy w obrębie obszaru granicznego mają budowę bezpostaciową.
55 Granice między ziarnami różnych faz nazywają się granicami międzyfazowymi. Dzieli się je na: koherentne (a), niekoherentne (b) i półkoherentne (c). Wg.: L.A. Dobrzański, Podstawy nauki o materiałach i metaloznawstwo WNT, Gliwice - Warszawa 2002
56 Wpływ defektów na własności metali Występowanie dyslokacji w sposób istotny wpływa na własności wytrzymałościowe i plastyczne metali. Obliczenia teoretyczne wykazują, że metale o idealnej budowie krystalicznej powinny posiadać wytrzymałość determinowaną siłą wiązania atomowego, a więc dwa do trzech rzędów wielkości wyższą od obserwowanej dla metali technicznych. Różnice przypisuje się występowaniu zjawiska plastyczności. O ile przykładowo w ceramikach siła wywołująca zniszczenie materiału niezbędna jest do zerwania wszystkich wiązań naraz w pewnej określonej płaszczyźnie, o tyle w przypadku metali przyłożenie znacznie mniejszej siły wystarcza w zupełności do wywołania poślizgu dyslokacji. Poślizg dyslokacji nie oznacza przy tym ruchu atomów; przeciwnie, proces ten jest równoznaczny jedynie ze zrywaniem w określonym momencie wiązań tylko szeregu atomów bliskich osi dyslokacji.
57 Własności metali a ich budowa atomowa Własności wytrzymałościowe Gęstość dyslokacji i innych wad Na własności wytrzymałościowe wpływają: 1) Siły wiązań międzyatomowych 2) Gęstość dyslokacji i defektów 3) Wielkość ziarna 4) Submikroskopowe wydzielenia faz, których obecność na płaszczyznach poślizgu utrudnia odkształcenie
58 Odkształcenie metali F m F=0 F e F s Siła F F=0 u R m = R e = F m A 0 F e A 0 Odkształcenie u A l l = l z = 0 A A A % 100% l 0 A 0
59
60
61
DEFEKTY STRUKTURY KRYSTALICZNEJ. Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego
DEFEKTY STRUKTURY KRYSTALICZNEJ Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Defekty struktury krystalicznej są to każdego rodzaju odchylenia od
Bardziej szczegółowoDEFEKTY STRUKTURY KRYSTALICZNEJ
DEFEKTY STRUKTURY KRYSTALICZNEJ Rodzaje defektów (wad) budowy krystalicznej Punktowe Liniowe Powierzchniowe Defekty punktowe Wakanse: wolne węzły Atomy międzywęzłowe Liczba wad punktowych jest funkcją
Bardziej szczegółowoNIEDOSKONAŁOŚCI BUDOWY CIAŁA STAŁEGO KRYSZTAŁY RZECZYWISTE.
NIEDOSKONAŁOŚCI BUDOWY CIAŁA STAŁEGO KRYSZTAŁY RZECZYWISTE http://home.agh.edu.pl/~grzesik KRYSZTAŁY IDEALNE Kryształ idealny ciało stałe, w którym atomy, jony lub cząsteczki wykazują idealne uporządkowanie
Bardziej szczegółowoSTRUKTURA IDEALNYCH KRYSZTAŁÓW
BUDOWA WEWNĘTRZNA MATERIAŁÓW METALICZNYCH Zakres tematyczny y 1 STRUKTURA IDEALNYCH KRYSZTAŁÓW 2 1 Sieć przestrzenna kryształu TRANSLACJA WĘZŁA TRANSLACJA PROSTEJ SIECIOWEJ TRANSLACJA PŁASZCZYZNY SIECIOWEJ
Bardziej szczegółowoNauka o Materiałach Wykład II Monokryształy Jerzy Lis
Wykład II Monokryształy Jerzy Lis Treść wykładu: 1. Wstęp stan krystaliczny 2. Budowa kryształów - krystalografia 3. Budowa kryształów rzeczywistych defekty WPROWADZENIE Stan krystaliczny jest podstawową
Bardziej szczegółowoDyslokacje w kryształach. ach. Keshra Sangwal, Politechnika Lubelska. Literatura
Dyslokacje w kryształach ach Keshra Sangwal, Politechnika Lubelska I. Wprowadzenie do defektów II. Dyslokacje: podstawowe pojęcie III. Własności mechaniczne kryształów IV. Źródła i rozmnażanie się dyslokacji
Bardziej szczegółowoDyslokacje w kryształach. ach. Keshra Sangwal Zakład Fizyki Stosowanej, Instytut Fizyki Politechnika Lubelska
Dyslokacje w kryształach ach Keshra Sangwal Zakład Fizyki Stosowanej, Instytut Fizyki Politechnika Lubelska I. Wprowadzenie do defektów II. Dyslokacje: Podstawowe pojęcie III. Własności mechaniczne kryształów
Bardziej szczegółowoBUDOWA KRYSTALICZNA CIAŁ STAŁYCH. Stopień uporządkowania struktury wewnętrznej ciał stałych decyduje o ich podziale
BUDOWA KRYSTALICZNA CIAŁ STAŁYCH Stopień uporządkowania struktury wewnętrznej ciał stałych decyduje o ich podziale na: kryształy ciała o okresowym regularnym uporządkowaniu atomów, cząsteczek w całej swojej
Bardziej szczegółowoBUDOWA STOPÓW METALI
BUDOWA STOPÓW METALI Stopy metali Substancje wieloskładnikowe, w których co najmniej jeden składnik jest metalem, wykazujące charakter metaliczny. Składnikami stopów mogą być pierwiastki lub substancje
Bardziej szczegółowoMateriały Reaktorowe. - Struktura pasmowa - Defekty sieci
Materiały Reaktorowe - Struktura pasmowa - Defekty sieci Struktura pasmowa Właściwości elektronów w ciałach stałych wynikają z ich oddziaływania między sobą i oddziaływania z atomami (jonami) sieci. Jednakże
Bardziej szczegółowoSTRUKTURA STOPÓW CHARAKTERYSTYKA FAZ. Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego
STRUKTURA STOPÓW CHARAKTERYSTYKA FAZ Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Stop tworzywo składające się z metalu stanowiącego osnowę, do którego
Bardziej szczegółowoSTRUKTURA CIAŁA STAŁEGO
STRUKTURA CIAŁA STAŁEGO Podział ciał stałych Ciała - bezpostaciowe (amorficzne) Szkła, żywice, tłuszcze, niektóre proszki. Nie wykazują żadnych regularnych płaszczyzn ograniczających, nie można w nich
Bardziej szczegółowoIntegralność konstrukcji
1 Integralność konstrukcji Wykład Nr 1 Mechanizm pękania Wydział Inżynierii Mechanicznej i Robotyki Katedra Wytrzymałości, Zmęczenia Materiałów i Konstrukcji Konspekty wykładów dostępne na stronie: http://zwmik.imir.agh.edu.pl/dydaktyka/imir/index.htm
Bardziej szczegółowoNauka o Materiałach. Wykład IX. Odkształcenie materiałów właściwości plastyczne. Jerzy Lis
Nauka o Materiałach Wykład IX Odkształcenie materiałów właściwości plastyczne Jerzy Lis Nauka o Materiałach Treść wykładu: 1. Odkształcenie plastyczne 2. Parametry makroskopowe 3. Granica plastyczności
Bardziej szczegółowoWŁAŚCIWOŚCI MECHANICZNE PLASTYCZNOŚĆ. Zmiany makroskopowe. Zmiany makroskopowe
WŁAŚCIWOŚCI MECHANICZNE PLASTYCZNOŚĆ Zmiany makroskopowe Zmiany makroskopowe R e = R 0.2 - umowna granica plastyczności (0.2% odkształcenia trwałego); R m - wytrzymałość na rozciąganie (plastyczne); 1
Bardziej szczegółowoWykład IX: Odkształcenie materiałów - właściwości plastyczne
Wykład IX: Odkształcenie materiałów - właściwości plastyczne JERZY LIS Wydział Inżynierii Materiałowej i Ceramiki Katedra Technologii Ceramiki i Materiałów Ogniotrwałych Treść wykładu: 1. Odkształcenie
Bardziej szczegółowoOBRÓBKA PLASTYCZNA METALI
OBRÓBKA PLASTYCZNA METALI Plastyczność: zdolność metali i stopów do trwałego odkształcania się bez naruszenia spójności Obróbka plastyczna: walcowanie, kucie, prasowanie, ciągnienie Produkty i półprodukty
Bardziej szczegółowoNauka o Materiałach. Wykład VI. Odkształcenie materiałów właściwości sprężyste i plastyczne. Jerzy Lis
Nauka o Materiałach Wykład VI Odkształcenie materiałów właściwości sprężyste i plastyczne Jerzy Lis Nauka o Materiałach Treść wykładu: 1. Właściwości materiałów -wprowadzenie 2. Statyczna próba rozciągania.
Bardziej szczegółowoZaburzenia periodyczności sieci krystalicznej
Zaburzenia periodyczności sieci krystalicznej Defekty liniowe dyslokacja krawędziowa dyslokacja śrubowa dyslokacja mieszana Defekty punktowe obcy atom w węźle luka w sieci (defekt Schottky ego) obcy atom
Bardziej szczegółowoMateriały Reaktorowe. Właściwości mechaniczne
Materiały Reaktorowe Właściwości mechaniczne Naprężenie i odkształcenie F A 0 l i l 0 l 0 l l 0 a. naprężenie rozciągające b. naprężenie ściskające c. naprężenie ścinające d. Naprężenie torsyjne Naprężenie
Bardziej szczegółowoINŻYNIERIA MATERIAŁOWA w elektronice
Wydział Elektroniki Mikrosystemów i Fotoniki Politechniki Wrocławskiej... INŻYNIERIA MATERIAŁOWA w elektronice... Dr hab. inż. JAN FELBA Profesor nadzwyczajny PWr 1 PROGRAM WYKŁADU Struktura materiałów
Bardziej szczegółowoTransport jonów: kryształy jonowe
Transport jonów: kryształy jonowe JONIKA I FOTONIKA MICHAŁ MARZANTOWICZ Jodek srebra AgI W 42 K strukturalne przejście fazowe I rodzaju do fazy α stopiona podsieć kationowa. Fluorek ołowiu PbF 2 zdefektowanie
Bardziej szczegółowoMATERIAŁOZNAWSTWO Wydział Mechaniczny, Mechatronika, sem. I. dr inż. Hanna Smoleńska
MATERIAŁOZNAWSTWO Wydział Mechaniczny, Mechatronika, sem. I dr inż. Hanna Smoleńska Budowa stopów metali Po co stopy? Czy można mieszać dowolne składniki w dowolnych proporcjach? Stop substancja składająca
Bardziej szczegółowoDefekty. Defekty strukturalne. Kryształ idealny nie istnieje
Defekty Kryształ idealny nie istnieje Defekty strukturalne Każde zaburzenie periodycznego uporządkowania atomów w krysztale jest defektem. Może to być zaburzenie: Położenia atomów Typu atomów Typ i rodzaj
Bardziej szczegółowo7. Defekty samoistne Typy defektów Zdefektowanie samoistne w związkach stechiometrycznych
7. Defekty samoistne 7.1. Typy defektów Zgodnie z trzecią zasadą termodynamiki, tylko w temperaturze 0[K] kryształ może mieć zerową entropię. Oznacza to, że jeśli temperatura jest wyższa niż 0[K] to w
Bardziej szczegółowoPodstawy Nauki o Materiałach II Wydział Inżynierii Materiałowej Politechniki Warszawskiej
Podstawy Nauki o Materiałach II Wydział Inżynierii Materiałowej Politechniki Warszawskiej Zbigniew Pakieła Klasyfikacja defektów struktury krystalicznej wg wymiarów elementów 0 - wymiarowe (defekty punktowe)
Bardziej szczegółowoINŻYNIERIA NOWYCH MATERIAŁÓW
INŻYNIERIA NOWYCH MATERIAŁÓW Wykład: 15 h Seminarium 15 h Laboratorium 45 h Świat materiałów Metale Ceramika, szkło Kompozyty Polimery, elastomery Pianki Materiały naturalne Znaczenie różnych materiałów
Bardziej szczegółowoDefi f nicja n aprę r żeń
Wytrzymałość materiałów Stany naprężeń i odkształceń 1 Definicja naprężeń Mamy bryłę materialną obciążoną układem sił (siły zewnętrzne, reakcje), będących w równowadze. Rozetniemy myślowo tę bryłę na dwie
Bardziej szczegółowoNauka o Materiałach. Wykład VIII. Odkształcenie materiałów właściwości sprężyste. Jerzy Lis
Nauka o Materiałach Wykład VIII Odkształcenie materiałów właściwości sprężyste Jerzy Lis Nauka o Materiałach Treść wykładu: 1. Właściwości materiałów -wprowadzenie 2. Klasyfikacja reologiczna odkształcenia
Bardziej szczegółowoSTRUKTURA KRYSTALICZNA
PODSTAWY KRYSTALOGRAFII Struktura krystaliczna Wektory translacji sieci Komórka elementarna Komórka elementarna Wignera-Seitza Jednostkowy element struktury Sieci Bravais go 2D Sieci przestrzenne Bravais
Bardziej szczegółowo5. ODKSZTAŁCENIE PLASTYCZNE I REKRYSTALIZACJA MATERIAŁÓW METALICZNYCH. Opracował: dr inż. Janusz Ryś
5. ODKSZTAŁCENIE PLASTYCZNE I REKRYSTALIZACJA MATERIAŁÓW METALICZNYCH Opracował: dr inż. Janusz Ryś Plastyczność czyli zdolność materiału do osiągania dużych i trwałych odkształceń bez wywołania jego zniszczenia
Bardziej szczegółowoLaboratorium inżynierii materiałowej LIM
Laboratorium inżynierii materiałowej LIM wybrane zagadnienia fizyki ciała stałego czyli skrót skróconego skrótu dr hab. inż.. Ryszard Pawlak, P prof. PŁP Fizyka Ciała Stałego I. Wstęp Związki Fizyki Ciała
Bardziej szczegółowoOBRÓBKA CIEPLNA STOPÓW ŻELAZA. Cz. II. Przemiany austenitu przechłodzonego
OBRÓBKA CIEPLNA STOPÓW ŻELAZA Cz. II. Przemiany austenitu przechłodzonego WPŁYW CHŁODZENIA NA PRZEMIANY AUSTENITU Ar 3, Ar cm, Ar 1 temperatury przy chłodzeniu, niższe od równowagowych A 3, A cm, A 1 A
Bardziej szczegółowoPodstawowe pojęcia wytrzymałości materiałów. Statyczna próba rozciągania metali. Warunek nośności i użytkowania. Założenia
Wytrzymałość materiałów dział mechaniki obejmujący badania teoretyczne i doświadczalne procesów odkształceń i niszczenia ciał pod wpływem różnego rodzaju oddziaływań (obciążeń) Podstawowe pojęcia wytrzymałości
Bardziej szczegółowoWŁASNOŚCI CIAŁ STAŁYCH I CIECZY
WŁASNOŚCI CIAŁ STAŁYCH I CIECZY Polimery Sieć krystaliczna Napięcie powierzchniowe Dyfuzja 2 BUDOWA CIAŁ STAŁYCH Ciała krystaliczne (kryształy): monokryształy, polikryształy Ciała amorficzne (bezpostaciowe)
Bardziej szczegółowoWŁAŚCIWOŚCI MECHANICZNE SPRĘŻYSTOŚĆ MATERIAŁ. Właściwości materiałów. Właściwości materiałów
WŁAŚCIWOŚCI MECHANICZNE SPRĘŻYSTOŚĆ Właściwości materiałów O możliwości zastosowania danego materiału decydują jego właściwości użytkowe; Zachowanie się danego materiału w środowisku pracy to zaplanowana
Bardziej szczegółowoWłaściwości kryształów
Właściwości kryształów Związek pomiędzy właściwościami, strukturą, defektami struktury i wiązaniami chemicznymi Skład i struktura Skład materiału wpływa na wszystko, ale głównie na: właściwości fizyczne
Bardziej szczegółowoPEŁZANIE WYBRANYCH ELEMENTÓW KONSTRUKCYJNYCH
Mechanika i wytrzymałość materiałów - instrukcja do ćwiczenia laboratoryjnego: Wprowadzenie PEŁZANIE WYBRANYCH ELEMENTÓW KONSTRUKCYJNYCH Opracowała: mgr inż. Magdalena Bartkowiak-Jowsa Reologia jest nauką,
Bardziej szczegółowoBudowa ciał stałych. sieć krystaliczna układy krystalograficzne sieć realna defekty wiązania w ciałach stałych
Budowa ciał stałych sieć krystaliczna układy krystalograficzne sieć realna defekty wiązania w ciałach stałych Ciała stałe to substancje o regularnej, przestrzennej budowie krystalicznej, czyli regularnym
Bardziej szczegółowoAby opisać strukturę krystaliczną, konieczne jest określenie jej części składowych: sieci przestrzennej oraz bazy atomowej.
2. Podstawy krystalografii Podczas naszych zajęć skupimy się przede wszystkim na strukturach krystalicznych. Kryształem nazywamy (def. strukturalna) substancję stałą zbudowaną z atomów, jonów lub cząsteczek
Bardziej szczegółowoSTRUKTURA MATERIAŁÓW
STRUKTURA MATERIAŁÓW ELEMENTY STRUKTURY MATERIAŁÓW 1. Wiązania miedzy atomami 2. Układ atomów w przestrzeni 3. Mikrostruktura 4. Makrostruktura 1. WIĄZANIA MIĘDZY ATOMAMI Siły oddziaływania między atomami
Bardziej szczegółowoWYZNACZANIE NAPRĘŻEŃ WŁASNYCH ZA POMOCĄ METODY RENTGENOGRAFICZNEJ W MATERIAŁACH TRUDNOSKRAWALNYCH
WYZNACZANIE NAPRĘŻEŃ WŁASNYCH ZA POMOCĄ METODY RENTGENOGRAFICZNEJ W MATERIAŁACH TRUDNOSKRAWALNYCH Joanna KRAJEWSKA-ŚPIEWAK, Józef GAWLIK Streszczenie: W artykule przedstawiono sposób powstawania materiałów
Bardziej szczegółowoFizyka Ciała Stałego
Wykład III Struktura krystaliczna Fizyka Ciała Stałego Ciała stałe można podzielić na: Krystaliczne, o uporządkowanym ułożeniu atomów lub molekuł tworzącym sieć krystaliczną. Amorficzne, brak uporządkowania,
Bardziej szczegółowoWstęp. Krystalografia geometryczna
Wstęp Przedmiot badań krystalografii. Wprowadzenie do opisu struktury kryształów. Definicja sieci Bravais go i bazy atomowej, komórki prymitywnej i elementarnej. Podstawowe typy komórek elementarnych.
Bardziej szczegółowoNaprężenia i odkształcenia spawalnicze
Naprężenia i odkształcenia spawalnicze Cieplno-mechaniczne właściwości metali i stopów Parametrami, które określają stan mechaniczny metalu w różnych temperaturach, są: - moduł sprężystości podłużnej E,
Bardziej szczegółowoStatyka Cieczy i Gazów. Temat : Podstawy teorii kinetyczno-molekularnej budowy ciał
Statyka Cieczy i Gazów Temat : Podstawy teorii kinetyczno-molekularnej budowy ciał 1. Podstawowe założenia teorii kinetyczno-molekularnej budowy ciał: Ciała zbudowane są z cząsteczek. Pomiędzy cząsteczkami
Bardziej szczegółowoSTATYCZNA PRÓBA SKRĘCANIA
Mechanika i wytrzymałość materiałów - instrukcja do ćwiczenia laboratoryjnego: Wprowadzenie STATYCZNA PRÓBA SKRĘCANIA Opracowała: mgr inż. Magdalena Bartkowiak-Jowsa Skręcanie pręta występuje w przypadku
Bardziej szczegółowoTarcie poślizgowe
3.3.1. Tarcie poślizgowe Przy omawianiu więzów w p. 3.2.1 reakcję wynikającą z oddziaływania ciała na ciało B (rys. 3.4) rozłożyliśmy na składową normalną i składową styczną T, którą nazwaliśmy siłą tarcia.
Bardziej szczegółowoMateriały Reaktorowe. Fizyczne podstawy uszkodzeń radiacyjnych cz. 1.
Materiały Reaktorowe Fizyczne podstawy uszkodzeń radiacyjnych cz. 1. Uszkodzenie radiacyjne Uszkodzenie radiacyjne przekaz energii od cząstki inicjującej do materiału oraz rozkład jonów w ciele stałym
Bardziej szczegółowoTEORIA PASMOWA CIAŁ STAŁYCH
TEORIA PASMOWA CIAŁ STAŁYCH Skolektywizowane elektrony w metalu Weźmy pod uwagę pewną ilość atomów jakiegoś metalu, np. sodu. Pojedynczy atom sodu zawiera 11 elektronów o konfiguracji 1s 2 2s 2 2p 6 3s
Bardziej szczegółowo5.1. Powstawanie i rozchodzenie się fal mechanicznych.
5. Fale mechaniczne 5.1. Powstawanie i rozchodzenie się fal mechanicznych. Ruch falowy jest zjawiskiem bardzo rozpowszechnionym w przyrodzie. Spotkałeś się z pewnością w życiu codziennym z takimi pojęciami
Bardziej szczegółowoWprowadzenie do WK1 Stan naprężenia
Wytrzymałość materiałów i konstrukcji 1 Wykład 1 Wprowadzenie do WK1 Stan naprężenia Płaski stan naprężenia Dr inż. Piotr Marek Wytrzymałość Konstrukcji (Wytrzymałość materiałów, Mechanika konstrukcji)
Bardziej szczegółowoRozwiązanie: Zadanie 2
Podstawowe pojęcia. Definicja kryształu. Sieć przestrzenna i sieć krystaliczna. Osie krystalograficzne i jednostki osiowe. Ściana jednostkowa i stosunek osiowy. Położenie węzłów, prostych i płaszczyzn
Bardziej szczegółowoĆwiczenie nr 2 Temat: Umocnienie wydzieleniowe stopu Al z Cu
S t r o n a 1 Przedmiot: Własności mechaniczne materiałów Wykładowca: dr inż. Łukasz Cieniek Autor opracowania: dr inż. Magdalena Rozmus-Górnikowska Ćwiczenie nr 2 Temat: Umocnienie wydzieleniowe stopu
Bardziej szczegółowoWykład 5. Komórka elementarna. Sieci Bravais go
Wykład 5 Komórka elementarna Sieci Bravais go Doskonały kryształ składa się z atomów jonów, cząsteczek) uporządkowanych w sieci krystalicznej opisanej przez trzy podstawowe wektory translacji a, b, c,
Bardziej szczegółowoODKSZTAŁCENIE I REKRYSTALIZACJA METALI. Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego
ODKSZTAŁCENIE I REKRYSTALIZACJA METALI Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego ODKSZTAŁCENIE I REKRYSTALIZACJA METALI 1. ODKSZTAŁCENIE METALI
Bardziej szczegółowoMateriały Reaktorowe. Efekty fizyczne uszkodzeń radiacyjnych c.d.
Materiały Reaktorowe Efekty fizyczne uszkodzeń radiacyjnych c.d. Luki (pory) i pęcherze Powstawanie i formowanie luk zostało zaobserwowane w 1967 r. Podczas formowania luk w materiale następuje jego puchnięcie
Bardziej szczegółowoTechnologie wytwarzania metali. Odlewanie Metalurgia proszków Otrzymywanie monokryształów Otrzymywanie materiałów superczystych Techniki próżniowe
Technologie wytwarzania metali Odlewanie Metalurgia proszków Otrzymywanie monokryształów Otrzymywanie materiałów superczystych Techniki próżniowe KRYSTALIZACJA METALI I STOPÓW Krzepnięcie - przemiana fazy
Bardziej szczegółowoTechnologie wytwarzania metali. Odlewanie Metalurgia proszków Otrzymywanie monokryształów Otrzymywanie materiałów superczystych Techniki próżniowe
Technologie wytwarzania metali Odlewanie Metalurgia proszków Otrzymywanie monokryształów Otrzymywanie materiałów superczystych Techniki próżniowe KRYSTALIZACJA METALI I STOPÓW Krzepnięcie - przemiana fazy
Bardziej szczegółowoOBRÓBKA PLASTYCZNA METALI
OBRÓBKA PLASTYCZNA METALI ODKSZTAŁCENIE I REKRYSTALIZACJA METALI 1. ODKSZTAŁCENIE METALI 2. ZDROWIENIE I REKRYSTALIZACJA 3. TECHNICZNE ASPEKTY ODKSZTAŁCENIA PLASTYCZNEGO ODKSZTAŁCENIE METALI Ciało stałe
Bardziej szczegółowoTeoria sprężystości F Z - F Z
Teoria sprężystości Ciało sprężyste bryła, która pod wpływem działających sił zewnętrznych ulega deformacji zmienia swój kształt i/lub objętość i wraca do pierwotnej postaci po ustaniu działania tych sił.
Bardziej szczegółowoCIEPLNE I MECHANICZNE WŁASNOŚCI CIAŁ
CIEPLNE I MECHANICZNE WŁASNOŚCI CIAŁ Ciepło i temperatura Pojemność cieplna i ciepło właściwe Ciepło przemiany Przejścia między stanami Rozszerzalność cieplna Sprężystość ciał Prawo Hooke a Mechaniczne
Bardziej szczegółowoElementy teorii powierzchni metali
Prof. dr hab. Adam Kiejna Elementy teorii powierzchni metali Wykład dla studentów fizyki Rok akademicki 2017/18 (30 godz.) Wykład 1 Plan wykładu Struktura periodyczna kryształów, sieć odwrotna Struktura
Bardziej szczegółowoTransport jonów: kryształy jonowe
Transport jonów: kryształy jonowe Jodek srebra AgI W 420 K strukturalne przejście fazowe I rodzaju do fazy α stopiona podsieć kationowa. Fluorek ołowiu PbF 2 zdefektowanie Frenkla podsieci anionowej, klastry
Bardziej szczegółowoSTRUKTURA MATERIAŁÓW. Opracowanie: Dr hab.inż. Joanna Hucińska
STRUKTURA MATERIAŁÓW Opracowanie: Dr hab.inż. Joanna Hucińska ELEMENTY STRUKTURY MATERIAŁÓW 1. Wiązania miedzy atomami 2. Układ atomów w przestrzeni 3. Mikrostruktura 4. Makrostruktura 1. WIĄZANIA MIĘDZY
Bardziej szczegółowoINSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH
INSTYTUT MASZYN I URZĄDZEŃ ENERGETYCZNYCH Politechnika Śląska w Gliwicach INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH BADANIE ZACHOWANIA SIĘ MATERIAŁÓW PODCZAS ŚCISKANIA Instrukcja przeznaczona jest dla studentów
Bardziej szczegółowoPasmowa teoria przewodnictwa. Anna Pietnoczka
Pasmowa teoria przewodnictwa elektrycznego Anna Pietnoczka Wpływ rodzaju wiązań na przewodność próbki: Wiązanie jonowe - izolatory Wiązanie metaliczne - przewodniki Wiązanie kowalencyjne - półprzewodniki
Bardziej szczegółowoFizyka Ciała Stałego. Struktura krystaliczna. Struktura amorficzna
Wykład II Struktura krystaliczna Fizyka Ciała Stałego Ciała stałe można podzielić na: Amorficzne, brak uporządkowania, np. szkła; Krystaliczne, o uporządkowanym ułożeniu atomów lub molekuł tworzącym sieć
Bardziej szczegółowoMATERIAŁOZNAWSTWO Wydział Mechaniczny, Mechatronika, sem. I. dr inż. Hanna Smoleńska
MATERIAŁOZNAWSTWO Wydział Mechaniczny, Mechatronika, sem. I dr inż. Hanna Smoleńska UKŁADY RÓWNOWAGI FAZOWEJ Równowaga termodynamiczna pojęcie stosowane w termodynamice. Oznacza stan, w którym makroskopowe
Bardziej szczegółowoElektrolity wykazują przewodnictwo jonowe Elektrolity ciekłe substancje rozpadające się w roztworze na jony
Elektrolity wykazują przewodnictwo jonowe Elektrolity ciekłe substancje rozpadające się w roztworze na jony Przewodniki jonowe elektrolity stałe duża przewodność jonowa w stanie stałym; mały wkład elektronów
Bardziej szczegółowoNauka o Materiałach. Wykład XI. Właściwości cieplne. Jerzy Lis
Nauka o Materiałach Wykład XI Właściwości cieplne Jerzy Lis Nauka o Materiałach Treść wykładu: 1. Stabilność termiczna materiałów 2. Pełzanie wysokotemperaturowe 3. Przewodnictwo cieplne 4. Rozszerzalność
Bardziej szczegółowoStany skupienia materii
Stany skupienia materii Ciała stałe - ustalony kształt i objętość - uporządkowanie dalekiego zasięgu - oddziaływania harmoniczne Ciecze -słabo ściśliwe - uporządkowanie bliskiego zasięgu -tworzą powierzchnię
Bardziej szczegółowoFunkcja rozkładu Fermiego-Diraca w różnych temperaturach
Funkcja rozkładu Fermiego-Diraca w różnych temperaturach 1 f FD ( E) = E E F exp + 1 kbt Styczna do krzywej w punkcie f FD (E F )=0,5 przecina oś energii i prostą f FD (E)=1 w punktach odległych o k B
Bardziej szczegółowoWyznaczanie współczynnika sprężystości sprężyn i ich układów
Ćwiczenie 63 Wyznaczanie współczynnika sprężystości sprężyn i ich układów 63.1. Zasada ćwiczenia W ćwiczeniu określa się współczynnik sprężystości pojedynczych sprężyn i ich układów, mierząc wydłużenie
Bardziej szczegółowoKRYSTALIZACJA METALI I STOPÓW. Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego
KRYSTALIZACJA METALI I STOPÓW Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Krzepnięcie przemiana fazy ciekłej w fazę stałą Krystalizacja przemiana
Bardziej szczegółowoMechanika teoretyczna
Wypadkowa -metoda analityczna Mechanika teoretyczna Wykład nr 2 Wypadkowa dowolnego układu sił. Równowaga. Rodzaje sił i obciążeń. Rodzaje ustrojów prętowych. Składowe poszczególnych sił układu: Składowe
Bardziej szczegółowoĆwiczenie nr 3 Statyczna próba jednoosiowego rozciągania. Umocnienie odkształceniowe, roztworowe i przez rozdrobnienie ziarna
Przedmiot: Badanie własności mechanicznych materiałów Wykładowca: dr inż. Łukasz Cieniek Autor opracowania: dr inż. Łukasz Cieniek Ćwiczenie nr 3 Statyczna próba jednoosiowego rozciągania. Czas przewidywany
Bardziej szczegółowoWyznaczanie modułu sztywności metodą Gaussa
Ćwiczenie M13 Wyznaczanie modułu sztywności metodą Gaussa M13.1. Cel ćwiczenia Celem ćwiczenia jest wyznaczenie wartości modułu sztywności stali metodą dynamiczną Gaussa. M13.2. Zagadnienia związane z
Bardziej szczegółowoPytania przygotowujące do egzaminu z Wytrzymałości Materiałów sem. I studia niestacjonarne, rok ak. 2015/16
Pytania przygotowujące do egzaminu z Wytrzymałości Materiałów sem. I studia niestacjonarne, rok ak. 2015/16 1. Warunkiem koniecznym i wystarczającym równowagi układu sił zbieżnych jest, aby a) wszystkie
Bardziej szczegółowoZadania treningowe na kolokwium
Zadania treningowe na kolokwium 3.12.2010 1. Stan układu binarnego zawierającego n 1 moli substancji typu 1 i n 2 moli substancji typu 2 parametryzujemy za pomocą stężenia substancji 1: x n 1. Stabilność
Bardziej szczegółowo2. Pręt skręcany o przekroju kołowym
2. Pręt skręcany o przekroju kołowym Przebieg wykładu : 1. Sformułowanie zagadnienia 2. Warunki równowagi kąt skręcenia 3. Warunek geometryczny kąt odkształcenia postaciowego 4. Związek fizyczny Prawo
Bardziej szczegółowo17. 17. Modele materiałów
7. MODELE MATERIAŁÓW 7. 7. Modele materiałów 7.. Wprowadzenie Podstawowym modelem w mechanice jest model ośrodka ciągłego. Przyjmuje się, że materia wypełnia przestrzeń w sposób ciągły. Możliwe jest wyznaczenie
Bardziej szczegółowoPolitechnika Białostocka INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH
Politechnika Białostocka Wydział Budownictwa i Inżynierii Środowiska INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Temat ćwiczenia: Próba skręcania pręta o przekroju okrągłym Numer ćwiczenia: 4 Laboratorium z
Bardziej szczegółowoAbsorpcja związana z defektami kryształu
W rzeczywistych materiałach sieć krystaliczna nie jest idealna występują różnego rodzaju defekty. Podział najważniejszych defektów ze względu na właściwości optyczne: - inny atom w węźle sieci: C A atom
Bardziej szczegółowoFizyka Ciała Stałego. Struktura krystaliczna. Struktura amorficzna
Wykład II Struktura krystaliczna Fizyka Ciała Stałego Ciała stałe można podzielić na: Amorficzne, brak uporządkowania, np. szkła; Krystaliczne, o uporządkowanym ułożeniu atomów lub molekuł tworzącym sieć
Bardziej szczegółowoMECHANIKA PRĘTÓW CIENKOŚCIENNYCH
dr inż. Robert Szmit Przedmiot: MECHANIKA PRĘTÓW CIENKOŚCIENNYCH WYKŁAD nr Uniwersytet Warmińsko-Mazurski w Olsztynie Katedra Geotechniki i Mechaniki Budowli Opis stanu odkształcenia i naprężenia powłoki
Bardziej szczegółowoPytania przygotowujące do egzaminu z Wytrzymałości Materiałów sem. I studia niestacjonarne, rok ak. 2014/15
Pytania przygotowujące do egzaminu z Wytrzymałości Materiałów sem. I studia niestacjonarne, rok ak. 2014/15 1. Warunkiem koniecznym i wystarczającym równowagi układu sił zbieżnych jest, aby a) wszystkie
Bardziej szczegółowoTermodynamiczne warunki krystalizacji
KRYSTALIZACJA METALI ISTOPÓW Zakres tematyczny y 1 Termodynamiczne warunki krystalizacji hiq.linde-gas.fr Krystalizacja szczególny rodzaj krzepnięcia, w którym ciecz ulega przemianie w stan stały o budowie
Bardziej szczegółowoSTRUKTURA PASM ENERGETYCZNYCH
PODSTAWY TEORII PASMOWEJ Struktura pasm energetycznych Teoria wa Struktura wa stałych Półprzewodniki i ich rodzaje Półprzewodniki domieszkowane Rozkład Fermiego - Diraca Złącze p-n (dioda) Politechnika
Bardziej szczegółowoMechanika teoretyczna
Przedmiot Mechanika teoretyczna Wykład nr 1 Wprowadzenie i podstawowe pojęcia. Rachunek wektorowy. Wypadkowa układu sił. Mechanika: ogólna, techniczna, teoretyczna. Dział fizyki zajmujący się badaniem
Bardziej szczegółowoMATERIAŁOZNAWSTWO Wydział Mechaniczny, Mechatronika, sem. I. dr inż. Hanna Smoleńska
MATERIAŁOZNAWSTWO Wydział Mechaniczny, Mechatronika, sem. I dr inż. Hanna Smoleńska Struktura materiałów UKŁAD ATOMÓW W PRZESTRZENI CIAŁA KRYSTALICZNE Układ atomów/cząstek (a/cz) w przestrzeni jest statystyczne
Bardziej szczegółowoPRACA Pracą mechaniczną nazywamy iloczyn wartości siły i wartości przemieszczenia, które nastąpiło zgodnie ze zwrotem działającej siły.
PRACA Pracą mechaniczną nazywamy iloczyn wartości siły i wartości przemieszczenia, które nastąpiło zgodnie ze zwrotem działającej siły. Pracę oznaczamy literą W Pracę obliczamy ze wzoru: W = F s W praca;
Bardziej szczegółowoLaboratorium techniki laserowej. Ćwiczenie 5. Modulator PLZT
Laboratorium techniki laserowej Katedra Optoelektroniki i Systemów Elektronicznych, WETI, Politechnika Gdaoska Gdańsk 006 1.Wstęp Rozwój techniki optoelektronicznej spowodował poszukiwania nowych materiałów
Bardziej szczegółowoPolitechnika Białostocka INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH
Politechnika Białostocka Wydział Budownictwa i Inżynierii Środowiska INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Temat ćwiczenia: Zwykła statyczna próba ściskania metali Numer ćwiczenia: 3 Laboratorium z przedmiotu:
Bardziej szczegółowoTechnologie wytwarzania. Opracował Dr inż. Stanisław Rymkiewicz KIM WM PG
Technologie wytwarzania Opracował Dr inż. Stanisław Rymkiewicz KIM WM PG Technologie wytwarzania Odlewanie Metalurgia proszków Otrzymywanie monokryształów Otrzymywanie materiałów superczystych Techniki
Bardziej szczegółowoWykłady z Fizyki. Ciało Stałe
Wykłady z Fizyki 11 Zbigniew Osiak Ciało Stałe OZ ACZE IA B notka biograficzna C ciekawostka D propozycja wykonania doświadczenia H informacja dotycząca historii fizyki I adres strony internetowej K komentarz
Bardziej szczegółowoZjawisko to umożliwia kształtowanie metali na drodze przeróbki plastycznej.
ODKSZTAŁCENIE PLASTYCZNE, ZGNIOT I REKRYSTALIZACJA Zakres tematyczny 1 Odkształcenie materiałów metalicznych Materiały metaliczne są ciałami plastycznymi pod wpływem obciążenia, którego wartość przekracza
Bardziej szczegółowoMateriały pomocnicze 10 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej
Materiały pomocnicze 10 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej 1. Siła Coulomba. F q q = k r 1 = 1 4πεε 0 q q r 1. Pole elektrostatyczne. To przestrzeń, w której na ładunek
Bardziej szczegółowoODKSZTAŁCANIE NA ZIMNO I WYŻARZANIE MATERIAŁÓW
8 Ćwiczenie 1 ODKSZTAŁCANIE NA ZIMNO I WYŻARZANIE MATERIAŁÓW Celem ćwiczenia jest: - poznanie zjawisk wywołujących umocnienie materiałów, - poznanie wpływu wyżarzania odkształconego na zimno materiału
Bardziej szczegółowo