Instrukcja do ćwiczeń laboratoryjnych - ćwiczenie nr 4

Wielkość: px
Rozpocząć pokaz od strony:

Download "Instrukcja do ćwiczeń laboratoryjnych - ćwiczenie nr 4"

Transkrypt

1 Instrukcja do ćwiczeń laboratoryjnych - ćwiczenie nr 4 przedmiot: Techniki Rozdzielania Mieszanin kierunek studiów: Biotechnologia, 3-ci rok Opracował: Zatwierdził : mgr inż. Grzegorz Boczkaj mgr inż. Mariusz Jaszczołt prof. dr hab. inż. Marian Kamiński prof. dr hab. inż. Marian Kamiński Gdańsk, 2011

2 Spis treści 1. Wstęp Wprowadzenie Podstawowe informacje i zależności Efektywność ekonomiczna (produktywność) rozdzielania preparatywnego i procesowego Warunki przenoszenia skali rozdzielania oraz przeładowania kolumny Techniki wzbogacania frakcji oraz izolacji składników frakcji Kontrola jakości zebranych frakcji. Metody badań czystości frakcji i produktów Zagadnienia ekonomicznego postępowania w skali preparatywnej i procesowej - Regeneracja aktywności sorpcyjnej kolumny i recyrkulacja eluentu Wykonanie ćwiczenia Wymagania do sprawdzianu Literatura Sprawozdanie

3 1. Wstęp Część 4-ta ćwiczenia laboratoryjnego z technik rozdzielania mieszanin dla kierunku Biotechnologia polega na wykonaniu rozdzielania w skali preparatywnej składników serwatki uzyskanej z mleka krowiego, w celu otrzymania frakcji zawierających α-laktoalbuminę i/albo laktozę. Uzyskana frakcja zostanie poddana kontroli jakości (określeniu czystości) z wykorzystaniem kolumnowej chromatografii cieczowej w zastosowaniu analitycznym. Istotą ćwiczenia jest poznanie zasad przenoszenia skali rozdzielania ze skali modelowej do preparatywnej, zasad optymalizacji warunków rozdzielania w skali preparatywnej oraz maksymalizacji produktywności / opłacalności rozdzielania poprzez prowadzenie procesu w warunkach przeładowania stężeniowego i/lub objętościowego. Na zajęciach zostaną również omówione i wykorzystane w praktyce techniki wzbogacania i/lub izolacji składników frakcji. 2. Wprowadzenie W wielu zadaniach rozdzielczych techniki chromatograficzne stanowią jedyne uzasadnione ekonomicznie podejście do otrzymywania substancji w ilościach pozwalających na ich wykorzystanie w (mikro)syntezie lub jako produkty do wykorzystania komercyjnego. W zależności od celu w jakim stosuje się chromatografię jako technikę wydzielania składników lub frakcji można wyróżnić jej dwa typy [*] : chromatografia preparatywna - ilości otrzymanych substancji są niewielkie, lub otrzymywane okresowo/sporadycznie; chromatografia procesowa (PLC) (produkcyjna) - proces prowadzony jest systematycznie, w sposób cykliczny lub ciągły, ilość produktu jest znacznie większa (np. otrzymywanie produktu handlowego - składników leku, enzymów itp.) 3

4 3. Podstawowe informacje i zależności 3.1. Efektywność ekonomiczna (produktywność) rozdzielania preparatywnego i procesowego Efektem jednego rozdzielania jest określona objętość eluatu zebrana jako konkretna frakcja zawierająca pożądany składnik lub składniki. Iloczyn objętości zebranego eluatu i stężenia konkretnego składnika pozwala na obliczenie efektu rozdzielania wyrażonego jako mole lub (częściej) masa tego składnika. Uwzględnienie czasu potrzebnego na wykonanie jednego rozdzielania a następnie na ustabilizowanie warunków pozwalających na wykonanie kolejnego rozdzielania, pozwala na określenie czasu trwania jednego cyklu rozdzielczego, a tym samym wyznaczenie masy składnika uzyskiwanego preparatywnie/procesowo w jednostce czasu. Możliwe jest również uwzględnienie innych aspektów ekonomicznych procesu, tj. wykorzystywanej masy sorbentu, zużywanej ilości eluentu (zależności poniżej) [**]. Pierwszą zastosowaną do określania wydajności kolumny preparatywnej wielkością jest tzw. przerób R h lub Th (ang. throughput), czyli masa substancji i otrzymywana w jednostce czasu przy użyciu konkretnej kolumny i konkretnego układu chromatograficznego. m i R h = (1) tc m i masa izolowanej substancji i, t c - czas cyklu rozdzielczego Th m m i = (2) w w V c m w masa wypełnienia, w- objętościowe natężenie przepływu eluentu, V c objętość eluentu zużywana podczas jednego cyklu rozdzielczego Przydatnym parametrem uniwersalnym pozwalającym na porównywanie różnych układów chromatograficznych oraz z zastosowaniem kolumn o różnych wymiarach jest tzw. produktywność jednostkowa kolumny (Pt): m t F i Pt = (3) i c c m V F i Pt = (3 ) c c F c pole przekroju poprzecznego wypełnienia kolumny 4

5 Ze względu na wysoki koszt, zarówno fazy stacjonarnej, jak również, organicznych składników eluentu, korzystne jest stosowanie łącznie wzorów (2) i (3 ) do określania efektywności ekonomicznej danego procesu rozdzielczego. Masa sorbentu stosowana dla potrzeb analitycznych, gdzie masa rozdzielanych substancji jest nieznaczna (z reguły kilka do kilkudziesięciu µg, a w najnowocześniejszych rozwiązaniach nawet dwa-trzy rzędy wielkości mniej), jest niewielka. Po dobraniu optymalnych warunków rozdzielania w skali modelowej, z kolumną o tym samym wypełnieniu, jak preparatywna, o tej samej długości Lc i w tym samym układzie chromatograficznym oraz dla takiej samej liniowej prędkości przepływu eluentu (u), jednak, o niewielkiej średnicy kolumny (dc) - co zmniejsza koszty badań - określa się stopień trudności problemu rozdzielczego, charakteryzowanego parametrem α. Przyjmuje się że dla α >1,15 problem rozdzielczy jest łatwy, natomiast dla α <1,15 trudny Warunki przenoszenia skali rozdzielania oraz przeładowania kolumny Zwiększenie masy substancji jednorazowo dozowanej do kolumny oznacza zwiększenie stopnia przeładowania sorbentu (kolumny). Celowa jest maksymalizacja produktywności kolumny, co uzyskuje się poprzez prowadzenie rozdzielania w warunkach przeładowania sorbentu masą rozdzielanych substancji. Przekroczenie określonej masy mieszaniny wprowadzonej do kolumny dla danej masy sorbentu, powoduje, że charakterystyka oddziaływań substancje rozdzielane-faza stacjonarna nie znajduje się w obszarze liniowego zakresu izotermy sorpcji, a w efekcie następuje poszerzenie pasm (pików) chromatograficznych zaczynają przyjmować kształt trójkąta prostokątnego zniekształconego o dyspersję. Wyróżnia się dwa typy przeładowań [*] : przeładowanie stężeniowe bardziej korzystne ekonomicznie dozowana mieszanina charakteryzuje się wysokim stężeniem substancji rozdzielanych 5*10-2 g mieszaniny rozdzielanych substancji / g sorbentu typu żel krzemionkowy lub chemicznie modyfikowany żel krzemionkowy; przeładowanie objętościowe mniej korzystne ekonomicznie stosowane w przypadkach gdy substancje rozdzielane słabo rozpuszczają się w eluencie, typowe stężenia stosowane w praktyce oscylują w granicach 5*10-4 g mieszaniny 5

6 rozdzielanych substancji / g sorbentu typu żel krzemionkowy lub chemicznie modyfikowany żel krzemionkowy. Objętość dozowanego roztworu (V i ) przekracza: V i VR > (4do6) (4) N 0 N 0 liczba półek teoretycznych warunkach braku przeładowania, V R objętość retencji W zależności od zastosowanego typu przeładowania obserwowany jest inny kształt pików chromatograficznych (rys. 1-2) [**]. Dla otrzymania odpowiednio dużej masy substancji z każdego rozdzielania, przy zachowaniu odpowiedniej rozdzielczości, niezbędne jest zwiększenie skali rozdzielania, tzn., przede wszystkim zwiększenie średnicy kolumny, w stosunku do kolumny modelowej. Po dobraniu warunków rozdzielania preparatywnego w skali modelowej w warunkach przeładowania kolumny, stosuje się określone zasady przenoszenia warunków do skali preparatywnej lub procesowej. W zależności od stopnia trudności problemu rozdzielczego oraz od celu rozdzielania, przyjmuje się różne strategie postępowania dla przenoszenia skali rozdzielania [**]: Zwiększenie wyłącznie średnicy kolumny (dc), bez zwiększania długości warstwy wypełnienia (Lc) oraz z zachowaniem takiego samego wypełnienia oraz składu eluentu / programu elucji, jak w skali modelowej warunki prostego przenoszenia skali rozdzielania; Jednoczesne zwiększenie wszystkich geometrycznych wymiarów kolumny, czyli, tak średnicy (dc), jak i długości warstwy wypełnienia (Lc) oraz często, z jednoczesnym zwiększeniem wielkości ziaren wypełnienia kolumny warunki złożonego powiększanie skali rozdzielania celowe zachowanie takiej samej liczby półek teoretycznych, wyznaczonych w warunkach braku przeładowania kolumny w skali technicznej i modelowej!!! Ze znacznym zwiększeniem wymiarów geometrycznych kolumny, wiąże się konieczność zwiększenie skali całej aparatury, a więc przenoszenie skali od modelu do skali technicznej. Na rysunkach 1 i 2 przedstawiono zmiany kształtu piku oraz charakterystyczne zjawiska zachodzące podczas przeładowania odpowiednio objętościowego i stężeniowego, w przypadku izotermy sorpcji typu langmuirowskiego. W praktyce dla niektórych układów 6

7 chromatograficznych stwierdzono wykładniczy (ze względu na kształt zwany także typem S lub anty-langmuir ) charakter izoterm sorpcji. Implikuje to dodatkowe zjawiska występujące w kolumnie przede wszystkim tzw. sorpcję wielowarstwową, wynikająca z oddziaływań zaadsorbowanych cząsteczek substancji rozdzielanej z cząsteczkami tej samej i innych substancji obecnymi w fazie ruchomej. Uwaga, w przypadku stosowania zbyt wysokich stężeń mieszaniny wprowadzonej do kolumny, istnieje wówczas możliwość kondensacji kapilarnej w porach wypełnienia kolumny i otrzymywanie niskich stopni odzysku, rozdzielnych składników!!! 7

8 Rys. 1 Przykład efektu zmiany kształtu pików podczas przeładowania objętościowego. W części I przedstawiono nałożenie pików chromatograficznych uzyskiwanych w warunkach bez przeładowania (1), dolnej granicy przeładowania objętościowego (2) oraz przykład typowego przebiegu chromatograficznego w warunkach przeładowania objętościowego (3). Jak przedstawiono w części II, stężenie analizowanej substancji znajduje się w zakresie liniowości izotermy sorpcji (typu Langmuir). Uzyskiwane w przypadku przeładowania objętościowego piki chromatograficzne mają kształt zbliżony do prostokąta, którego wysokość (plateau) odpowiada stężeniu w dozowanej próbce. Strzałkami zaznaczono umiejscowienie maksimum piku w warunkach (1) w piku w warunkach (3), tj. mniej więcej na początku plateau. W części III przedstawiono również efekt nakładania się pików w przypadku zmniejszenia R s poniżej wartości 1. Rys. 2 Przykład efektu zmiany kształtu pików podczas przeładowania stężeniowego. W części I przedstawiono nałożenie pików chromatograficznych uzyskiwanych w warunkach bez przeładowania (1), dolnej granicy przeładowania stężeniowego (2) oraz przykład typowego przebiegu chromatograficznego w warunkach przeładowania stężeniowego (3). Jak przedstawiono w części II, stężenie analizowanej substancji znajduje się poza zakresem liniowości izotermy (typu Langmuir) sorpcji. Uzyskiwane w przypadku przeładowania stężeniowego piki chromatograficzne mają kształt zbliżony do trójkąta prostokątnego. Strzałkami zaznaczono umiejscowienie maksimum piku w warunkach (1) w piku w warunkach (3), tj. mniej więcej na końcu zbocza piku po stronie zstępującej (zmniejszenie wartości retencji maksimum piku w warunkach przeładowania). W części III przedstawiono również efekt nakładania się pików w przypadku zmniejszenia R s poniżej wartości 1.. 8

9 Rys. 3 Przykład efektu zmiany kształtu pików podczas przeładowania stężeniowego dla układu charakteryzowanego izotermą sorpcji typu S. W części I przedstawiono nałożenie pików chromatograficznych uzyskiwanych w warunkach bez przeładowania (1), dolnej granicy przeładowania stężeniowego (2) oraz przykład typowego przebiegu chromatograficznego w warunkach przeładowania stężeniowego (3). Jak przedstawiono w części II, stężenie analizowanej substancji znajduje się poza zakresem liniowości izotermy (typu S ) sorpcji. Uzyskiwane w przypadku przeładowania stężeniowego piki chromatograficzne mają kształt zbliżony do trójkąta prostokątnego, ale w porównaniu z Rys. 2 są odwrócone, tzn. asymetria piku występuje po stronie wstępującej. Umiejscowienie maksimum piku w warunkach (1) w piku w warunkach (3), znajduje się podobnie jak w przypadku opisanym na rys. 2, mniej więcej na końcu zbocza piku po stronie zstępującej. Obszerne opracowanie poświęcone przykładom zastosowań procesowej LC wdrożonych w przemyśle wymagane do zapoznania przez Studentów przed przystąpieniem do zajęć zawiera pozycja [****] literatury Techniki wzbogacania frakcji oraz izolacji składników frakcji Ekstrakcja do fazy stałej (SPE) SPE RP W przypadku ekstrakcji do fazy stałej w odwróconym układzie faz podobnie, jak w przypadku RP HPLC, sorbent jest znacznie mniej polarny, niż faza ruchoma. Mechanizm rozdzielania składników mieszaniny opiera się na interakcjach miedzy hydrofobowymi fragmentami strukturalnymi substancji rozdzielanych oraz hydrofobowymi miejscami aktywnymi występującymi na powierzchni sorbentu. Owe interakcje głównie opierają się na występowaniu oddziaływań van der Waalsa na powierzchni hydrofobowej fazy stacjonarnej oraz oddziaływań solwatacyjnych i solwo-fobowych w fazie ruchomej eluentu. Elucja 9

10 zaadsorbowanych hydrofobowych składników mieszaniny dokonywana jest poprzez zastosowanie eluentu o silnym powinowactwie do fazy stacjonarnej, w celu dezaktywacji oddziaływań sorbent analit (np. AcCN, czy dioksan itp.). Modyfikacja powierzchni żelu krzemionkowego często nie zachodzi w 100 % - ach, dlatego na powierzchni sorbentu pozostają niezmodyfikowane grupy silanolowe (Si-OH). Te niedezaktywowane grupy funkcyjne odpowiadają za występowanie oddziaływań drugorzędowych (polarnych), szczególnie w stosunku do zasadowych składników frakcji. W takim przypadku eluent wzbogacany jest dodatkiem lotnego składnika wysoce polarnego o charakterze zasadowym (np. dietyloaminą), aby dezaktywować oddziaływania polarne. Sposobem uniknięcia tego rodzaju niedogodności jest użycie faz stacjonarnych z tzw. endcappingiem, czyli metylosililowanie wolnych grup silanolowych (Si-OH), obecnych na powierzchni sorbentu. SPE IE Jonowymienna ekstrakcja do fazy stałej wykorzystywana jest, kiedy przedmiotem zainteresowania jest składnik frakcji ulegający dysocjacji w roztworze wodnym (czasami rozpuszczalnikiem jest substancja organiczna). Mechanizm retencji, podobnie, jak w przypadku chromatografii jonowymiennej (IEC LC) opiera się na zjawisku konkurencyjności oddziaływań obdarzonych ładunkiem grup funkcyjnych substancji rozdzielanej i przeciwjonów centrów aktywnych sorbentu oraz grup funkcyjnych centrów aktywnych fazy stacjonarnej. CE SPE (kationowymienne SPE) Podobnie jak w przypadku kationowymiennej chromatografii cieczowej sorbent stanowi porowaty materiał żelu krzemionkowego zmodyfikowany grupami chemicznymi zdolnymi do jonizacji i tworzenia anionów. Identycznie jak, w przypadku IEC LC kationity podzielić można na mocne (SCX), z modyfikacjami w postaci grup sulfonowych oraz średnio mocne i słabe (WCX), np. grupy karboksylowe i fenolowe. Dodatkowo żel krzemionkowy modyfikowany grupami propylonitrylowymi oraz grupami di-hydroksylowymi (diol) są również wykorzystywane, jako wymieniacze kationów. AE SPE (anionowymienne SPE) SAX, czyli silne anionity, to zazwyczaj czwartorzędowe sole amoniowe, natomiast WAX (średnio mocne i słabe) anionity, to sprotonowane trzecio- i drugorzędowe aminy. Dodatkowo krzemionka modyfikowana grupami aminopropylowymi jest wykorzystywana, jako słaby wymieniacz anionów. 10

11 W tabeli nr 1 zestawiono fazy stacjonarne produkowane przez firmę Sigma Aldrich Tab. 1 Zestawienie sorbentów wraz z ich zastosowaniem produkowanych przez firmę Sigma Aldrich. Jeżeli nie napisano inaczej, to średnica ziarna wynosi 40 µm, natomiast średnica porów 60Å Nazwa handlowa Modyfikator krzemionki Zastosowanie LC-18 oktadecyl Antybiotyki, barbiturany, benzodiazepiny, kofeina, herbicydy, pestycydy, parabeny, witaminy, steroidy ENVI TW 18 oktadecyl Antybiotyki, witaminy, PNA, ftalany, surfaktanty kapowanie sorbentu LC-8 oktyl Ftalany, PNA, węglowodany ENVI TW 8 oktyl Fungicydy, herbicydy, pestycydy, węglowodany, kapowanie sorbentu fenole LC-4 Butylo-dimetyl Peptydy i białka kapowanie sorbentu (500Å) LC-Ph Fenyl Związki aromatyczne Hisep TW C18 związana z Proteiny i peptydy hydrofilowym polimerem LC-CN Cyjanopropyl Aflatoksyny, antybiotyki, fenole i steroidy kapowanie sorbentu LC-NH 2 aminopropyl Węglowodany, kwasy organiczne SAX NR + 4 Cl - Kwasy nukleinowe, organiczne, nukleotydy SCX SO - 3 Na + Antybiotyki, katecholaminy, aminokwasy WCX COO - Na + Aminy organiczne, aminokwasy, leki, WAX NHR + 2 Cl - Aminokwasy, leki, kwasy organiczne RP IE Etapy wykonania SPE 1. Wybór odpowiedniej kolumienki SPE Rodzaj stosowanego sorbentu w znacznej mierze jest uzależniony od charakteru chemicznego składnika frakcji poddawanej obróbce, będącego obiektem zainteresowania. Cechy analitu wpływające na wybór sorbentu: Objętość frakcji Masa składnika Hydrofobowość oraz zdolność do polaryzacji substancji rozdzielanej 2. Kondycjonowanie złoża Etap służący aktywowaniu powierzchni sorpcyjnej. Polega na przemyciu określona ilością (zależna od rodzaju wypełnienia) rozpuszczalnika powierzchni sorbentu. Zwinięte (poskręcane) łańcuchy fazy stacjonarnej ulegają rozwinięciu, tym samym zwiększając powierzchnię sorpcyjną. 3. Naniesienie próbki / wsadu 11

12 Objętość wsadu mieści się w przedziale od kilku µl do kilku litrów. Może być tym większa, im słabszym eluentem jest rozpuszczalnik wsadu względem fazy stacjonarnej spełniającej funkcję sorbentu. Natężenie przepływu eluentu jest dostosowane do konkretnej metodyki oraz zależy od średnicy kolumienki sorpcyjnej. Z reguły nie przekracza 5ml/min, a przepływ jest wymuszony zmniejszeniem ciśnienia na wylocie z kolumienki. 4. Przemycie i suszenie złoża Można wyróżnić dwa przypadki: interesujący składnik mieszaniny silnie oddziałuje z sorbentem lub oddziaływania sorbent analit są stosunkowo słabe. W pierwszym przypadku sorbent jest przemywany rozpuszczalnikiem, który nie będzie eluował składnika mieszaniny z kolumienki. Po przemyciu sorbentu kilkoma objętościami kolumienki, jeśli ze złożem związały się zanieczyszczenia, należy użyć rozpuszczalnika i średniej sile elucyjnej w celu ich usunięcia. Natomiast, kiedy interesujący składnik mieszaniny wykazuje dość słabe oddziaływania z sorbentem, złoże jest przemywane minimalną małą porcją rozpuszczalnika wsadu, aby nie dopuścić do elucji składnika / składników zaadsorbowanych na warstwie porowatej złoża. 5. Elucja Elucja, czyli wymycie interesującego składnika mieszaniny jest wykonywane mocnym eluentem, aby uzyskać jak najwyższy stopień wzbogacenia frakcji eluatu w interesujący nas składnik. 12

13 Rys. 4 Schemat procesu ekstrakcji do fazy stałej. Inne techniki wzbogacania frakcji: Odparowanie próżniowe Liofilizacja Krystalizacja Ekstrakcja ciecz ciecz Niezbędne informacje dotyczące powyższych technik przygotowywania frakcji są dostępne w zalecanej literaturze *** 3.4. Kontrola jakości zebranych frakcji. Metody badań czystości frakcji i produktów HILIC - HPLC/RID RP - HPLC / UV VIS-DAD Spektrofotometria UV-VIS, MIR-FTIR, FLD, itp. 13

14 Metody oznaczenia ilościowego w HPLC Metoda wzorca wewnętrznego ma zastosowanie w przypadku metody analitycznej wymagającej kilku etapowej procedury przygotowania próbek. Dodatkowo, metoda jest niewrażliwa na zmianę ilości dozowanej próbki. Zaletą metody dodatku wzorca jest wykonanie kalibracji w takich warunkach, że anality znajdują się w rzeczywistej matrycy. Szczególnie, kiedy jest bardzo trudne bądź niemożliwe otrzymanie matrycy (placebo), w której nie znajdowałaby się substancja oznaczana, np. w przypadku próbek klinicznych i środowiskowych. Szczególną cecha tej metody jest jej wysoka "odporność" na sytuację niepełnego rozdzielenia analitu oraz gdy pik substancji oznaczanej nie jest rozdzielony do linii podstawowej od innych substancji, których piki są jednak znacznie mniejsze w stosunku do substancji oznaczanej Z kolei metodę prostej normalizacji, stosuje się, gdy wykorzystywany jest detektor refraktometryczny lub detektor światła rozproszonego. Detektory te wykazują zbliżoną odpowiedź dla różnych substancji o zbliżonej strukturze i masie cząsteczkowej. Obszerny opis metod ilościowych przedstawiono w [*] do obligatoryjnego zapoznania się przed przystąpieniem do ćwiczeń laboratoryjnych Zagadnienia ekonomicznego postępowania w skali preparatywnej i procesowej - Regeneracja aktywności sorpcyjnej kolumny i recyrkulacja eluentu W preparatywnej chromatografii cieczowej, z uwagi na rozdzielanie mieszanin rzeczywistych o bardzo różnym składzie, gdy często występują substancje które trwale dezaktywują powierzchnię sorpcyjną fazy stacjonarnej, po kilku, a nawet w kolejnej operacji rozdzielania, zaczyna obserwować się spadek rozdzielczości kolumny. Wówczas, w zależności od konkretnego zadania rozdzielczego przyjmuje się dotychczas dwa główne podejścia: a. przywrócenie zadowalającej aktywności sorpcyjnej wypełnienia poprzez zastosowanie podczas każdej operacji rozdzielania eluentu o wyższej sile elucyjnej (wymycie zanieczyszczeń mocnym eluentem) i dokonanie ponownej reaktywacji aktywności sorpcyjnej powierzchni wypełnienia za pomocą eluentu o niskiej sile elucyjnej, b. cykliczna wymiana sorbentu, co określoną liczbę rozdzielań stosowana, gdy następuje trwała dezaktywacja powierzchni sorpcyjnej, lub gdy rozwiązanie a) okazuje się być rozwiązaniem mniej uzasadnionym ekonomicznie 14

15 Alternatywnie do powyższych, stosowanych w praktyce sposobów postępowania, istnieje również możliwość zastosowania przepływu zwrotnego eluentu w kolumnie (ang. backflush = BF). Postępowanie polega na wprowadzeniu do układu chromatograficznego dodatkowego zaworu dwu położeniowego w jednym położeniu eluent jest wprowadzany do kolumny od strony A a odbierany od strony B, a drugim położeniu na odwrót. Z termodynamicznego punktu widzenia, substancje wprowadzone do kolumny, po czasie eluowania t przebyły pewne drogi i w przypadku odwrócenia przepływu, po identycznym czasie t powinny opuścić kolumnę w postaci jednego piku. Wyjątek stanowi przypadek na tyle silnej sorpcji, a w szczególności chemisorpcji, gdy substancja jest trwale związana z fazą stacjonarną i nie ma możliwości jej usunięcia z zastosowaniem przypływu zwrotnego. Takie składniki powinny zostać usunięte z wsadu do rozdzielania przed wprowadzeniem go do kolumny rozdzielczej! Oprócz zalety, jaką jest możliwość usunięcia w przepływie zwrotnym substancji obecnych w kolumnie po elucji frakcji będącej celem preparatywnego otrzymywania, drugim niezmiernie ważnym aspektem jest ciągle stała aktywność sorpcyjna kolumny, taka sam, jaka miała miejsce na początku rozdzielania. Przepływ zwrotny spełnia powyższe zadania w przypadku elucji izokratycznej. Zapewnienie tej samej aktywności sorpcyjnej kolumny oraz zrównoważenie oddziaływań faza stacjonarna eluent pozwala na zachowanie jednakowej retencji substancji, co w przypadku zautomatyzowanych układów zbierania frakcji ma istotne znaczenie praktyczne. Zastosowanie przepływu zwrotnego eluentu w kolumnie pozwala, więc, na zwiększenie żywotności kolumny w warunkach preparatywnych i procesowych, a przy tym ogranicza ilość eluentu zużywaną na przywrócenie aktywności sorpcyjnej kolumny do warunków początkowych przed kolejnym rozdzielaniem, gdy zanieczyszczenia pozostałe w kolumnie eluowane są z zastosowaniem tzw. elucji skokowej z zastosowaniem eluentu o bardzo wysokiej sile elucyjnej. Najważniejszym czynnikiem, decydującym o opłacalności stosowania PLC, jako techniki otrzymywania substancji, jest ilość (koszt) organicznych składników eluentu utraconych podczas wzbogacania oraz izolacji rozdzielanych i otrzymywanych substancji. Eluenty stosowane do rozdzielania, w skali preparatywnej są z reguły odzyskiwane praktycznie w 100 %-ach. W celu recyrkulacji zużytego eluentu w warunkach izokratycznych z reguły wystarcza przedestylowanie rozpuszczalnika, co pozwala na usunięcie nielotnych zanieczyszczeń. Dlatego celowe jest stosowanie elucji izokratycznej w PLC, tak dalece, jak to możliwe. 15

16 W przypadku konieczności stosowania elucji gradientowej, a jest to często niezbędne w przypadku rozdzielania i otrzymywania peptydów i białek z zastosowaniem PLC, istnieje konieczność zastosowania bardziej sprawnego układu rozdzielczego dla rozdzielania i odzysku składników eluentu w postaci czystej. Stosuje się wówczas rektyfikację okresową lub ciągłą W celu poznania zasad prowadzenia, odparowania próżniowego, krystalizacji, liofilizacji, ekstrakcji ciecz ciecz destylacji oraz rektyfikacji zaleca się Studentom zapoznanie z pozycjami [****]. 4. Wykonanie ćwiczenia - Wykonanie rozdzielania serwatki w skali preparatywnej w celu zebrania frakcji α- laktoalbuminy i/albo laktozy w układzie chromatograficznym zaproponowanym przez Studentów - Wykonanie kalibracji metody oznaczeń ilościowych wybranej przez grupę odrabiającą ćwiczenie - Oznaczenie czystości zebranych frakcji - Odparowywanie eluentu z zastosowaniem rotacyjnej wyparki próżniowej. 5. Wymagania do sprawdzianu Szczegółowy wykaz zagadnień podano w harmonogramie ćwiczeń laboratoryjnych. 1. Zakres wiadomości objęty niniejszą instrukcją 2. Rozdział 11,13 [*] 3. Podstawy następujących operacji: odparowanie próżniowe, destylacja i rektyfikacja (odzysk organicznych składników eluentu), ekstrakcja ciecz ciecz (przeniesienie składników hydrofobowych z hydrofilowego eluatu do lotnej cieczy organicznej, dotyczy lipidów, średnio polarnych metabolitów roślinnych oraz hydrofobowych białek i peptydów), liofilizacja (otrzymanie mikrokrystalicznej postaci białka z roztworu w wodzie). Bardziej szczegółowe informacje w specjalistycznej literaturze inżynierii bio-procesowej (np. poz literatury uzupełniającej) oraz w instrukcjach z przedmiotu Techniki Rozdzielania (dla Technologii Chemicznej) [***] 4. Przykłady zastosowań wymienione w [****] 16

17 6. Literatura Literatura podstawowa * M. Kamiński (ed.) Chromatografia Cieczowa, CEEAM, Gdańsk, 2004; ** M. Kamiński, Problemy stosowania kolumnowej chromatografii cieczowej, jako metody (techniki) otrzymywania substancji, rozprawa habilitacyjna, Gdańsk 1991; *** A) M. Trznadel, M. Kamiński, Instrukcja do ćwiczenia 3A Destylacja / Rektyfikacja dla Technologii Chemicznej II rok, dostępna on-line na stronie domowej katedry: B) M. Trznadel, M. Kamiński, Instrukcja do ćwiczenia 2B Ekstrakcja ciecz-ciecz dla Technologii Chemicznej II rok, dostępna on-line na stronie domowej katedry: B.pdf C) A. Zygler, M. Janicka, Ł. Heda, M. Kamiński, Instrukcja do ćwiczenia 2A Techniki wzbogacenia i prekoncetracji. Membrany stałe i odparowanie próżniowe dla Technologii Chemicznej II rok, dostępna on-line na stronie domowej katedry: D) A. Zygler, M. Janicka, M. Kamiński, Instrukcja do ćwiczenia 5B Odparowanie próżniowe rozpuszczalnika/ eluentu, krystalizacja w warunkach różnej temperatury dla Technologii Chemicznej II rok, dostępna on-line na stronie domowej katedry: B.pdf E) Zygler, M. Janicka, M. Kamiński, Instrukcja do ćwiczenia 5C Suszenie w warunkach ciśnienia atmosferycznego / suszenie próżniowe / liofilizacja dla Technologii Chemicznej II rok, dostępna on-line na stronie domowej katedry: C.pdf` **** B. K. Głód (ed.), Postępy chromatografii i innych technik i technologii rozdzielania, Wyd. Akademii Podlaskiej, Siedlce, 2010 Strony (A. Bylina, M. Kamiński, Preparatywna chromatografia cieczowa, podstawowe zasady efektywnego stosowania, elementy preparatyki), 17

18 Literatura dodatkowa 1. R. Ven (ed), Encyklopedia of Separation Technology, vol. 1 i 2, J. Wiley, 19997; 2. Z. Witkiewicz, Podstawy chromatografii, WNT-W-wa, wyd lub 2005; 3. K. Hostettman, A. Morston, Preparative Chromatography Techniques Applications, Springer Verlag, 1998; 4. J. Cazes (ed) Encyclopedia of Chromatography, Marcel Dekker, New York, 2001., 5. A.S. Grandison, M.J. Lewis, Separation processes in the food and biotechnology industries. Principles and applications, Woodhead Publishing Limitted, Cambridge, England, 1996., 6. M. Aguilar, J.L.v Cortina, Solvent extraction and liquid membranes, CRC Press, London, 2008., 7. M. Berek, M. Dressler, M. Kubin, K. Marcinka, Chromatografia żelowa, PWN, Warszawa, 1989; 8. A.S. Grandison (ed), M.J. Lewis (ed), Separation processes in the Food and Biotechnology Industries Principlea and Applications, Woodhead Publ. Ltd, Cambridge England; 9. O. Mikes, HPLC of Biopolimers and Biooligomers, Elsevier, Amsterdam, 1989; 10. J. Weiss, Handbook of ion chromatography vol 1,2, Wiley-VCH 2004; 11. R. Rautenbach, Procesy membranowe, WNT-W-wa, wyd. 1996; 12. M. Serwiński, Operacje jednostkowe w inżynierii chemicznej, WNT, Warszawa, dowolne wydanie, (podręcznik zawiera zasady ogólne i najważniejsze pojęcia dotyczące inżynierii technik rozdzielania). 13. A. Selecki., L. Gradoń Podstawowe procesy przemysłu chemicznego, WNT Wa-wa 1985.; 14. A. Selecki, Inżynieria chemiczna - Rozdzielanie mieszanin - Metody niekonwencjonalne, WNT Wa-wa, 1972; 15. A. Selecki, R. Gawroński, Inżynieria chemiczna. Podstawy projektowania wybranych procesów rozdzielania mieszanin, WNT J. Bandrowski, L. Troniewski, Destylacja i rektyfikacja, Skrypt Politechniki Śląskiej. Gliwice 1996., 18

19 7. Sprawozdanie Każda grupa przygotowuje odrębne sprawozdanie w formie odręcznego czytelnego manuskryptu, z odpowiednimi obliczeniami i wykresami oraz naszkicowanymi odręcznie i poprawnie opisanymi chromatogramami. Każde z pięciu ćwiczeń stanowi odrębną część sprawozdania końcowego i powinno zawierać następujące części oraz informacje: - Wprowadzenie - opis operacji przygotowawczych oraz separacyjnych i wykorzystywane zjawiska fizykochemiczne mające główny / drugorzędny wpływ na osiągane rezultaty rozdzielania, opis optymalnych warunków i ograniczeń utrudniających / uniemożliwiających osiągnięcie optymalnych warunków, opinię dotyczącą zalet i wad uwzględnionych operacji i procesów separacyjnych, a także technik detekcji oraz metod oznaczania; - Cel ćwiczenia i odpowiedniej jego części; - Część doświadczalna - opis i warunki eksperymentów wykonanych podczas ćwiczenia, z podziałem, jak w publikacji naukowej, na: Materiały; Aparatura i wyposażenie; Metodyka i sposób opracowania wyników Ta część sprawozdania powinna zawierać opis sposobu wykonania obliczeń poszczególnych parametrów, przykład wykonania obleczeń, przeliczenia jednostek fizycznych oraz przykłady otrzymanych wartości obliczonych parametrów, po jednym przykładzie dla obliczania konkretnej wielkości. - Wyniki i dyskusja, zestawienie wyników w formie rysunków, tabel, fotografii, danych uzyskanych w rezultacie wykonanych obliczeń itp., wraz z opisem co one przedstawiają i jakie wnioski z nich wynikają; Należy stosować tabelaryczne przedstawianie danych i warunków oraz zamieszczać schematy budowy stanowisk laboratoryjnych, aparatury, kolumn i sprzętu pomocniczego z odpowiednimi opisami w podpisie pod rysunkami - w sposób jak najkrótszy, jednak na tyle jednoznaczny, aby można było na tej podstawie zamieszczonych danych i informacji powtórzyć eksperymenty bez konsultowania się z 19

20 wykonawcą, tzn., konieczne jest podanie nazw modułów aparatury i sprzętu, typu, modelu, stopnia czystości odczynników, producenta, stężeń itp. danych. - Wnioski końcowe - zestawienie wniosków wynikających z całej serii pięciu ćwiczeń, jednak bez powtarzania wniosków zamieszczonych w poszczególnych częściach sprawozdania, natomiast kilka wniosków znajdujących się w różnych częściach sprawozdania może być podstawą do sformułowania odpowiedniego wniosku końcowego (w tym sensie powtórzenie jest dopuszczalne); - Spis literatury - proszę zamieścić w sposób zgodny z zasadami cytowania literatury stosowanymi w publikacjach naukowych tylko te pozycje, z których rzeczywiście korzystali autorzy sprawozdania. Nad przygotowaniem sprawozdania powinna pracować cała grupa wykonująca ćwiczenie. Na stronie czołowej powinny zostać wpisane czytelnie nazwiska osób wykonujących ćwiczenie oraz sprawozdanie wraz z podpisami. Podpis oznacza, że określona osoba brała udział w pracy nad przygotowaniem sprawozdania i współodpowiada za jego treść i zamieszczone wnioski. 20

CHROMATOGRAFIA W UKŁADACH FAZ ODWRÓCONYCH RP-HPLC

CHROMATOGRAFIA W UKŁADACH FAZ ODWRÓCONYCH RP-HPLC CHROMATOGRAFIA W UKŁADACH FAZ ODWRÓCONYCH RP-HPLC MK-EG-AS Wydział Chemiczny Politechniki Gdańskiej Gdańsk 2009 Chromatograficzne układy faz odwróconych (RP) Potocznie: Układy chromatograficzne, w których

Bardziej szczegółowo

Techniki Rozdzielania Mieszanin

Techniki Rozdzielania Mieszanin Techniki Rozdzielania Mieszanin Techniki Sorpcji i Chromatografii cz. I prof. dr hab. inż. Marian Kamiński Gdańsk 2010 Chromatografia cieczowa jako technika analityki, przygotowania próbek, wsadów do rozdzielania,

Bardziej szczegółowo

PP7: Wymiana jonowa i chromatografia jonowymienna oznaczanie kationów i anionów

PP7: Wymiana jonowa i chromatografia jonowymienna oznaczanie kationów i anionów PP7: Wymiana jonowa i chromatografia jonowymienna oznaczanie kationów i anionów Instrukcja do ćwiczeń laboratoryjnych - ćwiczenie nr 7 przedmiot: Metody Analizy Technicznej kierunek studiów: Technologia

Bardziej szczegółowo

PORÓWNANIE FAZ STACJONARNYCH STOSOWANYCH W HPLC

PORÓWNANIE FAZ STACJONARNYCH STOSOWANYCH W HPLC PORÓWNANIE FAZ STACJONARNYCH STOSOWANYCH W HPLC Instrukcja do ćwiczeń opracowana w Katedrze Chemii Środowiska Uniwersytetu Łódzkiego 1. Wstęp Chromatografia jest techniką umożliwiającą rozdzielanie składników

Bardziej szczegółowo

Instrukcja do ćwiczeń laboratoryjnych

Instrukcja do ćwiczeń laboratoryjnych UNIWERSYTET GDAŃSKI WYDZIAŁ CHEMII Pracownia studencka Katedra Analizy Środowiska Instrukcja do ćwiczeń laboratoryjnych Ćwiczenie nr 2 OPTYMALIZACJA ROZDZIELANIA MIESZANINY WYBRANYCH FARMACEUTYKÓW METODĄ

Bardziej szczegółowo

RP WPROWADZENIE. M. Kamiński PG WCh Gdańsk Układy faz odwróconych RP-HPLC, RP-TLC gdy:

RP WPROWADZENIE. M. Kamiński PG WCh Gdańsk Układy faz odwróconych RP-HPLC, RP-TLC gdy: RP WPRWADZENIE M. Kamiński PG WCh Gdańsk 2013 Układy faz odwróconych RP-HPLC, RP-TLC gdy: Nisko polarna (hydrofobowa) faza stacjonarna, względnie polarny eluent, składający się z wody i dodatku organicznego;

Bardziej szczegółowo

Chromatogramy Załącznik do instrukcji z Technik Rozdzielania Mieszanin

Chromatogramy Załącznik do instrukcji z Technik Rozdzielania Mieszanin Chromatogramy Załącznik do instrukcji z Technik Rozdzielania Mieszanin Badania dotyczące dobrania wypełnienia o odpowiednim zakresie wielkości porów, zapewniających wnikanie wszystkich molekuł warunki

Bardziej szczegółowo

ROZDZIELENIE OD PODSTAW czyli wszystko (?) O KOLUMNIE CHROMATOGRAFICZNEJ

ROZDZIELENIE OD PODSTAW czyli wszystko (?) O KOLUMNIE CHROMATOGRAFICZNEJ ROZDZIELENIE OD PODSTAW czyli wszystko (?) O KOLUMNIE CHROMATOGRAFICZNEJ Prof. dr hab. inż. Agata Kot-Wasik Katedra Chemii Analitycznej Wydział Chemiczny, Politechnika Gdańska agawasik@pg.gda.pl ROZDZIELENIE

Bardziej szczegółowo

Instrukcja do ćwiczeń laboratoryjnych

Instrukcja do ćwiczeń laboratoryjnych UNIWERSYTET GDAŃSKI Pracownia studencka Katedry Analizy Środowiska Instrukcja do ćwiczeń laboratoryjnych Ćwiczenie nr 2 Oznaczanie benzoesanu denatonium w skażonym alkoholu etylowym metodą wysokosprawnej

Bardziej szczegółowo

Zastosowanie chromatografii żelowej w skali preparatywnej do otrzymywania niskodyspersyjnych

Zastosowanie chromatografii żelowej w skali preparatywnej do otrzymywania niskodyspersyjnych Prof. dr hab. inż. Marian Kamiński PG, Wydział Chemiczny.10.05. Instrukcje ćwiczeń laboratoryjnych Techniki rozdzielania Zastosowanie chromatografii żelowej w skali preparatywnej do otrzymywania niskodyspersyjnych

Bardziej szczegółowo

OZNACZENIE JAKOŚCIOWE I ILOŚCIOWE w HPLC

OZNACZENIE JAKOŚCIOWE I ILOŚCIOWE w HPLC OZNACZENIE JAKOŚCIOWE I ILOŚCIOWE w HPLC prof. Marian Kamiński Wydział Chemiczny, Politechnika Gdańska CEL Celem rozdzielania mieszaniny substancji na poszczególne składniki, bądź rozdzielenia tylko wybranych

Bardziej szczegółowo

RP WPROWADZENIE. M. Kamioski PG WCh Gdaosk 2013

RP WPROWADZENIE. M. Kamioski PG WCh Gdaosk 2013 RP WPRWADZENIE M. Kamioski PG WCh Gdaosk 2013 Fazy stacjonarne w RP-HPLC / RP-HPTLC CN, cyklodekstryny, - głównie substancje średnio polarne i polarne metabolity, organiczne składniki ścieków i inne Zestawienie

Bardziej szczegółowo

Wpływ ilości modyfikatora na współczynnik retencji w technice wysokosprawnej chromatografii cieczowej

Wpływ ilości modyfikatora na współczynnik retencji w technice wysokosprawnej chromatografii cieczowej Wpływ ilości modyfikatora na współczynnik retencji w technice wysokosprawnej chromatografii cieczowej WPROWADZENIE Wysokosprawna chromatografia cieczowa (HPLC) jest uniwersalną techniką analityczną, stosowaną

Bardziej szczegółowo

Pytania z Wysokosprawnej chromatografii cieczowej

Pytania z Wysokosprawnej chromatografii cieczowej Pytania z Wysokosprawnej chromatografii cieczowej 1. Jak wpłynie 50% dodatek MeOH do wody na retencję kwasu propionowego w układzie faz odwróconych? 2. Jaka jest kolejność retencji kwasów mrówkowego, octowego

Bardziej szczegółowo

Cz. 5. Podstawy instrumentalizacji chromatografii. aparatura chromatograficzna w skali analitycznej i modelowej - -- w części przypomnienie -

Cz. 5. Podstawy instrumentalizacji chromatografii. aparatura chromatograficzna w skali analitycznej i modelowej - -- w części przypomnienie - Chromatografia cieczowa jako technika analityki, przygotowania próbek, wsadów do rozdzielania, technika otrzymywania grup i czystych substancji Cz. 5. Podstawy instrumentalizacji chromatografii aparatura

Bardziej szczegółowo

-- w części przypomnienie - Gdańsk 2010

-- w części przypomnienie - Gdańsk 2010 Chromatografia cieczowa jako technika analityki, przygotowania próbek, wsadów do rozdzielania, technika otrzymywania grup i czystych substancji Cz. 4. --mechanizmy retencji i selektywności -- -- w części

Bardziej szczegółowo

Instrukcja ćwiczenia laboratoryjnego HPLC-2 Nowoczesne techniki analityczne

Instrukcja ćwiczenia laboratoryjnego HPLC-2 Nowoczesne techniki analityczne Instrukcja ćwiczenia laboratoryjnego HPLC-2 Nowoczesne techniki analityczne 1) OZNACZANIE ROZKŁADU MASY CZĄSTECZKOWEJ POLIMERÓW Z ASTOSOWANIEM CHROMATOGRAFII ŻELOWEJ; 2) PRZYGOTOWANIE PRÓBKI Z ZASTOSOWANIEM

Bardziej szczegółowo

Kolumnowa Chromatografia Cieczowa I. 1. Czym różni się (z punktu widzenia użytkownika) chromatografia gazowa od chromatografii cieczowej?

Kolumnowa Chromatografia Cieczowa I. 1. Czym różni się (z punktu widzenia użytkownika) chromatografia gazowa od chromatografii cieczowej? Kolumnowa Chromatografia Cieczowa I 1. Czym różni się (z punktu widzenia użytkownika) chromatografia gazowa od chromatografii cieczowej? 2. Co jest miarą polarności rozpuszczalników w chromatografii cieczowej?

Bardziej szczegółowo

CHROMATOGRAFIA JONOWYMIENNA

CHROMATOGRAFIA JONOWYMIENNA CHROMATOGRAFIA JONOWYMIENNA (IExchC) / JONOWA (IC) - SKRÓT ZASAD - Zastosowanie: rozdzielanie i oznaczanie nieorganicznych, albo organicznych kationów, albo/i anionów, w tym, kwasów karboksylowych, hydroksy-kwasów,

Bardziej szczegółowo

4. WYZNACZENIE IZOTERMY ADSORPCJI METODĄ ECP

4. WYZNACZENIE IZOTERMY ADSORPCJI METODĄ ECP 4. WYZNACZENIE IZOTERMY ADSORPCJI METODĄ ECP Opracował: Krzysztof Kaczmarski I. WPROWADZENIE W chromatografii adsorpcyjnej rozdzielanie mieszanin jest uwarunkowane różnym powinowactwem adsorpcyjnym składników

Bardziej szczegółowo

SPECJALNE TECHNIKI ROZDZIELANIA W BIOTECHNOLOGII. Laboratorium nr1 CHROMATOGRAFIA ODDZIAŁYWAŃ HYDROFOBOWYCH

SPECJALNE TECHNIKI ROZDZIELANIA W BIOTECHNOLOGII. Laboratorium nr1 CHROMATOGRAFIA ODDZIAŁYWAŃ HYDROFOBOWYCH SPECJALNE TECHNIKI ROZDZIELANIA W BIOTECHNOLOGII Laboratorium nr1 CHROMATOGRAFIA ODDZIAŁYWAŃ HYDROFOBOWYCH Opracowała: dr inż. Renata Muca I. WPROWADZENIE TEORETYCZNE Chromatografia oddziaływań hydrofobowych

Bardziej szczegółowo

Ślesin, 29 maja 2019 XXV Sympozjum Analityka od podstaw

Ślesin, 29 maja 2019 XXV Sympozjum Analityka od podstaw 1 WYMAGANIA STAWIANE KOLUMNIE CHROMATOGRAFICZNEJ w chromatografii cieczowej Prof. dr hab. inż. Agata Kot-Wasik Katedra Chemii Analitycznej Wydział Chemiczny, Politechnika Gdańska agawasik@pg.edu.pl 2 CHROMATOGRAF

Bardziej szczegółowo

Kontrola produktu leczniczego. Piotr Podsadni

Kontrola produktu leczniczego. Piotr Podsadni Kontrola produktu leczniczego Piotr Podsadni Kontrola Kontrola - sprawdzanie czegoś, zestawianie stanu faktycznego ze stanem wymaganym. Zakres czynności sprawdzający zapewnienie jakości. Jakość to stopień,

Bardziej szczegółowo

Prof. dr hab. inż. M. Kamiński 2006/7 Katedra Chemii Analitycznej Wydział Chemiczny PG. Ćwiczenie: LC / GC. Instrukcja ogólna

Prof. dr hab. inż. M. Kamiński 2006/7 Katedra Chemii Analitycznej Wydział Chemiczny PG. Ćwiczenie: LC / GC. Instrukcja ogólna Prof. dr hab. inż. M. Kamiński 2006/7 Katedra Chemii Analitycznej Wydział Chemiczny PG Przedmiot: Chemia analityczna Instrukcje ćwiczeń laboratoryjnych Ćwiczenie: LC / GC Instrukcja ogólna Uzupełniający

Bardziej szczegółowo

WPŁYW ILOŚCI MODYFIKATORA NA WSPÓŁCZYNNIK RETENCJI W TECHNICE WYSOKOSPRAWNEJ CHROMATOGRAFII CIECZOWEJ

WPŁYW ILOŚCI MODYFIKATORA NA WSPÓŁCZYNNIK RETENCJI W TECHNICE WYSOKOSPRAWNEJ CHROMATOGRAFII CIECZOWEJ WPŁYW ILOŚCI MODYFIKATORA NA WSPÓŁCZYNNIK RETENCJI W TECHNICE WYSOKOSPRAWNEJ CHROMATOGRAFII CIECZOWEJ Wprowadzenie Wysokosprawna chromatografia cieczowa (HPLC) jest uniwersalną technika analityczną, stosowaną

Bardziej szczegółowo

rodzajach chromatografii cieczowej w związku ze wszczętym na

rodzajach chromatografii cieczowej w związku ze wszczętym na Katedra Chemii Analitycznej Wydział Chemiczny, Politechnika Gdańska, ul. G. Narutowicza 11/12, 80-233 Gdańsk tel. 058 347 10 10 Kierownik Katedry 058 347 19 10 Sekretariat 058 347 21 10 Laboratorium fax.

Bardziej szczegółowo

masy cząsteczkowej polimerów nisko i średnio polarnych, a także lipidów, fosfolipidów itp.. silanizowanyżel krzemionkowy

masy cząsteczkowej polimerów nisko i średnio polarnych, a także lipidów, fosfolipidów itp.. silanizowanyżel krzemionkowy CHROMATOGRAFIA WYKLUCZANIA (dawniej ŻELOWA PC/SEC) Układy chromatograficzne typu GPC / SEC 1. W warunkach nie-wodnych - eluenty: THF, dioksan, czerochloroetylen, chlorobenzen, ksylen; fazy stacjonarne:

Bardziej szczegółowo

Operacje wymiany masy oraz wymiany ciepła i masy

Operacje wymiany masy oraz wymiany ciepła i masy Operacje wymiany masy oraz wymiany ciepła i masy WPROWADZENIE + Destylacja - różniczkowa / równowagowa / z parą wodną prof. M. Kamioski Gdaosk, 2017 INŻYNIERIA CHEMICZNA i BIO-PROCESOWA OPERACJE WYMIANY

Bardziej szczegółowo

HPLC? HPLC cz.1. Analiza chromatograficzna. Klasyfikacja metod chromatograficznych

HPLC? HPLC cz.1. Analiza chromatograficzna. Klasyfikacja metod chromatograficznych HPLC cz.1 ver. 1.0 Literatura: 1. Witkiewicz Z. Podstawy chromatografii 2. Szczepaniak W., Metody instrumentalne w analizie chemicznej 3. Snyder L.R., Kirkland J.J., Glajch J.L. Practical HPLC Method Development

Bardziej szczegółowo

Egzamin z Technik Rozdzielania Mieszanin - Termin III

Egzamin z Technik Rozdzielania Mieszanin - Termin III Wersja z odpowiedziami Gdańsk, 04..204 Imię i nazwisko Nr Indeksu Egzamin z Technik Rozdzielania Mieszanin - Termin III Proszę dokładnie czytać polecenia. Należy obwieść okręgiem poprawne alternatywy,

Bardziej szczegółowo

Pytania z Chromatografii Cieczowej

Pytania z Chromatografii Cieczowej Pytania z Chromatografii Cieczowej 1. Podaj podstawowe różnice, z punktu widzenia użytkownika, między chromatografią gazową a cieczową (podpowiedź: (i) porównaj możliwości wpływu przez chromatografistę

Bardziej szczegółowo

OFERTA TEMATÓW PROJEKTÓW DYPLOMOWYCH (MAGISTERSKICH) do zrealizowania w Katedrze INŻYNIERII CHEMICZNEJ I PROCESOWEJ

OFERTA TEMATÓW PROJEKTÓW DYPLOMOWYCH (MAGISTERSKICH) do zrealizowania w Katedrze INŻYNIERII CHEMICZNEJ I PROCESOWEJ OFERTA TEMATÓW PROJEKTÓW DYPLOMOWYCH (MAGISTERSKICH) do zrealizowania w Katedrze INŻYNIERII CHEMICZNEJ I PROCESOWEJ Badania kinetyki utleniania wybranych grup związków organicznych podczas procesów oczyszczania

Bardziej szczegółowo

CHEMIA ŚRODOWISKA - laboratorium ĆWICZENIE 6. OZNACZANIE ŚLADOWYCH ILOŚCI FENOLU W WODACH POWIERZCHNIOWYCH

CHEMIA ŚRODOWISKA - laboratorium ĆWICZENIE 6. OZNACZANIE ŚLADOWYCH ILOŚCI FENOLU W WODACH POWIERZCHNIOWYCH CHEMIA ŚRODOWISKA - laboratorium ĆWICZENIE 6. OZNACZANIE ŚLADOWYCH ILOŚCI FENOLU W WODACH POWIERZCHNIOWYCH Głównymi chemicznymi zanieczyszczeniami wód są detergenty, pestycydy (fosforoorganiczne, polichlorowęglowodorowe),

Bardziej szczegółowo

GraŜyna Chwatko Zakład Chemii Środowiska

GraŜyna Chwatko Zakład Chemii Środowiska Chromatografia podstawa metod analizy laboratoryjnej GraŜyna Chwatko Zakład Chemii Środowiska Chromatografia gr. chromatos = barwa grapho = pisze Michaił Siemionowicz Cwiet 2 Chromatografia jest metodą

Bardziej szczegółowo

Chromatografia kolumnowa planarna

Chromatografia kolumnowa planarna Chromatografia kolumnowa planarna Znaczenie chromatografii w analizie i monitoringu środowiska lotne zanieczyszczenia organiczne (alifatyczne, aromatyczne) w powietrzu, glebie, wodzie Mikrozanieczyszczenia

Bardziej szczegółowo

4A. Chromatografia adsorpcyjna... 1 4B. Chromatografia podziałowa... 3 4C. Adsorpcyjne oczyszczanie gazów... 5

4A. Chromatografia adsorpcyjna... 1 4B. Chromatografia podziałowa... 3 4C. Adsorpcyjne oczyszczanie gazów... 5 Wykonanie ćwiczenia 4A. Chromatografia adsorpcyjna... 1 4B. Chromatografia podziałowa... 3 4C. Adsorpcyjne oczyszczanie gazów... 5 4A. Chromatografia adsorpcyjna Stanowisko badawcze składa się z: butli

Bardziej szczegółowo

1.Wstęp. Ćwiczenie nr 9 Zatężanie z wody związków organicznych techniką SPE (solid phase extraction)

1.Wstęp. Ćwiczenie nr 9 Zatężanie z wody związków organicznych techniką SPE (solid phase extraction) 1.Wstęp Ćwiczenie nr 9 Zatężanie z wody związków organicznych techniką SPE (solid phase extraction) W analizie mikrośladowych ilości związków organicznych w wodzie bardzo ważny jest etap wstępny, tj. etap

Bardziej szczegółowo

MATERIAŁY DO ĆWICZEŃ LABORATORYJNYCH - CHROMATOGRAFIA JONOWA

MATERIAŁY DO ĆWICZEŃ LABORATORYJNYCH - CHROMATOGRAFIA JONOWA MATERIAŁY DO ĆWICZEŃ LABORATORYJNYCH - CHROMATOGRAFIA JONOWA mgr inż. Malwina Diduch mgr inż. Ewa Olkowska 1. WPROWADZENIE Termin chromatografia obejmuje wiele technik fizykochemicznych ogólnie zdefiniowanych

Bardziej szczegółowo

Podstawy chromatografii i technik elektromigracyjnych / Zygfryd Witkiewicz, Joanna Kałużna-Czaplińska. wyd. 6-1 w PWN. Warszawa, cop.

Podstawy chromatografii i technik elektromigracyjnych / Zygfryd Witkiewicz, Joanna Kałużna-Czaplińska. wyd. 6-1 w PWN. Warszawa, cop. Podstawy chromatografii i technik elektromigracyjnych / Zygfryd Witkiewicz, Joanna Kałużna-Czaplińska. wyd. 6-1 w PWN. Warszawa, cop. 2017 Spis treści Przedmowa 11 1. Wprowadzenie 13 1.1. Krótka historia

Bardziej szczegółowo

Prof. dr hab. inż. M. Kamiński aktualizacja : Techniki rozdzielania mieszanin w biotechnologii zagadnienia, pytania

Prof. dr hab. inż. M. Kamiński aktualizacja : Techniki rozdzielania mieszanin w biotechnologii zagadnienia, pytania Prof. dr hab. inż. M. Kamiński aktualizacja : 6-12-2010 Techniki rozdzielania mieszanin w biotechnologii zagadnienia, pytania 1. Zakresy zastosowań technik rozdzielania do przygotowania próbek / wsadów

Bardziej szczegółowo

Zakres zastosowań chromatografii wykluczania

Zakres zastosowań chromatografii wykluczania Zakres zastosowań chromatografii wykluczania CHROMATOGRAFIA WYKLUCZANIA (dawniej żelowa PC/SEC) prof. M. Kamiński WCh-PG Gdańsk, 2013 - Badanie rozkładu masy molekularnej różnego typu materiałów polimerów

Bardziej szczegółowo

OD HPLC do UPLC. Prof. dr hab. inż. Agata Kot-Wasik. Katedra Chemii Analitycznej Wydział Chemiczny, Politechnika Gdańska

OD HPLC do UPLC. Prof. dr hab. inż. Agata Kot-Wasik. Katedra Chemii Analitycznej Wydział Chemiczny, Politechnika Gdańska OD HPLC do UPLC Katedra Chemii Analitycznej Wydział Chemiczny, Politechnika Gdańska 1 PREHISTORIA 1966 Chromatogram autorstwa L.R.Snyder Analiza chinolin LC-GC North America, 30(4), 328-341, 2012 2 PREHISTORIA

Bardziej szczegółowo

KATEDRA INŻYNIERII CHEMICZNEJ I PROCESOWEJ INSTRUKCJE ĆWICZEŃ LABORATORYJNYCH

KATEDRA INŻYNIERII CHEMICZNEJ I PROCESOWEJ INSTRUKCJE ĆWICZEŃ LABORATORYJNYCH KATEDRA INŻYNIERII CHEMICZNEJ I PROCESOWEJ INSTRUKCJE ĆWICZEŃ LABORATORYJNYCH Operacje i techniki sorpcji desorpcji w układach cieczciało stałe / ciecz-ciecz w rozdzielaniu składników mieszanin / grup

Bardziej szczegółowo

5. WYZNACZENIE KRZYWEJ VAN DEEMTER a I WSPÓŁCZYNNIKA ROZDZIELENIA DLA KOLUMNY CHROMATOGRAFICZNEJ

5. WYZNACZENIE KRZYWEJ VAN DEEMTER a I WSPÓŁCZYNNIKA ROZDZIELENIA DLA KOLUMNY CHROMATOGRAFICZNEJ 5. WYZNACZENIE KRZYWEJ VAN DEEMTER a I WSPÓŁCZYNNIKA ROZDZIELENIA DLA KOLUMNY CHROMATOGRAFICZNEJ Opracował: Krzysztof Kaczmarski I. WPROWADZENIE Sprawność kolumn chromatograficznych określa się liczbą

Bardziej szczegółowo

OPTYMALIZACJA EFEKTÓW ROZDZIELANIA W KOLUMNACH KAPILARNYCH DOBÓR PRĘDKOŚCI PRZEPŁYWU GAZU

OPTYMALIZACJA EFEKTÓW ROZDZIELANIA W KOLUMNACH KAPILARNYCH DOBÓR PRĘDKOŚCI PRZEPŁYWU GAZU OPTYMALIZACJA EFEKTÓW ROZDZIELANIA W KOLUMNACH KAPILARNYCH DOBÓR PRĘDKOŚCI PRZEPŁYWU GAZU 1. WPROWADZENIE W czasie swej wędrówki wzdłuż kolumny pasmo chromatograficzne ulega poszerzeniu, co jest zjawiskiem

Bardziej szczegółowo

Wysokosprawna chromatografia cieczowa w analizie jakościowej i ilościowej

Wysokosprawna chromatografia cieczowa w analizie jakościowej i ilościowej Wysokosprawna chromatografia cieczowa w analizie jakościowej i ilościowej W analizie ilościowej z zastosowaniem techniki HPLC wykorzystuje się dwa możliwe schematy postępowania: kalibracja zewnętrzna sporządzenie

Bardziej szczegółowo

Techniki immunochemiczne. opierają się na specyficznych oddziaływaniach między antygenami a przeciwciałami

Techniki immunochemiczne. opierają się na specyficznych oddziaływaniach między antygenami a przeciwciałami Techniki immunochemiczne opierają się na specyficznych oddziaływaniach między antygenami a przeciwciałami Oznaczanie immunochemiczne RIA - ( ang. Radio Immuno Assay) techniki radioimmunologiczne EIA -

Bardziej szczegółowo

Instrukcja do ćwiczeń laboratoryjnych

Instrukcja do ćwiczeń laboratoryjnych UNIWERSYTET GDAŃSKI WYDZIAŁ CHEMII Pracownia studencka Katedra Analizy Środowiska Instrukcja do ćwiczeń laboratoryjnych Ćwiczenie nr 1 CHROMATOGRAFIA GAZOWA WPROWADZENIE DO TECHNIKI ORAZ ANALIZA JAKOŚCIOWA

Bardziej szczegółowo

KATEDRA INŻYNIERII CHEMICZNEJ I PROCESOWEJ

KATEDRA INŻYNIERII CHEMICZNEJ I PROCESOWEJ KATEDRA INŻYNIERII CHEMICZNEJ I PROCESOWEJ INSTRUKCJE DWICZEŃ LABORATORYJNYCH Ćwiczenie LC-3 Operacje i techniki sorpcji desorpcji w układach ciecz ciało stałe, ciecz ciecz, w warunkach jonowymiennych

Bardziej szczegółowo

ANALIZA ŚLADOWYCH ZANIECZYSZCZEŃ ŚRODOWISKA I ROK OŚ II

ANALIZA ŚLADOWYCH ZANIECZYSZCZEŃ ŚRODOWISKA I ROK OŚ II ANALIZA ŚLADOWYCH ZANIECZYSZCZEŃ ŚRODOWISKA I ROK OŚ II Ćwiczenie 1 Przygotowanie próbek do oznaczania ilościowego analitów metodami wzorca wewnętrznego, dodatku wzorca i krzywej kalibracyjnej 1. Wykonanie

Bardziej szczegółowo

Metody chromatograficzne w chemii i biotechnologii, wykład 6. Łukasz Berlicki

Metody chromatograficzne w chemii i biotechnologii, wykład 6. Łukasz Berlicki Metody chromatograficzne w chemii i biotechnologii, wykład 6 Łukasz Berlicki Techniki elektromigracyjne Elektroforeza technika analityczna polegająca na rozdzielaniu mieszanin związków przez wymuszenie

Bardziej szczegółowo

Podstawy chromatografii i technik elektromigracyjnych / Zygfryd Witkiewicz, Joanna Kałużna-Czaplińska. wyd. 5, 4 dodr. Warszawa, 2015.

Podstawy chromatografii i technik elektromigracyjnych / Zygfryd Witkiewicz, Joanna Kałużna-Czaplińska. wyd. 5, 4 dodr. Warszawa, 2015. Podstawy chromatografii i technik elektromigracyjnych / Zygfryd Witkiewicz, Joanna Kałużna-Czaplińska. wyd. 5, 4 dodr. Warszawa, 2015 Spis treści Przedmowa 11 1. Wprowadzenie 13 1.1. Krótka historia chromatografii

Bardziej szczegółowo

Chromatografia. Chromatografia po co? Zastosowanie: Optymalizacja eluentu. Chromatografia kolumnowa. oczyszczanie. wydzielanie. analiza jakościowa

Chromatografia. Chromatografia po co? Zastosowanie: Optymalizacja eluentu. Chromatografia kolumnowa. oczyszczanie. wydzielanie. analiza jakościowa Chromatografia Chromatografia kolumnowa Chromatografia po co? Zastosowanie: oczyszczanie wydzielanie Chromatogram czarnego atramentu analiza jakościowa analiza ilościowa Optymalizacja eluentu Optimum 0.2

Bardziej szczegółowo

Chromatografia. Chromatografia po co? Zastosowanie: Podstawowe rodzaje chromatografii. Chromatografia cienkowarstwowa - TLC

Chromatografia. Chromatografia po co? Zastosowanie: Podstawowe rodzaje chromatografii. Chromatografia cienkowarstwowa - TLC Chromatografia Chromatografia cienkowarstwowa - TLC Chromatografia po co? Zastosowanie: oczyszczanie wydzielanie analiza jakościowa analiza ilościowa Chromatogram czarnego atramentu Podstawowe rodzaje

Bardziej szczegółowo

Klasyfikacja procesów membranowych. Magdalena Bielecka Agnieszka Janus

Klasyfikacja procesów membranowych. Magdalena Bielecka Agnieszka Janus Klasyfikacja procesów membranowych Magdalena Bielecka Agnieszka Janus 1 Co to jest membrana Jest granica pozwalająca na kontrolowany transport jednego lub wielu składników z mieszanin ciał stałych, ciekłych

Bardziej szczegółowo

WYZNACZANIE ZAKRESU WYKLUCZANIA DLA WYPEŁNIEŃ STOSOWANYCH W WYSOKOSPRAWNEJ CHROMATOGRAFII WYKLUCZANIA (HPSEC)

WYZNACZANIE ZAKRESU WYKLUCZANIA DLA WYPEŁNIEŃ STOSOWANYCH W WYSOKOSPRAWNEJ CHROMATOGRAFII WYKLUCZANIA (HPSEC) WYZNACZANIE ZAKRESU WYKLUCZANIA DLA WYPEŁNIEŃ STOSOWANYCH W WYSOKOSPRAWNEJ CHROMATOGRAFII WYKLUCZANIA (HPSEC) 1. Wprowadzenie Chromatografia wykluczania (Size-Exclusion Chromatography (SEC)), zwana również

Bardziej szczegółowo

ZASTOSOWANIE CHROMATOGRAFII CIECZOWEJ W BIOTECHNOLOGII ŚRODOWISKOWEJ

ZASTOSOWANIE CHROMATOGRAFII CIECZOWEJ W BIOTECHNOLOGII ŚRODOWISKOWEJ Wstęp: ZASTOSOWANIE CHROMATOGRAFII CIECZOWEJ W BIOTECHNOLOGII ŚRODOWISKOWEJ Chromatografią cieczową nazywamy chromatografię, w której eluentem jest ciecz, zwykle rozpuszczalnik organiczny. HPLC (ang. High

Bardziej szczegółowo

Formularz opisu kursu (sylabus przedmiotu) na rok akademicki 2011/2010

Formularz opisu kursu (sylabus przedmiotu) na rok akademicki 2011/2010 Formularz opisu kursu (sylabus przedmiotu) na rok akademicki 2011/2010 Opis ogólny kursu: 1. Pełna nazwa przedmiotu: Metody Chromatografii... 2. Nazwa jednostki prowadzącej: Wydział Inżynierii i Technologii

Bardziej szczegółowo

Technik sorpcji i chromatografii to także techniki przygotowania wsadu do rozdzielania / próbki do analizy

Technik sorpcji i chromatografii to także techniki przygotowania wsadu do rozdzielania / próbki do analizy Chromatografia cieczowa jako technika rozdzielania, oczyszczania, otrzymywania czystych substancji / grup substancji, a także analityki technicznej i kontroli jakości -- podstawy HPLC/TLC/PLC prof. dr

Bardziej szczegółowo

TECHNOLOGIA OCZYSZCZANIA WÓD I ŚCIEKÓW. laboratorium Wydział Chemiczny, Studia Niestacjonarne II

TECHNOLOGIA OCZYSZCZANIA WÓD I ŚCIEKÓW. laboratorium Wydział Chemiczny, Studia Niestacjonarne II TECHNOLOGIA OCZYSZCZANIA WÓD I ŚCIEKÓW. laboratorium Wydział Chemiczny, Studia Niestacjonarne II opracowała dr inż. Dorota Jermakowicz-Bartkowiak Wymiana jonowa w podstawowych procesach technologicznych

Bardziej szczegółowo

KATEDRA INŻYNIERII CHEMICZNEJ I PROCESOWEJ

KATEDRA INŻYNIERII CHEMICZNEJ I PROCESOWEJ KATEDRA INŻYNIERII CHEMICZNEJ I PROCESOWEJ INSTRUKCJE DWICZEŃ LABORATORYJNYCH Ćwiczenie LC-4 Operacje i techniki adsorpcji desorpcji w układach ciecz - ciało stałe w rozdzielaniu składników mieszanin /

Bardziej szczegółowo

Rys. 1. Chromatogram i sposób pomiaru podstawowych wielkości chromatograficznych

Rys. 1. Chromatogram i sposób pomiaru podstawowych wielkości chromatograficznych Ćwiczenie 1 Chromatografia gazowa wprowadzenie do techniki oraz analiza jakościowa Wstęp Celem ćwiczenia jest nabycie umiejętności obsługi chromatografu gazowego oraz wykonanie analizy jakościowej za pomocą

Bardziej szczegółowo

Materiały polimerowe laboratorium

Materiały polimerowe laboratorium Materiały polimerowe laboratorium Wydział Chemiczny, Studia Stacjonarne II stopnia (magisterskie), rok 1, semestr 2 kierunek: INŻYNIERIA CHEMICZNA I PROCESOWA specjalność: Inżynieria procesów chemicznych

Bardziej szczegółowo

ZAKŁAD CHEMII ANALITYCZNEJ

ZAKŁAD CHEMII ANALITYCZNEJ ZAKŁAD CHEMII ANALITYCZNEJ Chemia analityczna I E 105 30 75 II 8 Chemia analityczna II E 105 30 75 III 7 Chromatografia II Zal/o 30 30 2 Elektroanaliza I Zal/o 45 15 30 285 105 180 Chemia analityczna I

Bardziej szczegółowo

CHROMATOGRAFIA CHROMATOGRAFIA GAZOWA

CHROMATOGRAFIA CHROMATOGRAFIA GAZOWA CHROMATOGRAFIA CHROMATOGRAFIA GAZOWA CHROMATOGRAFIA GAZOWA Chromatografia jest fizycznym sposobem rozdzielania gdzie rozdzielane składniki rozłożone są między dwiema fazami, Z których: jedna jest nieruchoma

Bardziej szczegółowo

Ilościowa analiza mieszaniny alkoholi techniką GC/FID

Ilościowa analiza mieszaniny alkoholi techniką GC/FID Ilościowa analiza mieszaniny alkoholi techniką GC/FID WPROWADZENIE Pojęcie chromatografii obejmuje grupę metod separacji substancji, w których występują diw siły: siła powodująca ruch cząsteczek w określonym

Bardziej szczegółowo

Wysokosprawna chromatografia cieczowa dobór warunków separacji wybranych związków

Wysokosprawna chromatografia cieczowa dobór warunków separacji wybranych związków Wysokosprawna chromatografia cieczowa dobór warunków separacji wybranych związków Instrukcja do ćwiczeń opracowana w Katedrze Chemii Środowiska Uniwersytetu Łódzkiego Opis programu do ćwiczeń Po włączeniu

Bardziej szczegółowo

KATEDRA INŻYNIERII CHEMICZNEJ I PROCESOWEJ INSTRUKCJE ĆWICZEŃ LABORATORYJNYCH

KATEDRA INŻYNIERII CHEMICZNEJ I PROCESOWEJ INSTRUKCJE ĆWICZEŃ LABORATORYJNYCH KATEDRA INŻYNIERII CHEMICZNEJ I PROCESOWEJ INSTRUKCJE ĆWICZEŃ LABORATORYJNYCH Ćwiczenie nr 2 Zastosowanie operacji i technik chromatografii wykluczania (GPC-SEC) w warunkach hydrofilowych. Rozdzielanie

Bardziej szczegółowo

Oznaczanie herbicydów z grupy triazyn z zastosowaniem techniki HPLC

Oznaczanie herbicydów z grupy triazyn z zastosowaniem techniki HPLC Instrukcja ćwiczeń laboratoryjnych analityka zanieczyszczeń środowiska Oznaczanie herbicydów z grupy triazyn z zastosowaniem techniki HPLC WSTĘP Herbicydy - środki chwastobójcze, stosowane do selektywnego

Bardziej szczegółowo

7. ROZDZIAŁ PREPARATYWNY W KOLUMNIE CHROMATOGRAFICZNEJ.

7. ROZDZIAŁ PREPARATYWNY W KOLUMNIE CHROMATOGRAFICZNEJ. 7. ROZDZIAŁ PREPARATYWNY W KOLUMNIE CHROMATOGRAFICZNEJ. opracował Wojciech Zapała I. WPROWADZENIE W tabeli 1. przedstawiono ogólne porównanie procesów chromatografii cieczowej prowadzonych w skali analitycznej

Bardziej szczegółowo

BADANIE ZAWARTOŚCI WIELOPIERŚCIENIOWYCH WĘGLOWODORÓW AROMATYCZNYCH (OZNACZANIE ANTRACENU W PRÓBKACH GLEBY).

BADANIE ZAWARTOŚCI WIELOPIERŚCIENIOWYCH WĘGLOWODORÓW AROMATYCZNYCH (OZNACZANIE ANTRACENU W PRÓBKACH GLEBY). BADANIE ZAWARTOŚCI WIELOPIERŚCIENIOWYCH WĘGLOWODORÓW AROMATYCZNYCH (OZNACZANIE ANTRACENU W PRÓBKACH GLEBY). Wprowadzenie: Wielopierścieniowe węglowodory aromatyczne (WWA) to grupa związków zawierających

Bardziej szczegółowo

Znaczenie i zastosowania chromatografii oraz rodzaje technik chromatograficznych

Znaczenie i zastosowania chromatografii oraz rodzaje technik chromatograficznych Marian Kamiński PODSTAWOWE POJĘCIA I PARAMETRY OPISUJĄCE UKŁADY CHROMATOGRAFICZNE. PODSTAWOWE ZASADY EFEKTYWNEGO STOSOWANIA CHROMATOGRAFII CIECZOWEJ DO ROZDZIELANIA I OZNACZANIA SKŁADU MIESZANIN Znaczenie

Bardziej szczegółowo

CHROMATOGRAFIA WYKLUCZANIA (dawniej żelowa GPC/SEC) prof. M. Kamiński WCh-PG Gdańsk, 2018

CHROMATOGRAFIA WYKLUCZANIA (dawniej żelowa GPC/SEC) prof. M. Kamiński WCh-PG Gdańsk, 2018 CHROMATOGRAFIA WYKLUCZANIA (dawniej żelowa GPC/SEC) prof. M. Kamiński WCh-PG Gdańsk, 2018 Zastosowania chromatografii wykluczania GPC/SEC - Badanie rozkładu masy molekularnej różnego typu materiałów polimerów

Bardziej szczegółowo

2.1. Charakterystyka badanego sorbentu oraz ekstrahentów

2.1. Charakterystyka badanego sorbentu oraz ekstrahentów BADANIA PROCESU SORPCJI JONÓW ZŁOTA(III), PLATYNY(IV) I PALLADU(II) Z ROZTWORÓW CHLORKOWYCH ORAZ MIESZANINY JONÓW NA SORBENCIE DOWEX OPTIPORE L493 IMPREGNOWANYM CYANEXEM 31 Grzegorz Wójcik, Zbigniew Hubicki,

Bardziej szczegółowo

ANALIZA ŚLADOWYCH ZANIECZYSZCZEŃ ŚRODOWISKA I ROK OŚ II

ANALIZA ŚLADOWYCH ZANIECZYSZCZEŃ ŚRODOWISKA I ROK OŚ II ANALIZA ŚLADOWYCH ZANIECZYSZCZEŃ ŚRODOWISKA I ROK OŚ II Ćwiczenie 2 Zastosowanie ekstrakcji do fazy stałej (Solid Phase Extraction, SPE) do wydzielenia frakcji wielopierścieniowych węglowodorów aromatycznych

Bardziej szczegółowo

EKSTRAKCJA W ANALITYCE. Anna Leśniewicz

EKSTRAKCJA W ANALITYCE. Anna Leśniewicz EKSTRAKCJA W ANALITYCE Anna Leśniewicz definicja: ekstrakcja to proces wymiany masy w układzie wieloskładnikowym i wielofazowym polegający na przeniesieniu jednego lub więcej składników z jednej fazy do

Bardziej szczegółowo

Jolanta Jaroszewska-Manaj 1. i identyfikacji związków organicznych. Jolanta Jaroszewska-Manaj 2

Jolanta Jaroszewska-Manaj 1. i identyfikacji związków organicznych. Jolanta Jaroszewska-Manaj 2 Jolanta Jaroszewska-Manaj 1 1 Chromatograficzne metody rozdzielania i identyfikacji związków organicznych Jolanta Jaroszewska-Manaj 2 Jolanta Jaroszewska-Manaj 3 Jolanta Jaroszewska-Manaj 4 Jolanta Jaroszewska-Manaj

Bardziej szczegółowo

PODSTAWY CHROMATOGRAFII GAZOWEJ

PODSTAWY CHROMATOGRAFII GAZOWEJ Politechnika Gdańska Wydział Chemiczny Katedra Chemii Analitycznej ĆWICZENIE LABORATORYJNE PODSTAWY CHROMATOGRAFII GAZOWEJ Opracowała: dr Lidia Wolska ZAKRES WYMAGANEGO MATERIAŁU: 1. Chromatografia: definicja,

Bardziej szczegółowo

Warszawa, Prof. dr hab. inż. Zygfryd Witkiewicz Instytut Chemii WAT

Warszawa, Prof. dr hab. inż. Zygfryd Witkiewicz Instytut Chemii WAT Warszawa, 2014-05-25 Prof. dr hab. inż. Zygfryd Witkiewicz Instytut Chemii WAT Recenzja rozprawy doktorskiej mgr Elżbiety Dobrzyńskiej, pt. Łączone techniki chromatograficzne w modelowaniu sorpcji wybranych

Bardziej szczegółowo

Metody chromatograficzne w chemii i biotechnologii, wykład 3. Łukasz Berlicki

Metody chromatograficzne w chemii i biotechnologii, wykład 3. Łukasz Berlicki Metody chromatograficzne w chemii i biotechnologii, wykład 3 Łukasz Berlicki Rozdział chromatograficzny Przepływ Faza ruchoma mieszanina Faza stacjonarna Chromatografia cieczowa adsorbcyjna Faza stacjonarna:

Bardziej szczegółowo

CHROMATOGRAFIA BARWNIKÓW ROŚLINNYCH

CHROMATOGRAFIA BARWNIKÓW ROŚLINNYCH POLITECHNIKA ŁÓDZKA INSTRUKCJA Z LABORATORIUM W ZAKŁADZIE BIOFIZYKI Ćwiczenie 1 CHROMATOGRAFIA BARWNIKÓW ROŚLINNYCH I. Wiadomości teoretyczne W wielu dziedzinach nauki i techniki spotykamy się z problemem

Bardziej szczegółowo

EKSTRAKCJA DO FAZY STAŁEJ (SPE)

EKSTRAKCJA DO FAZY STAŁEJ (SPE) EKSTRAKCJA DO FAZY STAŁEJ (SPE) Instrukcja do ćwiczeń opracowana w Katedrze Chemii Środowiska Uniwersytetu Łódzkiego. Celem procesu analitycznego jest uzyskanie informacji o interesującym nas przedmiocie

Bardziej szczegółowo

3. Jak zmienią się właściwości żelu krzemionkowego jako fazy stacjonarnej, jeśli zwiążemy go chemicznie z grupą n-oktadecylodimetylosililową?

3. Jak zmienią się właściwości żelu krzemionkowego jako fazy stacjonarnej, jeśli zwiążemy go chemicznie z grupą n-oktadecylodimetylosililową? 1. Chromatogram gazowy, na którym widoczny był sygnał toluenu (t w =110 C), otrzymany został w następujących warunkach chromatograficznych: - kolumna pakowana o wymiarach 48x0,25 cala (podaj długość i

Bardziej szczegółowo

Chromatografia z eluentem w stanie nadkrytycznym (SFC)

Chromatografia z eluentem w stanie nadkrytycznym (SFC) Chromatografia z eluentem w stanie nadkrytycznym (SFC) dr inż. Grzegorz Boczkaj Katedra Inżynierii Chemicznej i Procesowej WCHEM PG E-mail: grzegorz.boczkaj@gmail.com 1 Płyn w stanie nadkrytycznym Substancja

Bardziej szczegółowo

Repetytorium z wybranych zagadnień z chemii

Repetytorium z wybranych zagadnień z chemii Repetytorium z wybranych zagadnień z chemii Mol jest to liczebność materii występująca, gdy liczba cząstek (elementów) układu jest równa liczbie atomów zawartych w masie 12 g węgla 12 C (równa liczbie

Bardziej szczegółowo

PROCESY JEDNOSTKOWE W TECHNOLOGIACH ŚRODOWISKOWYCH WYMIANA JONOWA

PROCESY JEDNOSTKOWE W TECHNOLOGIACH ŚRODOWISKOWYCH WYMIANA JONOWA KIiChŚ PROCESY JEDNOSTKOWE W TECHNOLOGIACH ŚRODOWISKOWYCH Ćwiczenie nr 2 WYMIANA JONOWA Cel ćwiczenia Celem ćwiczenia jest określenie roboczej zdolności wymiennej jonitu na podstawie eksperymentalnie wyznaczonej

Bardziej szczegółowo

Analityka Zanieczyszczeń Środowiska

Analityka Zanieczyszczeń Środowiska Katedra Chemii Analitycznej Analityka Zanieczyszczeń Środowiska Oznaczanie Pestycydów w Wodach (GC) Prowadzący: mgr inż. Monika Kosikowska Gdańsk, 2010 1 1. Wprowadzenie Pestycydy to liczna i zróżnicowana

Bardziej szczegółowo

Identyfikacja węglowodorów aromatycznych techniką GC-MS

Identyfikacja węglowodorów aromatycznych techniką GC-MS Identyfikacja węglowodorów aromatycznych techniką GC-MS Instrukcja do ćwiczeń opracowana w Katedrze Chemii Środowiska Uniwersytetu Łódzkiego. 1.Wstęp teoretyczny Zagadnienie rozdzielania mieszanin związków

Bardziej szczegółowo

Ćwiczenie nr 1. Ekstrakcja i oznaczanie fenolu metodą SPE (solid phase extraction) z detekcją UV-Vis

Ćwiczenie nr 1. Ekstrakcja i oznaczanie fenolu metodą SPE (solid phase extraction) z detekcją UV-Vis Ćwiczenie nr 1 Ekstrakcja i oznaczanie fenolu metodą SPE (solid phase extraction) z detekcją UV-Vis Celem ćwiczenia jest zapoznanie się z techniką przygotowania próbki do analizy metodą zatężania do ciała

Bardziej szczegółowo

Ćwiczenie 1 Analiza jakościowa w chromatografii gazowej Wstęp

Ćwiczenie 1 Analiza jakościowa w chromatografii gazowej Wstęp Pracownia dyplomowa III rok Ochrona Środowiska Licencjat (OŚI) Ćwiczenie 1 Analiza jakościowa w chromatografii gazowej Wstęp Chromatografia jest metodą fizykochemiczną metodą rozdzielania składników jednorodnych

Bardziej szczegółowo

8. CHROMATOGRAFIA CIENKOWARSTWOWA

8. CHROMATOGRAFIA CIENKOWARSTWOWA 8. CHROMATOGRAFIA CIENKOWARSTWOWA opracował: Wojciech Zapała I. WPROWADZENIE Chromatografia cieczowa naleŝy do najwaŝniejszych metod analizy mieszanin róŝnorodnych związków chemicznych. Polega ona na zróŝnicowanej

Bardziej szczegółowo

Instrukcja do ćwiczeń laboratoryjnych

Instrukcja do ćwiczeń laboratoryjnych UNIWERSYTET GDAŃSKI Pracownia studencka Zakład Analizy Środowiska Instrukcja do ćwiczeń laboratoryjnych Ćwiczenie nr 3 Oznaczanie witaminy E w oleju metodą HPLC ANALIZA PRODUKTÓW POCHODZENIA NATURALNEGO

Bardziej szczegółowo

ANALITYKA ZANIECZYSZCZEŃ ŚRODOWISKA ROK V SEM. IX

ANALITYKA ZANIECZYSZCZEŃ ŚRODOWISKA ROK V SEM. IX ANALITYKA ZANIECZYSZCZEŃ ŚRODOWISKA ROK V SEM. IX Materiały do ćwiczenia laboratoryjnego: OZNACZANIE HERBICYDÓW Z GRUPY TRIAZYN - GC Prowadzący - Mgr inż. Angelika Beyer OZNACZANIE PESTYCYDÓW W WODACH

Bardziej szczegółowo

ODNAWIALNE ŹRÓDŁA ENERGII I GOSPODARKA ODPADAMI STUDIA STACJONARNE

ODNAWIALNE ŹRÓDŁA ENERGII I GOSPODARKA ODPADAMI STUDIA STACJONARNE PROGRAM ĆWICZEŃ LABORATORYJNYCH Z CHEMII (SEMESTR ZIMOWY) ODNAWIALNE ŹRÓDŁA ENERGII I GOSPODARKA ODPADAMI STUDIA STACJONARNE Ćwiczenie 1 (Karty pracy laboratoryjnej: 1a, 1b, 1d, 1e) 1. Organizacja ćwiczeń.

Bardziej szczegółowo

ĆWICZENIE 3: CHROMATOGRAFIA PLANARNA

ĆWICZENIE 3: CHROMATOGRAFIA PLANARNA ĆWICZENIE 3: CHROMATOGRAFIA PLANARNA Chromatografia jest to metoda chemicznej analizy instrumentalnej, w której dokonuje się podziału substancji (w przeciwprądzie) między fazę nieruchomą i fazę ruchomą.

Bardziej szczegółowo

Walidacja metod analitycznych Raport z walidacji

Walidacja metod analitycznych Raport z walidacji Walidacja metod analitycznych Raport z walidacji Małgorzata Jakubowska Katedra Chemii Analitycznej WIMiC AGH Walidacja metod analitycznych (według ISO) to proces ustalania parametrów charakteryzujących

Bardziej szczegółowo

Chemia środków ochrony roślin Katedra Analizy Środowiska. Instrukcja do ćwiczeń. Ćwiczenie 2

Chemia środków ochrony roślin Katedra Analizy Środowiska. Instrukcja do ćwiczeń. Ćwiczenie 2 UNIWERSYTET GDAŃSKI WYDZIAŁ CHEMII Chemia środków ochrony roślin Katedra Analizy Środowiska Instrukcja do ćwiczeń Ćwiczenie 2 Ekstrakcja pestycydów chloroorganicznych z gleby i opracowanie metody analizy

Bardziej szczegółowo

RECENZJA rozprawy doktorskiej mgr inż. Beaty Rukowicz pt. Wydzielanie polioli z brzeczek fermentacyjnych metodami sorpcyjnymi

RECENZJA rozprawy doktorskiej mgr inż. Beaty Rukowicz pt. Wydzielanie polioli z brzeczek fermentacyjnych metodami sorpcyjnymi Katedra Inżynierii Chemicznej i Procesowej Wydział Chemiczny, Politechnika Rzeszowska Prof. dr hab. inż. Dorota Antos Al. Powstańców Warszawy 6, 35-959 Rzeszów tel. (+48 17) 865 18 53, email: dorota.antos@prz.edu.pl

Bardziej szczegółowo

Wydział Budownictwa i Inżynierii Środowiska. Poziom i forma studiów. Ścieżka dyplomowania: przedmiotu: 0) Semestr: W - 15 C- 0 L- 30 P- 0 Ps- 0 S- 0

Wydział Budownictwa i Inżynierii Środowiska. Poziom i forma studiów. Ścieżka dyplomowania: przedmiotu: 0) Semestr: W - 15 C- 0 L- 30 P- 0 Ps- 0 S- 0 Wydział Budownictwa i Inżynierii Środowiska Nazwa programu kształcenia (kierunku) Biotechnologia Poziom i forma studiów studia I stopnia stacjonarne Specjalność: Przedmiot wspólny Ścieżka dyplomowania:

Bardziej szczegółowo

Metody chromatograficzne w chemii i biotechnologii, wykład 5. Łukasz Berlicki

Metody chromatograficzne w chemii i biotechnologii, wykład 5. Łukasz Berlicki Metody chromatograficzne w chemii i biotechnologii, wykład 5 Łukasz Berlicki Chromatografia cieczowa adsorbcyjna Faza stacjonarna: Ciało stałe -> chromatografia adsorbcyjna Faza ruchoma: Ciecz -> chromatografia

Bardziej szczegółowo