Oddziaływanie fali elektromagnetycznej z ośrodkiem
|
|
- Bronisława Wrona
- 8 lat temu
- Przeglądów:
Transkrypt
1 Oddzałwa al lkomagczj z ośodkm
2 Lowa odowdź ośodka dlkczgo a zwęz zabuz ol lkomagcz al k P aęŝ ola lkczgo olazacja ośodka P ZałóŜm dla uława, Ŝ: - zajmujm sę ośodkm zooowm - zakładam, Ŝ olazacja js oocjoala do zwęzgo ola lkczgo omjam k low! χ P P χ odaość dlkcza
3 Lowa odowdź ośodka dlkczgo Wko dukcj lkczj moŝa wazć jako: P χ D Wko dukcj magczj: M χm P Względa sała dlkcza ośodka: D χ B M χ M - względa odaość magcza: Względa zkalość magcza: χ M
4 D j B B D ρ Rówaa Mawlla Pawo Gaussa dla lkosak Pawo Gaussa dla magosak ma moool magczch Pawo Faadaa Pawo Ama z ądm zsuęca dug składk o awj so Rówaa maałow dując ośodk j j B D względa zkalość magcza j - gęsość ądu, - zwodcwo w ogólośc so dug składk o awj so
5 Fal lkomagcz w ośodku bz swobodch ładuków ądów zolao magcz D B j ρ B Rówaa Mawlla B D D, D j B Bzm oację z wszgo ówaa kozsam z duggo ówaa: Wadomo, Ŝ zachodz oŝsamość wkoowa Jdak z aku, Ŝ ρ wka, Ŝ R
6 Zam ówa R zjmuj osać: Posać go ówaa js dcza z klasczm ówam alowm ψ ψ υ R Zam ówa R osuj al lkomagcz o ędkośc słającj zwązk υ, W óŝ W ośodku υ c c c υ m s - wsółczk załamaa
7 Dla ośodków magczch dla częsośc oczch moŝa zjąć Wsółczk załamaa Zwązk mędz sałą dlkczą a wsółczkm załamaa Rozwązaa dla ola lkczgo al lkomagczj oagującj sę w kuku z ma osać: gdz k - lczba alowa z, kz Po odsawu do ówaa R dosajm zwązk: k mówm o jdm wmaz w ogólośc wko alow k π λ π z z, c λ υ c c υ Długość al w ośodku Bz absocj: λ js mjsza Ŝ w óŝ, sąd zjawsko załamaa śwała! - amluda ulga zma, - zalŝ od częsośc!
8 Kosukcja al załamaj PóŜa λ Ośodk λ λ / Częsość o obu soach gac js dcza
9 Jak osać absocję załama jdoczś?
10 Zsolo wsółczk załamaa ~ κ - zwkł wsółczk załamaa κ - wsółczk kskcj k ~ c κ c z, κ z c κ z c z c zak wkładcz amlud ochłaa g oagacja al z ędkoścą azową c/
11 Zam zmaa aęŝa al lkomagczj o zjścu dsasu z : κ z I z z I c al z awa B a: z I αz I κ α c λ Zwązk omędz zsolom wsółczkm załamaa sała dlkczą: - długość al w óŝ 4πκ λ ~ κ ~ ~ κ κ Zwązk omędz częścą zczwsą częścą uojoą ukcj dlkczj
12 Dla słabo absobującgo mdum κ js mał wd: κ κ κ Czl wsółczk załamaa zwąza js z częścą zczwsą zsoloj ukcj dlkczj dlkczj Wsółczk kskcj okślo js głów zz część uojoą zsoloj ukcj MoŜa Ŝ wazć wsółczk załamaa wsółczk kskcj zz zczwsą uojoą część ukcj dlkczj: κ / / / /
13 Fala lkomagcza a gac ośodków
14 RozwaŜm alę lkomagczą oagującą sę wzdłuŝ os z k z z, z, z, z, kz ~ z c Odbc od gac ośodków ada osoadł ~ z c óŝa ala adająca ala odba o o mdum ocz schaakzowa zz ~ κ ala oagująca sę w ośodku
15 Wauk cągłośc a gac ośodków o o B Zwązk omędz olm lkczm magczm al lkomagczj ZałoŜlśm, Ŝ,, kz kz z z kz kz z z k kz B k c k ~
16 o o c k ~ Dla óŝ: Dla ośodka magczgo, ~, ~ o o ~ o ~ ~ ~ ~ κ κ R o Gd absocja js mała ośodk zzoczs R R R Czl zając wsółczk odbca R moŝm wzaczć wsółczk załamaa ośodka zzoczsgo wóćm a chwl do ubu
17 Wdmo asmsj dosacza Ŝ omacj o wsółczku odbca T.86 R.75 Pzkład - wdma ubu oma w mauz 3K 77K A. Kuźak, II Pacowa WF UW 6 Dla małch α T R R R T T R R,76 Al O 3 :,77o,,763
18 Pzkład Mak Fo, Ocal os o solds Zsolo wsółczk załamaa gmau dla śwała o długośc al 4 m czl dla g wększch od zw gczj gmau da js wzom ~ Wzaczć: a ędkość azową śwała o długośc al 4m w gma. b wsółczk absocj gmau dla j długośc al c wsółczk odbca Ad. a Pędkość azowa zwązaa js z częścą zczwsą υ c Ad. b Wsółczk absocj α m s.74 m s ~ κ 4πκ 4π c λ 4 m m Ad. c Wsółczk odbca κ 4.4 κ R.47 R κ cm N uwzględając κ mlbśm: Czl za mało!
19 Włw swobodch ośków ładuku a własośc ocz ośodka ZalŜość własośc oczch od częsolwośc al lkomagczj Zwązam ładukam zajmm sę w asęj koljośc oczwśc wkozsując modl osclaoa hamoczgo
20 Jak uwzględć włw swobodch ośków w ośodku? Klascz ówa uchu łumogo lkou w olu lkczm: d d m mγ d d RozwaŜm ol lkcz osclując z częsoścą Posulujm ozwąza sacjoa: R3 Po odsawu do R3 dosajm: m γ Sąd olazacja gazu lkoowgo: N P N m γ Zakładam, Ŝ wszsk ośk zalŝ agują a zabuz τ γ chaakscz zalŝ od częsośc czas ozaszaa τ js zwąza z wsółczkm łuma γ
21 Zam dukcja lkcza w ośodku ws: Z dcj N D P m γ D Zam N m γ Zwkl zwązk zasujm w osac: γ gdz: N m / - częsolwość lazmowa Zam zjdzm do badzj złoŝoch ssmów ozwaŝm ajw suację gd, ssm js słabo łumo γ, wd
22 < Jśl ~ C ~ ~ C C C C R Odbc malcz!!! % ~ Pamęam, Ŝ > ~ ~ ~ R Odbc częścow,, R R Odbc częścow
23 R/ Mal Tow odbc lazmow wsęuj lko dla mal, al ówŝ dla ółzwodków Domszkowach- zajmm sę m wkóc. Dla częsośc śwała z obszau wdzalgo ν ~ π 4 γ ~ z 5 z 3 / >> γ MoŜm węc jakoścowo moŝm osać zachowa złoa, sba, alumum... Modl Dudgo jakoścowo osuj zachowa kzwj odbca mal.
24 d d m mγ d d γ Jak uwzględć łum? Rówa uchu lkou w olu moŝa zasać jszcz aczj: Ŝb okazać, Ŝ absocja zwodcwo są z sobą zwąza d v d Skoo zwęz ol lkcz oscluj odcz, To sodzwam sę ówŝ odczgo zachowaa ędkośc: Gęsość ądu js zwązaa z ędkoścą ośków υ υ j Nυ N τ m γ τ d v d τ υ τ - czas ozosza ędowgo τ m τ - zwodcwo sałoądow τ
25 τ τ τ m N τ γ m N Zwązk omędz ukcją dlkczą zwodcwm Pamęam, Ŝ Zaszm węc aczj τ τ τ τ Poma ocz są ówowaŝ omaow zwodcwa zmoądowgo!
26 RozwaŜm suację skch częsośc τ << τ << N m γ Składow zsoloj ukcj dlkczj ~ będą mał osać: τ << τ << >> τ τ τ τ N m Pamęam κ / / / / / Pamęam N m N τ m / κ c τ / κ τ α c c Wsółczk absocj js oocjoal do waska z sałoądowgo zwodcwa częsośc!
27 k askókow z z / δ I z I z / δ Pamęam I z α κ z c z I I αz δ α Dla mdz z częsolwośc 5z δ 9mm z częsolwośc Mz δ 6.m
28 Rzczws zwcadło malcz k łuma Pzwodcwo Al3K 4. 7 Ω - m - m τ N 8. 5 Dla długośc al λ 5 m s λ πc Kocacja dla Al: N.8 9 m ad/s τ τ τ R τ κ κ. / /. / / 6. κ Tłum dukuj wsółczk odbca!
29 Zwązk omędz ukcją dlkczą zwodcwm gazu lkoowgo - zmśl Cz owo o as dzwć? W ozdm smsz własośc gazu lkoowgo dskuowa bł w oacu o ówa Bolzmaa. Pozwala oo śldz w jak sosób ozkład ośków, w ówowadz modamczj zma sę od włwm sł zwęzch oaz w wku ozaszaa lkoów... k k kt, k, F -ozkład ówowagow zalŝ ołoŝa - ozkład ośków osując lokalą ówowagę dla obszaów duŝch w oówau z wmaam aomów odlgłoścam aomowm
30 RozwaŜm zmaę ukcj w czas od -d do. Po złoŝu zwęzgo ola lkczgo, lko kó zajduj sę w ukc ma wko alow, mał w chwl -d wsółzęd υ k d Bz ozaszaa:, k, k k d h d, k, υ k d, k, d h Jśl zz wazm zmaę ukcj wwołaą ozaszam, o s d υ k d, k, d h Po ozwęcu ówaa do człoów lowch względm d ozmam: υ h k s s d
31 W zblŝu czasu laksacj zakładam, Ŝ τ s Odsęswo od sau ówowagowgo JŜl zabuz ma chaak oksow,. js o ala lkomagcza o częsośc o k τ υ h τ υ k h τ τ τ śb wkozsać wk dla ówaa Bolzmaa osującgo suację sacjoaą w czas musm dokoać zama:
32 W ółzwodkach s 9 ~ τ zam czło uojo zsuę w az alŝ uwzględać dla, czl dla mkoal. s 9 ~ Pzwodcwo, zalŝ od będz zsolo: * m N m N τ τ τ * τ τ τ τ m N m N * π j Pojawa sę zsuęc azow mędz olm lkczm a ądm. Pądow zsuęca owazszą ocs dssacj g. ąd zwodcwa ąd zsuęca
Oddziaływanie fali elektromagnetycznej z ośrodkiem
Oddzałwa al lkoagczj z ośodk Lowa odowdź ośodka dlkczgo a zwęz ol lkcz k P aęż ola lkczgo olazacja ośodka P Załóż dla uława, ż - zajuj sę ośodk zooow - zakłada, ż olazacja js oocjoala do zwęzgo ola lkczgo
Własności optyczne półprzewodników
Własośc oycz ółzwodków Adzj Wysmołk Wykład zygooway w oacu o wykłady owadzo a Wydzal Fzyk Uwsyu Waszawakgo zz of. Maaa Gybga oaz of. Romaa Sęwskgo Klasyfkacja ocsów oyczych śwało adając oagacja śwała w
Własności optyczne półprzewodników
Własnośc opyczn półpzwodnków Andzj Wysmołk Wykład pzygoowany w opacu o wykłady powadzon na Wydzal Fzyk Unwsyu Waszawskgo pzz pof. Maana Gynbga oaz pof. Romana Sępnwskgo Klasyfkacja pocsów opycznych śwało
ń ź ń ń ć Ń ź ż ń ż ż Ń Ą ń ń Ę ń ń ń ż Ł ż Ł ż ń ć ź Ą źż ć ń Ę Ł ż Ą ć ż Ą ń Ł ż ń ż ń Ą ż ń ń ż ź ż ń ń ŚÓ ń Ś ź Ó Ł ć Ą Ń ż Ś ń Ą ń ń ń ż ń ź ń ż ź ń ń ż ż ń ń ż Ń ń ń ź ź Ą ń Ę Ń ń ń ń Ę ż Ś Ę ć Ń
Transmisja i odbicie fali na granicy dwóch ośrodków dielektrycznych
Tasmsja odbce fal a gac dwóch ośodków delekcch Now poblem oważaa eegece w óżch ośodkach Dochcas sosowae pojęce eswośc bło wsacające do poówwaa śedego pepłwu moc pomeowaa w m samm ośodku Objawoe fak Moża
FUNKCJE DWÓCH ZMIENNYCH
FUNKCJE DWÓCH MIENNYCH De. JeŜel kaŝdemu puktow (, ) ze zoru E płaszczz XY przporządkujem pewą lczę rzeczwstą z, to mówm, Ŝe a zorze E określoa została ukcja z (, ). Gd zór E e jest wraźe poda, sprawdzam
Ł Ą ż ż Ś Ą ż ż Ń Ę ż Ą ż ż Ą ć Ą ż ż Ą Ń ż ż Ę ż ż ż ż ćż ż Ś Ź ż Ź ć ż ż ż ż ż ć ż ż ć ż ć ż ż Ś ż ć ż ż ż ć ż ż ż ż ż ż ż Ź ż ć ż ż ż ć Ź ćż ż ć ż ż ż ż Ż Ń ż ż ż ż Ź ć ż ć ż ć ż ż ż ż ż ć ż ż ż Ź ć
ź ż ć ć Ę ż ż ż ż ż ż ż ć ż ź Ę ć ż ż ż Ę ż ż ż ż ż ż ż ź ź ż ż ć ź ź ż ź ź ć ź ż ź ć ź ź ć ź Ę ź ż ź ż ć Ę ż ż ż ć ż ż ż ź ż ż ż ż ż ż ż ć ć ż ż ż ż ż ż ż ż ż ż ż ż ż ż ż ż ż ż ż ć ć ć ć ć ć Ę ż Ę ż ż
Polaryzacja i ośrodki dwójłomne. Częśd I
Polaracja ośrodk dwójłom Cęśd Wkorow ops fal lkromagcj r, H r, D r, B r, -wkor aęża pola lkrcgo -wkor aęża pola magcgo -wkor dukcj dlkrcj -wkor dukcj magcj Wkor, kórch współręd alżą od położa casu, powąa
Teoria Sygnałów. II rok Geofizyki III rok Informatyki Stosowanej. Wykład 4. iωα. Własności przekształcenia Fouriera. α α
ora Sygałów rok Gozyk rok ormatyk Stosowaj Wykład 4 Własośc przkształca ourra własość. Przkształc ourra jst low [ β g ] βg dowód: rywaly całkowa jst opracją lową. własość. wrdz o podobństw [ ] dowód :
Ł Ł Ń Ą Ę Ó Ś ę Ż żń ĆŻ Ż ś ść Ż Ó Ż Ż ń ść ń ę Ź ż Ż Ż ż ń ż ń Ż ÓŻ Ś Ó Ź Ż Ż Ź Ż ń Ż ś Ż Ż Ż Ż ść ż Ż Ż ń ń ść Ż ś Ż ś ż ś Ó ę ś ś Ż ż śż ś ż ę ę Ó Ż Ś Ó Ż Ó Ż ń ż ś Ż ń ż Óż ń ś ę ć Ż Ż ś żż Ż ś Ś Ż
24-01-0124-01-01 G:\AA_Wyklad 2000\FIN\DOC\Geom20.doc. Drgania i fale III rok Fizyki BC
4-0-04-0-0 G:\AA_Wyklad 000\FIN\DOC\Geom0.doc Dgaa ale III ok Fzyk BC OPTYKA GEOMETRYCZNA. W ośodku jedoodym śwatło ozcodz sę ostolowo.. Pzecające sę omee śwetle e zabuzają sę awzajem. 3. Pawo odbca śwatła.
Dyrektor oraz pracownicy Miejsko - Gminnego Ośrodka Kultury w Kowalewie Pomorskim
Wszystkim Nauczycielom i pracownikom oświaty z okazji Dnia Edukacji Narodowej moc najserdeczniejszych życzeń, spełnienia najskrytszych marzeń oraz byście mogli w pełni realizować swoje plany życiowe i
Wpływ pola magnetycznego na plazmę w półprzewodnikach
Włw ola agntngo na laę w ółwodnkah Założna ol agntn B n włwa na olaaję dn atoowh at n alż od B ol agntn n włwa na olaaję, an na ęstoś własn odów fononowh Jdn włw ola agntngo na olaaję wnka jgo włwu na
Ą Ą Ą Ń Ę Ę ń ń ń Ń Ń Ń ń Ą Ą ń ń ćż Ą Ę ń ń ń Ó ń Ż Ą ń ŚĆ Ń Ś Ń Ś Ą Ś ć ń ć ź ń Ń ń ć ź Ń Ś Ó Ż ń ź ź ń ĄŚ Ą Ś Ń ń ń ń Ę Ę ń Ż Ż Ż ń ć ń Ń ć ń Ń ŚĆ Ć ń Ń Ń ŚÓ Ą ć ć Ą Ń ź Ę ć ć ć ź ć ć ź ć ź ć ź Ę ć
ś ó ś ń ś ś ś ó ś ś ś ś ś ś ś ś ó ń ś ś Ł ń ć ś ś ó ó ś ń ó ń ś ó Ń ś ó ś ć ó ó Ą ń ó Ń ś ó ś ś ś ś ś ś ś ś Ą ń ó ó ś śó ś ń ó ś ś Ł Ą Ć ó ś ś ś Ą śó ś ś ś ó Ń śó ś śó Ś ń ó ś ń ó ś ś ć ś ś ó ó śó ś ś
v = v i e i v 1 ] T v =
v U = e i,..., e n ) v = n v i e i i= e i i v T v = = v v n v n U v v v +q 3q +q +q b c d XY X +q Y 3q r +q = r 3q = r +q = r +q = r 3q = r +q = E = E +q + E 3q + E +q = k q r+q 3 + k 3q r 3q 3 b V = kq
W Wymiana ciepła. Opór r cieplny Przewodzenie ciepła Konwekcja Promieniowanie Ekranowanie ciepła. Termodynamika techniczna
W0 56 Opó ciplny Pzwodzni cipła Konwkcja Pominiowani Ekanowani cipła w0 Waunkim pzpływu cipła a między dwoma ośodkami o jst óŝnica tmpatu Cipło o pzpływa z ośodka o o tmpatuz wyŝszj do ośodka o o tmpatuz
STATYSTYKA PODSTAWOWE WZORY DOZWOLONE NA EGZAMINIE NA STUDIACH LICENCJACKICH
STATYSTYKA PODSTAWOWE WZORY DOZWOLONE NA EGZAMNE NA STUDACH LCENCJACKCH Oacoa zgooa zz d Maę Wczo a oda:. P. Kuz, J. Podgó: Saa. Wzo ablc. SGH, Wazaa, 8. M. Wczo: Saa. Lubę o! Zbó zadań. SGH, Wazaa 6 .
ó ę ą ż ż ś ść Ó Ś ż Ó Ś ę ą żć ó ż Ó ż Ó ó ó ż Ó ż ó ą ą Ą ś ą ż ó ó ż ę Ć ż ż ż Ó ó ó ó ę ż ę Ó ż ę ż Ó Ę Ó ó Óś Ś ść ę ć Ś ę ąć śó ą ę ęż ó ó ż Ś ż
Ó śó ą ę Ę śćś ść ę ą ś ó ą ó Ł Ó ż Ś ą ś Ó ą ć ó ż ść śó ą Óść ó ż ż ą Ś Ś ż Ó ą Ó ą Ć Ś ż ó ż ę ąś ó ć Ś Ó ó ś ś ś ó Ó ś Ź ż ą ó ą żą śó Ś Ó Ś ó Ś Ś ąś Ó ó ę ą ż ż ś ść Ó Ś ż Ó Ś ę ą żć ó ż Ó ż Ó ó ó
ZADANIA Z ANALIZY MATEMATYCZNEJ dla I roku kierunku informatyka WSZiB
pro. dr hb. Stisłw Biłs ZADANIA Z ANALIZY MATEMATYCZNEJ I roku kieruku iormtyk WSZiB I. ELEMENTARNE WŁASNOŚCI FUNKCJI. Wyzczyć dziedzię ukcji: 5 7 log[ log 5 6. b c ] d. Wyzczyć przeciwdziedzię ukcji:
latarnia morska wę d elbląg malbork an o el a z o i s olsztyn zamek krzyżacki w malborku Wisła płock żelazowa wola ęży z a me k ól.
T ę Ł ó 499 ż Y ę ą T T ą ść ż B ę ó ąż ę ąż żą ó ę ż ę ś Ś SZ ź ź S żó ż śó ś ść E ó E ń ó ó ó E ó ś ż ó Ł Gó ę ó SZ ś ż ę ę T 6 5 ó ż 6 5 : 685 75 ą ę 8 Ó ńó ę: : U 5 ó ż ó 5 Śą Gó 4 ść ę U żę ż ć Z
Rezonanse w deekscytacji molekuł mionowych i rozpraszanie elastyczne atomów mionowych helu. Wilhelm Czapliński Katedra Zastosowań Fizyki Jądrowej
ezonanse w deekscytacj moekuł monowych ozpaszane eastyczne atomów monowych heu Whem Czapńsk Kateda Zastosowań Fzyk Jądowej . ezonanse w deekscytacj moekuł monowych µ He ++ h ++ Heµ h J ν h p d t otacyjna
Ł Ź Ż ć Ą Ż ć Ż Ż Ż ć ć Ż Ż ć Ż ć Ź Ź ć Ż Ż Ż Ę Ę Ż ć ć ć Ż Ż ć ć ć ć Ż ć ć Ż ć Ż Ż Ż Ź Ź Ż Ż Ż ć Ż Ż Ó Ż Ż ć Ż Ż ć Ż ć Ż ć Ż ć ć Ź ć Ć Ż Ż Ż Ż Ż Ż Ż Ż ć Ż Ź Ż ć Ż Ż Ż Ż Ż ć ć ć Ż ć Ł Ź ć Ź Ź Ź ć Ż Ż Ż
Nośniki swobodne w półprzewodnikach
Nośniki swobodne w półpzewodnikach Półpzewodniki Masa elektonu Masa efektywna swobodnego * m m Opócz wkładu swobodnych nośników musimy uwzględnić inne mechanizmy np. wkład do polayzaci od elektonów związanych
WYKŁAD FIZYKAIIIB 2000 Drgania tłumione
YKŁD FIZYKIIIB Drgania łumione (gasnące, zanikające). F siła łumienia; r F r b& b współczynnik łumienia [ Nm s] m & F m & && & k m b m F r k b& opis różnych zjawisk izycznych Niech Ce p p p p 4 ± Trzy
METODY KOMPUTEROWE 1
MTODY KOMPUTROW WIADOMOŚCI WSTĘPN MTODA ULRA Mcał PŁOTKOWIAK Adam ŁODYGOWSKI Kosultacje aukowe dr z. Wtold Kąkol Pozań 00/00 MTODY KOMPUTROW WIADOMOŚCI WSTĘPN Metod umercze MN pozwalają a ormułowae matematczc
RUCH FALOWY. Ruch falowy to zaburzenie przemieszczające się w przestrzeni i zmieniające się w
RUCH FALOWY Ruch alowy to zaburzenie przemiezczające ię w przetrzeni i zmieniające ię w czaie. Podcza rozchodzenia ię al mechanicznych elementy ośrodka ą wytrącane z położeń równowagi i z powodu właności
I. Metoda Klasyczna. Podstawy Elektrotechniki - Stany nieustalone. Zadanie k.1 Wyznaczyć prąd i w na wyłączniku. R RI E
Podsawy lkohnk - Sany nsalon. Moda Klasyzna Zadan k. Wyznazyć pąd w na wyłąznk. w? kładay ównana na podsaw sha. ównan haakysyzn: w d d w w d d d d d d p p p w Zadan k. Znalźć aką hwlę zas x aby spłnony
Wnioskowanie statystyczne dla korelacji i regresji.
STATYSTYKA MATEMATYCZNA WYKŁAD 6 Woskowae statstcze dla korelacj regresj. Aalza korelacj Założee: zmea losowa dwuwmarowa X, Y) ma rozkład ormal o współczku korelacj ρ. X, Y cech adae rówocześe. X X X...
STATYSTYCZNY OPIS UKŁADU CZĄSTEK
WYKŁAD 6 STATYSTYCZNY OPIS UKŁADU CZĄSTK Zespół statcz moża opisać: ) Klasczie pzestzeń fazowa P ( P PN, q, q q N) q Każda kofiguacja N cząstek zespołu statczego opisaa jest puktem w pzestzei fazowej.
Granica i ciągłość funkcji. 1 Granica funkcji rzeczywistej jednej zmiennej rzeczywsitej
Wydział Matematyki Stosowanej Zestaw zadań nr 3 Akademia Górniczo-Hutnicza w Krakowie WEiP, energetyka, I rok Elżbieta Adamus listopada 07r. Granica i ciągłość funkcji Granica funkcji rzeczywistej jednej
Rezonansowe tworzenie molekuł mionowych helu i wodoru oraz ich rotacyjna deekscytacja
zonanow twozn molkuł monowych hlu wodou oaz ch otacyjna dkcytacja Wlhlm Czaplńk Katda Zatoowań Fzyk ądowj w wpółpacy z N.Popovm W.Kamńkm Itnj 6 odzajów molkuł monowych hlu wodou: 4 H µ p Hµ d Hµ t 4 H
ń Ż ć Ą Ę Ę ń Ą Ż ń Ż ń Ę Ę Ę ń Ż ń Ś ń ć Ś ń ń ń ń ń Ę Ę Ą ń Ą Ń Ę ń Ż Ń ń Ź ń Ż Ś ń Ż ń ń ń Ź Ż Ą ń ń Ż ń ć Ś ń ń ź ń ń Ź ń Ś Ź ń ń ń Ż ń ć Ś ń ń ć Ż Ę ń ć Ś Ś Ż ń Ź Ż ń ń Ą ń Ś Ść Ń ń ń ź ń Ż ń Ż Ż
ć ć Ż ć Ż ć ć ź ć ć ć ć ć ć ć ć ć ź ć ć ź Ę ć ć ź ć ź ć ć ć ć ć ć ć Ę ć ć ź ć ć ź ź ź ź ź ź Ę Ę ź Ę ć ź ć ź ź ć ć ć Ę ć ź ź ć ź ć ć ź Ą ć ź ź ź ź ć ć ć Ę ź ź ć ć ć ć ć ć ź ź ć ć ć ć ć ć ć ć ć ć ć ź ź ć
Ś Ę Ż Ż Ł ź ź Ę ź Ę Ą Ę ź ć Ś Ą ć Ą ź ć Ó Ę ć ć Ś ć ć Ń ć Ż Ź Ż ć Ś ć Ę Ę Ę Ł ź ć Ś Ś ź Ł ć Ę ć Ł ć ź Ł ć Ż ć Ą Ś Ę ź Ę ć ź ć Ł Ń Ę ć Ś ź ć Ł Ł Ń ć ć ć ć Ę Ę ć ć Ż Ń Ń ŻŻ Ż Ę Ż ć ć Ę Ż Ó ć Ł Ą ć Ś Ę ć
Ł Ś Ą Ł Ę ź Ł Ł Ę Ł ź Ł Ł Ś Ł Ł ż Ł Ś Ł Ł Ś Ł ź Ę ź Ł Ł Ł Ł Ł Ł ź ć ż Ę ż Ł ż ż ć ć ć ć ć ć ż Ę ć ć ć ć ć ć ż ż ć ż ż ż ż Ł Ś Ł ż ż ć ć ć ż ć ć ć ć ż ż ż Ł Ś Ł ż Ł Ł Ł ż Ł Ś Ł Ł Ś Ł ż Ł Ś Ł ź ż Ę ż ż ź
ź Ę ć Ż Ż ń ć Ż Ę Ż ć ć ć Ż ć ć ź Ż ć Ż Ż ć ć ń Ż ć Ś Ę Ż ń Ż ć Ż ć Ż ć Ż Ż Ę ć Ż Ż Ż Ą Ę Ą ć Ż ć ć Ż Ą Ż ć ń ń Ż ń Ż Ę Ż ć Ż Ż Ł Ą źź ź ć Ż Ż Ż Ż Ę ź ź ź ź Ż Ż ń Ż Ż Ó ń Ś ć ń Ą Ę Ą Ż Ą Ę Ś Ę Ż ć Ę Ś
Ł Ń Ł Ł ź Ż ź Ł Ż Ó ż ż Ą ź Ą Ó Ń Ą Ł Ł Ą Ż Ś Ą ź Ż Ż ź Ż Ż ż Ą Ł Ż Ź Ź ź Ó ź Ł Ą ź Ń ź Ó Ł ż ć Ś Ś Ą Ł Ś ż ź ź Ą Ż Ł Ś Ś Ł Ż Ń Ń Ł Ó Ś Ś ć Ś Ó Ć ć ć Ś ż Ó Ó ź Ó Ó Ś Ó Ą Ą ć Ą Ą Ł Ą Ł Ą Ł ż Ł ź ć Ł Ą
Ż ń ń Ł Ą ń Ą Ż Ą Ż ń Ą ń ń ń ń Ł Ą ń ń ń ń ń Ą ń ń ń ń ń ń ń ć ń Ż ń ń Ą Ś Ą Ś Ą ń Ą Ś Ę ń Ś ń ń Ą ń Ż ń ź ź ń Ś ń ń Ś Ę Ś Ź Ś ń ń ć Ż ń ń Ą ń Ś Ż ń Ż Ż Ć Ż Ś Ś ć Ż Ż ć Ą ń Ą ń Ż ń ń ń Ż ć Ż Ż ń ń Ś Ż
Ł Ż Ł Ł Ł Ł ż ż ć ź ć ż ż Ż ż Ż ż Ż ć Ż Ł Ż ć ŻŻ ź ż Ł ż ż ż Ż ć Ł Ł ż ż ż ż Ż ż ż ź ć Ż ż ż Ż ż Ż ć ż ć Ż ź ż ż ć ć Ż ż Ź ż ż ż ź ż ż ź ż ż ż ż ż ź Ż Ż ź ż ć ż ż Ł ż ć ż ż ż ć ż ż ć Ż Ż ż ż ż ź ć ż ż
Ą Ę ą Ś ą ć Ą ą ą ą ą ŻŻ ŻŻ Ą Ż ą ą ą ą ą ą ą ą ą Ą ą ą Ęć ą ą ą ą ą ć Ę Ś Ą ć ą ć Ś ą Ą ć Ą ą Ą ź Ę ź ą ć ć ą ą Ę ą ą Ę ą ą ą ą ą ą ć ą ą ą ą ć ą ą ą Ę ą ą ą ą ą ą ą ą ć ć ź ą Ą ą ć Ę Ł Ł Ę ą ą Ą ą ą
Ą ń Ż Ź Ś Ż ź Ł Ż Ż ź ź Ż Ż Ż Ż ź ź ź ż Ż ź Ż ż ń Ż ż ć ń ż ż ż Ż ź Ż Ż ź Ż ż Ż ć ż Ż Ś ż Ś Ż ź ń ń Ż ń Ż ń Ż ź ń ń ż ż ń Ą ń Ą ń ń ń ń ń ź ń Ź ż ć ż Ż ć ź Ż ć ż ć ć ż Ą ć ń ń ć Ł ż ż ć Ż Ż ż ż Ż Ż Ż ń
Elektrodynamika Część 8 Fale elektromagnetyczne Ryszard Tanaś Zakład Optyki Nieliniowej, UAM
Elektrodynamika Część 8 Fale elektromagnetyczne Ryszard Tanaś Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.pl/~tanas Spis treści 9 Fale elektromagnetyczne 3 9.1 Fale w jednym wymiarze.................
Teoria Sygnałów. II rok Geofizyki III rok Informatyki Stosowanej. Wykład 2. Układy liniowe i niezmienne w czasie (układy LTI) y[n] x[n]
Toi Sgłów II ok Goizki III ok Ioki Sosowj Wkłd Ukłd liiow i izi w czsi ukłd LTI Kilk uwg: LTI jpopulijsz odl ilcji LTI odl pocsów izczch [] Ukłd liiow [] gdzi ozcz sgł wjściow do ukłdu zś sgł wjściow.
Oddziaływanie światła z materią
9--6 9--6 Wykład 6 Oddziaływanie światła z mateią Oscylato Loentza Funkcja dielektyczna w modelu Loentza Zesolony wsółczynnik załamania Poagacja fali świetlnej w ośodku Pawo Lambeta-Beea Dysesja mateiałów
, q3) współrzędnych kartezjańskich o równaniach:
Kimaka puku w współędch kwoliiowch i wkoowch aual biguow walcow (clidc) kulis (sfc) Współędmi kwoliiowmi mogą bć dowol fukcj ( q 1, q, q3) współędch kajańskich o ówaiach: q1 q1(,, ) q q (,, ) q q,, ),
1 8 / m S t a n d a r d w y m a g a ń e g z a m i n m i s t r z o w s k i dla zawodu M E C H A N I K - O P E R A T O R P O J A Z D Ó W I M A S Z Y N R O L N I C Z Y C H K o d z k l a s y f i k a c j i
7 4 / m S t a n d a r d w y m a g a ± û e g z a m i n m i s t r z o w s k i dla zawodu K U C H A R Z * * (dla absolwent¾w szk¾ ponadzasadniczych) K o d z k l a s y f i k a c j i z a w o d ¾ w i s p e c
Podstawy Akustyki. Drgania normalne a fale stojące Składanie fal harmonicznych: Fale akustyczne w powietrzu Efekt Dopplera.
W-1 (Jaroszewicz) 14 slajdów Podstawy Akustyki Drgania normalne a fale stojące Składanie fal harmonicznych: prędkość grupowa, dyspersja fal, superpozycja Fouriera, paczka falowa Fale akustyczne w powietrzu
Lista A) Proszę pokazać, że przy padaniu prostopadłym na granicę ośrodka próżnia(dielektryk)-metal,
Lista 1. A) Poszę okazać ż zy adaniu ostoadłym na ganicę ośodka óżnia(dilktyk)-mtal n11 n N 1 wsółczynnik odbicia fali lktomagntycznj (FEM) R. Ws-ka: Andix A książki N 1 n `1 n M. Foxa Otical otis of Solids
Zespół Szkół Technicznych. Badanie wyświetlaczy LCD
Zespół Szkół Technicznych Badanie wyświetlaczy LCD WYŚWIETLACZE LCD CZĘSC TEORETYCZNA ZALETY: ) mały pobór mocy, 2) ekonomiczność pod względem zużycia energii (pobór prądu przy 5V mniejszy niż 2mA), 3)
1 / m S t a n d a r d w y m a g a ń - e g z a m i n m i s t r z o w s k i dla zawodu B L A C H A R Z Kod z klasyfikacji zawodów i sp e cjaln oś ci dla p ot r ze b r yn ku p r acy Kod z klasyfikacji zawodów
POLITECHNIKA LUBELSKA KARTA MODUŁU (SYLABUS)
STOPIEŃ STUDIÓW: RODZAJ STUDIÓW: KIERUNEK STUDIÓW: KARTA MODUŁU (SYLABUS) Studia I stopnia (inżynierskie) studia stacjonarne MECHATRONIKA (MT) PRZEDMIOT: ROK STUDIÓW: SEMESTR: RODZAJ ZAJĘĆ I LICZBA GODZIN:
Ż Ę ć Ć ć ć Ą
Ś Ł Ż Ą Ż Ę ć Ć ć ć Ą ŚĘ Ż ź Ś Ż Ś Ś Ń Ę Ą Ś Ł Ś Ł Ż Ż ź ż Ą Ś Ż Ż Ś Ł Ą Ą Ó Ż Ż ż ć Ż ż ć ż Ó Ż ż ć ż ć ż Ą Ę ż Ó Ó ż ż Ó ć Ż ć Ż ć ć ź Ę Ę Ę ć Ż Ź Ż ż ć ż Ź Ę Ż ż ć Ś ć Ż Ę ż Ę ż ż ż Ż ż ż ż ż ĘŁ ż ż
Uwaga z alkoholem. Picie na świeżym powietrzu jest zabronione, poza licencjonowanymi ogródkami, a mandat można dostać nawet za niewinne piwko.
B : U U F F U 01 Ę ś ę 3 ż łć ę ę ź ł, Ż 64 ó ł ł óżó, j, j U 02 Ą ś U ł 1925, 1973 łś ą ż ęą fć j j ą j ł 9 ( ) ó 15 F 03 j ąó j j, ę j ż 15 ł, ó f Bść ł łj ł, 1223 j 15 B Ą ć ę j- j ść, j ż ą, ż, ją
termodynamika fenomenologiczna p, VT V, teoria kinetyczno-molekularna <v 2 > termodynamika statystyczna n(v) to jest długi czas, zachodzi
fzka statstczna stan makroskopow układ - skończon obszar przestrzenn (w szczególnośc zolowan) termodnamka fenomenologczna p, VT V, teora knetczno-molekularna termodnamka statstczna n(v) stan makroskopow
TECHNIKI INFORMATYCZNE W ODLEWNICTWIE
ECHNIKI INFORMAYCZNE W ODLEWNICWIE Janusz LELIO Paweł ŻAK Michał SZUCKI Faculty of Foundy Engineeing Depatment of Foundy Pocesses Engineeing AGH Univesity of Science and echnology Kakow Data ostatniej
v = v i e i v 1 ] T v = = v 1 v n v n [ ] U [x y z] T (X,Y,Z)
v U = e i,..., e n ) v = n v i e i i= e i i U = {X i } i=,n v T v = = v v n v n U x y z T X,Y,Z) v v v = 2 T A, ) b = 3 4 T B, ) c = + b b d = b c c d d 2 + 3b e b c = 5 3 T b d = 5 T c c = 34 d = 26 d
Tryb Matematyczny w L A TEX-u
Tryb Matematyczny w L A TEX-u Jarosław Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2011-12-13 1 2 Tekst w trybie matematycznym Ściąga z symboli 3 Jak nie pisać pracy magisterskiej
Ń Ż ż ć ś ą ą ż ą ą ś ś ą ą Ą Ą ą Ż ą ą ź ć ąż ą ś ą ą Ł ŁÓ ą Ą Ą Ł ą ą ą ąą ż ć ą Ń Ś Ą ą ż ą ż ć ąż ą ś Ż Ł ż ż ś ś ż ś ż ą ą ż ż ś Ó ś ż ą ą ą ż ś ś Ą Ą ą Ł ą ż ż ą ą ż ą ż ś ą ą ż ś ś ą ś ż ś ś ż
σ r z wektorem n r wynika
Wyład Napęża głów Pozuamy płazczyzy dowol achylo do o uładu wpółzędych o t właośc by wto apęża a t płazczyź był wpółoowy z wtom wtom tóy otu tę płazczyzę w pztz (wtom do omalym). a) pzypad ogóly b) płazczyza
ź Ł ć Ę ź ć Ą Ó Ą Ó Ą Ą ć ń ć Ą ć ź ń ń Ó ź ć ć ź ź ć ń ć ń ć ć ć ć ć ć ć ź Ą ć ć ć ć ć ć ź ć ź ć ć ć ć ć ń ć ć ć Ł ć ń ń ń ź ń ź ń Ę Ę Ę ń ź ź ć ć Ąć Ą ć ń ź ź Ą ź Ś ń ź ń ź ń Ł Ę Ł ń Ń ć ć ć ć ć ć Ś
Teoria Sygnałów. II Inżynierii Obliczeniowej. Wykład /2019 [ ] ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
Tora Sygałów II Iżyr Oblczowj Wyład 8 8/9 Rozważy sończoy sygał δ () spróboway z częsolwoścą : Aalza częsolwoścowa dysrych sygałów cyfrowych f p óra js dwa razy węsza od częsolwośc asyalj f a. Oblczy jgo
ę ą ę ó ń ń ń ó ń ó ó ń ź ą ę Ń ą ó ę ą ó ą ą ć ś ą ó ś ó ń ó ą Ń Ą ś ę ńś Ą ń ó ń ó ńś ó ś Ą ś ś ó ó ś ś ó ą ń ó ń Ę ń ć ńś ę ó ś ś Ę ń Ł ó ń ź ń ś ę
ń ę ś Ą Ń ó ę ą ń ą ś Ł ń ń ź ń ś ó ń ę ę ę Ń ą ą ń ą ź ą ź ń ć ę ó ó ę ś ą ść ńś ś ę ź ó ń ó ń ę ń ą ń ś ę ó ó Ę ó ń ę ń ó ń ń ń ą Ę ą ź ą ą ń ó ą ę ó ć ą ś ę ó ą ń ś ę ą ę ó ń ń ń ó ń ó ó ń ź ą ę Ń ą
POLITECHNIKA LUBELSKA KARTA MODUŁU (SYLABUS)
STOPIEŃ STUDIÓW: RODZAJ STUDIÓW: KIERUNEK STUDIÓW: KARTA MODUŁU (SYLABUS) Studia I stopnia (inżynierskie) studia stacjonarne MECHATRONIKA (MT) PRZEDMIOT: ROK STUDIÓW: SEMESTR: RODZAJ ZAJĘĆ I LICZBA GODZIN:
Zawód: złotnik-j u b il e r I Etap teoretyczny (część pisemna i ustna) egzaminu obejmuje: Z a kr e s w ia d om oś c i i u m ie j ę tnoś c i w ła ś c i
1 5 / m S t a n d a r d w y m a g a ń e g z a m i n m i s t r z o w s k i Z Ł O dla zawodu T N I K -J U B I L E R K o d z k l a s y f i k a c j i z a w o d ó w i s p e c j a l n o ś c i d l a p o t r z
OBIEKT : BIURO PROJEKTOWE OPRACOWANIE 勷. K zysztof Now k DATA OPRACOWANIA Kw c ń 勷 勷 勷 勷. 1 SPIS TREŚCI I. WYMAGANIA OGÓLNE II. ROBOTY BUDOWLANE REMONTOWE 勷 勷 勷 勷 勷 勷 勷 勷 勷 勷 勷 勷 勷 勷 2 I. WYMAGANIA OGÓLNE
FALE MECHANICZNE C.D. W przypadku fal mechanicznych energia fali składa się z energii kinetycznej i energii
FALE MECHANICZNE CD Gętość energii ruchu alowego otencjalnej W rzyadku al mechanicznych energia ali kłada ię z energii kinetycznej i energii Energia kinetyczna Energia kinetyczna małego elementu ośrodka
8 7 / m S t a n d a r d w y m a g a ń e g z a m i n m i s t r z o w s k i dla zawodu M O N T E R I N S T A L A C J I G A Z O W Y C H K o d z k l a s y f i k a c j i z a w o d ó w i s p e c j a l n o ś
BADANIE WYBRANYCH STRUKTUR NIEZAWODNOŚCIOWYCH
ZAKŁAD EKSPLOATACJI SYSTEMÓW ELEKTOICZYCH ISTYTUT SYSTEMÓW ELEKTOICZYCH WYDZIAŁ ELEKTOIKI WOJSKOWA AKADEMIA TECHICZA ---------------------------------------------------------------------------------------------------------------
Weryfikacja modelu. ( ) Założenia Gaussa-Markowa. Związek pomiędzy zmienną objaśnianą a zmiennymi objaśniającymi ma charakter liniowy
Wryfkacja modlu. Założa Gaussa-Markowa Zwązk pomędzy zmą objaśaą a zmym objaśającym ma charaktr lowy x, x,, K x k Wartośc zmych objaśających są ustalo ( są losow ε. Składk losow dla poszczgólych wartośc
Transmisja i odbicie fali na granicy dwóch ośrodków dielektrycznych
Tasmisja i odbicie fali a gaic dwóch ośodków dielekczch Now poblem ozważaia eegecze w óżch ośodkach Dochczas sosowae pojęcie ieswości bło wsaczające do poówwaia śediego pzepłwu moc pomieiowaia w m samm
Ł Ł Ą Ą Ą ż ń ż ń ż ń Ż Ż Ś ń Ż ń ć Ł Ą ń Ż Ś ń ć ń ć ń Ż ć ć ń ń ń ż ć ń ŁĄ ż ć ć ć ć ń Ż Ź ć ć ć ń ż ŁĄ Ł ż Ł Ąż ń ć ż ŚĆ ż Ł ń Ć Ś Ę ń ń ż ź Ż ń ć Ę ń ć ż ć ć ń ń Ć ć ż Ż ć ć ć ćż Ż ć Ż Ę Ż Ż Ść Ż ż
Makroekonomia: Frykcje finansowe w postaci ograniczeń zastawowych
Makroekonomia: Frykcje finansowe w postaci ograniczeń zastawowych Krzysztof Makarski 1 Ograniczenie kredytowe 1.1 Wst ep Wprowadzenie Model RBC z frykcjami finansowymi. Żeby wyrazić d lug nominalnie wprowadzamy
Symbole Numer Nazwa Opis Znaczenie Wygląd. Latin small "f" with hook (function, florin) Greek capital letter "alpha"
Symbole Numer Nazwa Opis Znaczenie Wygląd ƒ Litery greckie ƒ Latin small "f" with hook (function, florin) Łacińskie małe "f" z "haczykiem" (funkcja, floren) Α Α "alpha" Grecka wielka litera "alfa" Α Β
Ż ż Ź ż ż ć ż ż ż ż ć ż Ź ż ż ż ć Ś ż Ś ć ż ć ż ż ż ć ć ż Ź ż ćż ż ż ż Ż ż Ą ż żć ż ż Ś ż ż ż ć ż ż ż ż ż ż ż ć Ć ż Ą Ż Ż ć Ś ż ż Ś Ś Ęż ż ć ż Ż Żż Ć ż ż ż ż ż ć Ż ż Ćż Ż ż ż ż Ą ż ż ć ż ć ż ż ć ż ż ż
Nadawanie uprawnieo i logowanie
Nadawanie uprawnieo i logowanie Rejestracja Każdy kierownik jednostki posiada wcześniej założone konto konta zakładane są przez pracownika Działu Informacji Naukowej BG osoba odpowiedzialna: Zofia Kukurowska,
gdzie E jest energią całkowitą cząstki. Postać równania Schrödingera dla stanu stacjonarnego Wprowadźmy do lewej i prawej strony równania Schrödingera
San sacjonarny cząsk San sacjonarny - San, w kórym ( r, ) ( r ), gęsość prawdopodobńswa znalzna cząsk cząsk w danym obszarz przsrzn n zalży od czasu. San sacjonarny js charakrysyczny dla sacjonarngo pola
Powinowactwo chemiczne Definicja oraz sens potencjału chemicznego, aktywność Termodynamiczne funkcje mieszania
ermdyamka układów rzeczywstych 2.7.1. Pwwactw chemcze 2.7.2. Defcja raz ses tecjału chemczeg aktywść 2.7.3. ermdyamcze fukcje meszaa 2.7.4. Klasyfkacja rztwrów Waruk ztermcz-zchrycze ) ( V F F j V V d
Elektrodynamika. Część 8. Fale elektromagnetyczne. Ryszard Tanaś. Zakład Optyki Nieliniowej, UAM
Elektrodynamika Część 8 Fale elektromagnetyczne Ryszard Tanaś Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.pl/\~tanas Spis treści 9 Fale elektromagnetyczne 3 9.1 Fale w jednym wymiarze.................
STATYSTYKA PODSTAWOWE WZORY DOZWOLONE NA EGZAMINIE NA STUDIACH LICENCJACKICH
STATYSTYKA PODSTAWOWE WZORY DOZWOLONE NA EGZAMNE NA STUDACH LCENCJACKCH Oacoa zgooa zz d Maę Wczo a oda:. P. Kuz, J. Podgó: Saa. Wzo ablc. SGH, Wazaa, 8. M. Wczo: Saa. Lubę o! Zbó zadań. SGH, Wazaa 3 .
Tensorowe. Wielkości fizyczne. Wielkości i Jednostki UŜywane w Elektryce Wielkość Fizyczna to właściwość fizyczna zjawisk lub obiektów,
Welkośc Jednosk UŜywane w Elekryce Welkość Fzyczna o właścwość fzyczna zjawsk lub obeków, Przykłady: W. f.: kórą moŝna zmerzyć. czas, długość, naęŝene pola elekrycznego, przenkalność elekryczna kryszałów.
5. MES w mechanice ośrodka ciągłego
. MES w mechance ośroda cągłego P.Pucńs. MES w mechance ośroda cągłego.. Stan równowag t S P x z y n ρb(x, y, z) u(x, y, z) P Wetor gęstośc sł masowych N/m 3 ρb ρ g Wetor gęstośc sł powerzchnowych N/m
BRYŁA SZTYWNA. Zestaw foliogramów. Opracowała Lucja Duda II Liceum Ogólnokształcące w Pabianicach
BRYŁA SZTYWNA Zestaw fologamów Opacowała Lucja Duda II Lceum Ogólokształcące w Pabacach Pabace 003 Byłą sztywą azywamy cało, któe e defomuje sę pod wpływem sł zewętzych. Poszczególe częśc były sztywej
Laboratorium Fizyki Cienkich Warstw. Ćwiczenie 7. Wyznaczanie współczynnika załamania cienkich warstw dielektrycznych metodą spektrofotometryczną
syu Fzyk Polchk Wocławskj Laboaou Fzyk Ckch Wasw Ćwcz 7 Wyzacza współczyka załaaa ckch wasw dlkyczych odą spkofooyczą Opacowa: K.Żukowska,.Wkoczyk, 3.3.8 . Cl ćwcza: loścowy ops pzjśca śwała pzz układ
System BCD z κ. Adam Slaski na podstawie wykładów, notatek i uwag Pawła Urzyczyna. Semestr letni 2009/10
System BCD z κ Adam Slaski na podstawie wykładów, notatek i uwag Pawła Urzyczyna Semestr letni 2009/10 Rozważamy system BCD ze stałą typową κ i aksjomatami ω κ κ i κ ω κ. W pierwszej części tej notatki
Rozdział 6 Oscylacje neutrin słonecznych i atmosferycznych. Eksperymenty Superkamiokande, SNO i inne. Macierz mieszania Maki-Nakagawy- Sakaty (MNS)
Rozdział 6 Oscylacje neutrin słonecznych i atmosferycznych. Eksperymenty Superkamiokande, SNO i inne. Macierz mieszania Maki-Nakagawy- Sakaty (MNS) Kilka interesujących faktów Każdy człowiek wysyła dziennie
Z awó d: p o s a d z k a r z I. Etap teoretyczny ( część pisemna i ustna) egzamin obejmuje: Zakres wiadomości i umiejętności właściwych dla kwalifikac
9 2 / m S t a n d a r d w y m a g a ń - e g z a m i n m i s t r z o w s k i P O dla zawodu S A D Z K A R Z Kod z klasyfikacji zawodów i sp e cjaln oś ci dla p ot r ze b r yn ku p r acy Kod z klasyfikacji
Sekantooptyki owali i ich własności
Sekantooptyki owali i ich własności Magdalena Skrzypiec Wydział Matematyki, Fizyki i Informatyki Uniwersytet Marii Curie-Skłodowskiej 19 października 2009r. Informacje wstępne Definicja Owalem nazywamy