Pakiety Matematyczne - R Zestaw 1.
|
|
- Lech Pietrzyk
- 6 lat temu
- Przeglądów:
Transkrypt
1 Pakiety Matematyczne - R Zestaw 1. Zadania z kasynem pochodzą ze strony datacamp.com Instalacja pakietu R Strona główna projektu: Instalacja: (jedno z kilku) GUI RStudio: Szukanie pomocy help("nazwa"),?nazwa wyświetla (jeżeli jest dostępna) pomoc do nazwa example(nazwa) wyświetla i wykonuje (jeżeli są dostępne)przykłady do nazwa apropos("nazwa") wyświetla funkcje zawierające nazwa W programie RStudio pomoc jest wyświetlaną w jednym z okien programu. Skróty klawiszowe dla RStudio Operatory i funkcje elementarne # komentarz x<-y, y->x, x=y przypisanie wartości y do zmiennej x (równoważne sposoby) +, -, *, /, ^ operatory arytmetyczne ==,!=, <=, >=, &&,, TRUE, FALSE operatory relacji i logiczne x %% y reszta z dzielenia x mod y x %/% y część całkowita z dzielenia x przez y sin(x), cos(x), tan(x),..., asin(x),... funkcje trygonometryczne sqrt(x), abs(x), log(x) pierwiastek kwadratowy, wartość bezwzględna, logarytm naturalny Zadanie 0. Zapoznaj się z pomocą do funkcji sin Wykonać polecenie?complex i zapoznać się z odpowiednim tekstem pomocy Odkryć przeznaczenie funkcji: factorial(x), choose(a,b) Zadanie 1. Zdefiniuj zmienną kasyno i przypisz do niej wartość wchodzę.
2 Wektory W R podstawową strukturą danych jest wektor. Możemy je tworzyć na kilka sposobów np.: 1. a:b liczby całkowite a, a+1, a+2,..., b n <- 10 1:n-1 1:(n-1) #zwróć uwagę na różnicę 2. c(a,b,c,...) tworzy wektor zawierający ciąg a, b, c, seq(from, to) identyczne z from:to 4. seq(from, to,by=step) tworzy ciąg liczb od from do to z krokiem step 5. rep(x,n) - tworzy n-elementowy wektor o wartościach x Wektory można do siebie dodawać, ale należy czynić to uważnie. Sprawdź jaki będzie wynik działania: rep(2,3)+rep(4,7) Wektory mogą mieć wartości numeryczne, znakowe bądź logiczne integer.vector <- c(1, 2, 3) character.vector <- c("a", "b", "c") logical.vector<-c(true, FALSE, FALSE ) Co się stanie jeśli spróbujemy stworzyć wektor z elementów różnego typu? c("hjh",2,true) c(true,7) Zadanie 2. Od tygodnia jesteś w kasynie. Twoje zwycięstwa i porażki przedstawiono poniżej. Stwórz zmienne poker.wektor oraz bandyta.wektor i przypisz do nich wartości wygranych (jako dodatnie) i przegranych (jako ujemne). Wyświetl oba wektory. Poker W poniedziałek wygrałeś $100 We wtorek przegrałeś $80 W środę wygrałeś $20 W czwartek przegrałeś $120 W piątek wygrałeś $180 W sobotę wygrałeś $30 W niedzielę przegrałeś $90 Jednoręki Bandyta W poniedziałek przegrałeś $110 We wtorek wygrałeś $50 W środę wygrałeś $40 W czwartek przegrałeś $120 W piątek przegrałeś $100 W sobotę wygrałeś $230 W niedzielę przegrałeś $70
3 Korzystając z funkcji names() możemy przypisywać nazwy elementom wektora. przykladowy_wektor <- c("anna", "Nowak") names(przykladowy_wektor ) <- c("imie", "nazwisko") Zadanie 3. Stwórz wektor dni_tygodnia zawierający nazwy kolejnych dni tygodnia. Następnie korzystając z niego nazwij elementy wektorów poker.wektor i bandyta.wektor. Wyświetl oba wektory. Zadanie 4. a) Ile wygrałeś/przegrałeś każdego dnia łącznie w obu grach? Przypisz wynik do wektora zysk_dzienny b) Ile wyniosła całkowita wygrana/przegrana w poprzednim tygodniu? Wyniki zapisz do zmiennych suma_poker, suma_bandyta, suma_tygodniowa. Skorzystaj z funkcji sum(). c) Sprawdź, czy suma Twoich wygranych w pokera była większa niż suma wygranych w jednorękiego bandytę. wektor[i] - wybieranie i -tego elementu z wektora (zaczynając od 1) wektor[c(i,j,k)] - wybieranie i -tego, j-go i k-go elementu z wektora wektor[i:j] - wybieranie elementów od i -tego do j-go z wektora wektor[ nazwa ] - wybieranie elementu wskazanego przez nazwę z wektora wektor[c( nazwa1, nazwa2 )] - wybieranie elementów wskazanych przez nazwy z wektora mean(wektor) - średnia elementów wektora Zadanie 5. Z wektora poker.wektor wybierz obserwacje a) ze środy czwartku i piątku i zapisz je do wektora srodkowe_poker b) z poniedziałku wtorku i środy i zapisz je do wektora poczatkowe_poker c) z piątku soboty i niedzieli i zapisz je do wektora koncowe_poker Zadanie 6. Oblicz sumy i średnie wektorów z zadania 5 i przypisz je do zmiennych suma_poker_poczatek, sumapoker_srodek, suma_poker_koniec srednia_poker_poczatek, srednia_poker_srodek, srednia_poker_koniec.
4 Operatory logiczne mogą być używane również na wektorach wektor<-c(1,-8,3,-6) czy_ujemne<-wektor<0 #sprawdzamy, czy elementy wektora są ujemne czy_ujemne #wynikiem jest wektor o wartościach logicznych ujemne=wektor[czy_ujemne] ujemne #możemy też skorzystać z funkcji which() ktore<-which(wektor!= 3) ktore wektor[ktore] Zadanie 7. Sprawdź, które z elementów wektorów poker.wektor, bandyta.wektor są dodatnie. Wyniki tego sprawdzenia zapisz do wektorów o wartościach logicznych czy_ wygrana_poker, czy_ wygrana_bandyta i wyświetl te wektory. Stwórz wektory wygrane_poker, wygrane_bandyta które zawierają tylko wartości dodatnie. Zadanie 8. Korzystając z funkcji rep utwórz wektory: x - ciąg liczb: 1, 2, 3 powtórzony 26 razy y - ciąg liczb: 1, 1, 2, 2, 3, 3 powtórzony 13 razy z - ciąg liczb: 1, 1, 2, 2, 2, 3, 3, 3, 3, 3, 4, 4 o długości 100 w = c(3,5,1,7,3,9,2,6) order(w) w[order(w)] sort(w) cumsum(w) diff(w) Macierze Macierze możemy tworzyć za pomocą polecenia matrix(data,nrow,ncol). Na przykład matrix(0,3,3) matrix(0,nrow=3,ncol=3) matrix(1,3,3)
5 matrix(c(1,2,3,4,5,6,7,8,9),3,3) matrix(1:9,3,3,byrow=true) Parametr data oznacza elementy macierzy (domyślnie kolumnami). Inne funkcje tworzące macierze: diag(x), lower.tri(x), upper.tri(x) Aby dostać się do wybranych elementów macierzy używamy operatora [] M = matrix(2:16,5,3) M[1] M[4] M[13] M[1,1] M[2,1] M[3,3] M[3,] M[,3] M[c(1,4,13)] M Przypisanie realizujemy w podobnie: M <- matrix(1:15,5,3) M[1] <- 0 M[3,3] <- 0 M[5,] <- c( ) M[2:3,1:2] <- 99 M Niektóre funkcje, które można zastosować na wektorach/macierzach: 1. operatory arytmetyczne i logiczne 2. length(m) liczba elementów wektora/macierzy 3. dim(m) wymiar macierzy 4. min(m), max(m), mean(m), sum(m) element minimalny, element maksymalny, średnia, suma 5. sort(m), sort(m,decreasing=true) sortowanie rosnąco sortowanie malejąco Inne polecenia warte uwagi: rev, cumsum, prod, cumpod, which.max, summary, rbind, cbind M = matrix(2:16,5,3)
6 apply(m,1,sum) # suma elementów w wierszach apply(m,2,min) # najmniejszy element w kolumnach colsums(m) # suma w kolumnach, podobnie wiersze rowmeans(m) # średnia w wierszach, podobnie w kolumnach rbind(m) # łączenie macierzy wierszami cbind(m) # łączenie macierzy wierszami Zadanie 9. Utwórz macierze: M1 - jednostkową 4x4, M2 - diagonalną o wyrazach: 5,44,3,22,1 na diagonali M3 - której pierwszy wiersz stanowi wektor poczatkowe_poker, drugi srodkowe_poker, a trzeci koncowe_poker. M4 - której pierwszą kolumnę stanowi wektor poker.wektor, a drugą bandyta.wektor Znajdź: długość, element najmniejszy, element największy, wartość średnią i sumę elementów dla tych macierzy. Wykonać summary(m4). Jak działa funkcja summary?
Instalacja Pakietu R
Instalacja Pakietu R www.r-project.org wybór źródła wybór systemu operacyjnego: Download R for Windows opcja: install R for the first time opcja: Download R 3.3.3 for Windows uruchomienie R-3.3.3-win MAGDA
Wprowadzenie do Pakietu R dla kierunku Zootechnika. Dr Magda Mielczarek Katedra Genetyki Uniwersytet Przyrodniczy we Wrocławiu
Wprowadzenie do Pakietu R dla kierunku Zootechnika Dr Magda Mielczarek Katedra Genetyki Uniwersytet Przyrodniczy we Wrocławiu Instalacja Pakietu R www.r-project.org wybór źródła wybór systemu operacyjnego:
Podstawy programowania w R - część 1
Podstawy programowania w R - część 1 Typy danych, podzbiory 1. Stwórz katalog na dysku (pierwsza litera imienia + nazwisko), który będzie Twoim Working Directory. "F:/inazwisko" 2. Uruchom RStudio. 3.
Funkcje Andrzej Musielak 1. Funkcje
Funkcje Andrzej Musielak 1 Funkcje Funkcja liniowa Funkcja liniowa jest postaci f(x) = a x + b, gdzie a, b R Wartość a to tangens nachylenia wykresu do osi Ox, natomiast b to wartość funkcji w punkcie
UNIWERSYTET RZESZOWSKI KATEDRA INFORMATYKI
UNIWERSYTET RZESZOWSKI KATEDRA INFORMATYKI LABORATORIUM TECHNOLOGIA SYSTEMÓW INFORMATYCZNYCH W BIOTECHNOLOGII Pakiet R: Cz. II Strona 1 z 7 OBIEKTY Faktory (factors) Faktor jest specjalną strukturą, przechowującą
WEKTORY I MACIERZE. Strona 1 z 11. Lekcja 7.
Strona z WEKTORY I MACIERZE Wektory i macierze ogólnie nazywamy tablicami. Wprowadzamy je:. W sposób jawny: - z menu Insert Matrix, - skrót klawiszowy: {ctrl}+m, - odpowiedni przycisk z menu paska narzędziowego
1. Indeksy/indeksowanie : Do elementów wektora, list, macierzy czy ramek, można się odwołać na kilka sposobów.
Rachunek Prawdopodobieństwa i Statystyka lab 2. Kaja Chmielewska ( Kaja.Chmielewska@cs.put.poznan.pl ) 1. Indeksy/indeksowanie : Do elementów wektora, list, macierzy czy ramek, można się odwołać na kilka
Podstawowe operacje na macierzach
Podstawowe operacje na macierzach w pakiecie GNU octave. (wspomaganie obliczeń inżynierskich) Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z tworzeniem macierzy i wektorów w programie GNU octave.
-Instalacja R: -Instalacja RStudio:
Rachunek Prawdopodobieństwa i Statystyka lab 1. Kaja Chmielewska (Kaja.Chmielewska@cs.put.poznan.pl) 1. Krótko o R R jest wolnym (otwartym i darmowym), zaawansowanym środowiskiem oraz językiem programowania.
Matlab Składnia + podstawy programowania
Matlab Składnia + podstawy programowania Matlab Matrix Laboratory środowisko stworzone z myślą o osobach rozwiązujących problemy matematyczne, w których operuje się na danych stanowiących wielowymiarowe
LABORATORIUM 3 ALGORYTMY OBLICZENIOWE W ELEKTRONICE I TELEKOMUNIKACJI. Wprowadzenie do środowiska Matlab
LABORATORIUM 3 ALGORYTMY OBLICZENIOWE W ELEKTRONICE I TELEKOMUNIKACJI Wprowadzenie do środowiska Matlab 1. Podstawowe informacje Przedstawione poniżej informacje maja wprowadzić i zapoznać ze środowiskiem
Metody numeryczne Laboratorium 2
Metody numeryczne Laboratorium 2 1. Tworzenie i uruchamianie skryptów Środowisko MATLAB/GNU Octave daje nam możliwość tworzenia skryptów czyli zapisywania grup poleceń czy funkcji w osobnym pliku i uruchamiania
Wprowadzenie do programu Mathcad 15 cz. 1
Wpisywanie tekstu Wprowadzenie do programu Mathcad 15 cz. 1 Domyślnie, Mathcad traktuje wpisywany tekst jako wyrażenia matematyczne. Do trybu tekstowego można przejść na dwa sposoby: Zaczynając wpisywanie
Liczby całkowite. 1. Liczbą przeciwną do 4 jest liczba: A. 1 4 B. 4 C. 4 D Odczytaj, jakie liczby zaznaczono na osi liczbowej.
Liczby całkowite gr. A str. 1/4... imię i nazwisko...... klasa data 1. Liczbą przeciwną do 4 jest liczba: A. 1 4 B. 4 C. 4 D. 1 4 2. Odczytaj, jakie liczby zaznaczono na osi liczbowej. a =........ b =........
Język skryptowy: Laboratorium 1. Wprowadzenie do języka Python
Język skryptowy: Laboratorium 1. Wprowadzenie do języka Python Język PYTHON Podstawowe informacje Python to język skryptowy, interpretowany - co oznacza, że piszemy skrypt, a następnie wykonujemy go za
Pakiety Matematyczne - R Zestaw 2.
Pakiety Matematyczne - R Zestaw 2. Część przykładów pochodzi z helpa do R i z książki: R.Biecek, Przewodnik po pakiecie R, GIS 2014, strona www: http://www.biecek.pl, Instrukcje warunkowe Składnia instrukcji
JAVAScript w dokumentach HTML (1) JavaScript jest to interpretowany, zorientowany obiektowo, skryptowy język programowania.
IŚ ćw.8 JAVAScript w dokumentach HTML (1) JavaScript jest to interpretowany, zorientowany obiektowo, skryptowy język programowania. Skrypty JavaScript są zagnieżdżane w dokumentach HTML. Skrypt JavaScript
Tablice mgr Tomasz Xięski, Instytut Informatyki, Uniwersytet Śląski Katowice, 2011
Tablice mgr Tomasz Xięski, Instytut Informatyki, Uniwersytet Śląski Katowice, 2011 Załóżmy, że uprawiamy jogging i chcemy monitorować swoje postępy. W tym celu napiszemy program, który zlicza, ile czasu
MATLAB - laboratorium nr 1 wektory i macierze
MATLAB - laboratorium nr 1 wektory i macierze 1. a. Małe i wielkie litery nie są równoważne (MATLAB rozróżnia wielkość liter). b. Wpisanie nazwy zmiennej spowoduje wyświetlenie jej aktualnej wartości na
Informatyka w selekcji - Wykªad 1
Informatyka w selekcji - Wykªad 1 Tomasz Suchocki Uniwersytet Przyrodniczy we Wrocªawiu Katedra Genetyki i Ogólnej Hodowli Zwierz t Plan wykªadu 1 Podstawowe informacje o przedmiocie 2 Wst p do pakietu
Programy wykorzystywane do obliczeń
Przykłady: Programy wykorzystywane do obliczeń. Arkusze kalkulacyjne do obliczeń numerycznych: a. LibreOffice CALC (wolny dostęp) b. Microsoft EXCEL (komercyjny). Pakiety typu CAS (ang. Computer Algebra
Po uruchomieniu programu nasza litera zostanie wyświetlona na ekranie
Część X C++ Typ znakowy służy do reprezentacji pojedynczych znaków ASCII, czyli liter, cyfr, znaków przestankowych i innych specjalnych znaków widocznych na naszej klawiaturze (oraz wielu innych, których
Obliczenia iteracyjne
Lekcja Strona z Obliczenia iteracyjne Zmienne iteracyjne (wyliczeniowe) Obliczenia iteracyjne wymagają zdefiniowania specjalnej zmiennej nazywanej iteracyjną lub wyliczeniową. Zmienną iteracyjną od zwykłej
Klasa 6. Liczby dodatnie i liczby ujemne
Klasa 6 Liczby dodatnie i liczby ujemne gr A str 1/3 imię i nazwisko klasa data 1 Wyobraź sobie, że na osi liczbowej zaznaczono liczby: 6, 7, 1, 3, 2, 1, 0, 3, 4 Ile z nich znajduje się po lewej stronie
Cw.12 JAVAScript w dokumentach HTML
Cw.12 JAVAScript w dokumentach HTML Wstawienie skryptu do dokumentu HTML JavaScript jest to interpretowany, zorientowany obiektowo, skryptowy język programowania.skrypty Java- Script mogą być zagnieżdżane
Modele liniowe i mieszane na przykªadzie analizy danych biologicznych - Wykªad 1
Modele liniowe i mieszane na przykªadzie analizy danych biologicznych - Wykªad 1 Tomasz Suchocki Uniwersytet Przyrodniczy we Wrocªawiu Katedra Genetyki i Ogólnej Hodowli Zwierz t Plan wykªadu 1 Podstawowe
MATrix LABoratory. A C21 delta tvx444 omega_zero. hxx J23 aaa g4534 Fx_38
MATLAB wprowadzenie MATrix LABoratory MATLAB operuje tylko na jednym typie zmiennych na macierzach. Liczby (skalary) są szczególnymi przypadkami macierzy o wymiarze 1 1, (zawierającymi jeden wiersz i jedną
Autor: Joanna Karwowska
Autor: Joanna Karwowska SELECT [DISTINCT] FROM [WHERE ] [GROUP BY ] [HAVING ] [ORDER BY ] [ ] instrukcja może
Wykorzystanie programów komputerowych do obliczeń matematycznych
Temat wykładu: Wykorzystanie programów komputerowych do obliczeń matematycznych Kody kolorów: żółty nowe pojęcie pomarańczowy uwaga kursywa komentarz * materiał nadobowiązkowy Przykłady: Programy wykorzystywane
Ćwiczenie 3. MatLab: Algebra liniowa. Rozwiązywanie układów liniowych
Ćwiczenie 3. MatLab: Algebra liniowa. Rozwiązywanie układów liniowych Wszystko proszę zapisywać komendą diary do pliku o nazwie: imie_ nazwisko 1. Definiowanie macierzy i odwoływanie się do elementów:
GNU Octave (w skrócie Octave) to rozbudowany program do analizy numerycznej.
1 GNU Octave GNU Octave (w skrócie Octave) to rozbudowany program do analizy numerycznej. Octave zapewnia: sporą bibliotęke użytecznych funkcji i algorytmów; możliwośc tworzenia przeróżnych wykresów; możliwość
Diary przydatne polecenie. Korzystanie z funkcji wbudowanych i systemu pomocy on-line. Najczęstsze typy plików. diary nazwa_pliku
Diary przydatne polecenie diary nazwa_pliku Polecenie to powoduje, że od tego momentu sesja MATLAB-a, tj. polecenia i teksty wysyłane na ekran (nie dotyczy grafiki) będą zapisywane w pliku o podanej nazwie.
Metody i analiza danych
2015/2016 Metody i analiza danych Macierze Laboratorium komputerowe 2 Anna Kiełbus Zakres tematyczny 1. Funkcje wspomagające konstruowanie macierzy 2. Dostęp do elementów macierzy. 3. Działania na macierzach
1 Logika. 1. Udowodnij prawa logiczne: 3. (p q) (p q) 2. (p q) ( q p) 2. Sprawdź, czy wyrażenie ((p q) r) (p (q r)) jest tautologią.
Logika. Udowodnij prawa logiczne:. (p q) ( p q). (p q) ( q p) 3. (p q) (p q). Sprawdź czy wyrażenie ((p q) r) (p (q r)) jest tautologią. 3. Zad 3. Sprawdź czy zdanie: Jeżeli liczba a dzieli się przez i
JAVAScript w dokumentach HTML - przypomnienie
Programowanie obiektowe ćw.1 JAVAScript w dokumentach HTML - przypomnienie JavaScript jest to interpretowany, zorientowany obiektowo, skryptowy język programowania. Skrypty JavaScript są zagnieżdżane w
Programowanie w języku C++ Agnieszka Nowak Brzezińska Laboratorium nr 2
Programowanie w języku C++ Agnieszka Nowak Brzezińska Laboratorium nr 2 1 program Kontynuujemy program który wczytuje dystans i ilości paliwa zużytego na trasie, ale z kontrolą danych. A więc jeśli coś
do instrukcja while (wyrażenie);
Instrukcje pętli -ćwiczenia Instrukcja while Pętla while (póki) powoduje powtarzanie zawartej w niej sekwencji instrukcji tak długo, jak długo zaczynające pętlę wyrażenie pozostaje prawdziwe. while ( wyrażenie
JAVAScript w dokumentach HTML (1)
JAVAScript w dokumentach HTML (1) JavaScript jest to interpretowany, zorientowany obiektowo, skryptowy język programowania. Skrypty JavaScript mogą być zagnieżdżane w dokumentach HTML. Instrukcje JavaScript
1 Funkcje elementarne
1 Funkcje elementarne Funkcje elementarne, które będziemy rozważać to: x a, a x, log a (x), sin(x), cos(x), tan(x), cot(x), arcsin(x), arccos(x), arctan(x), arc ctg(x). 1.1 Funkcje x a. a > 0, oraz a N
Proste programy w C++ zadania
Proste programy w C++ zadania Zbiór zadao do samodzielnego rozwiązania stanowiący powtórzenie materiału. Podstawy C++ Budowa programu w C++ Dyrektywy preprocesora Usunięcie dublujących się nazw Częśd główna
KURS WSPOMAGAJĄCY PRZYGOTOWANIA DO MATURY Z MATEMATYKI ZDAJ MATMĘ NA MAKSA. przyjmuje wartości większe od funkcji dokładnie w przedziale
Zestaw nr 1 Poziom Rozszerzony Zad.1. (1p) Liczby oraz, są jednocześnie ujemne wtedy i tylko wtedy, gdy A. B. C. D. Zad.2. (1p) Funkcja przyjmuje wartości większe od funkcji dokładnie w przedziale. Wtedy
Algebra Liniowa 2 (INF, TIN), MAP1152 Lista zadań
Algebra Liniowa 2 (INF, TIN), MAP1152 Lista zadań Przekształcenia liniowe, diagonalizacja macierzy 1. Podano współrzędne wektora v w bazie B. Znaleźć współrzędne tego wektora w bazie B, gdy: a) v = (1,
PONIEDZIAŁEK 16.02.2015 WTOREK 17.02.2015
PONIEDZIAŁEK 16.02.2015 WTOREK 17.02.2015 ŚRODA 18.02.2015 CZWARTEK 19.02.2015 14.00-16.00 AQUAPARK: ZABAWY KOSMICZNE Z DZIEĆMI Z MUZYKĄ PIĄTEK 20.02.2015 SOBOTA 21.02.2015 NIEDZIELA 22.02.2015 PONIEDZIAŁEK
Wykorzystanie programów komputerowych do obliczeń matematycznych, cz. 2/2
Temat wykładu: Wykorzystanie programów komputerowych do obliczeń matematycznych, cz. 2/2 Kody kolorów: żółty nowe pojęcie pomarańczowy uwaga kursywa komentarz * materiał nadobowiązkowy 1 Przykłady: Programy
Arkusz kalkulacyjny Excel
Arkusz kalkulacyjny Excel Ćwiczenie 1. Sumy pośrednie (częściowe). POMOC DO ĆWICZENIA Dzięki funkcji sum pośrednich (częściowych) nie jest konieczne ręczne wprowadzanie odpowiednich formuł. Dzięki nim
Wstęp do Programowania Lista 1
Wstęp do Programowania Lista 1 1 Wprowadzenie do środowiska MATLAB Zad. 1 Zapoznaj się z podstawowymi oknami dostępnymi w środowisku MATLAB: Command Window, Current Folder, Workspace i Command History.
; B = Wykonaj poniższe obliczenia: Mnożenia, transpozycje etc wykonuję programem i przepisuję wyniki. Mam nadzieję, że umiesz mnożyć macierze...
Tekst na niebiesko jest komentarzem lub treścią zadania. Zadanie. Dane są macierze: A D 0 ; E 0 0 0 ; B 0 5 ; C Wykonaj poniższe obliczenia: 0 4 5 Mnożenia, transpozycje etc wykonuję programem i przepisuję
15. Macierze. Definicja Macierzy. Definicja Delty Kroneckera. Definicja Macierzy Kwadratowej. Definicja Macierzy Jednostkowej
15. Macierze Definicja Macierzy. Dla danego ciała F i dla danych m, n IN funkcję A : {1,...,m} {1,...,n} F nazywamy macierzą m n ( macierzą o m wierszach i n kolumnach) o wyrazach z F. Wartość A(i, j)
Podstawy programowania w języku Visual Basic dla Aplikacji (VBA)
Podstawy programowania w języku Visual Basic dla Aplikacji (VBA) Instrukcje Język Basic został stworzony w 1964 roku przez J.G. Kemeny ego i T.F. Kurtza z Uniwersytetu w Darthmouth (USA). Nazwa Basic jest
Programowanie strukturalne. Opis ogólny programu w Turbo Pascalu
Programowanie strukturalne Opis ogólny programu w Turbo Pascalu STRUKTURA PROGRAMU W TURBO PASCALU Program nazwa; } nagłówek programu uses nazwy modułów; } blok deklaracji modułów const } blok deklaracji
Sprawdzian diagnozujący umiejętności matematyczne z zakresu gimnazjum. Kartoteka
Sprawdzian diagnozujący umiejętności matematyczne z zakresu gimnazjum Kartoteka Nr zad. 1. 2. 3. 4. 5. 6. 7. 8. 9. Sprawdzana umiejętność Uczeń: Oblicza potęgi liczb wymiernych o wykładnikach naturalnych
Boisko piłkarskie: stycznia
Boisko piłkarskie: 11 17 stycznia 11.01 poniedziałek 12.01 wtorek 13.01 środa 14.01 czwartek 15.01 piątek 16.01 sobota 17.01 niedziela Organizator: rugby Boisko wielofunkcyjne: 11 17 stycznia 11.01 poniedziałek
3 1 + i 1 i i 1 2i 2. Wyznaczyć macierze spełniające własność komutacji: [A, X] = B
1. Dla macierzy a) A = b) A = c) A = d) A = 3 1 + i 1 i i i 0 i i 0 1 + i 1 i 0 0 0 0 1 0 1 0 1 + i 1 i Wyznaczyć macierze spełniające własność komutacji: A, X = B. Obliczyć pierwiaski z macierzy: A =
Przykład powyżej pokazuje, że w zapytaniu można umieszczać funkcje zarówno zdefiniowane w ramach środowiska, jak również własne.
LINQ w Microsoft Visual Basic 'zapytanie pobierające wszystkie liczby z kolekcji 'zmienna zapytanie jest typu: System.Collections.Generic.IEnumerable(Of Integer) Dim zapytanie = From wiersz In liczby 'lub
Modelowanie rynków finansowych z wykorzystaniem pakietu R
Modelowanie rynków finansowych z wykorzystaniem pakietu R Wprowadzenie do pakietu R Mateusz Topolewski woland@mat.umk.pl Wydział Matematyki i Informatyki UMK Plan działania 1 Co i dlaczego...? 2 Przechowywanie
Algorytmy i struktury danych
Algorytmy i struktury danych 4. Łódź 2018 Suma szeregu harmonicznego - Wpisz kod programu w oknie edycyjnym - Zapisz kod w pliku harmonic.py - Uruchom skrypt (In[1]: run harmonic.py) - Ten program wykorzystuje
Zadania egzaminacyjne
Rozdział 13 Zadania egzaminacyjne Egzamin z algebry liniowej AiR termin I 03022011 Zadanie 1 Wyznacz sumę rozwiązań równania: (8z + 1 i 2 2 7 iz 4 = 0 Zadanie 2 Niech u 0 = (1, 2, 1 Rozważmy odwzorowanie
Warunki logiczne instrukcja if
Warunki logiczne instrukcja if Prowadzący: Łukasz Dunaj, strona kółka: atinea.pl/kolko 1. Wejdź na stronę kółka, uruchom edytor i wpisz: use console; def test::main() { var y; y = 1; while (y
Matlab Składnia + podstawy programowania
Matlab Składnia + podstawy programowania Matlab Matrix Laboratory środowisko stworzone z myślą o osobach rozwiązujących problemy matematyczne, w których operuje się na danych stanowiących wielowymiarowe
Przykładowe zadania na kółko matematyczne dla uczniów gimnazjum
1 Przykładowe zadania na kółko matematyczne dla uczniów gimnazjum Zagadnienia, które uczeń powinien znać przy rozwiązywaniu opisanych zadań: zastosowanie równań w zadaniach tekstowych, funkcje i ich monotoniczność,
Autor: Joanna Karwowska
Autor: Joanna Karwowska SELECT [DISTINCT] FROM [WHERE ] [GROUP BY ] [HAVING ] [ORDER BY ] [ ] instrukcja może
UONET+ moduł Dziennik. Praca z rozkładami materiału nauczania
UONET+ moduł Dziennik Praca z rozkładami materiału nauczania Przewodnik System UONET+ gromadzi stosowane w szkole rozkłady materiału nauczania. Dzięki temu nauczyciele mogą korzystać z nich podczas wprowadzania
ALGORYTMY Algorytm poprawny jednoznaczny szczegółowy uniwersalny skończoność efektywność (sprawność) zmiennych liniowy warunkowy iteracyjny
ALGORYMY Algorytm to przepis; zestawienie kolejnych kroków prowadzących do wykonania określonego zadania; to uporządkowany sposób postępowania przy rozwiązywaniu zadania, problemu, z uwzględnieniem opisu
Operacje wykonywane są na operandach (argumentach operatorów). Przy operacji dodawania: argumentami operatora dodawania + są dwa operandy 2 i 5.
Operatory w Javie W Javie występują następujące typy operatorów: Arytmetyczne. Inkrementacji/Dekrementacji Przypisania. Porównania. Bitowe. Logiczne. Pozostałe. Operacje wykonywane są na operandach (argumentach
Zajęcia nr 1 (1h) Dwumian Newtona. Indukcja. Zajęcia nr 2 i 3 (4h) Trygonometria
Technologia Chemiczna 008/09 Zajęcia wyrównawcze. Pokazać, że: ( )( ) n k k l = ( n l )( n l k l Zajęcia nr (h) Dwumian Newtona. Indukcja. ). Rozwiązać ( ) ( równanie: ) n n a) = 0 b) 3 ( ) n 3. Znaleźć
(a 1 2 + b 1 2); : ( b a + b ab 2 + c ). : a2 2ab+b 2. Politechnika Białostocka KATEDRA MATEMATYKI. Zajęcia fakultatywne z matematyki 2008
Zajęcia fakultatywne z matematyki 008 WYRAŻENIA ARYTMETYCZNE I ALGEBRAICZNE. Wylicz b z równania a) ba + a = + b; b) a = b ; b+a c) a b = b ; d) a +ab =. a b. Oblicz a) [ 4 (0, 5) ] + ; b) 5 5 5 5+ 5 5
PRZYKŁADOWE SKRYPTY (PROGRAMY W MATLABIE Z ROZSZERZENIEM.m): 1) OBLICZANIE WYRAŻEŃ 1:
PRZYKŁADOWE SKRYPTY (PROGRAMY W MATLABIE Z ROZSZERZENIEM.m): 1) OBLICZANIE WYRAŻEŃ 1: clear % usunięcie zmiennych z pamięci roboczej MATLABa % wyczyszczenie okna kom % nadanie wartości zmiennym x1 i x2
Metody optymalizacji - wprowadzenie do SciLab a
Metody optymalizacji - wprowadzenie do SciLab a 1 Zmienne Nazwy: dozwolone nazwy zawierają znaki: od a do z, od A do Z, od 0 do 9 oraz _, #,!, $,? Operator przypisania wartości zmiennej = Przykład x=2
ROZKŁAD MATERIAŁU DO II KLASY LICEUM (ZAKRES ROZSZERZONY) A WYMAGANIA PODSTAWY PROGRAMOWEJ.
ROZKŁAD MATERIAŁU DO II KLASY LICEUM (ZAKRES ROZSZERZONY) A WYMAGANIA PODSTAWY PROGRAMOWEJ. LICZBA TEMAT GODZIN LEKCYJNYCH Potęgi, pierwiastki i logarytmy (8 h) Potęgi 3 Pierwiastki 3 Potęgi o wykładnikach
Programowanie Delphi obliczenia, schematy blokowe
Informatyka II MPZI2 ćw.2 Programowanie Delphi obliczenia, schematy blokowe Zastosowania obliczeń numerycznych Wyrażenia arytmetyczne służą do zapisu wykonywania operacji obliczeniowych w trakcie przebiegu
A a B b C c D d E e F f są magiczne.
Łamigłówki i zadania na weekend W łamigłówkach 4, 4 i 4 oprócz tworzenia liczb z podanych cyfr wolno użyć w dowolnej ilości pięciu działań (dodawanie, odejmowanie, mnożenie, dzielenie, potęgowanie), silni,
ZBIÓR ZADAŃ Zbiór zadań z programowania w Octave WIL BO Październik 2002
Politechnika Krakowska im. Tadeusza Kościuszki Wydział Inżynierii Lądowej ul. Warszawska 24, PL-31-155 Kraków Instytut Metod Komputerowych w Inżynierii Lądowej(L-5) ZBIÓR ZADAŃ Zbiór zadań z programowania
UONET+ moduł Dziennik. Praca z rozkładami materiału nauczania
UONET+ moduł Dziennik Praca z rozkładami materiału nauczania System UONET+ gromadzi stosowane w szkole rozkłady materiału nauczania. Dzięki temu nauczyciele mogą korzystać z nich wprowadzając tematy lekcji.
Temat: Arkusze kalkulacyjne. Program Microsoft Office Excel. Podstawy
Temat: Arkusze kalkulacyjne. Program Microsoft Office Excel. Podstawy Arkusz kalkulacyjny to program przeznaczony do wykonywania różnego rodzaju obliczeń oraz prezentowania i analizowania ich wyników.
WYRAŻENIA ALGEBRAICZNE
WYRAŻENIA ALGEBRAICZNE Wyrażeniem algebraicznym nazywamy wyrażenie zbudowane z liczb, liter, nawiasów oraz znaków działań, na przykład: Symbole literowe występujące w wyrażeniu algebraicznym nazywamy zmiennymi.
Wprowadzenie do programowania w VBA
Wprowadzenie do programowania w VBA Spis treści Struktura programu... 1 Typy danych... 2 Deklaracja zmiennych i stałych... 2 Deklaracja tablic... 3 Instrukcja przypisania... 3 Wprowadzanie danych... 3
Katarzyna Bereźnicka Zastosowanie arkusza kalkulacyjnego w zadaniach matematycznych. Opiekun stypendystki: mgr Jerzy Mil
Katarzyna Bereźnicka Zastosowanie arkusza kalkulacyjnego w zadaniach matematycznych Opiekun stypendystki: mgr Jerzy Mil 1 Działania na ułamkach Wyłączanie całości z dodatnich ułamków niewłaściwych Formuła
Iteracje. Algorytm z iteracją to taki, w którym trzeba wielokrotnie powtarzać instrukcję, aby warunek został spełniony.
Iteracje Algorytm z iteracją to taki, w którym trzeba wielokrotnie powtarzać instrukcję, aby warunek został spełniony. Iteracja inaczej zwana jest pętlą i oznacza wielokrotne wykonywanie instrukcji. Iteracje
PRACA KOŃCOWA Z DYDAKTYKI INFORMATYKI
PRACA KOŃCOWA Z DYDAKTYKI INFORMATYKI 1. Przygotowanie uczniów do realizacji tematu a) uczeń potrafi korzystać z adresowania względnego, bezwzględnego i mieszanego b) uczeń potrafi wykonywać podstawowe
Podstawy obsługi pakietu GNU octave.
Podstawy obsługi pakietu GNU octave. (wspomaganie obliczeń inżynierskich) Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z obsługą pakietu GNU octave. W ćwiczeniu wprowadzono opis podstawowych komend
Bazy danych kwerendy (moduł 5) 1. Przekopiuj na dysk F:\ bazę M5KW.mdb z dysku wskazanego przez prowadzącego
Bazy danych kwerendy (moduł 5) 1. Przekopiuj na dysk F:\ bazę M5KW.mdb z dysku wskazanego przez prowadzącego 2. Otwórz bazę (F:\M5KW) 3. Zapoznaj się ze strukturą bazy (tabele, relacje) 4. Wykorzystując
Wprowadzenie do środowiska programistycznego R (na podst. 1) R jako kalkulator
Wprowadzenie do środowiska programistycznego R (na podst. http://math.illinoisstate.edu/dhkim/rstuff/rtutor.html) 1) R jako kalkulator > 2 + 3 * 5 # zwróć uwage na kolejność wykonywania działań > log (10)
PRZETWARZANIE I ORGANIZOWANIE DANYCH: ARKUSZ KALKULACYJNY
PRZETWARZANIE I ORGANIZOWANIE DANYCH: ARKUSZ KALKULACYJNY Dr inż. Marcin Witczak Uniwersytet Zielonogórski Przetwarzanie i organizowanie danych: arkusz kalkulacyjny 1 PLAN WPROWADZENIA Profesjonalne systemy
( x) Równanie regresji liniowej ma postać. By obliczyć współczynniki a i b należy posłużyć się następującymi wzorami 1 : Gdzie:
ma postać y = ax + b Równanie regresji liniowej By obliczyć współczynniki a i b należy posłużyć się następującymi wzorami 1 : xy b = a = b lub x Gdzie: xy = też a = x = ( b ) i to dane empiryczne, a ilość
Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego
Materiały dydaktyczne na zajęcia wyrównawcze z matematyki dla studentów pierwszego roku kierunku zamawianego Inżynieria i Gospodarka Wodna w ramach projektu Era inżyniera pewna lokata na przyszłość Projekt
Plan Ćwiczeń. 3) znajdowanie i zmiana kartoteki roboczej polecenia getwd(), setwd()
Plan Ćwiczeń 1) Format poleceń, umieszczanie komentarzy, korekty poleceń (w przypadku bardziej skomplikowanych poleceń warto pisać je w otwartym okienku edytora i kopiować do linii poleceń R). Sposób zapisu
Wprowadzenie do środowiska
Wprowadzenie do środowiska www.mathworks.com Piotr Wróbel piotr.wrobel@igf.fuw.edu.pl Pok. B 4.22 Metody numeryczne w optyce 2017 Czym jest Matlab Matlab (matrix laboratory) środowisko obliczeniowe oraz
Widoczność zmiennych Czy wartości każdej zmiennej można zmieniać w dowolnym miejscu kodu? Czy można zadeklarować dwie zmienne o takich samych nazwach?
Część XVIII C++ Funkcje Widoczność zmiennych Czy wartości każdej zmiennej można zmieniać w dowolnym miejscu kodu? Czy można zadeklarować dwie zmienne o takich samych nazwach? Umiemy już podzielić nasz
Ćwiczenie 3: Wprowadzenie do programu Matlab
Uniwersytet Zielonogórski Instytut Sterowania i Systemów Informatycznych Laboratorium modelowania i symulacji Ćwiczenie 3: Wprowadzenie do programu Matlab 1. Wyznaczyć wartość sumy 1 1 2 + 1 3 1 4 + 1
Algebra macierzy
Algebra macierzy Definicja macierzy Macierze Macierze Macierze Działania na macierzach Działania na macierzach A + B = B + A (prawo przemienności dodawania) (A + B) + C = A + (B + C) (prawo łączności dodawania)
Lista nr 1 - Liczby zespolone
Lista nr - Liczby zespolone Zadanie. Obliczyć: a) ( 3 i) 3 ( 6 i ) 8 c) (+ 3i) 8 (i ) 6 + 3 i + e) f*) g) ( 3 i ) 77 ( ( 3 i + ) 3i 3i h) ( + 3i) 5 ( i) 0 i) i ( 3 i ) 4 ) +... + ( 3 i ) 0 Zadanie. Przedstawić
RACHUNEK MACIERZOWY. METODY OBLICZENIOWE Budownictwo, studia I stopnia, semestr 6. Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska
RACHUNEK MACIERZOWY METODY OBLICZENIOWE Budownictwo, studia I stopnia, semestr 6 Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Ewa Pabisek Czym jest macierz? Definicja Macierzą A nazywamy
Ćwiczenie 1. Matlab podstawy (1) Matlab firmy MathWorks to uniwersalny pakiet do obliczeń naukowych i inżynierskich, analiz układów statycznych
1. Matlab podstawy (1) Matlab firmy MathWorks to uniwersalny pakiet do obliczeń naukowych i inżynierskich, analiz układów statycznych i dynamicznych, symulacji procesów, przekształceń i obliczeń symbolicznych
PLAN FERII ZIMOWYCH 20.01.2014r. 31.01.2014r. Zajęcia odbywają się w godzinach 09:00-13:00
PLAN FERII ZIMOWYCH 20.01.2014r. 31.01.2014r. Zajęcia odbywają się w godzinach 09:00-13:00 20.01.2014 r. poniedziałek 09:00-13:00 Imię i nazwisko n- la prowadzącego sala Rodzaj zajęć 21.01.2014r. wtorek
Zaawansowane metody numeryczne
Wykład 10 Rozkład LU i rozwiązywanie układów równań liniowych Niech będzie dany układ równań liniowych postaci Ax = b Załóżmy, że istnieją macierze L (trójkątna dolna) i U (trójkątna górna), takie że macierz
(mniejszych od 10 9 ) podanych przez użytkownika, wypisze komunikat TAK, jeśli są to liczby bliźniacze i NIE, w przeciwnym przypadku.
Zadanie 1 Już w starożytności matematycy ze szkoły pitagorejskiej, którzy szczególnie cenili sobie harmonię i ład wśród liczb, interesowali się liczbami bliźniaczymi, czyli takimi parami kolejnych liczb
Odczyt danych z klawiatury Operatory w Javie
Odczyt danych z klawiatury Operatory w Javie Operatory W Javie występują następujące typy operatorów: Arytmetyczne. Inkrementacji/Dekrementacji Przypisania. Porównania. Bitowe. Logiczne. Pozostałe. Operacje
Analiza matematyczna i algebra liniowa Macierze
Analiza matematyczna i algebra liniowa Macierze Wojciech Kotłowski Instytut Informatyki Politechniki Poznańskiej email: imię.nazwisko@cs.put.poznan.pl pok. 2 (CW) tel. (61)665-2936 konsultacje: poniedziałek
Wykorzystanie programów komputerowych do obliczeń matematycznych, cz. 2/2
Temat wykładu: Wykorzystanie programów komputerowych do obliczeń matematycznych, cz. 2/2 Kody kolorów: żółty nowe pojęcie pomarańczowy uwaga kursywa komentarz * materiał nadobowiązkowy 1 Przykłady: Programy