Elementy statystyki STA - Wykład 1
|
|
- Robert Ostrowski
- 7 lat temu
- Przeglądów:
Transkrypt
1 STA - Wykład 1 Wydział Matematyki i Informatyki Uniwersytet im. Adama Mickiewicza 1
2 Programy do statystycznej analizy danych Komercyjne: Niekomercyjne: a) Statistica URL URL b) SAS URL c) SPSS URL URL a) R URL 2
3 Literatura 1. T. Górecki, Podstawy statystyki z przykładami w R, BTC Ł. Komsta, Wprowadzenie do środowiska R ( 3. P. Biecek, Przewodnik po pakiecie R, GIS M. Gagolewski, Programowanie w języku R, PWN W.N. Venables, D. M. Smith and the R Development Core Team, An Introduction to R ( 6. J. Verzani, simpler - Using R for Introductory Statistics ( 3
4 Program R Program R jest zaawansowanym pakietem statystycznym i językiem programowania istniejacym na platformy Windows, Unix oraz MacOS. Objęty jest licencja GNU GPL. Pierwsza wersja R (poczatek lat 90) została napisana przez Roberta Gentlemana i Ross Ihake pracujacych na Wydziale Statystyki Uniwerstetu w Auckland. Obecnie rozwojem R kieruje fundacja "The R Foundation for Statistical Computing". Język R był wzorowany na języku S opracowanym w AT&T Bell Laboratories i stosowanym w programie S-PLUS. Język R jest językiem interpretowanym, a nie kompilowanym (kolejne komendy interpretowane sa linia po linii lub wykonywane jako skrypt). Największa siła R jest około bibliotek funkcji napisanych przez setki osób z całego świata, przeznaczonych do najróżniejszych zastosowań. Każda biblioteka dostarczana jest z pełna dokumentacja. 4
5 Program RStudio Istnieje wiele programów (nakładek) ułatwiajacych prace z programem R np. Rcmdr, RKWard, RStudio. Strona domowa: 5
6 Programowanie w R Język programowania R opiera się na zmiennych i funkcjach. Zmienne nie musza być deklarowane. Uwagi: Klasycznym operatorem przypisania jest <, można również wykorzystywać znak =. Jeżeli chcemy, aby wynik przypisania został wyświetlony na ekranie, należy przypisanie zamknać w nawiasy (). Jeśli chcemy, aby kilka wyrażeń było zapisanych w jednej linii, to musimy oddzielić je średnikiem. Komentarz poprzedzamy znakiem hash #, wszystko do końca linii jest już komentarzem. R odróżnia wielkie i małe litery. W celu określenia kolejności działań używamy nawiasów okragłych. Do grupowania wyrażeń używamy nawiasów klamrowych. 6
7 Wektory vector(...) Podstawowe funkcje: mode - zwraca typ elementów wektora; length - zwraca długość wektora. Elementy dodatkowe: wek[3] - odwołanie do trzeciego elementu wektora wek ; c() - tworzenie wektora poprzez złaczanie, np. c(1,3,6); : - generuje liczby z podanego przedziału, np. 1:4; seq - generuje liczby z podanego przedziału, przy czym można podać krok (by) lub długość (length), np. seq(0,3,by=0.5); rep - generuje ciag składajacy się z powtórzeń innego ciagu, np. rep(1:3,2). 7
8 Ramki danych data.frame(...) Podstawowe funkcje: nrow - zwraca liczbę wierszy; ncol - zwraca liczbę kolumn; rownames - zmiana nazwy wiersza; colnames - zmiana nazwy kolumny. Elementy dodatkowe: ark[1,3] - odwołanie do elementu w pierwszym wierszu i trzeciej kolumnie; ark[,2] - odwołanie do elementów drugiej kolumny; ark$wiek - odwołanie do elementów kolumny o nazwie wiek (zmiennej: wiek ); ark[-3,] - usunięcie trzeciego wiersza; attach(ark) - doł aczenie do przestrzeni nazw wszystkich nazw kolumn ramki danych ark. 8
9 Listy list(...) Podstawowe funkcje: length - zwraca liczbę elementów listy. Elementy dodatkowe: lista[[3]] - odwołanie do trzeciego elementu listy; lista$dane - odwołanie do elementu listy o nazwie dane. Uwaga: Większość funkcji w R zwraca wynik w postaci listy. 9
10 Otwieranie/import danych load(...) - otwieranie danych zapisanych w formacie programu R (dla plików z rozszerzeniem RData ); read.table(...) - import danych z plików tekstowych; read.csv2(...) - import danych z plików csv (np. Excel). Uwaga: Do zapisu/exportu danych stosujemy odpowiednio funkcje: save, write.table oraz write.csv2. 10
11 Wykresy Podstawowe typy wykresów: plot - wykres punktowy; barplot - wykres słupkowy; hist - histogram; pie - wykres kołowy; boxplot - wykres "pudełko z wasami". Popularne parametry wykresów: main - tytuł wykresu; xlab, ylab - tytuły osi; lty - typ linii; lwd - grubość linii; col - kolory punktów, linii, itp. 11
12 Funkcje nazwa < function(argumenty) ciało Instrukcje warunkowe: if(warunek) wyrażenie1 else wyrażenie2 ifelse(warunek,a,b) switch(zmienna, wartość1=akcja1, wartość2=akcja2,...) Pętle: for(licznik in start:koniec) wyrażenie while(warunek) wyrażenie repeat wyrażenie 12
13 Rozkład empiryczny 13
14 Niech x = (x 1,..., x n ) będzie próbka, tzn. x 1,..., x n sa obserwacjami zmiennej (cechy) X. Zadaniem statystyki opisowej jest prezentacja rozkładu cechy X w próbce (rozkładu empirycznego), przy pomocy tabeli lub wykresu. Często wystarczajace jest jedynie podanie kilku liczb charakteryzujacych ten rozkład. Metody opisu rozkładu empirycznego: 2. Tabelaryczny R: table szereg rozdzielczy (liczebności), prop.table szereg rozdzielczy (proporcje, częstości), cut dla cechy ilościowej ciagłej podział na przedziały klasowe. 3. Graficzny R: barplot wykres słupkowy (cecha jakościowa lub ilościowa dyskretna), pie wykres kołowy (cecha jakościowa lub ilościowa dyskretna), hist histogram (cecha ilościowa ciagła). 14
15 3. Statystyki opisowe klasyczne bazujace na uśrednianiu obserwowanych wartości w próbce, np. moment zwykły rzędu r: µ r = 1 n n xk r k=1 pozycyjne bazujace na posortowanych rosnaco wartościach w próbce, np. dolny kwartyl: Q 1 = 1 2 (x (i) + x (j) ), gdzie lub górny kwartyl: i = n + 1 4, j = n 4 Q 3 = 1 2 (x (i) + x (j) ), gdzie i = 3(n + 1), j = 3n
16 Statystyki opisowe Charakterystyki tendencji centralnej rozkładu empirycznego: średnia, R: mean mediana, R: median x = 1 n n k=1 x k Me = { x( n+1 2 ), n nieparzyste, 2 +1) ], n parzyste. 1 2 [x ( n 2 ) + x ( n 16
17 Statystyki opisowe Charakterystyki rozrzutu rozkładu empirycznego: odchylenie standardowe, R: sd s = 1 n (x k x) n 1 2 k=1 współczynnik zmienności v = 100 s x 17
Wykład 1. Podstawowe pojęcia Metody opisowe w analizie rozkładu cechy
Wykład Podstawowe pojęcia Metody opisowe w analizie rozkładu cechy Zbiorowość statystyczna - zbiór elementów lub wyników jakiegoś procesu powiązanych ze sobą logicznie (tzn. posiadających wspólne cechy
Statystyczne metody analizy danych. Agnieszka Nowak - Brzezińska
Statystyczne metody analizy danych Agnieszka Nowak - Brzezińska SZEREGI STATYSTYCZNE SZEREGI STATYSTYCZNE odpowiednio usystematyzowany i uporządkowany surowy materiał statystyczny. Szeregi statystyczne
Pozyskiwanie wiedzy z danych
Pozyskiwanie wiedzy z danych dr Agnieszka Goroncy Wydział Matematyki i Informatyki UMK PROJEKT WSPÓŁFINANSOWANY ZE ŚRODKÓW UNII EUROPEJSKIEJ W RAMACH EUROPEJSKIEGO FUNDUSZU SPOŁECZNEGO Pozyskiwanie wiedzy
STATYSTYKA OPISOWA Przykłady problemów statystycznych: - badanie opinii publicznej na temat preferencji wyborczych;
STATYSTYKA OPISOWA Przykłady problemów statystycznych: - badanie opinii publicznej na temat preferencji wyborczych; - badanie skuteczności nowego leku; - badanie stopnia zanieczyszczenia gleb metalami
Środowisko R wprowadzenie. Wykład R1; 14.05.07 Pakiety statystyczne
Środowisko R wprowadzenie. Wykład R1; 14.05.07 Pakiety statystyczne Pakiety statystyczne stosowane do analizy danych: SAS SPSS Statistica R S-PLUS 1 Środowisko R Język S- J. Chambers i in. (1984,1988)
Statystyka. Wykład 2. Magdalena Alama-Bućko. 5 marca Magdalena Alama-Bućko Statystyka 5 marca / 34
Statystyka Wykład 2 Magdalena Alama-Bućko 5 marca 2018 Magdalena Alama-Bućko Statystyka 5 marca 2018 1 / 34 Banki danych: Bank danych lokalnych : Główny urzad statystyczny: Baza Demografia : https://bdl.stat.gov.pl/
Pakiety Matematyczne - R Zestaw 2.
Pakiety Matematyczne - R Zestaw 2. Część przykładów pochodzi z helpa do R i z książki: R.Biecek, Przewodnik po pakiecie R, GIS 2014, strona www: http://www.biecek.pl, Instrukcje warunkowe Składnia instrukcji
Przedmiot statystyki. Graficzne przedstawienie danych. Wykład-26.02.07. Przedmiot statystyki
Przedmiot statystyki. Graficzne przedstawienie danych. Wykład-26.02.07 Statystyka dzieli się na trzy części: Przedmiot statystyki -zbieranie danych; -opracowanie i kondensacja danych (analiza danych);
-> Średnia arytmetyczna (5) (4) ->Kwartyl dolny, mediana, kwartyl górny, moda - analogicznie jak
Wzory dla szeregu szczegółowego: Wzory dla szeregu rozdzielczego punktowego: ->Średnia arytmetyczna ważona -> Średnia arytmetyczna (5) ->Średnia harmoniczna (1) ->Średnia harmoniczna (6) (2) ->Średnia
Modelowanie rynków finansowych z wykorzystaniem pakietu R
Modelowanie rynków finansowych z wykorzystaniem pakietu R Wprowadzenie do pakietu R Mateusz Topolewski woland@mat.umk.pl Wydział Matematyki i Informatyki UMK Plan działania 1 Co i dlaczego...? 2 Przechowywanie
Instalacja Pakietu R
Instalacja Pakietu R www.r-project.org wybór źródła wybór systemu operacyjnego: Download R for Windows opcja: install R for the first time opcja: Download R 3.3.3 for Windows uruchomienie R-3.3.3-win MAGDA
Podstawy statystyki i obsługa SPSSa na przykładach z ekonomii
Podstawy statystyki i obsługa SPSSa na przykładach z ekonomii p. 1/35 Podstawy statystyki i obsługa SPSSa na przykładach z ekonomii Kurs letni dla studentów studiów zamawianych na kierunku Matematyka w
Przedmiot statystyki. Graficzne przedstawienie danych.
Przedmiot statystyki. Graficzne przedstawienie danych. dr Mariusz Grządziel 23 lutego 2009 Przedmiot statystyki Statystyka dzieli się na trzy części: -zbieranie danych; -opracowanie i kondensacja danych
Wprowadzenie do Pakietu R dla kierunku Zootechnika. Dr Magda Mielczarek Katedra Genetyki Uniwersytet Przyrodniczy we Wrocławiu
Wprowadzenie do Pakietu R dla kierunku Zootechnika Dr Magda Mielczarek Katedra Genetyki Uniwersytet Przyrodniczy we Wrocławiu Instalacja Pakietu R www.r-project.org wybór źródła wybór systemu operacyjnego:
Podstawowe pojęcia. Własności próby. Cechy statystyczne dzielimy na
Podstawowe pojęcia Zbiorowość statystyczna zbiór jednostek (obserwacji) nie identycznych, ale stanowiących logiczną całość Zbiorowość (populacja) generalna skończony lub nieskończony zbiór jednostek, które
Statystyka matematyczna i ekonometria
Statystyka matematyczna i ekonometria prof. dr hab. inż. Jacek Mercik B4 pok. 55 jacek.mercik@pwr.wroc.pl (tylko z konta studenckiego z serwera PWr) Konsultacje, kontakt itp. Strona WWW Elementy wykładu.
WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ (II rok WNE)
WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ (II rok WNE) Agata Boratyńska Agata Boratyńska Statystyka matematyczna, wykład 1 1 / 33 Warunki zaliczenia 1 Ćwiczenia OBOWIĄZKOWE (max. 3 nieobecności) 2 Zaliczenie
Próba własności i parametry
Próba własności i parametry Podstawowe pojęcia Zbiorowość statystyczna zbiór jednostek (obserwacji) nie identycznych, ale stanowiących logiczną całość Zbiorowość (populacja) generalna skończony lub nieskończony
STATYSTYKA POWTORZENIE. Dr Wioleta Drobik-Czwarno
STATYSTYKA POWTORZENIE Dr Wioleta Drobik-Czwarno Populacja Próba Parametry EX, µ Statystyki średnia D 2 X, δ 2 S 2 wnioskowanie DX, δ p ρ S w r...... JAK POWSTAJE MODEL MATEMATYCZNY Dane eksperymentalne
STATYSTYKA OPISOWA. LICZBOWE CHARAKTERYSTYKI(MIARY)
STATYSTYKA OPISOWA. LICZBOWE CHARAKTERYSTYKI(MIARY) Praca z danymi zaczyna się od badania rozkładu liczebności (częstości) zmiennych. Rozkład liczebności (częstości) zmiennej to jakie wartości zmienna
KARTA KURSU. (do zastosowania w roku ak. 2015/16) Kod Punktacja ECTS* 4
KARTA KURSU (do zastosowania w roku ak. 2015/16) Nazwa Statystyka 1 Nazwa w j. ang. Statistics 1 Kod Punktacja ECTS* 4 Koordynator Dr hab. Tadeusz Sozański (koordynator, wykłady) Dr Paweł Walawender (ćwiczenia)
Statystyka. Wykład 2. Magdalena Alama-Bućko. 27 lutego Magdalena Alama-Bućko Statystyka 27 lutego / 39
Statystyka Wykład 2 Magdalena Alama-Bućko 27 lutego 2017 Magdalena Alama-Bućko Statystyka 27 lutego 2017 1 / 39 Banki danych: Bank danych lokalnych : Główny urzad statystyczny: https://bdl.stat.gov.pl/
Statystyka Matematyczna Anna Janicka
Statystyka Matematyczna Anna Janicka wykład I, 22.02.2016 STATYSTYKA OPISOWA, cz. I Kwestie techniczne Kontakt: ajanicka@wne.uw.edu.pl Dyżur: strona z materiałami z przedmiotu: wne.uw.edu.pl/azylicz akson.sgh.waw.pl/~aborata
Generowanie ciągów pseudolosowych o zadanych rozkładach przykładowy raport
Generowanie ciągów pseudolosowych o zadanych rozkładach przykładowy raport Michał Krzemiński Streszczenie Projekt dotyczy metod generowania oraz badania własności statystycznych ciągów liczb pseudolosowych.
Statystyczne systemy uczące
Statystyczne systemy uczące Tomasz Górecki Wydział Matematyki i Informatyki Uniwersytet im. Adama Mickiewicza W ciągu ćwiczeń zostaną przeprowadzone 2 kolokwia. Na każdym znichbędziedozdobycia25punktów.od25punktówbędzie
1 Podstawy rachunku prawdopodobieństwa
1 Podstawy rachunku prawdopodobieństwa Dystrybuantą zmiennej losowej X nazywamy prawdopodobieństwo przyjęcia przez zmienną losową X wartości mniejszej od x, tzn. F (x) = P [X < x]. 1. dla zmiennej losowej
Materiał dotyczy generowania różnego typu wykresów w środowisku R.
Materiał dotyczy generowania różnego typu wykresów w środowisku R. Pamiętajmy, że niektóre typy wykresów są dedykowane do pewnych typów danych. Na potrzeby ćwiczeń początkowych załadujemy sobie zbiór danych
Agata Boratyńska. WYKŁAD 1. Wstępna analiza danych, charakterystyki opisowe. Indeksy statystyczne.
1 Agata Boratyńska WYKŁAD 1. Wstępna analiza danych, charakterystyki opisowe. Indeksy statystyczne. Agata Boratyńska Wykłady ze statystyki 2 Literatura J. Koronacki i J. Mielniczuk Statystyka WNT 2004
Plan wykładu. Statystyka opisowa. Statystyka matematyczna. Dane statystyczne miary położenia miary rozproszenia miary asymetrii
Plan wykładu Statystyka opisowa Dane statystyczne miary położenia miary rozproszenia miary asymetrii Statystyka matematyczna Podstawy estymacji Testowanie hipotez statystycznych Żródła Korzystałam z ksiażek:
Wykład 4: Statystyki opisowe (część 1)
Wykład 4: Statystyki opisowe (część 1) Wprowadzenie W przypadku danych mających charakter liczbowy do ich charakterystyki można wykorzystać tak zwane STATYSTYKI OPISOWE. Za pomocą statystyk opisowych można
Statystyka i analiza danych pomiarowych Podstawowe pojęcia statystyki cz. 2. Tadeusz M. Molenda Instytut Fizyki, Uniwersytet Szczeciński
Statystyka i analiza danych pomiarowych Podstawowe pojęcia statystyki cz. 2. Tadeusz M. Molenda Instytut Fizyki, Uniwersytet Szczeciński Opracowanie materiału statystycznego Szereg rozdzielczy częstości
WPROWADZENIE DO PROGRAMOWANIA I ŚRODOWISKA R. Biomatematyka - wykład 2 Dr Wioleta Drobik-Czwarno
WPROWADZENIE DO PROGRAMOWANIA I ŚRODOWISKA R Biomatematyka - wykład 2 Dr Wioleta Drobik-Czwarno DLACZEGO BIOLODZY POWINNI NAUCZYĆ SIĘ PODSTAW PROGRAMOWANIA? Pomaga lepiej zrozumieć działanie programów
Statystyka i analiza danych Wstępne opracowanie danych Statystyka opisowa. Dr Anna ADRIAN Paw B5, pok 407 adan@agh.edu.pl
Statystyka i analiza danych Wstępne opracowanie danych Statystyka opisowa Dr Anna ADRIAN Paw B5, pok 407 adan@agh.edu.pl Wprowadzenie Podstawowe cele analizy zbiorów danych Uogólniony opis poszczególnych
Statystyka i opracowanie danych W5: Wprowadzenie do statystycznej analizy danych. Dr Anna ADRIAN Paw B5, pok407 adan@agh.edu.pl
Statystyka i opracowanie danych W5: Wprowadzenie do statystycznej analizy danych Dr Anna ADRIAN Paw B5, pok407 adan@agh.edu.pl Wprowadzenie Podstawowe cele analizy zbiorów danych Uogólniony opis poszczególnych
POJĘCIA WSTĘPNE. STATYSTYKA - nauka traktująca o metodach ilościowych badania prawidłowości zjawisk (procesów) masowych.
[1] POJĘCIA WSTĘPNE STATYSTYKA - nauka traktująca o metodach ilościowych badania prawidłowości zjawisk (procesów) masowych. BADANIE STATYSTYCZNE - ogół prac mających na celu poznanie struktury określonej
1. Wprowadzenie do oprogramowania gretl. Wprowadzanie danych.
Laboratorium z ekonometrii (GRETL) 1. Wprowadzenie do oprogramowania gretl. Wprowadzanie danych. Okno startowe: Póki nie wczytamy jakiejś bazy danych (lub nie stworzymy własnej), mamy dostęp tylko do dwóch
Otwórz R. Zmień katalog roboczy za pomocą File/Change Dir. Wczytaj plik przypisując go obiektowi o nazwie students:
1. Wczytywanie danych do programu R Otwórz R. Zmień katalog roboczy za pomocą File/Change Dir. Wczytaj plik przypisując go obiektowi o nazwie students: > students
W kolejnym kroku należy ustalić liczbę przedziałów k. W tym celu należy wykorzystać jeden ze wzorów:
Na dzisiejszym wykładzie omówimy najważniejsze charakterystyki liczbowe występujące w statystyce opisowej. Poszczególne wzory będziemy podawać w miarę potrzeby w trzech postaciach: dla szeregu szczegółowego,
Statystyczne metody analizy danych
Statystyczne metody analizy danych Statystyka opisowa Wykład I-III Agnieszka Nowak - Brzezińska Definicje Statystyka (ang.statistics) - to nauka zajmująca się zbieraniem, prezentowaniem i analizowaniem
author: Andrzej Dudek
Edytor wprowadzone polecenia zostają w oknie edytora I mogą być uruchamiana poprzez CTRL+R lub Run (tylko zaznaczone linie, z wyświetlaniem wykonywanych linii kodu) lub poprzez Source (zawsze całość, bez
Wprowadzenie do programowania. Dr Wioleta Drobik
Wprowadzenie do programowania Dr Wioleta Drobik Czym jest programowanie? Programowanie nie jest zajęciem dla wybrańców posiadających ogromną i niemal tajemną wiedzę Języki programowania Język programowania
Zadanie Tworzenie próbki z rozkładu logarytmiczno normalnego LN(5, 2) Plot Probability Distributions
Zadanie 1. 1 Wygenerować 200 elementowa próbkę z rozkładu logarytmiczno-normalnego o parametrach LN(5,2). Utworzyć dla tej próbki: - szereg rozdzielczy - histogramy liczebności i częstości - histogramy
INFORMATYKA W SELEKCJI
INFORMATYKA W SELEKCJI INFORMATYKA W SELEKCJI - zagadnienia 1. Dane w pracy hodowlanej praca z dużym zbiorem danych (Excel) 2. Podstawy pracy z relacyjną bazą danych w programie MS Access 3. Systemy statystyczne
Statystyka. Wydział Zarządzania Uniwersytetu Łódzkiego
Statystyka Wydział Zarządzania Uniwersytetu Łódzkiego 2017 Statystyka to nauka zajmująca się badaniem prawidłowości w procesach masowych, to jest takich, które realizują się na dużą skalę (np. procesy
WYDZIAŁ ELEKTROTECHNIKI, AUTOMATYKI I INFORMATYKI INSTYTUT AUTOMATYKI I INFORMATYKI KIERUNEK AUTOMATYKA I ROBOTYKA STUDIA STACJONARNE I STOPNIA
WYDZIAŁ ELEKTROTECHNIKI, AUTOMATYKI I INFORMATYKI INSTYTUT AUTOMATYKI I INFORMATYKI KIERUNEK AUTOMATYKA I ROBOTYKA STUDIA STACJONARNE I STOPNIA PRZEDMIOT : : LABORATORIUM PODSTAW AUTOMATYKI 1. WSTĘP DO
Statystyka hydrologiczna i prawdopodobieństwo zjawisk hydrologicznych.
Statystyka hydrologiczna i prawdopodobieństwo zjawisk hydrologicznych. Statystyka zajmuje się prawidłowościami zaistniałych zdarzeń. Teoria prawdopodobieństwa dotyczy przewidywania, jak często mogą zajść
Laboratorium 3 - statystyka opisowa
dla szeregu rozdzielczego Laboratorium 3 - statystyka opisowa Agnieszka Mensfelt 11 lutego 2019 dla szeregu rozdzielczego Statystyka opisowa dla szeregu rozdzielczego Przykład wyniki maratonu Wyniki 18.
Podstawy wykorzystania języka R
Podstawy wykorzystania języka R Michał Ramsza, Mariusz Kozakiewicz wersja z dn. 2017-10-30 1 Spis treści 1 Wprowadzenie 3 1.1 Język R..................................... 3 1.2 Instalacja....................................
> x <-seq(-2*pi, 2*pi, by=0.5) > plot(x, sin(x), type="b",main="wykres funkcji sin(x) i cos(x)", col="blue") > lines(x, cos(x), type="l",col="red")
Rachunek Prawdopodobieństwa i Statystyka lab 4. Kaja Gutowska (Kaja.Gutowska@cs.put.poznan.pl) 1. Wprowadzenie do grafiki: - Program R ma szerokie możliwości w zakresie graficznego prezentowania danych.
Statystyka opisowa. Wykład I. Elementy statystyki opisowej
Statystyka opisowa. Wykład I. e-mail:e.kozlovski@pollub.pl Spis treści Elementy statystyku opisowej 1 Elementy statystyku opisowej 2 3 Elementy statystyku opisowej Definicja Statystyka jest to nauka o
STATYSTYKA IV SEMESTR ALK (PwZ) STATYSTYKA OPISOWA RODZAJE CECH W POPULACJACH I SKALE POMIAROWE
STATYSTYKA IV SEMESTR ALK (PwZ) STATYSTYKA OPISOWA RODZAJE CECH W POPULACJACH I SKALE POMIAROWE CECHY mogą być: jakościowe nieuporządkowane - skala nominalna płeć, rasa, kolor oczu, narodowość, marka samochodu,
Wykład ze statystyki. Maciej Wolny
Wykład ze statystyki Maciej Wolny T1: Zajęcia organizacyjne Agenda 1. Program wykładu 2. Cel zajęć 3. Nabyte umiejętności 4. Literatura 5. Warunki zaliczenia Program wykładu T1: Zajęcia organizacyjne T2:
Typy zmiennych. Zmienne i rekordy. Rodzaje zmiennych. Graficzne reprezentacje danych Statystyki opisowe
Typy zmiennych Graficzne reprezentacje danych Statystyki opisowe Jakościowe charakterystyka przyjmuje kilka możliwych wartości, które definiują klasy Porządkowe: odpowiedzi na pytania w ankiecie ; nigdy,
Sposoby prezentacji problemów w statystyce
S t r o n a 1 Dr Anna Rybak Instytut Informatyki Uniwersytet w Białymstoku Sposoby prezentacji problemów w statystyce Wprowadzenie W artykule zostaną zaprezentowane podstawowe zagadnienia z zakresu statystyki
Stochastyczne Metody Analizy Danych. PROJEKT: Analiza kluczowych parametrów turbin wiatrowych
PROJEKT: Analiza kluczowych parametrów turbin wiatrowych Projekt jest wykonywany z wykorzystaniem pakietu statystycznego STATISTICA. Praca odbywa się w grupach 2-3 osobowych. Aby zaliczyć projekt, należy
Nowoczesne techniki matematyczne, statystyczne i informatyczne
Nowoczesne techniki matematyczne, statystyczne i informatyczne Wykładowca : Krzysztof Bogdan Biuro : C-11, p. 2.12 http://prac.im.pwr.wroc.pl/~bogdan/ Twój wynik z wykładów: zadania domowe (25%) kartkówki
Statystyki opisowe i szeregi rozdzielcze
Statystyki opisowe i szeregi rozdzielcze - ćwiczenia ĆWICZENIA Piotr Ciskowski ramka-wąsy przykład 1. krwinki czerwone Stanisz W eksperymencie farmakologicznym analizowano oddziaływanie pewnego preparatu
Środowisko R wprowadzenie c.d. Wykład R2; 21.05.07 Struktury danych w R c.d.
Środowisko R wprowadzenie c.d. Wykład R2; 21.05.07 Struktury danych w R c.d. Oprócz zmiennych i wektorów strukturami danych w R są: macierze; ramki (ang. data frames); listy; klasy S3 1 Macierze Macierze
Literatura. Podgórski J., Statystyka dla studiów licencjackich, PWE, Warszawa 2010.
Metody statystyczne Literatura Podgórski J., Statystyka dla studiów licencjackich, PWE, Warszawa 2010. Stąpor K. Wykłady z metod statystycznych dla informatyków z przykładami w języku R. Wydawnictwo Politechniki
Miary położenia wskazują miejsce wartości najlepiej reprezentującej wszystkie wielkości danej zmiennej. Mówią o przeciętnym poziomie analizowanej
Miary położenia wskazują miejsce wartości najlepiej reprezentującej wszystkie wielkości danej zmiennej. Mówią o przeciętnym poziomie analizowanej cechy. Średnia arytmetyczna suma wartości zmiennej wszystkich
W1. Wprowadzenie. Statystyka opisowa
W1. Wprowadzenie. Statystyka opisowa dr hab. Jerzy Nakielski Zakład Biofizyki i Morfogenezy Roślin Plan wykładu: 1. O co chodzi w statystyce 2. Etapy badania statystycznego 3. Zmienna losowa, rozkład
Wykład 5: Statystyki opisowe (część 2)
Wykład 5: Statystyki opisowe (część 2) Wprowadzenie Na poprzednim wykładzie wprowadzone zostały statystyki opisowe nazywane miarami położenia (średnia, mediana, kwartyle, minimum i maksimum, modalna oraz
Statystyka opisowa PROWADZĄCY: DR LUDMIŁA ZA JĄC -LAMPARSKA
Statystyka opisowa PRZEDMIOT: PODSTAWY STATYSTYKI PROWADZĄCY: DR LUDMIŁA ZA JĄC -LAMPARSKA Statystyka opisowa = procedury statystyczne stosowane do opisu właściwości próby (rzadziej populacji) Pojęcia:
Wykład 3. Opis struktury zbiorowości. 1. Parametry opisu rozkładu badanej cechy. 3. Średnia arytmetyczna. 4. Dominanta. 5. Kwantyle.
Wykład 3. Opis struktury zbiorowości 1. Parametry opisu rozkładu badanej cechy. 2. Miary połoŝenia rozkładu. 3. Średnia arytmetyczna. 4. Dominanta. 5. Kwantyle. W praktycznych zastosowaniach bardzo często
You created this PDF from an application that is not licensed to print to novapdf printer (http://www.novapdf.com)
Prezentacja materiału statystycznego Szeroko rozumiane modelowanie i prognozowanie jest zwykle kluczowym celem analizy danych. Aby zbudować model wyjaśniający relacje pomiędzy różnymi aspektami rozważanego
UNIWERSYTET RZESZOWSKI KATEDRA INFORMATYKI
UNIWERSYTET RZESZOWSKI KATEDRA INFORMATYKI LABORATORIUM TECHNOLOGIA SYSTEMÓW INFORMATYCZNYCH W BIOTECHNOLOGII Pakiet R: Cz. II Strona 1 z 7 OBIEKTY Faktory (factors) Faktor jest specjalną strukturą, przechowującą
1. Operacje na plikach i katalogach Chcąc przeprowadzić analizę danych należy załadować/wczytać dane do R, a wyniki z pewnością chcemy zapisać.
Rachunek Prawdopodobieństwa i Statystyka lab 5 i lab 6. Kaja Chmielewska (Kaja.Chmielewska@cs.put.poznan.pl) Pliki do pobrania: -http://www.cs.put.poznan.pl/kchmielewska/rpis/dane/dane.csv -http://www.cs.put.poznan.pl/kchmielewska/rpis/dane/dane2.csv
1. Operacje na plikach i katalogach Chcąc przeprowadzić analizę danych należy załadować/wczytać dane do R, a wyniki z pewnością chcemy zapisać.
Rachunek Prawdopodobieństwa i Statystyka lab 5 Kaja Gutowska (Kaja.Gutowska@cs.put.poznan.pl) Pliki do pobrania: -http://www.cs.put.poznan.pl/kgutowska/rpis/dane/dane.csv -http://www.cs.put.poznan.pl/kgutowska/rpis/dane/dane2.csv
Rok akademicki: 2013/2014 Kod: ZIE n Punkty ECTS: 6. Poziom studiów: Studia I stopnia Forma i tryb studiów: -
Nazwa modułu: Statystyka opisowa i ekonomiczna Rok akademicki: 2013/2014 Kod: ZIE-1-205-n Punkty ECTS: 6 Wydział: Zarządzania Kierunek: Informatyka i Ekonometria Specjalność: - Poziom studiów: Studia I
Statystyka matematyczna dla leśników
Statystyka matematyczna dla leśników Wydział Leśny Kierunek leśnictwo Studia Stacjonarne I Stopnia Rok akademicki 2011/2012 Wykład 2 Statystyka Do tej pory było: Wiadomości praktyczne o przedmiocie Podstawowe
Podstawowe operacje i rodzaje analiz dostępne w pakiecie Statistica
Podstawowe operacje i rodzaje analiz dostępne w pakiecie Statistica 1. Zarządzanie danymi. Pierwszą czynnością w pracy z pakietem Statistica jest zazwyczaj wprowadzenie danych do arkusza. Oprócz możliwości
Statystyka. Wykład 4. Magdalena Alama-Bućko. 13 marca Magdalena Alama-Bućko Statystyka 13 marca / 41
Statystyka Wykład 4 Magdalena Alama-Bućko 13 marca 2017 Magdalena Alama-Bućko Statystyka 13 marca 2017 1 / 41 Na poprzednim wykładzie omówiliśmy następujace miary rozproszenia: Wariancja - to średnia arytmetyczna
STATYSTYKA OPISOWA. LICZBOWE CHARAKTERYSTYKI(MIARY)
STATYSTYKA OPISOWA. LICZBOWE CHARAKTERYSTYKI(MIARY) Dla opisania rozkładu badanej zmiennej, korzystamy z pewnych charakterystyk liczbowych. Dzielimy je na cztery grupy.. Określenie przeciętnej wartości
Wydział Inżynierii Produkcji. I Logistyki. Statystyka opisowa. Wykład 3. Dr inż. Adam Deptuła
12.03.2017 Wydział Inżynierii Produkcji I Logistyki Statystyka opisowa Wykład 3 Dr inż. Adam Deptuła METODY OPISU DANYCH ILOŚCIOWYCH SKALARNYCH Wykresy: diagramy, histogramy, łamane częstości, wykresy
LABORATORIUM 3. Jeśli p α, to hipotezę zerową odrzucamy Jeśli p > α, to nie mamy podstaw do odrzucenia hipotezy zerowej
LABORATORIUM 3 Przygotowanie pliku (nazwy zmiennych, export plików.xlsx, selekcja przypadków); Graficzna prezentacja danych: Histogramy (skategoryzowane) i 3-wymiarowe; Wykresy ramka wąsy; Wykresy powierzchniowe;
> # Zaglądamy na www.r-project.org i/lub pobieramy program, na przykład z http://r.meteo.uni.wroc.pl/ > # Literatura: > # - John M. Quick, Analiza statystyczna w środowisku R dla początkujących, Gliwice
Statystyka. Wykład 5. Magdalena Alama-Bućko. 26 marca Magdalena Alama-Bućko Statystyka 26 marca / 40
Statystyka Wykład 5 Magdalena Alama-Bućko 26 marca 2018 Magdalena Alama-Bućko Statystyka 26 marca 2018 1 / 40 Uwaga Gdy współczynnik zmienności jest większy niż 70%, czyli V s = s x 100% > 70% (co świadczy
Analiza Statystyczna
Lekcja 5. Strona 1 z 12 Analiza Statystyczna Do analizy statystycznej wykorzystać można wbudowany w MS Excel pakiet Analysis Toolpak. Jest on instalowany w programie Excel jako pakiet dodatkowy. Oznacza
WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 2 - statystyka opisowa cd
WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 2 - statystyka opisowa cd Agata Boratyńska Agata Boratyńska Statystyka matematyczna, wykład 2 1 / 20 MIARY ROZPROSZENIA, Wariancja Wariancją z próby losowej X
Wprowadzenie do er(k)a
Wprowadzenie do er(k)a Bartosz Sękiewicz b.sekiewicz@erkakrakow.pl R w pigułce Co to jest R? Pakiet statystyczny Język programowania Platforma programistyczna z interpreterem tego języka Nazwa projektu,
Statystyka I z R. Bartosz Maćkiewicz. 2 października 2017
Statystyka I z R Bartosz Maćkiewicz 2 października 2017 Program zajęć 1. Zajęcia wprowadzające. Podstawowe typy danych w R (1 zajęcia). 2. Zaawansowane typy danych w R. Indeksowanie. Arytmetyka. (1 zajęcia).
Wprowadzenie do analizy dyskryminacyjnej
Wprowadzenie do analizy dyskryminacyjnej Analiza dyskryminacyjna to zespół metod statystycznych używanych w celu znalezienia funkcji dyskryminacyjnej, która możliwie najlepiej charakteryzuje bądź rozdziela
Inżynieria Środowiska. II stopień ogólnoakademicki. przedmiot podstawowy obowiązkowy polski drugi. semestr zimowy
Załącznik nr 7 do Zarządzenia Rektora nr../12 z dnia.... 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2017/2018 STATYSTYKA
Xi B ni B
Zadania ze statystyki cz.2 I rok Socjologii lic. Zadanie 1 Ustal dla danych zawartych w tabelach poniżej, prezentujących rozkład liczebności (ni) różnej wielkości gospodarstw domowych w dwóch populacjach,
Arkusz kalkulacyjny. R. Robert Gajewski omklnx.il.pw.edu.pl/~rgajewski
Arkusz kalkulacyjny R. Robert Gajewski omklnx.il.pw.edu.pl/~rgajewski www.il.pw.edu.pl/~rg s-rg@siwy.il.pw.edu.pl O arkuszach ogólnie! Arkusz kalkulacyjny (spreadshit) to komputerowy program umożliwiający
2. Wprowadzenie do oprogramowania gretl. Podstawowe operacje na danych.
Laboratorium z ekonometrii (GRETL) 2. Wprowadzenie do oprogramowania gretl. Podstawowe operacje na danych. 2.1 Zaimportuj dane z pliku zatrudnienie.csv z przecinkiem jako separatorem danych i kropką jako
Wykład 10: Elementy statystyki
Wykład 10: Elementy statystyki dr Mariusz Grządziel 0 grudnia 010 Podstawowe pojęcia Biolodzy: -badają pojedyńcze rośliny lub zwierzęta; -chcemy rozszerzyć wnioski na wszystkich przedstawicieli gatunku
Pracownia Informatyczna Instytut Technologii Mechanicznej Wydział Inżynierii Mechanicznej i Mechatroniki. Podstawy Informatyki i algorytmizacji
Pracownia Informatyczna Instytut Technologii Mechanicznej Wydział Inżynierii Mechanicznej i Mechatroniki Podstawy Informatyki i algorytmizacji wykład 1 dr inż. Maria Lachowicz Wprowadzenie Dlaczego arkusz
STATYSTYKA - PRZYKŁADOWE ZADANIA EGZAMINACYJNE
STATYSTYKA - PRZYKŁADOWE ZADANIA EGZAMINACYJNE 1 W trakcie badania obliczono wartości średniej (15,4), mediany (13,6) oraz dominanty (10,0). Określ typ asymetrii rozkładu. 2 Wymień 3 cechy rozkładu Gauss
STATYSTYKA wykłady. L.Gruszczyński Elementy statystyki dla socjologów Dr. Pactwa pon. i wtorek 09:30 11:00 (pok. 217) I. (08.X)
STATYSTYKA wykłady L.Gruszczyński Elementy statystyki dla socjologów Dr. Pactwa pon. i wtorek 09:30 11:00 (pok. 17) I. (08.X) 1. Statystyka jest to nauka zajmująca się metodami ilościowymi badania prawidłowości
INFORMATYKA W SELEKCJI
INFORMATYKA W SELEKCJI INFORMATYKA W SELEKCJI - zagadnienia 1. Dane w pracy hodowlanej praca z dużym zbiorem danych (Excel) 2. Podstawy pracy z relacyjną bazą danych w programie MS Access 3. Systemy statystyczne
Statystyka. Podstawowe pojęcia: populacja (zbiorowość statystyczna), jednostka statystyczna, próba. Cechy: ilościowe (mierzalne),
Statystyka zbiór przetworzonych i zsyntetyzowanych danych liczbowych, nauka o ilościowych metodach badania zjawisk masowych, zmienna losowa będąca funkcją próby. Podstawowe pojęcia: populacja (zbiorowość
Statystyka. Wykład 4. Magdalena Alama-Bućko. 19 marca Magdalena Alama-Bućko Statystyka 19 marca / 33
Statystyka Wykład 4 Magdalena Alama-Bućko 19 marca 2018 Magdalena Alama-Bućko Statystyka 19 marca 2018 1 / 33 Analiza struktury zbiorowości miary położenia ( miary średnie) miary zmienności (rozproszenia,
Matematyka stosowana w geomatyce Nazwa modułu w języku angielskim Applied Mathematics in Geomatics Obowiązuje od roku akademickiego 2012/2013
0,KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Matematyka stosowana w geomatyce Nazwa modułu w języku angielskim Applied Mathematics in Geomatics Obowiązuje od roku akademickiego 2012/2013 A.
Statystyka. Wykład 7. Magdalena Alama-Bućko. 16 kwietnia Magdalena Alama-Bućko Statystyka 16 kwietnia / 35
Statystyka Wykład 7 Magdalena Alama-Bućko 16 kwietnia 2017 Magdalena Alama-Bućko Statystyka 16 kwietnia 2017 1 / 35 Tematyka zajęć: Wprowadzenie do statystyki. Analiza struktury zbiorowości miary położenia
Statystyka. Šukasz Dawidowski. Instytut Matematyki, Uniwersytet l ski
Statystyka Šukasz Dawidowski Instytut Matematyki, Uniwersytet l ski Statystyka Statystyka: nauka zajmuj ca si liczbowym opisem zjawisk masowych oraz ich analizowaniem, zbiory informacji liczbowych. (Sªownik
Wydział Nauki o Zdrowiu. Zakład Profilaktyki Zagrożeń Środowiskowych i Alergologii Marta Zalewska
Podstawy Biostatystyki Wydział Nauki o Zdrowiu Zakład Profilaktyki Zagrożeń Środowiskowych i Alergologii Marta Zalewska Treść wykładu W1-W Statystyka opisowa. Podstawowe pojęcia statystyki. Prezentacja
1. Opis tabelaryczny. 2. Graficzna prezentacja wyników. Do technik statystyki opisowej można zaliczyć:
Wprowadzenie Statystyka opisowa to dział statystyki zajmujący się metodami opisu danych statystycznych (np. środowiskowych) uzyskanych podczas badania statystycznego (np. badań terenowych, laboratoryjnych).
Język R : kompletny zestaw narzędzi dla analityków danych / Hadley Wickham, Garrett Grolemund. Gliwice, cop Spis treści
Język R : kompletny zestaw narzędzi dla analityków danych / Hadley Wickham, Garrett Grolemund. Gliwice, cop. 2018 Spis treści Wstęp 9 Część I. Przegląd 21 1. Wizualizacja danych za pomocą pakietu ggplot2