4.1. MODELE DYSKRETNE PODŁOŻA SPRĘŻYSTEGO TYPÓW: WINKLERA I PÓŁPRZESTRZENI SPRĘŻYSTEJ

Wielkość: px
Rozpocząć pokaz od strony:

Download "4.1. MODELE DYSKRETNE PODŁOŻA SPRĘŻYSTEGO TYPÓW: WINKLERA I PÓŁPRZESTRZENI SPRĘŻYSTEJ"

Transkrypt

1 . Guiia - Aaiza łt cieich etoą eeetó brzegoch ODELE DYSKRENE PODŁOŻA SPRĘŻYSEGO YPÓW: WINKLERA I PÓŁPRZESRZENI SPRĘŻYSEJ etoa eeetó brzegoch jet róież orztaa roziązaiu zaaia łt oczającej a ołożu rężt Rozaża ię ret oe ołoża tó: Wiera ub ółrzetrzei rężtej. Róaie eforacji ołoża oża oiać atęująco R. 38a: gzie P q Q g P Q Q 4. jet oore ołoża rężtego q rężtego oraz PQ ię: jet obzare a tór ziała reacja ołoża g jet fucją oatości ołoża. Da ołoża tu Wiera rzjuje g PQ δ P Q 4. gzie δ P Q jet etą Diraca i jet ztością ołoża. Da ołoża tu ółrzetrzei rężtej fucja oatości a otać: 4.3 gzie E g ν PQ C E r π jet oułe rężtości ołoża i v jet ółcziie Poioa ołoża. Po retzacji ołoże tu Wiera oża oiać buując iagoaą acierz oatości PQ r PQ o ółcziach a głóej rzeątej róch. Da ołoża tu ółrzetrzei rężtej róaie eforacji rzjie otać R. 38b: W otacji acierzoej oża zaiać: C q r Q 4.4a gzie C D C 4.4b Dq jet acierzą oatości ołoża. Da ołoża tu ółrzetrzei rężtej acierz D jet eła. Z róaia 4.4b obicza ię oór ołoża tór aeż uzgęić róaiach rac irtuaej 4.6 i 4.7: q K 4.5 gzie K C D.

2 . Guiia - Aaiza łt cieich etoą eeetó brzegoch... 7 a - P a Q S Q R. 38a. Buoa acierz oatości ołoża r r r 4 r 3 a 4 a 3 R. 38b. Obiczaie eeetó acierz D a ołoża tu ółrzetrzei rężtej Ooieie całi z fucji oiaej róaie 4.3 obicza ię aaitczie. Zaiezczoo je załącziu Z.5.

3 . Guiia - Aaiza łt cieich etoą eeetó brzegoch CAŁKOWE SFORUŁOWANIE ZADANIA SAYKI PŁYY SPOCZYWAJĄCEJ NA PODŁOŻU SPRĘŻYSY Zaaie forułuje ię oobie o oiaego orozziałach.. i 3.. R. 39. Pierza grua ił łta ieograiczoa -ugięcie P -oet zgiając 3 -ąt obrotu ieruu -oet ręcając -ąt obrotu ieruu -iła orzecza Druga grua ił łta rzeczita -oet zgiając 3 q -reacja ięzach ołoża -ąt obrotu ieruu -ąt obrotu ieruu b -ugięcie - rzeiezczeie ięzó rężtch ołoża -iła orzecza -oet ręcając ut źróło ut oberacji R. 39. Wieości tęujące brzegoch róaiach całoch Brzegoe róaia całoe bęą iał otać: c [ b ] [ ] q 4.6

4 . Guiia - Aaiza łt cieich etoą eeetó brzegoch oraz [ ] [ ] q c b 4.7 gzie: { } { } BUDOWA UKŁADU RÓWNAŃ ALGEBRAICZNYCH Doatoi ieiaoi zaaiu ą rzeiezczeia eętrzch utó ooacji. Po retzacji brzegu łt a eeet brzegoe tu cota i ętrza łt a eeet oierzchioe tu cota uła róań rzbierze forę R. 4 i R. 4: F F X E G G I E G G X i i i i- i - - R. 4. Ozaczeia tooae rz buoa acierz charatertczej Obzar łt G 3 G E G X E G δ

5 . Guiia - Aaiza łt cieich etoą eeetó brzegoch Obzar łt i i i i- i - - F F δ R. 4. Ozaczeia tooae rz buoa etora raej tro 4.4. OBLICZANIE UGIĘCIA PŁYY SPOCZYWAJĄCEJ NA PODŁOŻU SPRĘŻYSY Po roziązaiu ułau zae ą ooieie ieości brzegoe oraz ieości rzeiezczeń eętrzch utó ooacji. ając za otaę to ao całoe róaie brzegoe 4.6 oża obiczć ugięcie oo ucie obzaru łt ut ooacji zajuje ię eątrz obzaru łt ółczi c oobie ja to iało iejce orozziałach.4. i.. Do obiczaia artości ugięcia orztuje ię roazoe cześiej ooieie całi brzegoe całi o oierzchi obciążeia oraz całi o rzej a obciążeia rozłożoego iioo. Wzór oiując ugięcie uegie iezaczej ofiacji o czło ziąza z rzeiezczeiai i reacjai ęzłach eętrzch utó ooacji: q X 4.9a Bezośreio z róaia rac irtuaej oża otrzać: 4.9b [ ] [ ] q b a o retzacji eeetai brzegoi rzjuje forę:

6 . Guiia - Aaiza łt cieich etoą eeetó brzegoch c L e e e e e e b q gzie e jet iczbą eeetó brzegoch e jet iczbą eętrzch eeetó oierzchioch i L jet iczbą obciążeń ciągłch rozłożoch a oierzchi łt OBLICZANIE OENÓW ZGINAJĄCYCH W PŁYCIE SPOCZYWAJĄCEJ NA PODŁOŻU SPRĘŻYSY Obiczaie oetó zgiającch rzeroaza ię za oocą iorazu różicoego rz użciu rzeiezczeń ięciu ąiaującch ze obą utó R R. 4. Buoa iorazu różicoego oet zgiające bęą ócza rażoe zorai: v D 4. v D 4. gzie: 3 4.

7 . Guiia - Aaiza łt cieich etoą eeetó brzegoch PRZYKŁADY OBLICZEŃ W ceu urozczeia ozaczeń rzjęto że oś ooiaa oi ooiaa ozaczeia oi a oś gobaego ułau ółrzęch. Brzeg łt retzuje ię a eeet brzegoe tu cota o róej ługości a oierzchię łt a brzegoe eeet oierzchioe tu cota o róch iarach tóre torzą iate reguarą. W orozziae aaizoaa jet łta aratoa ająca ztie raęzie oboe R. 43 oczająca a ołożu tu Wiera z uzgęieie ięzó jeotroch. Obciążeie rozłożoe jet etrczie a oierzchi aratu. Zaaie roziązuje ię iteracjie eiiując oejch iteracjach ut ooacji eątrz obzaru łt tórch reacja q rzjuje artość ujeą. Wii obiczeń oróae ą z roziązaiai EB [ ]. W orozziae rzeroaza ię aaizę łt aratoej ającej ztie raęzie oboe i oczającej a ołożu tu ółrzetrzei rężtej z ięzai utroi. Obciążeie otaci ił uioej rzłożoe jet śrou łt R. 44. Wii obiczeń oróae ą z roziązaiai EB [6]. a P R. 43. Płta aratoa oczająca a ołożu rężt tu Wiera R. 44. Płta aratoa oczająca a ołożu rężt tu ółrzetrzei rężtej

8 . Guiia - Aaiza łt cieich etoą eeetó brzegoch Płta aratoa ająca ztie raęzie oboe oczająca a ołożu rężt tu Wiera obciążoa róoierie a ciu oierzchi Przła. 4 c h c E.6 6 N/c v.5 ε δ. a 5 c 5 N/c 3 3 N/c iczba eeetó brzegoch: 64 iczba eętrzch utó ooacji: Ugięcie [c] złuż rzeątej -.5 Ugięcie [c] ięz jeotroe ięz utroe Oegłość [/ ] R. 45. Płta aratoa oczająca a ołożu rężt tu Wiera. Wre ugięcia złuż rzeątej abea 4.. Ugięcie śrou łt Więz jeotroe a [c] Więz utroe EB - raca Kirchhoff [3] Kirchhoff [4] Reier [6] Reier [9]

9 . Guiia - Aaiza łt cieich etoą eeetó brzegoch abea 4.. oet zgiając śrou łt a [N c/c] 6 EB - raca Więz jeotroe Więz utroe Liczba iteracji 3. Przła. 4 c h 3 c E.6 6 N/c v.5 ε δ. a c 5 N/c 3 N/c iczba eeetó brzegoch: 64 iczba eętrzch utó ooacji: Ugięcie [c] złuż rzeątej -.. ięz jeotroe ięz utroe Ugięcie [c] Oegłość [/ ] R. 46. Płta aratoa oczająca a ołożu rężt tu Wiera. Wre ugięcia złuż rzeątej

10 . Guiia - Aaiza łt cieich etoą eeetó brzegoch... 8 abea 4.3. Ugięcie śrou łt Więz jeotroe a [c] Więz utroe EB - raca Kirchhoff [3] Kirchhoff [4] Reier [6] Reier [9] abea 4.4. oet zgiając śrou łt a [N c/c] 5 EB - raca Więz jeotroe Więz utroe Liczba iteracji 4. Przła 3. 4 c h 4 c E.6 6 N/c v.5 ε δ. a c 5 N/c 3 N/c iczba eeetó brzegoch: 64 iczba eętrzch utó ooacji: Ugięcie [c] złuż rzeątej ięz jeotroe ięz utroe. Ugięcie [c] Oegłość [/ ] R. 47. Płta aratoa oczająca a ołożu rężt tu Wiera. Wre ugięcia złuż rzeątej

11 . Guiia - Aaiza łt cieich etoą eeetó brzegoch... 8 abea 4.5. Ugięcie śrou łt Więz jeotroe a [c] Więz utroe EB - raca Kirchhoff [3] Kirchhoff [4] Reier [6] Reier [9] abea 4.6. oet zgiając śrou łt a [N c/c] 5 EB - raca Więz jeotroe Więz utroe Liczba iteracji Płta aratoa ająca ztie raęzie oboe oczająca a ołożu rężt tu ółrzetrzei reżtej obciążoa iłą uioą śrou c h c E.6 6 N/c v.3 ε δ. E 3 N/c v.3 P N iczba eeetó brzegoch: 64 iczba eętrzch eeetó oierzchioch: 56. Siłę P rozłożoo a oierzchi ratu o bou tórego ługość a. c Rozła ugięcia [c] złuż rzeątej ięz jeotroe Ugięcie [c] ięz [EB - raca] [6] Oegłość [/ ] Oegłość [/ ] R. 48a. Płta aratoa oczająca a ołożu rężt tu ółrzetrzei rężtej. Wre ugięcia złuż rzeątej

12 . Guiia - Aaiza łt cieich etoą eeetó brzegoch... 8 Rozła reacji ołoża q [N/c ] złuż rzeątej Reacja ołoża [N/c ] Oegłość [/ ] ięz jeotroe ięz utroe [6] Oegłość [/ ] R. 48b. Płta aratoa oczająca a ołożu rężt tu ółrzetrzei rężtej. Wre reacji ołoża złuż rzeątej abea 4.7. Ugięcie śrou łt a [c] EB - raca [6].94.7 abea 4.8. Reacja ołoża śrou łt q a [N/c ] EB - raca [6] abea 4.9. oet zgiając śrou łt a [N c/c] 3 EB raca.8743 [6] - ieości ocztae z reu [6]

M. Guminiak - Analiza płyt cienkich metodą elementów brzegowych CAŁKOWE SFORMUŁOWANIE ZADANIA STATECZNOŚCI POCZĄTKOWEJ PŁYTY

M. Guminiak - Analiza płyt cienkich metodą elementów brzegowych CAŁKOWE SFORMUŁOWANIE ZADANIA STATECZNOŚCI POCZĄTKOWEJ PŁYTY . umiiak - Aaiza płt ciekic metoą eemetó brzegoc... 6 6.. CAŁKOWE SFORUŁOWAIE ZADAIA SAECZOŚCI POCZĄKOWEJ PŁYY Róaie różiczkoe tateczości płt moża zapiać atępująco [8]: D 4 p 6. gzie p jet obciążeiem zatępczm

Bardziej szczegółowo

M. Guminiak - Analiza płyt cienkich metodą elementów brzegowych... 55

M. Guminiak - Analiza płyt cienkich metodą elementów brzegowych... 55 . Guma - Aaza łt cech metoą eemetó brzegoch... 55 3.. CAŁKOWE SFORUŁOWANIE ZADANIA SAYKI PŁYY SPOCZYWAJĄCEJ NA PODPORACH SŁUPOWYCH Formułuąc róae rac rtuae z orztaem eośc brzegoch moża uzgęć tęoae oór

Bardziej szczegółowo

M. Guminiak - Analiza płyt cienkich metodą elementów brzegowych... 55

M. Guminiak - Analiza płyt cienkich metodą elementów brzegowych... 55 . Guma - Aaza łt cech metoą eemetó brzegoch... 55 3.. CAŁKOWE SFORUŁOWANIE ZADANIA SAYKI PŁYY SPOCZYWAJĄCEJ NA PODPORACH SŁUPOWYCH Formułuąc róae rac rtuae z orztaem eośc brzegoch moŝa uzgęć tęoae oór

Bardziej szczegółowo

Z e s p ó ł d s. H A L i Z

Z e s p ó ł d s. H A L i Z C h o r ą g i e w D o l n o l ą s k a Z H P P L A N P R A C Y K o m e n d y C h o r ą g w i D o l n o 6 l ą s k i e j I 2 0 1 5- V I 2 0 1 6 1. C h a r a k t e r y s t y k a C h o r ą g w i C h o r ą g

Bardziej szczegółowo

( ) MECHANIKA BUDOWLI WZORY

( ) MECHANIKA BUDOWLI WZORY CHNIK BUDOLI ZORY Uwgi: zor ujęt w rmki powinn bć opnown pmięciowo (więkzość z nich wmg jni zrozumini b j zpmiętć )! Pozotł wzor, jżi bęą potrzbn w trkci kookwium bęą pon rzm z trścią zni; jnk nż zwrócić

Bardziej szczegółowo

Ę Ą Ę Ł Ł Ę ż Ł ż Ą ż ż ż ć ż ć Ł ż Ę Ą Ę Ł ż Ó ć ŚĆ Ś Ś Ń ż ż Ż Ć Ń Ę Ę ÓĘ ć ż ż Ó Ę Ó ć ć ż ż ż ż ż Ą ć Ł ż Ó ć ć Ł Ś ć Ż Ź Ś ć ć ż Ę ż ć ć ż ć Ą ż Ś Ł Ł ż ć ż ć Ą ż ć Ś ż ż ż ć ć ć ć Ć ż ć ż ć ż ż ż

Bardziej szczegółowo

Ó Ć Ó Ż Ó Ó Ó Ó Ż Ó Ę Ę Ę Ó Ź Ź Ę Ź Ź Ó Ź Ż Ó Ó Ę Ó Ń Ą Ó Ą Ź Ź Ó Ę Ź Ó Ż Ń Ź Ż Ż Ź Ę Ż Ł Ó Ź Ó Ń Ż Ę Ó Ź Ó Ż Ó Ć Ę Ó Ó Ó Ć Ż Ę Ę Ó ÓĘ Ż Ź Ż Ę Ó Ź Ź Ą Ó Ę Ź Ó Ź Ł Ń Ę Ę Ń Ó Ó Ę Ó Ó Ź Ż Ó Ó Ź Ź Ó Ó Ż Ó

Bardziej szczegółowo

Ł Ą ż ż Ę ż Ó Ł ź ż ż Ś ż Ę Ę Ś Ą ć ż Ź Ś Ę Ś ĄÓ Ę Ź ż Ń ć ć ć ć ż ć ć Ę Ś ż ż ć ć ć Ę ć ż Ć Ś ć ć Ś ć ć ż ż ż Ź Ś ż ć ć ć ć ć ć Ś ć Ę ż Ę ć Ó ć ć ć ć Ę ć ć ć Ę Ś ż ć Ę Ź ć Ę Ć Ź ż ż Ś Ę ź ć Ź ż ć Ą ć

Bardziej szczegółowo

M G 4 2 7 v. 2 0 1 5 G R I L L P R O S T O K Ą T N Y R U C H O M Y 5 2 x 6 0 c m z p o k r y w ą M G 4 2 7 I N S T R U K C J A M O N T A 7 U I B E Z P I E C Z N E G O U 7 Y T K O W A N I A S z a n o w

Bardziej szczegółowo

WYKŁAD nr 8 METODY CYFROWE POSZUKIWANIA MINIMUM FUNKCJI. Zadania minimalizacji funkcji bez ograniczeń można wyrazić następująco

WYKŁAD nr 8 METODY CYFROWE POSZUKIWANIA MINIMUM FUNKCJI. Zadania minimalizacji funkcji bez ograniczeń można wyrazić następująco WYKŁAD r 8 METODY CYFROWE POSZUKIWANIA MINIMUM FUNKCJI Zaaia miimalizacji fucji bez ograiczeń moża yrazić astępująco f ˆ mi f R gzie f : R R, przy czym załaa się, że fucja f jest ograiczoa z ołu. Istieje

Bardziej szczegółowo

Naprężenia styczne i kąty obrotu

Naprężenia styczne i kąty obrotu Naprężenia tyczne i kąty obrotu Rozpatrzmy pręt pryzmatyczny o przekroju kołowym obciążony momentem kręcającym 0 Σ ix 0 0 A A 0 0 Skręcanie prętów o przekroju kołowym, pierścieniowym, cienkościennym. Naprężenia

Bardziej szczegółowo

Ł Ł Ś Ó ć ć ć Ą Ć ć ć Ł Ś Ą Ó Ń Ą ź ź ź Ń ć ć Ł ć Ł Ł Ł Ś Ó Ń ć ć Ł ć Ł ć ć Ś Ł ć Ą Ą ź ź ź ć ć ć Ńć ć Ś Ś Ś Ń Ą ć ć ć ć ć Ń Ą Ł ź ź Ą ź ź ć ć ź ć Ą ć ć ć ź ź ź Ą ź ź ź ź ź ź ć ć ć ć ć ć ć Ą ć ć ź ć ć

Bardziej szczegółowo

Układy inercjalne i nieinercjalne w zadaniach

Układy inercjalne i nieinercjalne w zadaniach FOTON 98 Jeień 007 53 Układy inercjalne i nieinercjalne w zadaniach Jadwia Salach Zadanie 1 Urzędnik pracujący w biurowcu wiadł do windy która ruzył dół i przez 1 ekundę jechała z przypiezenie o wartości

Bardziej szczegółowo

s Dla prętów o stałej lub przedziałami stałej sztywności zginania mianownik wyrażenia podcałkowego przeniesiemy przed całkę 1 EI s

s Dla prętów o stałej lub przedziałami stałej sztywności zginania mianownik wyrażenia podcałkowego przeniesiemy przed całkę 1 EI s Wprowadzenie Kontrukcja pod wpływem obciążenia odkztałca ię, a jej punkty doznają przemiezczeń iniowych i kątowych. Umiejętność wyznaczania tych przemiezczeń jet konieczna przy prawdzaniu warunku ztywności

Bardziej szczegółowo

1. Wykres momentów zginających M(x) oraz sił poprzecznych Q(x) Rys2.

1. Wykres momentów zginających M(x) oraz sił poprzecznych Q(x) Rys2. Zadanie. Zginanie prote belek. Dla belki zginanej obciążonej jak na Ry. wyznaczyć:. Wykre oentów zginających M(x) oraz ił poprzecznych Q(x).. Położenie oi obojętnej.. Wartość akyalnego naprężenia noralnego

Bardziej szczegółowo

Rynek funduszu inwestycyjnych RYNEK. Liczba FI działających w Polsce. Lokaty funduszy inwestycyjnych 2015-05-17. Liczba TFI i FI działających w Polsce

Rynek funduszu inwestycyjnych RYNEK. Liczba FI działających w Polsce. Lokaty funduszy inwestycyjnych 2015-05-17. Liczba TFI i FI działających w Polsce 199 1993 1994 1995 1996 1997 1998 1999 1 3 4 5 6 7 8 9 1 15-5-17 11 1 13 Liczba TFI i FI działających w Polce yek uduzu iwetycyjych YNEK 7 6 5 4 3 1 416 364 71 79 313 194 81 94 11 11 144 6 1 1 1 3 7 1

Bardziej szczegółowo

Wrocław 2003 STATECZNOŚĆ. STATYKA 2 - projekt 1 zadanie 2

Wrocław 2003 STATECZNOŚĆ. STATYKA 2 - projekt 1 zadanie 2 Wrocław 00 STATECZNOŚĆ STATYKA - projet zadanie . Treść zadania Dla ray o scheacie statyczny ja na rysunu poniżej należy : - Sprawdzić czy uład jest statycznie niezienny - Wyznaczyć siły osiowe w prętach

Bardziej szczegółowo

APROKSYMACJA I INTERPOLACJA. funkcja f jest zbyt skomplikowana; użycie f w dalszej analizie problemu jest trudne

APROKSYMACJA I INTERPOLACJA. funkcja f jest zbyt skomplikowana; użycie f w dalszej analizie problemu jest trudne APROKSYMACJA I INTERPOLACJA Przybliżeie fucji f(x) przez ią fucję g(x) fucja f jest zbyt sompliowaa; użycie f w dalszej aalizie problemu jest trude fucja f jest zaa tylo tabelaryczie; wymagaa jest zajomość

Bardziej szczegółowo

Linie wpływu w belkach statycznie niewyznaczalnych

Linie wpływu w belkach statycznie niewyznaczalnych EHANIKA BUOWI inie wpływu w belach statycznie niewyznaczalnych Zadanie.: la poniższej beli naszicuj linie wpływu reacji A, B i. Za pomocą metody przemieszczeń wyznaczyć rzędne poszczególnych linii w połowie

Bardziej szczegółowo

Ćwiczenie 39 KLOCEK I WALEC NA RÓWNI POCHYŁEJ - STATYKA.

Ćwiczenie 39 KLOCEK I WALEC NA RÓWNI POCHYŁEJ - STATYKA. Ćwiczenie 39 KLOCEK WALEC A ÓW POCHYŁEJ - SAYKA. 39... Wiadoości ogólne Zjawiko tarcia jet jedny z najbardziej rozpowzechnionych w nazej codziennej rzeczywitości. W świecie w jaki żyjey tarcie jet dołownie

Bardziej szczegółowo

Ń Ł Ń Ó Ł Ę Ó Ó Ę ĘŚ Ó ÓŚ Ó Ę Ć Ó Ć Ę Ł Ó Ę Ć Ś Ż Ś Ś Ó Ó Ś Ń Ś Ó Ę Ę Ż Ć Ś Ó Ę Ó Ę Ę Ę Ę Ó Ś Ę Ę Ł Ć Ć Ś Ó Ę Ź Ę Ż Ź Ś Ź Ę Ę Ę Ó Ó Ó Ę Ę Ę Ę Ó Ę Ę Ć Ę Ć Ł Ź Ę Ę Ś Ń Ę Ć Ź Ó Ź Ó Ó Ę Ć Ć Ć Ź Ę Ę Ć Ę Ę

Bardziej szczegółowo

x k3 y k3 x k1 y k1 x 2

x k3 y k3 x k1 y k1 x 2 A. RANFORMACJA RZEMEZCZEŃ obrębie bryły ztynej Andrzej Wite odtay ontrcji mazyn y x - - y x - C x - O x x - x y - - Ry.. chemat tranformacji przemiezczeń Znany jet mały rch bryły ztynej (ry.) pncie O opiany

Bardziej szczegółowo

Próba statyczna zwykła rozciągania metali

Próba statyczna zwykła rozciągania metali Próba statyczna zwykła rozciągania metai Opracował: XXXXXXX stdia inŝynierskie zaoczne wydział mechaniczny semestr V Gdańsk 1 r. Wprowadzenie Podstawową próbą badań własności mechanicznych metai jest próba

Bardziej szczegółowo

n ó g, S t r o n a 2 z 1 9

n ó g, S t r o n a 2 z 1 9 Z n a k s p r a w y G O S I R D Z P I2 7 1 0 6 3 2 0 1 4 S P E C Y F I K A C J A I S T O T N Y C H W A R U N K Ó W Z A M Ó W I E N I A D o s t a w a w r a z z m o n t a e m u r z» d z e s i ł o w n i z

Bardziej szczegółowo

Zadania do rozdziału 3. Zad.3.1. Rozważmy klocek o masie m=2 kg ciągnięty wzdłuż gładkiej poziomej płaszczyzny

Zadania do rozdziału 3. Zad.3.1. Rozważmy klocek o masie m=2 kg ciągnięty wzdłuż gładkiej poziomej płaszczyzny Zadania do rozdziału 3. Zad.3.1. Rozważy klocek o aie kg ciągnięty wzdłuż gładkiej pozioej płazczyzny przez iłę P. Ile wynoi iła reakcji F N wywierana na klocek przez gładką powierzchnię? Oblicz iłę P,

Bardziej szczegółowo

q (s, z) = ( ) (λ T) ρc = q

q (s, z) = ( ) (λ T) ρc = q M O D E L O W A N I E I N Y N I E R S K I E n r 4 7, I S S N 1 8 9 6-7 7 1 X W Y Z N A C Z A N I E O D K S Z T A C E T O W A R Z Y S Z Ą C Y C H H A R T O W A N I U P O W I E R Z C H N I O W Y M W I E

Bardziej szczegółowo

1 Przekształcenie Laplace a

1 Przekształcenie Laplace a Przekztałcenie Laplace a. Definicja i podtawowe właności przekztałcenia Laplace a Definicja Niech dana będzie funkcja f określona na przedziale [,. Przekztałcenie (tranformatę Laplace a funkcji f definiujemy

Bardziej szczegółowo

ĆWICZENIE NR 3 OBLICZANIE UKŁADÓW STATYCZNIE NIEWYZNACZALNYCH METODĄ SIŁ OD OSIADANIA PODPÓR I TEMPERATURY

ĆWICZENIE NR 3 OBLICZANIE UKŁADÓW STATYCZNIE NIEWYZNACZALNYCH METODĄ SIŁ OD OSIADANIA PODPÓR I TEMPERATURY zęść OLIZNIE UKŁÓW STTYZNIE NIEWYZNZLNYH METOĄ SIŁ 1 POLITEHNIK POZNŃSK INSTYTUT KONSTRUKJI UOWLNYH ZKŁ MEHNIKI UOWLI ĆWIZENIE NR 3 OLIZNIE UKŁÓW STTYZNIE NIEWYZNZLNYH METOĄ SIŁ O OSINI POPÓR I TEMPERTURY

Bardziej szczegółowo

Zadania z analizy matematycznej - sem. II Funkcje, ich granice i ciągłość

Zadania z analizy matematycznej - sem. II Funkcje, ich granice i ciągłość Zadania z analizy matematycznej - sem II Funkcje ich granice i ciągłość Zadanie 1 Wyznaczyć i naszkicować dziedziny naturalne podanych funkcji: a f y = 2 y 3 25 2 +y 2 16 b g y = ln1 2 y 2 c h y = ln 2

Bardziej szczegółowo

1.11. RÓWNANIE RÓŻNICZKOWE OSI UGIĘTEJ

1.11. RÓWNANIE RÓŻNICZKOWE OSI UGIĘTEJ .. RÓWNANIE RÓŻNICZKOWE OSI UGIĘTEJ od płem obciążenia prostolinioa oś podłużna belki staje się krzolinioa. Zakrzioną oś belki nazam linią ugięcia (osią ugiętą), przemieszczenie pionoe ( x) tej osi nazam

Bardziej szczegółowo

δ δ δ 1 ε δ δ δ 1 ε ε δ δ δ ε ε = T T a b c 1 = T = T = T

δ δ δ 1 ε δ δ δ 1 ε ε δ δ δ ε ε = T T a b c 1 = T = T = T M O D E L O W A N I E I N Y N I E R S K I E n r 4 7, I S S N 8 9 6-7 7 X M O D E L O W A N I E P A S Z C Z Y Z N B A Z O W Y C H K O R P U S W N A P O D S T A W I E P O M W S P R Z D N O C I O W Y C H

Bardziej szczegółowo

Zginanie ze ściskaniem

Zginanie ze ściskaniem Zginanie ze ściskaniem sformułoanie probemu przkład roziązań przkład obiczenioe Sformułoanie probemu W probemach tego tpu nie można stosoać zasad zesztnienia - konstrukcję naeż rozpatrać konfiguracji odkształconej

Bardziej szczegółowo

Zaliczenie wykładu Technika Analogowa Przykładowe pytania (czas zaliczenia minut, liczba pytań 6 8)

Zaliczenie wykładu Technika Analogowa Przykładowe pytania (czas zaliczenia minut, liczba pytań 6 8) Zaliczenie wyładu Technia Analogowa Przyładowe pytania (czas zaliczenia 3 4 minut, liczba pytań 6 8) Postulaty i podstawowe wzory teorii obowdów 1 Sformułuj pierwsze i drugie prawo Kirchhoffa Wyjaśnij

Bardziej szczegółowo

λ = 92 cm 4. C. Z bilansu cieplnego wynika, że ciepło pobrane musi być równe oddanemu

λ = 92 cm 4. C. Z bilansu cieplnego wynika, że ciepło pobrane musi być równe oddanemu Odpowiedzi i rozwiązania:. C. D (po włączeniu baterii w uzwojeniu pierwotny płynie prąd tały, nie zienia ię truień pola agnetycznego, nie płynie prąd indukcyjny) 3. A (w pozotałych przypadkach na trunie

Bardziej szczegółowo

2P 2P 5P. 2 l 2 l 2 2l 2l

2P 2P 5P. 2 l 2 l 2 2l 2l Przykład 10.. Obiczenie obciażenia granicznego Obiczyć obciążenie graniczne P gr da poniższej beki. Przekrój poprzeczny i granica pastyczności są stałe. Graniczny moment pastyczny, przy którym następuje

Bardziej szczegółowo

ź Ł Ą Ę Ź Ę Ę Ą Ę Ę Ę Ę Ę Ź Ą Ę Ą Ź Ę Ź Ó ć Ź Ó Ę Ź Ź ć ć Ę ć Ó Ó Ę Ę Ę Ę Ó Ę Ę ć Ć Ł Ó Ź ć ć ć Ę ć Ę Ł Ź Ź Ł ć ź ź Ę ć Ś Ą ć ć Ą ć Ś Ę Ź Ę Ź Ę ć Ó Ń Ę Ś Ę ź Ź Ę Ę Ć Ę Ń Ę Ę ć Ą Ę ć Ę ć Ę Ź Ę Ć Ę ź ć

Bardziej szczegółowo

Zadanie domowe nr Odczytać zaszyfrowaną wiadomość (liczbę) jeżeli:

Zadanie domowe nr Odczytać zaszyfrowaną wiadomość (liczbę) jeżeli: Zadanie domowe nr 122127 pq = 14691650382719198277390958526325257, KJ = 263111515232459, T XT = 1550184024239249105328038418749504. 2. Obliczyć wielokrotność punktu krzywej eliptycznej 11P jeżeli, y 2

Bardziej szczegółowo

Doświadczenie Atwood a

Doświadczenie Atwood a Doświadczenie Atwood a Dwa kocki o maach m 1 i m 2 = m 1 wiza na inie przewiezonej przez boczek. Oś boczka podwiezona jet do ufitu. Trzeci kocek o maie m 3 zota po ożony na pierwzym kocku tak że oba poruzaja

Bardziej szczegółowo

ń

ń Ę Ę ż Ę ć ń ń Ą Ą Ę ń ć Ą ń ń Ś ń ń ń ż ń ń ż ń ż ż ż ż ż ż ć ć Ą ź Ę ń ż ż ż Ż ż Ą Ł ż Ę ż ż Ę ć ć Ą ż ż ć ć ż ć ż Ę ż ż ń Ż ż ć Ą ż Ęć ń ż ż ń ć ć Ę Ł ż Ę Ę ć ż ń Ł ż Ż ż Ż Ę ż Ź ż Ź ż ź Ę Ź ń ż Ź ż

Bardziej szczegółowo

Rozdział 1. Nazwa i adres Zamawiającego Gdyńskie Centrum Sportu jednostka budżetowa Rozdział 2. Informacja o trybie i stosowaniu przepisów

Rozdział 1. Nazwa i adres Zamawiającego Gdyńskie Centrum Sportu jednostka budżetowa Rozdział 2. Informacja o trybie i stosowaniu przepisów Z n a k s p r a w y G C S D Z P I 2 7 1 07 2 0 1 5 S P E C Y F I K A C J A I S T O T N Y C H W A R U N K Ó W Z A M Ó W I E N I A f U s ł u g i s p r z» t a n i a o b i e k t Gó w d y s k i e g o C e n

Bardziej szczegółowo

Dodatek 10. Kwantowa teoria przewodnictwa I

Dodatek 10. Kwantowa teoria przewodnictwa I Dodate 10 Kwatowa teoria przewodictwa I Teoria lascza iała astępujące aaet: (1) zierzoe wartości średiej drogi swobodej oazał się o ila rzędów wielości więsze iż oczeiwae () teoria ie dawała poprawc zależości

Bardziej szczegółowo

OBLICZANIE RAM METODĄ PRZEMIESZCZEŃ WERSJA KOMPUTEROWA

OBLICZANIE RAM METODĄ PRZEMIESZCZEŃ WERSJA KOMPUTEROWA POLECHNA POZNAŃSA WYDZAŁ BUDOWNCWA NŻYNER ŚRODOWSA NSYU ONSRUCJ BUDOWLANYCH ZAŁAD ECHAN BUDOWL OBLCZANE RA EODĄ PRZEESZCZEŃ WERSJA OPUEROWA Ćwiczenie projektowe nr z echani budowli Wykonał: aciej BYCZYŃS

Bardziej szczegółowo

Obliczanie naprężeń stycznych wywołanych momentem skręcającym w przekrojach: kołowym, pierścieniowym, prostokątnym 7

Obliczanie naprężeń stycznych wywołanych momentem skręcającym w przekrojach: kołowym, pierścieniowym, prostokątnym 7 Obiczanie naprężeń tycznych wywołanych momentem kręcającym w przekrojach: kołowym, pierścieniowym, protokątnym 7 Wprowadzenie Do obiczenia naprężeń tycznych wywołanych momentem kręcającym w przekrojach

Bardziej szczegółowo

Wybrane metody przybliżonego. wyznaczania rozwiązań (pierwiastków) równań nieliniowych

Wybrane metody przybliżonego. wyznaczania rozwiązań (pierwiastków) równań nieliniowych Wykład trzeci 1 Wybrane metody przybliżonego wyznaczania rozwiązań pierwiastków równań nieliniowych 2 Metody rozwiązywania równań nieliniowych = 0 jest unkcją rzeczywistą zmiennej rzeczywistej Rozwiązanie

Bardziej szczegółowo

OBLICZENIE PRZEMIESZCZEŃ W KRATOWNICY PŁASKIEJ

OBLICZENIE PRZEMIESZCZEŃ W KRATOWNICY PŁASKIEJ WYZNACZANIE PRZEMIESZCZEŃ - kratownica obciążenie iłami 070 OBLICZENIE PRZEMIESZCZEŃ W KRATOWNICY PŁASKIEJ DANE WYJŚCIOWE DO OBLICZEŃ Dana jet kratownica jak na runku Zaprojektować wtępnie przekroje prętów

Bardziej szczegółowo

4. Statystyka elektronów i dziur

4. Statystyka elektronów i dziur 4. Statystya ltroów i ziur Gęstość staów Koctracja ltroów i ziur w półprzwoiu izgrowaym i zgrowaym Półprzwoi samoisty Domiszowai, oory i acptory Półprzwoi omiszoway, zalżość octracji swoboyc ośiów i poziomu

Bardziej szczegółowo

SYSTEMY DYSKRETNE LTI

SYSTEMY DYSKRETNE LTI CPS 6/7 SYSTEMY DYSKRETNE LTI Odpoiedź impuloa UOdpoiedź impuloau h[] ytemu jet to ygał a yjściu ytemu, gdy a jego δ. ejściu ymuzoo chili = impul jedotkoy δ[] Sytem dykrety h[] Odpoiedź impuloa h[] jet

Bardziej szczegółowo

I. STADHOUDERZY NIDERLANDÓW

I. STADHOUDERZY NIDERLANDÓW 68 I. STADHOUDERZY NIDERLANDÓW I. TŻS D H O U D E R Z Y N I D E R LŻ N D Ó W R o z d z i a ł I I. KRÓLOWIE HOLANDII LUDWIK I 70 LUDWIK II 79 6 9 I. TŻS D H O U D E R Z Y N I D E R LŻ N D Ó W LUDWIK I Król

Bardziej szczegółowo

ć Ę ó ó Ź ó ó ć ź ć ć Ś ć Ź ó Ó ó ó Ś ó ó ć ó ć Ź ź ć ó ź ć ó ź ó ó ó ó ć Ą ó ó ź ó ó ó ć ź ć ć ź ź Ś ó ó ó ć ó Ź ó ó ć ó ó ó ó Ę ó ó ź Ę ó ó ó ć ó ó ź Ć Ź ź ó ó ó ó ó ó ó óź ź ó ź ó ó ó ó ć ó ó ć ó ó

Bardziej szczegółowo

Modele odpowiedzi i punktacji

Modele odpowiedzi i punktacji Próbny egzain aturalny z fizyki i atronoii pozio rozzerzony (0) Moele opoiezi i punktacji Zaanie. Bryła lou ( pkt). Napianie arunku rónoagi HS ρ g= hsρ g l gzie h to yokość zanurzonej części protopałościanu.

Bardziej szczegółowo

ć Ź Ę ź Ó ż ż Ś Ć Ś

ć Ź Ę ź Ó ż ż Ś Ć Ś Ż Ę Ę Ó Ę Ś ż ć Ź Ę ź Ó ż ż Ś Ć Ś Ż ć Ć ć Ś ć Ó Ń Ż ć Ć Ż Ą Ę Ż Ż Ż Ó Ż Ó Ó Ś Ż Ć Ę Ź ć ż Ó ÓĘ ż Ż Ó Ę Ż ż Ą Ą Ż Ś Ć ż Ź Ż ć ć Ś ć ż Ą Ś Ó ć Ź ć Ó Ó Ść ż Ó Ó Ć Ó Ó Ść ć Ś ć ż ć Ó Ó ć ć ć Ó ć Ó ć Ó ć Ó

Bardziej szczegółowo

KO OF Szczecin:

KO OF Szczecin: XXXI OLIMPIADA FIZYCZNA (1981/198) Stopień III, zaanie teoretyczne T Źróło: Nazwa zaania: Działy: Słowa kluczowe: Komitet Główny Olimpiay Fizycznej; Anrzej Kotlicki; Anrzej Naolny: Fizyka w Szkole, nr

Bardziej szczegółowo

- ---Ą

- ---Ą Ą ż ą ą ą Ą ó ą ł ą ł Ąą ż ś Ę ÓŁ Ę Ó ŁĄ ŁŚĆ ł ż ł ż ó ł Ó Ć Ą Ł ŁÓ ŁŚ Ą ż Ó ŁÓ Ę ś ś ł ż ł Ą ęś Ą ń ź ć ą ą ę ń ż ąń ę ę ć óź ŁĄ ą ł ę ę ł ę ń Ą Ęł ą Ł ł ł ż ó ą ł ęę ĘĘ ęć ó ą ń ł ą Ą ęś ł ś ÓŁ Ą ę ę

Bardziej szczegółowo

1 10BKPANC 6,5 0:21:10 03:15 [min/km] 0:21:10. 3 TRZEBIEL 6,5 0:22:35 03:28 [min/km] 0:22:34

1 10BKPANC 6,5 0:21:10 03:15 [min/km] 0:21:10. 3 TRZEBIEL 6,5 0:22:35 03:28 [min/km] 0:22:34 I 10NC U C I E J O Ł J 2 3 9 9 I E O Ó, O I I U E I E C O I I I C E U O Ó N O C Š C E C E I O C Y Ł O I E J 1 0 a n c E U J 4 O 8, I Ł O Y O 5 U U I U Y E I I, I E O E J E U Ł Ó N J E C I N O Ł Y U I N

Bardziej szczegółowo

PŁYTY WIELOKIERUNKOWO ZBROJONE

PŁYTY WIELOKIERUNKOWO ZBROJONE W. Bierut: Płt wielokierunkowo zginane 1 PŁYTY WIELOKIERUNKOWO ZBROJONE Prz obliczaniu łt rostokątnch, którch boki na kierunkach l i l znacznie różnią się długością rzjęto, że racują one tlko w jednm kierunku

Bardziej szczegółowo

Ć w i c z e n i e K 2 a Wyznaczanie siły krytycznej pręta o przekroju prostokątnym posiadającego krzywiznę początkową.

Ć w i c z e n i e K 2 a Wyznaczanie siły krytycznej pręta o przekroju prostokątnym posiadającego krzywiznę początkową. Akademia Górniczo Hutnicza Wdział Inżnierii Mechanicznej i Robotki Katedra Wtrzmałości, Zmęczenia Materiałów i Konstrukcji Nazwisko i Imię: Nazwisko i Imię: Wdział Górnictwa i Geoinżnierii Grua nr: Ocena:

Bardziej szczegółowo

Przekształcenie Laplace a i jego zastosowania

Przekształcenie Laplace a i jego zastosowania Przekzałcenie Laplace a i jego zaoowania Funkcje pecjalne i dyrybucje Funkcja koku jednokowego (nazywana również funkcją Heaviide a) ( ) gdy > gdy < ( ) gdy gdy > < ( ) ( ) f a e > < e a ( ) f f ( ) A

Bardziej szczegółowo

Rozkład normalny (Gaussa)

Rozkład normalny (Gaussa) Rozład ormal (Gaussa Wprowadzeie rozładu Gaussa w modelu Laplace a błędów pomiarowch. Rozważm pomiar wielości, tór jest zaburza przez losowch efetów o wielości ε ażd, zarówo zaiżającch ja i zawżającch

Bardziej szczegółowo

Ł Ą Ź Ą Ń Ą Ą ź Ń Ł Ł

Ł Ą Ź Ą Ń Ą Ą ź Ń Ł Ł Ł Ń Ł Ą Ź Ą Ń Ą Ą ź Ń Ł Ł Ł ź ź ź Ó Ż ź ź Ń Ł Ł Ł ź Ż Ł ź Ą ź ź Ł ź Ą Ć Ł Ń Ż ź Ł Ż Ć ź Ł Ą Ź Ł Ą Ł Ń Ż Ą Ą ź ź Ą Ó ĄÓ ź ź Ą ź Ł ź Ł ź Ł źń Ć ź Ś Ó Ć Ż Ą Ś Ą Ń ź ź ź Ł Ś ź Ą Ó ź Ą Ó ź Ż Ł ź ź Ł Ń Ł

Bardziej szczegółowo

Rozkład normalny (Gaussa)

Rozkład normalny (Gaussa) Rozład ormal (Gaussa Wprowadzeie rozładu Gaussa w modelu Laplace a błędów pomiarowch. Rozważm pomiar wielości, tór jest zaburza przez losowch efetów o wielości ε ażd, zarówo zaiżającch ja i zawżającch

Bardziej szczegółowo

ZADANIA. PYTANIA I ZADANIA v ZADANIA za 2pkt.

ZADANIA. PYTANIA I ZADANIA v ZADANIA za 2pkt. PYTANIA I ZADANIA v.1.3 26.01.12 ZADANIA za 2pkt. ZADANIA Podać wartości zredukowanych wymiarów fundamentu dla następujących danych: B = 2,00 m, L = 2,40 m, e L = -0,31 m, e B = +0,11 m. Obliczyć wartość

Bardziej szczegółowo

1 Dwuwymiarowa zmienna losowa

1 Dwuwymiarowa zmienna losowa 1 Dwuwymiarowa zmiea loowa 1.1 Dwuwymiarowa zmiea loowa kokowa X = x i, Y = y k = p ik przy czym i, k N oraz p ik = 1; i k p i = X = x i = p ik dla i N; p k = Y = y k = p ik dla k N; k i F 1 x = p i dla

Bardziej szczegółowo

Wytrzymałość śruby wysokość nakrętki

Wytrzymałość śruby wysokość nakrętki Wyzymałość śuby wysoość aęi Wpowazeie zej Wie Działająca w śubie siła osiowa jes pzeoszoa pzez zeń i zwoje gwiu. owouje ozciągaie lub ścisaie zeia śuby, zgiaie i ściaie zwojów gwiu oaz wywołuje acisi a

Bardziej szczegółowo

PROJEKT DOCELOWEJ ORGANIZACJI RUCHU DLA ZADANIA: PRZEBUDOWA UL PIASTÓW ŚLĄSKICH (OD UL. DZIERŻONIA DO UL. KOPALNIANEJ) W MYSŁOWICACH

PROJEKT DOCELOWEJ ORGANIZACJI RUCHU DLA ZADANIA: PRZEBUDOWA UL PIASTÓW ŚLĄSKICH (OD UL. DZIERŻONIA DO UL. KOPALNIANEJ) W MYSŁOWICACH P r o j e k t d o c e l o w e j o r g a n i z a c j i r u c h u d l a z a d a n i a : " P r z e b u d o w a u l. P i a s t ó w Śl ą s k i c h ( o d u l. D z i e r ż o n i a d o u l. K o p a l n i a n e

Bardziej szczegółowo

MECHANIKA BUDOWLI. Linie wpływu sił w prętach kratownic statycznie niewyznaczalnych

MECHANIKA BUDOWLI. Linie wpływu sił w prętach kratownic statycznie niewyznaczalnych Dana kratownica: Olga Kopacz, Ada Łodygowski, ojciech Pawłowski, Michał Płotkowiak, Krzysztof Typer Konsultacje naukowe: prof. dr hab. JERZY RAKOSKI Poznań 00/00 MECHANIKA BUDOLI Linie wpływu sił w prętach

Bardziej szczegółowo

Funkcja momentu statycznego odciętej części przekroju dla prostokąta wyraża się wzorem. z. Po podstawieniu do definicji otrzymamy

Funkcja momentu statycznego odciętej części przekroju dla prostokąta wyraża się wzorem. z. Po podstawieniu do definicji otrzymamy etoy energetyczne rzykła Wyznaczyć współczynnk z - α z a przekroju prostokątnego który wzłuż os y ma wymar b wzłuż os Funkcja momentu statycznego ocętej częśc przekroju a prostokąta wyraża sę wzorem b

Bardziej szczegółowo

DRGANIA SWOBODNE UKŁADU O DWÓCH STOPNIACH SWOBODY. Rys Model układu

DRGANIA SWOBODNE UKŁADU O DWÓCH STOPNIACH SWOBODY. Rys Model układu Ćwiczenie 7 DRGANIA SWOBODNE UKŁADU O DWÓCH STOPNIACH SWOBODY. Cel ćwiczenia Doświadczalne wyznaczenie częstości drgań własnych układu o dwóch stopniach swobody, pokazanie postaci drgań odpowiadających

Bardziej szczegółowo

2 ), S t r o n a 1 z 1 1

2 ), S t r o n a 1 z 1 1 Z a k r e s c z y n n o c i s p r z» t a n i a Z a ł» c z n i k n r 1 d o w z o r u u m o w y s t a n o w i» c e g o z a ł» c z n i k n r 5 d o S p e c y f i k a c j i I s t o t n y c h W a r u n k ó w

Bardziej szczegółowo

NIEPEWNOŚĆ POMIAROWA - WPROWADZENIE

NIEPEWNOŚĆ POMIAROWA - WPROWADZENIE NIEPENOŚĆ POMIAROA - PROADZENIE - bezwzęda iepewość poiarowa (dokładość poiaru). Jej źródłe oże bć: przpadkow rozrzu wików poiarów dokładość przrządu. Niepewości poiarowe ierzoe bezpośredio związae z dokładością

Bardziej szczegółowo

CEL PRACY ZAKRES PRACY

CEL PRACY ZAKRES PRACY CEL PRACY. Analiza energetycznych kryteriów zęczenia wieloosiowego pod względe zastosowanych ateriałów, rodzajów obciążenia, wpływu koncentratora naprężenia i zakresu stosowalności dla ałej i dużej liczby

Bardziej szczegółowo

Ó Ś Ą ŚĆ Ą Ś Ś ż Ó Ą Ś Ó Ż Ó Ó ć ć ć Ó Ó Ń Ś Ó ć Ś Ó Ń Ą Ś ć Ó Ó ć Ź ć ć Ź ż Ź ć ż ć ż ż ż ż ć ć ć Ó Ó Ó ć ż ż ż Ó Ó Ó Ń ż ć ć ż ż Ż ć Ó Ó ć ć ć ć ć ż ż Ó Ó ć ć Ó Ą Ź Ź Ó Ó Ó Ń ć ż ć ż Ó ż ć Ź ć ć Ż ż

Bardziej szczegółowo

gruparectan.pl 1. Metor Strona:1 Dla danego układu wyznaczyć MTN metodą przemieszczeń Rys. Schemat układu Współrzędne węzłów:

gruparectan.pl 1. Metor Strona:1 Dla danego układu wyznaczyć MTN metodą przemieszczeń Rys. Schemat układu Współrzędne węzłów: 1. Metor Dla danego układu wyznaczyć MTN metodą przemieszczeń Rys. Schemat układu Współrzędne węzłów: węzeł 1 x=[0.000][m], y=[0.000][m] węzeł 2 x=[2.000][m], y=[0.000][m] węzeł 3 x=[2.000][m], y=[2.000][m]

Bardziej szczegółowo

ć Ó Ó Ż

ć Ó Ó Ż Ą Ą Ł Ą Ą ć Ó Ó Ż ć ć Ó ć Ó Ó Ó Ó Ó Ż Ą Ó Ż Ż Ż Ó Ó Ó Ó Ź Ó Ż Ó Ż Ą Ó Ó Ż ż Ż Ż Ż Ó Ó Ó Ó ÓĘ Ó Ż ż Ć Ż Ż Ż Ż Ł Ż Ó Ó Ó Ż Ó Ó Ó Ó Ć Ó Ó Ż ć Ó Ó Ż ŻĄ Ż Ó Ó Ż Ż Ż ć Ą ż ż Ź Ż Ź Ź Ż Ż Ó Ź Ó Ą Ó Ó Ó Ż Ó Ż Ó

Bardziej szczegółowo

1.12. CAŁKA MOHRA Geometryczna postać całki MOHRA. Rys. 1

1.12. CAŁKA MOHRA Geometryczna postać całki MOHRA. Rys. 1 .. CAŁA OHRA Całka OHRA yraża ziązek między przemieszczeniem (ydłużeniem, ugięciem, obrotem) a obciążeniem (siłą, momentem, obciążeniem ciągłym). Służy ona do yznaczania przemieszczeń statycznie yznaczanych

Bardziej szczegółowo

ENERGIA SPRĘŻYSTA 1 1. BILANS ENERGETYCZNY 2. RÓWNANIE STANU, POTENCJAŁ SIŁ WEWNĘTRZNYCH

ENERGIA SPRĘŻYSTA 1 1. BILANS ENERGETYCZNY 2. RÓWNANIE STANU, POTENCJAŁ SIŁ WEWNĘTRZNYCH NRG SPRĘŻYST. BLNS NRGTYCZNY.. PODSTO POJĘC Układ ic - ciało (lub układ ciał) łożoe uktów aterialch Otoceie - obsar otacając układ ic Ziee stau terodaicego - araetr charakterujące sta układu i otoceia

Bardziej szczegółowo

Belki na podłożu sprężystym

Belki na podłożu sprężystym Belki na podłożu sprężystym podłoże inkleroskie, rónanie różniczkoe ugięcia belki, linie płyoe M-Q-, belki półnieskończone, sposób Bleicha, przykład obliczenioy odłoże inkleroskie Założenia Winklera spółpracy

Bardziej szczegółowo

ŁĄ ę ł

ŁĄ ę ł ŁĄ ę ł ł ń ł ł ł ł ł ó ą Ń ł ń ł ł ł ż Ł ń ąó ż ąó ó ą ę ó ąę ą ł ą ę ń ł ś ół ż ł ł ł ą ń ś ół ń ł ł ę ł ó ł Ćć ć Ą ż ł ć ć ć ł ł ż ó ąę ó ó ą ś ó ół ż ą ń ł ó ą ę ą ó ę ś ś ó ą ę ą ą ęś ć ś ę ą ę ł ę

Bardziej szczegółowo

PROJEKT I WALIDACJA URZĄDZEŃ POMIAROWYCH

PROJEKT I WALIDACJA URZĄDZEŃ POMIAROWYCH M O D E L O W A N I E I N Y N I E R S K I E n r 4 7, I S S N 1 8 9 6-7 7 1 X P R O J E K T I W A L I D A C J A U R Z Ą D Z E P O M I A R O W Y C H a S I Y W L I N I E I K Ą T A W Y C H Y L E N I A L I

Bardziej szczegółowo

Modele odpowiedzi do arkusza Próbnej Matury z OPERONEM. Fizyka i astronomia Poziom podstawowy

Modele odpowiedzi do arkusza Próbnej Matury z OPERONEM. Fizyka i astronomia Poziom podstawowy Modele odpowiedzi do arkuza Próbnej Matury z OPERONEM Fizyka i atronoia Pozio podtawowy Litopad 00 W klu czu ą pre zen to wa ne przy kła do we pra wi dło we od po wie dzi. Na le ży rów nież uznać od po

Bardziej szczegółowo

Zestaw zadań z Równań różniczkowych cząstkowych I 18/19

Zestaw zadań z Równań różniczkowych cząstkowych I 18/19 Zestaw zadań z Równań różniczkowych cząstkowych I 18/19 Zad 1. Znaleźć rozwiązania ogólne u = u(x, y) następujących równań u x = 1, u y = 2xy, u yy = 6y, u xy = 1, u x + y = 0, u xxyy = 0. Zad 2. Znaleźć

Bardziej szczegółowo

ROZWIĄZANIA DO ZADAŃ

ROZWIĄZANIA DO ZADAŃ TURNIRJ MATEMATYCZNY ELIPSA dla klas LO ROZWIĄZANIA DO ZADAŃ Zadanie. (2 pkt.) Dla jakich wartości parametru m (m R), część wspólna przedziałów A = (, m m i B = 2m 2, + ) jest zbiorem pustym? / Jeśli A

Bardziej szczegółowo

WZORY Z FIZYKI POZNANE W GIMNAZJUM

WZORY Z FIZYKI POZNANE W GIMNAZJUM WZORY Z IZYKI POZNANE W GIMNAZJM. CięŜa ciała. g g g g atość cięŝau ciała N, aa ciała kg, g tały ółczyik zay zyiezeie zieki, N g 0 0 kg g. Gętość ubtacji. getoc aa objetoc ρ V Jedotką gętości kładzie SI

Bardziej szczegółowo

r = ψ x ( 5 ) = x ψ ( 6 ) dn = q(x)dx ( 7 ) dt = μdn = μq(x)dx ( 8 ) M = M ( 1 )

r = ψ x ( 5 ) = x ψ ( 6 ) dn = q(x)dx ( 7 ) dt = μdn = μq(x)dx ( 8 ) M = M ( 1 ) M O D E L O W A N I E I N Y N I E R S K I E n r 4 7, I S S N 1 8 9 6-7 7 1 X O K R E L E N I E O S I O B R O T U M A Y C H R O B O T W G Ą S I E N I C O W Y C H D L A P O T R Z E B O P I S U M O D E L

Bardziej szczegółowo