ZMIENNE LOSOWE CZY NIELOSOWE W EKONOMETRII
|
|
- Sebastian Łukasik
- 8 lat temu
- Przeglądów:
Transkrypt
1 STUDIA I PRACE WYDZIAŁU NAUK EKONOMICZNYCH I ZARZĄDZANIA NR 36 Józef Hozer * Uniwersytet Szczeciński ZMIENNE LOSOWE CZY NIELOSOWE W EKONOMETRII STRESZCZENIE W literaturze ekonometryczno-statystycznej większość teorii budowy modeli ekonometrycznych oparta jest na założeniu nielosowości zmiennych objaśniających. W artykule wykazano, że realniejsze jest założenie, że zmienne objaśniające w modelu ekonometrycznym mogą być zarówno losowe, jak i nielosowe. Przedstawiono reperkusje wynikające z takiego ujęcia problemu. Słowa kluczowe: zmienne losowe i nielosowe, ekonometria. W procesie gospodarowania powstaje masa faktów, które mierzymy, gromadzimy dane, a potem mielimy je w komputerach dla celów poznawczych. Staramy się, aby to, co się dzieje, analizować, diagnozować i prognozować, używając przy tym metod statystycznych. Kiedy do analiz stosujemy metody ekonometrii, to czynimy założenia, które pozwalają wyciągać stosowne wnioski, na przykład co do własności używanych estymatorów. Jednym z takich założeń jest nielosowość zmiennych objaśniających w analizie wielowymiarowej za pomocą modelu ekonometrycznego. Znaczna część ekonometrii poświęcona jest sytuacji, w której dla zapisu: (,,...,, ) Y = f X X X U (1) t 1t 2t kt t * Adres hozer@wneiz.pl.
2 58 METODY ILOŚCIOWE W EKONOMII obowiązują założenia, że zmienne objaśniające X it są nielosowe (a zmienne Y t i U t są losowe) [Pawłowski, 1976, s. 91; Pawłowski, 1980, s. 265; Glodberger, 1972, s. 209]. Wówczas taki model określany jest jako model regresji opisowej. Jeżeli ta regresja ma charakter liniowy, to mówimy o modelu opisowej regresji liniowej. Zbieramy dane statystyczne i szacujemy parametry modelu. Estymatory takiego modelu mają wymagane własności statystyczne i model daje nadzieję na adekwatne wnioskowanie statystyczne, a to oznacza trafne analizy, diagnozy i prognozy. Najczęściej jednak szacujemy parametry modelu bez weryfikacji założenia o nielosowości zmiennych objaśniających. Powstaje pytanie: jakiego charakteru są zjawiska ekonomiczne losowego czy nielosowego? W ekonometrii rozważa się przypadek losowych zmiennych objaśniających [Goldberger, 1972, s. 341; Pawłowski, 1976, s. 276; Pawłowski, 1980, s. 109]. Rozważania nad zagadnieniem poprzedzimy określeniem zmiennej losowej zapożyczonym z podręcznika Z. Hellwiga: Zmienną losową nazywa się taką wielkość, która w wyniku doświadczenia przyjmuje określoną wartość, znaną po zrealizowaniu doświadczenia, a nie dającą się przewidzieć przed realizacją doświadczenia [Hellwig, 1977, s. 65]. Innymi słowy, zmienna losowa to taka zmienna, której wartości nie możemy poznać przed jej zrealizowaniem. Jednak w ekonomii dane statystyczne nie pochodzą z eksperymentu [Pawłowski, 1980, s. 106]. Dane dotyczą zrealizowanych procesów gospodarczych. Ekonometryk nie zna zatem wartości zmiennych przed realizacją procesu. Nie oznacza to jednak, że wszystkie zmienne są losowe. Jak wykażemy poniżej, zmienna traktowana przez ekonometryka jako losowa dla menadżera zarządzającego i podejmującego decyzję może być nielosowa. Przy kwalifikacji zmiennych w ekonomii przychodzi nam w sukurs rozróżnienie rodzajów związków w ekonomii. Na ogół ekonometrycy są przekonani, że budują modele dla związków przyczynowych. Tymczasem w rzeczywistości oprócz związków przyczynowych realizują się powiązania celowe i współistnienia. Świadomość tych różnic jest bardzo istotna z punktu widzenia opisu prawidłowości statystycznych związków w ekonomii. Te trzy rodzaje związków są opisane między innymi w pracy [Hozer, Doszyń, 2004]. W pierwszym przypadku realizuje się proces, w którym pytamy, dlaczego zrealizował się fakt Y t? W drugim pytamy, po co kreujemy X t,? Odpowiedzi są następujące. W pierwszym przypadku odpowiedź jest następująca: ponieważ zrealizował się fakt X t-1. W drugim przypadku odpowiedź brzmi: po to,
3 JÓZEF HOZER ZMIENNE LOSOWE CZY NIELOSOWE W EKONOMETRII 59 aby powstał fakt Y t+1. Są to dwie, diametralnie odmienne sytuacje. W pierwszym przypadku taka relacja przyczynowa: Y (,... t = f Xt 1 ) (2) może być identyfikowana i wykorzystywana do prognozowania na jeden okres. Czy do przewidywania na wiele okresów w przód możemy wykorzystać relację (2)? Owszem, ale wówczas będziemy budować prognozę zjawiska Y, na podstawie prognozy zjawiska X, a to może dawać niezbyt dobre rezultaty (istotne błędy prognoz). W aplikacjach ekonometrycznych przy dłuższych horyzontach prognozy zwykle bywa, że prognozy te obarczone są istotnymi błędami. W drugim przypadku relacja celowa: Y = t+ 1 f ( Xt,...) (3) może z założenia być wykorzystywana do podejmowania decyzji w procesie gospodarowania (zarządzania). Oznacza to, że identyfikujemy prawidłowość statystyczną, którą wykorzystujemy w podejmowaniu decyzji. Czy możemy wykorzystać tę relację do przewidywania? Wydaje się, że tak. Zarządzający decyduje o wartości X t, a realizacja Y t jest nadzieją matematyczną warunkowego rozkładu Y t. Okazuje się więc, że relacja celowości jest bliższa schematowi ekonometrycznego modelu opisowego niż relacja przyczynowa. W drugim przypadku X t jest nielosowe, a w pierwszym X t-1 z definicji jest losowe w myśl pojęcia losowości zmiennej. Kiedy ta sama zmienna może być traktowana jako losowa i nielosowa jednocześnie? Weźmy jako przykład badanie popytu na jakiś towar, który zależy od jego ceny. Dla obserwatora zewnętrznego i popyt, i cena są zmiennymi losowymi. Przed zrealizowaniem obserwator (ekonometryk) nie zna ich wartości, ale sprzedawca (właściciel) ustala cenę i zna tę wartość przed realizacją. Dla obserwatora obie zmienne są losowe. Dla właściciela cena jest zmienną nielosową. Jak widzimy, ta sama zmienna może być jednocześnie losową i nielosową. Jest to poważne utrudnienie epistemologiczne w badaniach ekonometrycznych. Problem losowości ekonometrycy rozwiązują w ten sposób, że rozpatrują tak zwany uogólniony model opisowy [Goldberger, 1972, s. 341; Pawłowski, 1976, s. 276]. Rozpatrywanie uogólnionego modelu opisowego w ekonometrii wydaje się bardziej uzasadnione ze względu na częstość występowania losowych zmiennych w ekonomii. Z tego powodu ekonometrycy często nie przyjmują rygorystycznych założeń co do bada-
4 60 METODY ILOŚCIOWE W EKONOMII nych procesów, zakładając tylko, że badane relacje mają charakter stochastyczny, a w zbiorze zmiennych objaśniających mogą występować zarówno zmienne nielosowe jak i losowe. Przykłady Z. Pawłowski przytacza przykład empirycznego modelu kosztów [Pawłowski, 1980, s. 337]: K C = 0,2120Q + 45,96X ,96 X 2 74,09 X 3 204,56 + U (4) Zmienna K C (koszty całkowite) jest niewątpliwie zmienną losową. Pozostałe zmienne oznaczające: Q produkcja piwa, X 1 udział piwa pełnego w całej produkcji browaru, X 2 frakcja produkcji słodu zużywanego do produkcji piwa w danym browarze, X 2 udział zużycia surowców zastępczych, są zmiennymi losowymi i nielosowymi: Q jest zmienną losową, a X 1, X 2, X 3 to zmienne, które są bardziej losowe, niż nielosowe. Jeżeli wartość produkcji nie jest dokładnie znana przed końcem procesu produkcyjnego (a tak zwykle bywa), to udział piwa pełnego w produkcji całego browaru również jest zmienną losową. Tak samo można interpretować charakter zmiennych X 2 i X 3. W pracy [Hozer, 1993, s. 29], przytoczono tak zwany model Wolda: gdzie: P t cena, D t popyt, S t podaż. P t = f 1 [(D t-1 S t ), P t-1, U 1t ] (5) D t = f 2 (P t, U 2t ) (6) S t = f 3 (P t-1, U 3t ) (7)
5 JÓZEF HOZER ZMIENNE LOSOWE CZY NIELOSOWE W EKONOMETRII 61 Wszystkie zmienne, zarówno objaśniane jak i objaśniające, wydają się mieć charakter losowy. W tej samej pracy [Hozer, 1993, s. 59], przytoczono hipotezę modelową do badania utargu w jednostce handlowej: Y t = f(x 1t, X 2t, X 3t, X 4t, Q kt, U t ) (8) gdzie: Y t utarg w poszczególnych dekadach, X 1t czas pracy punktu w godzinach, X 2t wielkość dostaw, X 3t liczba personelu, X 4t powierzchnia handlowa punktu, Q kt zmienna zero-jedynkowa, przyjmująca wartość 1 w k-tej dekadzie, a wartość 0 w pozostałych. Kwalifikując zmienne występujące w tym modelu, możemy uznać, że zmienne Y t, X 1t, X 2t, X 3t to zmienne losowe, a zmienne X 4t, Q kt to zmienne nielosowe. Okazuje się, że nawet taka zmienna, jak liczba personelu obsługi w sklepie, jest trudna do przewidzenia z powodu urlopów (w tym urlopów losowych), zwolnień itp. W pracy [Hozer, Zawadzki, 1990, s. 121] przytoczono następujący model produkcji globalnej przemysłu włókienniczego w Polsce (Y t ) na tle zatrudnienia robotników (X 1t ) i zużycia energii (X 2t ), czasu (T): Y T = 0,14155X 1t + 0,04065 X 2t 0,37382 T 39,809 (9) Zmienna Y t jest zmienną losową, natomiast T, X 1t, X 2t są zmiennymi nielosowymi. Widzimy, że zmienne objaśniające występujące w modelach przyczynowych w literaturze ekonometrycznej raz mają charakter losowy, a innym razem charakter nielosowy. Z tego wynika ważny wniosek, że częściej mamy do czynienia z uogólnionym modelem opisowym niż z klasycznym modelem regresji. Są to problemy podstaw epistemologii ekonometrycznej, lecz warto się nimi zajmować, aby poprawić jakość zastosowań ekonometrycznych w opisywaniu i prognozowaniu zjawisk ekonomicznych. W artykule rozważamy dwa rodzaje związków, pomijając trzeci, czyli związki współistnienia, od których zaczęła się teoria ekonometrii. Trzy związki opisane są przykładowo w pracy [Hozer, 1993].
6 62 METODY ILOŚCIOWE W EKONOMII Jakie mogą być reperkusje losowości i nielosowości zmiennych objaśniających? 1. Ta sama zmienna może być losowa i nielosowa jednocześnie, a zależy to od punktu widzenia. 2. Losowe zmienne objaśniające utrudniają wykorzystanie oszacowanych relacji do prognozowania. W takiej sytuacji prognozy opierają się na innych prognozach. Zmienna nielosowa często występuje w związkach celowych, a więc ich wartości są wynikiem podejmowanych decyzji. Realizacja zmiennej objaśnianej, produkcja, popyt są wynikiem kalkulacji decydenta. 3. Przyjęcie założenia o losowości zmiennych objaśniających w modelowaniu ekonometrycznym (oprócz nielosowości innych zmiennych objaśniających) powoduje, że procesy szacowania parametrów nie są obarczone tak rygorystycznymi założeniami. Po prostu przyjęte założenia są bardziej realne, mimo że musimy się zadowolić gorszymi własnościami parametrów. 4. Wykorzystanie modeli związków do prognozowania natrafia na bariery. Jedną z nich jest prognozowanie zmiennej objaśnianej na podstawie prognozowania zmiennych objaśniających, co może dawać niezbyt zadowalające efekty, gdy prognozujemy za pomocą modeli związków przyczynowych. Druga bariera polega na wykorzystaniu do prognozowania modeli związków celowych z nielosowymi zmiennymi i wartości które określa decydent. Być może w praktyce trudności te często powodują duże błędy prognoz, które zniechęcają do stosowania modeli ekonometrycznych do prognozowania. Literatura Goldberger A. (1972), Teoria ekonometrii, PWE, Warszawa. Hellwig Z. (1977), Elementy rachunku prawdopodobieństwa i statystyki matematycznej, PWN, Warszawa. Hozer J. (1993), Mikroekonometria. Analizy, diagnozy, prognozy, PWE, Warszawa. Hozer J., Doszyń M. (2004), Ekonometria skłonności, PWE, Warszawa. Hozer J., Zawadzki J. (1990), Zmienna czasowa i jej rola w badaniach ekonometrycznych, PWN, Warszawa. Pawłowski Z. (1976), Statystyka matematyczna, PWN, Warszawa. Pawłowski Z. (1980), Ekonometria, PWN, Warszawa.
7 JÓZEF HOZER ZMIENNE LOSOWE CZY NIELOSOWE W EKONOMETRII 63 RANDOM AND NON-RANDOM VARIABLES IN ECONOMETRICS Abstract In the econometric and statistical literature, most theories regarding constructing econometric models are based on the assumption that the explanatory variables are nonrandom. The paper shows that it is more realistic to assume that the explanatory variables in the econometric model can be both random and non-random. It also presents repercussions resulting from such an approach to the problem. Keywords: random and non-random variables, econometrics. KOD JEL: C1. Translated by Elwira Zaorska
8
Etapy modelowania ekonometrycznego
Etapy modelowania ekonometrycznego jest podstawowym narzędziem badawczym, jakim posługuje się ekonometria. Stanowi on matematyczno-statystyczną formę zapisu prawidłowości statystycznej w zakresie rozkładu,
Metody Ilościowe w Socjologii
Metody Ilościowe w Socjologii wykład 2 i 3 EKONOMETRIA dr inż. Maciej Wolny AGENDA I. Ekonometria podstawowe definicje II. Etapy budowy modelu ekonometrycznego III. Wybrane metody doboru zmiennych do modelu
przedmiotu Nazwa Pierwsza studia drugiego stopnia
Nazwa przedmiotu K A R T A P R Z E D M I O T U ( S Y L L A B U S ) O p i s p r z e d m i o t u Kod przedmiotu EKONOMETRIA UTH/I/O/MT/zmi/ /C 1/ST/2(m)/1Z/C1.1.5 Język wykładowy ECONOMETRICS JĘZYK POLSKI
Prognozowanie i Symulacje. Wykład I. Matematyczne metody prognozowania
Prognozowanie i Symulacje. Wykład I. e-mail:e.kozlovski@pollub.pl Spis treści Szeregi czasowe 1 Szeregi czasowe 2 3 Szeregi czasowe Definicja 1 Szereg czasowy jest to proces stochastyczny z czasem dyskretnym
Zagadnienia na egzamin magisterski na kierunku Informatyka i Ekonometria (2 stopień studiów)
Zagadnienia na egzamin magisterski na kierunku Informatyka i Ekonometria (2 stopień studiów) 1. Topologie sieci komputerowych a. 06IE_2A_W02 - jest w stanie zdefiniować problem decyzyjny, analizować źródła
Spis treści 3 SPIS TREŚCI
Spis treści 3 SPIS TREŚCI PRZEDMOWA... 1. WNIOSKOWANIE STATYSTYCZNE JAKO DYSCYPLINA MATEMATYCZNA... Metody statystyczne w analizie i prognozowaniu zjawisk ekonomicznych... Badania statystyczne podstawowe
Statystyka matematyczna i ekonometria
Statystyka matematyczna i ekonometria Wykład 9 Anna Skowrońska-Szmer lato 2016/2017 Ekonometria (Gładysz B., Mercik J., Modelowanie ekonometryczne. Studium przypadku, Wydawnictwo PWr., Wrocław 2004.) 2
Stanisław Cichocki. Natalia Nehrebecka
Stanisław Cichocki Natalia Nehrebecka - adres mailowy: nnehrebecka@wne.uw.edu.pl - strona internetowa: www.wne.uw.edu.pl/nnehrebecka - dyżur: wtorek 18.30-19.30 sala 302 lub 303 - 80% oceny: egzaminy -
Stanisław Cichocki. Natalia Nehrebecka
Stanisław Cichocki Natalia Nehrebecka - adres mailowy: scichocki@o2.pl - strona internetowa: www.wne.uw.edu.pl/scichocki - dyżur: po zajęciach lub po umówieniu mailowo - 80% oceny: egzaminy - 20% oceny:
Ekonometria. Prognozowanie ekonometryczne, ocena stabilności oszacowań parametrów strukturalnych. Jakub Mućk. Katedra Ekonomii Ilościowej
Ekonometria Prognozowanie ekonometryczne, ocena stabilności oszacowań parametrów strukturalnych Jakub Mućk Katedra Ekonomii Ilościowej Jakub Mućk Ekonometria Wykład 4 Prognozowanie, stabilność 1 / 17 Agenda
Stanisław Cichocki. Natalia Nehrebecka Katarzyna Rosiak-Lada
Stanisław Cichocki Natalia Nehrebecka Katarzyna Rosiak-Lada 1. Sprawy organizacyjne Zasady zaliczenia 2. Czym zajmuje się ekonometria? 3. Formy danych statystycznych 4. Model ekonometryczny 2 1. Sprawy
KARTA PRZEDMIOTU. 12. PRZEDMIOTOWE EFEKTY KSZTAŁCENIA Odniesienie do kierunkowych efektów kształcenia (symbol)
KARTA PRZEDMIOTU 1. NAZWA PRZEDMIOTU: Ekonometria 2. KIERUNEK: MATEMATYKA 3. POZIOM STUDIÓW: I stopnia 4. ROK/ SEMESTR STUDIÓW: III/6 5. LICZBA PUNKTÓW ECTS: 5 6. LICZBA GODZIN: 30 / 30 7. TYP PRZEDMIOTU
Wprowadzenie do analizy korelacji i regresji
Statystyka dla jakości produktów i usług Six sigma i inne strategie Wprowadzenie do analizy korelacji i regresji StatSoft Polska Wybrane zagadnienia analizy korelacji Przy analizie zjawisk i procesów stanowiących
STUDIA I PRACE WYDZIAŁU NAUK EKONOMICZNYCH I ZARZĄDZANIA NR 31 MIKROEKONOMETRIA. Streszczenie
STUDIA I PRACE WYDZIAŁU NAUK EKONOMICZNYCH I ZARZĄDZANIA NR 31 Józef Hozer Uniwersytet Szczeciński MIKROEKONOMETRIA Streszczenie W artykule przedstawiono krótką dyskusję nad dwoma ujęciami przedmiotu mikroekonometrii,
Statystyka opisowa. Wykład V. Regresja liniowa wieloraka
Statystyka opisowa. Wykład V. e-mail:e.kozlovski@pollub.pl Spis treści 1 Prosta regresji cechy Y względem cech X 1,..., X k. 2 3 Wyznaczamy zależność cechy Y od cech X 1, X 2,..., X k postaci Y = α 0 +
Krakowska Akademia im. Andrzeja Frycza Modrzewskiego. Karta przedmiotu. obowiązuje studentów, którzy rozpoczęli studia w roku akademickim 2014/2015
Krakowska Akademia im. Andrzeja Frycza Modrzewskiego Karta przedmiotu obowiązuje studentów, którzy rozpoczęli studia w roku akademickim 201/2015 WydziałZarządzania i Komunikacji Społecznej Kierunek studiów:
BAYESOWSKA ANALIZA KRAŃCOWEJ SKŁONNOŚCI DO KONSUMPCJI
Bayesowska analiza krańcowej skłonności do konsumpcji STUDIA I PRACE WYDZIAŁU NAUK EKONOMICZNYCH I ZARZĄDZANIA NR 9 MARIUSZ DOSZYŃ Uniwersytet Szczeciński BAYESOWSKA ANALIZA KRAŃCOWEJ SKŁONNOŚCI DO KONSUMPCJI
Wiadomości ogólne o ekonometrii
Wiadomości ogólne o ekonometrii Materiały zostały przygotowane w oparciu o podręcznik Ekonometria Wybrane Zagadnienia, którego autorami są: Bolesław Borkowski, Hanna Dudek oraz Wiesław Szczęsny. Ekonometria
Literatura. Statystyka i demografia
ZESTAWIENIE zagadnień i literatury do egzaminu doktorskiego z przedmiotów kierunkowych III Wydziałowej Komisji ds. Przewodów Doktorskich na Wydziale Ekonomiczno-Socjologicznym Uniwersytetu Łódzkiego Ekonometria
EKONOMETRIA. Prof. dr hab. Eugeniusz Gatnar.
EKONOMETRIA Prof. dr hab. Eugeniusz Gatnar egatnar@mail.wz.uw.edu.pl Sprawy organizacyjne Wykłady - prezentacja zagadnień dotyczących: budowy i weryfikacji modelu ekonometrycznego, doboru zmiennych, estymacji
Prognozowanie na podstawie modelu ekonometrycznego
Prognozowanie na podstawie modelu ekonometrycznego Przykład. Firma usługowa świadcząca usługi doradcze w ostatnich kwartałach (t) odnotowała wynik finansowy (yt - tys. zł), obsługując liczbę klientów (x1t)
Ekonometria. Wprowadzenie do modelowania ekonometrycznego Estymator KMNK. Jakub Mućk. Katedra Ekonomii Ilościowej
Ekonometria Wprowadzenie do modelowania ekonometrycznego Estymator Jakub Mućk Katedra Ekonomii Ilościowej Jakub Mućk Ekonometria Wykład 1 Estymator 1 / 16 Agenda 1 Literatura Zaliczenie przedmiotu 2 Model
ŚREDNI BŁĄD PROGNOZOWANIA DLA METODY EKSTRAPOLACJI PRZYROSTU EMPIRYCZNEGO
B A D A N I A O P E R A C Y J N E I D E C Y Z J E Nr 3 4 006 Bogusław GUZIK ŚREDNI BŁĄD PROGNOZOWANIA DLA METODY EKSTRAPOLACJI PRZYROSTU EMPIRYCZNEGO W artykule sformułowano standardowy układ założeń stochastycznych
O LICZBIE ABONENTÓW TELEFONII KOMÓRKOWEJ W POLSCE ZDANIEM TRZECH STATYSTYKÓW
Rafał Czyżycki, Marcin Hundert, Rafał Klóska Wydział Zarządzania i Ekonomiki Usług Uniwersytet Szczeciński O LICZBIE ABONENTÓW TELEFONII KOMÓRKOWEJ W POLSCE ZDANIEM TRZECH STATYSTYKÓW Wprowadzenie Poruszana
Ekonometria dynamiczna i finansowa Kod przedmiotu
Ekonometria dynamiczna i finansowa - opis przedmiotu Informacje ogólne Nazwa przedmiotu Ekonometria dynamiczna i finansowa Kod przedmiotu 11.5-WK-IiED-EDF-W-S14_pNadGenMOT56 Wydział Kierunek Wydział Matematyki,
3. Modele tendencji czasowej w prognozowaniu
II Modele tendencji czasowej w prognozowaniu 1 Składniki szeregu czasowego W teorii szeregów czasowych wyróżnia się zwykle następujące składowe szeregu czasowego: a) składowa systematyczna; b) składowa
12. Przynależność do grupy przedmiotów: Blok przedmiotów matematycznych
(pieczęć wydziału) KARTA PRZEDMIOTU Z1-PU7 WYDANIE N1 Strona 1 z 5 1. Nazwa przedmiotu: Rachunek prawdopodobieństwa i statystyka matematyczna 2. Kod przedmiotu: RPiS 3. Karta przedmiotu ważna od roku akademickiego:
Metody statystyczne w socjologii SYLABUS A. Informacje ogólne Opis
Elementy składowe sylabusu Nazwa jednostki prowadzącej kierunek Nazwa kierunku studiów Poziom kształcenia Profil studiów Forma studiów Kod przedmiotu Język przedmiotu Rodzaj przedmiotu Dziedzina i dyscyplina
Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć)
Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć) 1. Populacja generalna a losowa próba, parametr rozkładu cechy a jego ocena z losowej próby, miary opisu statystycznego
166 Wstęp do statystyki matematycznej
166 Wstęp do statystyki matematycznej Etap trzeci realizacji procesu analizy danych statystycznych w zasadzie powinien rozwiązać nasz zasadniczy problem związany z identyfikacją cechy populacji generalnej
Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć)
Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć) 1. Populacja generalna a losowa próba, parametr rozkładu cechy a jego ocena z losowej próby, miary opisu statystycznego
Metoda najmniejszych kwadratów
Model ekonometryczny Wykształcenie a zarobki Hipoteza badawcza: Istnieje zależność między poziomem wykształcenia a wysokością zarobków Wykształcenie a zarobki Hipoteza badawcza: Istnieje zależność między
Rozdział 2: Metoda największej wiarygodności i nieliniowa metoda najmniejszych kwadratów
Rozdział : Metoda największej wiarygodności i nieliniowa metoda najmniejszych kwadratów W tym rozdziale omówione zostaną dwie najpopularniejsze metody estymacji parametrów w ekonometrycznych modelach nieliniowych,
Ekonometria. Ćwiczenia nr 3. Jakub Mućk. Katedra Ekonomii Ilościowej
Ekonometria Ćwiczenia nr 3 Jakub Mućk Katedra Ekonomii Ilościowej Jakub Mućk Ekonometria Ćwiczenia 3 Własności składnika losowego 1 / 18 Agenda KMNK przypomnienie 1 KMNK przypomnienie 2 3 4 Jakub Mućk
ZAKRES TEMATYCZNY EGZAMINU LICENCJACKIEGO
Wydział Nauk Ekonomicznych i Zarządzania Kierunek Analityka Gospodarcza Studia stacjonarne I stopnia ZAKRES TEMATYCZNY EGZAMINU LICENCJACKIEGO Zagadnienia ogólnoekonomiczne 1. Aktualna sytuacja na europejskim
1.1.1 Statystyka matematyczna i badania operacyjne
1.1.1 Statystyka matematyczna i badania operacyjne I. OGÓLNE INFORMACJE PODSTAWOWE O PRZEDMIOCIE (MODULE) Kod przedmiotu: STATYSTYKA MATEMATYCZNA I BADANIA OPERACYJNE P5 Wydział Zamiejscowy w Ostrowie
Wprowadzenie do teorii ekonometrii. Wykład 1 Warunkowa wartość oczekiwana i odwzorowanie liniowe
Wprowadzenie do teorii ekonometrii Wykład 1 Warunkowa wartość oczekiwana i odwzorowanie liniowe Zajęcia Wykład Laboratorium komputerowe 2 Zaliczenie EGZAMIN (50%) Na egzaminie obowiązują wszystkie informacje
Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności. dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl
Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl Statystyczna teoria korelacji i regresji (1) Jest to dział statystyki zajmujący
EKONOMETRIA PRZESTRZENNA
EKONOMETRIA PRZESTRZENNA Wstęp podstawy ekonometrii Uniwersytet Ekonomiczny w Krakowie, 2012 1 EKONOMETRIA wybrane definicje (Osińska) Ekonometria dziedzina ekonomii wykorzystująca modele i sposoby wnioskowania
studiów Podstawy Statystyki TR/2/PP/STAT 7 3
kod nr w planie ECTS Przedmiot studiów Podstawy Statystyki TR/2/PP/STAT 7 3 Kierunek Turystyka i Rekreacja Poziom kształcenia II stopień Rok/Semestr 1/2 Typ przedmiotu (obowiązkowy/fakultatywny) obowiązkowy
PYTANIA NA EGZAMIN MAGISTERSKI KIERUNEK: EKONOMIA STUDIA DRUGIEGO STOPNIA. CZĘŚĆ I dotyczy wszystkich studentów kierunku Ekonomia pytania podstawowe
PYTANIA NA EGZAMIN MAGISTERSKI KIERUNEK: EKONOMIA STUDIA DRUGIEGO STOPNIA CZĘŚĆ I dotyczy wszystkich studentów kierunku Ekonomia pytania podstawowe 1. Cele i przydatność ujęcia modelowego w ekonomii 2.
Ekonometria ćwiczenia 3. Prowadzący: Sebastian Czarnota
Ekonometria ćwiczenia 3 Prowadzący: Sebastian Czarnota Strona - niezbędnik http://sebastianczarnota.com/sgh/ Normalność rozkładu składnika losowego Brak normalności rozkładu nie odbija się na jakości otrzymywanych
Z-LOGN Ekonometria Econometrics. Przedmiot wspólny dla kierunku Obowiązkowy polski Semestr IV
bbbbkarta MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Z-LOGN1-0184 Ekonometria Econometrics Obowiązuje od roku akademickiego 2012/2013 A. USYTUOWANIE MODUŁU W SYSTEMIE
K wartość kapitału zaangażowanego w proces produkcji, w tys. jp.
Sprawdzian 2. Zadanie 1. Za pomocą KMNK oszacowano następującą funkcję produkcji: Gdzie: P wartość produkcji, w tys. jp (jednostek pieniężnych) K wartość kapitału zaangażowanego w proces produkcji, w tys.
ANALITYKA GOSPODARCZA, STUDIA LICENCJACKIE WIEDZA
ANALITYKA GOSPODARCZA, STUDIA LICENCJACKIE WIEDZA Ma podstawową wiedzę o charakterze nauk ekonomicznych oraz ich miejscu w AG1_W01 systemie nauk społecznych i w relacjach do innych nauk. Ma wiedzę o sposobach
NOWY PROGRAM STUDIÓW 2016/2017 SYLABUS PRZEDMIOTU AUTORSKIEGO: Wprowadzenie do teorii ekonometrii. Część A
NOWY PROGRAM STUDIÓW 2016/2017 SYLABUS PRZEDMIOTU AUTORSKIEGO: Autor: 1. Dobromił Serwa 2. Tytuł przedmiotu Sygnatura (będzie nadana, po akceptacji przez Senacką Komisję Programową) Wprowadzenie do teorii
Statystyka w zarzadzaniu / Amir D. Aczel, Jayavel Sounderpandian. Wydanie 2. Warszawa, Spis treści
Statystyka w zarzadzaniu / Amir D. Aczel, Jayavel Sounderpandian. Wydanie 2. Warszawa, 2018 Spis treści Przedmowa 13 O Autorach 15 Przedmowa od Tłumacza 17 1. Wprowadzenie i statystyka opisowa 19 1.1.
12. Przynależność do grupy przedmiotów: Blok przedmiotów matematycznych
(pieczęć wydziału) KARTA PRZEDMIOTU Z1-PU7 WYDANIE N1 Strona 1 z 5 1. Nazwa przedmiotu: Rachunek prawdopodobieństwa i statystyka matematyczna 2. Kod przedmiotu: RPiS 3. Karta przedmiotu ważna od roku akademickiego:
Nazwa przedmiotu: Informatyczne systemy statystycznej obróbki danych. Informatics systems for the statistical treatment of data Kierunek:
Nazwa przedmiotu: Informatyczne systemy statystycznej obróbki danych I KARTA PRZEDMIOTU CEL PRZEDMIOTU Informatics systems for the statistical treatment of data Kierunek: Forma studiów Informatyka Stacjonarne
Przedmiot ekonometrii
Model ekonometryczny Informacje ogólne Egzamin Kryteria oceny Literatura uzupełniająca w języku polskim Literatura uzupełniająca w języku angielskm Wykładowca: dr hab. Paweł Strawiński Dyżur: wtorek 17:00-18:00,
7. Zastosowanie wybranych modeli nieliniowych w badaniach ekonomicznych. 14. Decyzje produkcyjne i cenowe na rynku konkurencji doskonałej i monopolu
Zagadnienia na egzamin magisterski na kierunku Ekonomia 1. Znaczenie wnioskowania statystycznego w weryfikacji hipotez 2. Organizacja doboru próby do badań 3. Rozkłady zmiennej losowej 4. Zasady analizy
Ekonometria. Zajęcia
Ekonometria Zajęcia 16.05.2018 Wstęp hipoteza itp. Model gęstości zaludnienia ( model gradientu gęstości ) zakłada, że gęstość zaludnienia zależy od odległości od okręgu centralnego: y t = Ae βx t (1)
1. Ekonometria jako dyscyplina naukowa (przedmiot, metodologia, teorie ekonomiczne). Model ekonometryczny, postać modelu, struktura, klasyfikacja.
1. Ekonometria jako dyscyplina naukowa (przedmiot, metodologia, teorie ekonomiczne). Model ekonometryczny, postać modelu, struktura, klasyfikacja. Zadanie 1. Celem zadania jest oszacowanie modelu opisującego
STRESZCZENIE. rozprawy doktorskiej pt. Zmienne jakościowe w procesie wyceny wartości rynkowej nieruchomości. Ujęcie statystyczne.
STRESZCZENIE rozprawy doktorskiej pt. Zmienne jakościowe w procesie wyceny wartości rynkowej nieruchomości. Ujęcie statystyczne. Zasadniczym czynnikiem stanowiącym motywację dla podjętych w pracy rozważań
EFEKTY KSZTAŁCENIA ORAZ MACIERZE POKRYCIA KIERUNKU ANALITYKA GOSPODARCZA STUDIA LICENCJACKIE
EFEKTY KSZTAŁCENIA ORAZ MACIERZE POKRYCIA KIERUNKU ANALITYKA GOSPODARCZA STUDIA LICENCJACKIE ------------------------------------------------------------------------------------------------- WIEDZA AG1_W01
PROPOZYCJA ZAGADNIEŃ NA EGZAMIN LICENCJACKI NA KIERUNKU ANALITYKA GOSPODARCZA. 1.Modele wielorównaniowe. Ich rodzaje i zalecane metody estymacji
PROPOZYCJA ZAGADNIEŃ NA EGZAMIN LICENCJACKI NA KIERUNKU ANALITYKA GOSPODARCZA 1.Modele wielorównaniowe. Ich rodzaje i zalecane metody estymacji 2.Problem niesferyczności składnika losowego w modelach ekonometrycznych.
Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji
Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych Wydział Informatyki Politechniki
STAN OBECNY I PERSPEKTYWY ROZWOJU LICZBY ABONENTÓW TELEFONII KOMÓRKOWEJ W POLSCE W UJĘCIU STATYSTYCZNYM
ZESZYTY NAUKOWE UNIWERSYTETU SZCZECIŃSKIEGO NR 544 EKONOMICZNE PROBLEMY USŁUG NR 35 2009 RAFAŁ CZYŻYCKI, RAFAŁ KLÓSKA Uniwersytet Szczeciński STAN OBECNY I PERSPEKTYWY ROZWOJU LICZBY ABONENTÓW TELEFONII
Statystyka od podstaw Janina Jóźwiak, Jarosław Podgórski
Statystyka od podstaw Janina Jóźwiak, Jarosław Podgórski Książka jest nowoczesnym podręcznikiem przeznaczonym dla studentów uczelni i wydziałów ekonomicznych. Wykład podzielono na cztery części. W pierwszej
LOGISTYKA. Zapas: definicja. Zapasy: podział
LOGISTYKA Zapasy Zapas: definicja Zapas to określona ilość dóbr znajdująca się w rozpatrywanym systemie logistycznym, bieżąco nie wykorzystywana, a przeznaczona do późniejszego przetworzenia lub sprzedaży.
Imię, nazwisko i tytuł/stopień KOORDYNATORA (-ÓW) kursu/przedmiotu zatwierdzającego protokoły w systemie USOS Dr Roman Sosnowski
SYLLABUS na rok akademicki 009/010 Tryb studiów Studia stacjonarne Kierunek studiów Ekonomia Poziom studiów Pierwszego stopnia Rok studiów/ semestr 3/5 Specjalność Bez specjalności Kod katedry/zakładu
Państwowa Wyższa Szkoła Zawodowa w Suwałkach SYLLABUS na rok akademicki 2014/2015
Tryb studiów Niestacjonarne Nazwa kierunku studiów Finanse i Rachunkowość Poziom studiów Stopień pierwszy Rok studiów/ semestr II/4 Państwowa Wyższa Szkoła Zawodowa w Suwałkach SYLLABUS na rok akademicki
Uniwersytet w Białymstoku Wydział Ekonomiczno-Informatyczny w Wilnie SYLLABUS na rok akademicki 2010/2011
SYLLABUS na rok akademicki 00/0 Tryb studiów Stacjonarne Nazwa kierunku studiów EKONOMIA Poziom studiów Stopień pierwszy Rok studiów/ semestr III; semestr 5 Specjalność Bez specjalności Kod przedmiotu
METODY ILOŚCIOWE W ZARZĄDZANIU
1.1.1 Metody ilościowe w zarządzaniu I. OGÓLNE INFORMACJE PODSTAWOWE O PRZEDMIOCIE METODY ILOŚCIOWE W ZARZĄDZANIU Nazwa jednostki organizacyjnej prowadzącej kierunek: Kod przedmiotu: RiAF_PS5 Wydział Zamiejscowy
Imię, nazwisko i tytuł/stopień KOORDYNATORA przedmiotu zatwierdzającego protokoły w systemie USOS Jacek Marcinkiewicz, dr
Tryb studiów Stacjonarne Nazwa kierunku studiów EKONOMIA Poziom studiów Stopień pierwszy Rok studiów/ semestr III; semestr 5 Specjalność Bez specjalności Kod przedmiotu w systemie USOS 1000-ES1-3EC1 Liczba
WIEDZA K_W10 zna co najmniej jeden język obcy na poziomie średniozaawansowanym (B2) X1A_U10
Przedmiot: Język obcy II Rok/Semestr: 2/3 Liczba godzin zajęć: 30 KW ECTS: 1 Forma zaliczenia: ZO K_W10 zna co najmniej jeden język obcy na poziomie średniozaawansowanym (B2) X1A_U10 K_U51 posiada umiejętności
PODYPLOMOWE STUDIA ZAAWANSOWANE METODY ANALIZY DANYCH I DATA MINING W BIZNESIE
UNIWERSYTET WARMIŃSKO-MAZURSKI W OLSZTYNIE PODYPLOMOWE STUDIA ZAAWANSOWANE METODY ANALIZY DANYCH I DATA MINING W BIZNESIE http://matman.uwm.edu.pl/psi e-mail: psi@matman.uwm.edu.pl ul. Słoneczna 54 10-561
Właściwości testu Jarque-Bera gdy w danych występuje obserwacja nietypowa.
Właściwości testu Jarque-Bera gdy w danych występuje obserwacja nietypowa. Paweł Strawiński Uniwersytet Warszawski Wydział Nauk Ekonomicznych 16 stycznia 2006 Streszczenie W artykule analizowane są właściwości
KARTA MODUŁU KSZTAŁCENIA
I. 1 Nazwa modułu kształcenia STATYSTYKA MATEMATYCZNA KARTA MODUŁU KSZTAŁCENIA Informacje ogólne 2 Nazwa jednostki prowadzącej moduł Państwowa Szkoła Wyższa im. Papieża Jana Pawła II,Katedra Nauk Technicznych,
STATYSTYKA MATEMATYCZNA
Zał. nr 4 do ZW WYDZIAŁ ELEKTRONIKI KARTA PRZEDMIOTU Nazwa w języku polskim STATYSTYKA MATEMATYCZNA Nazwa w języku angielskim Mathematical Statistics Kierunek studiów (jeśli dotyczy): Specjalność (jeśli
Data wydruku: Dla rocznika: 2015/2016. Opis przedmiotu
Sylabus przedmiotu: Specjalność: Statystyka Wszystkie specjalności Data wydruku: 31.01.2016 Dla rocznika: 2015/2016 Kierunek: Wydział: Zarządzanie i inżynieria produkcji Inżynieryjno-Ekonomiczny Dane podstawowe
Statystyka matematyczna dla leśników
Statystyka matematyczna dla leśników Wydział Leśny Kierunek leśnictwo Studia Stacjonarne I Stopnia Rok akademicki 03/04 Wykład 5 Testy statystyczne Ogólne zasady testowania hipotez statystycznych, rodzaje
Politechnika Krakowska im. Tadeusza Kościuszki. Karta przedmiotu. obowiązuje studentów rozpoczynających studia w roku akademickim 2014/2015
Politechnika Krakowska im. Tadeusza Kościuszki Karta przedmiotu Wydział Inżynierii Środowiska obowiązuje studentów rozpoczynających studia w roku akademickim 2014/2015 Kierunek studiów: Inżynieria Środowiska
WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCHY KOMPETENCJI EFEKTY KSZTAŁCENIA
I. KARTA PRZEDMIOTU. Nazwa przedmiotu: MATEMATYKA STOSOWANA 2. Kod przedmiotu: Ms 3. Jednostka prowadząca: Wydział Nawigacji i Uzbrojenia Okrętowego 4. Kierunek: Nawigacja 5. Specjalność: Nawigacja morska
PYTANIA NA EGZAMIN MAGISTERSKI KIERUNEK: EKONOMIA STUDIA DRUGIEGO STOPNIA. CZĘŚĆ I dotyczy wszystkich studentów kierunku Ekonomia pytania podstawowe
PYTANIA NA EGZAMIN MAGISTERSKI KIERUNEK: EKONOMIA STUDIA DRUGIEGO STOPNIA CZĘŚĆ I dotyczy wszystkich studentów kierunku Ekonomia pytania podstawowe 1. Cele i przydatność ujęcia modelowego w ekonomii 2.
WERYFIKACJA MODELI MODELE LINIOWE. Biomatematyka wykład 8 Dr Wioleta Drobik-Czwarno
WERYFIKACJA MODELI MODELE LINIOWE Biomatematyka wykład 8 Dr Wioleta Drobik-Czwarno ANALIZA KORELACJI LINIOWEJ to NIE JEST badanie związku przyczynowo-skutkowego, Badanie współwystępowania cech (czy istnieje
Ekonometria_FIRJK Arkusz1
Rok akademicki: Grupa przedmiotów Numer katalogowy: Nazwa przedmiotu 1) : łumaczenie nazwy na jęz. angielski 3) : Kierunek studiów 4) : Ekonometria Econometrics Ekonomia ECS 2) Koordynator przedmiotu 5)
studia stacjonarne w/ćw zajęcia zorganizowane: 30/15 3,0 praca własna studenta: 55 Godziny kontaktowe z nauczycielem akademickim: udział w wykładach
Nazwa jednostki prowadzącej kierunek: Nazwa kierunku: Poziom kształcenia: Profil kształcenia: Moduły wprowadzające / wymagania wstępne: Nazwa modułu (przedmiot lub grupa przedmiotów) Osoby prowadzące:
t y x y'y x'x y'x x-x śr (x-x śr)^2
Na podstawie:w.samuelson, S.Marks Ekonomia menedżerska Zadanie 1 W przedsiębiorstwie toczy się dyskusja na temat wpływu reklamy na wielkość. Dział marketingu uważa, że reklama daje wysoce pozytywne efekty,
Ekonometria i prognozowanie Econometrics and prediction
KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2013/2014 Ekonometria i prognozowanie Econometrics and prediction A. USYTUOWANIE
WSTĘP DO REGRESJI LOGISTYCZNEJ. Dr Wioleta Drobik-Czwarno
WSTĘP DO REGRESJI LOGISTYCZNEJ Dr Wioleta Drobik-Czwarno REGRESJA LOGISTYCZNA Zmienna zależna jest zmienną dychotomiczną (dwustanową) przyjmuje dwie wartości, najczęściej 0 i 1 Zmienną zależną może być:
Empiryczna weryfikacja prawa proporcjonalnego efektu
Jacek Batóg Uniwersytet Szczeciński Empiryczna weryfikacja prawa proporcjonalnego efektu Struktury zjawisk gospodarczych, a zwłaszcza proporcje między poszczególnymi zmiennymi ekonomicznymi, pełnią podstawową
Badania operacyjne. Ćwiczenia 1. Wprowadzenie. Filip Tużnik, Warszawa 2017
Badania operacyjne Ćwiczenia 1 Wprowadzenie Plan zajęć Sprawy organizacyjne (zaliczenie, nieobecności) Literatura przedmiotu Proces podejmowania decyzji Problemy decyzyjne w zarządzaniu Badania operacyjne
I. OGÓLNE INFORMACJE PODSTAWOWE O PRZEDMIOCIE. Nie dotyczy. podstawowy i kierunkowy
1.1.1 Statystyka opisowa I. OGÓLNE INFORMACJE PODSTAWOWE O PRZEDMIOCIE STATYSTYKA OPISOWA Nazwa jednostki organizacyjnej prowadzącej kierunek: Kod przedmiotu: P6 Wydział Zamiejscowy w Ostrowie Wielkopolskim
Importowanie danych do SPSS Eksportowanie rezultatów do formatu MS Word... 22
Spis treści Przedmowa do wydania pierwszego.... 11 Przedmowa do wydania drugiego.... 15 Wykaz symboli.... 17 Litery alfabetu greckiego wykorzystywane w podręczniku.... 17 Symbole wykorzystywane w zagadnieniach
MODELOWANIE KOSZTÓW USŁUG ZDROWOTNYCH PRZY
MODELOWANIE KOSZTÓW USŁUG ZDROWOTNYCH PRZY WYKORZYSTANIU METOD STATYSTYCZNYCH mgr Małgorzata Pelczar 6 Wprowadzenie Reforma służby zdrowia uwypukliła problem optymalnego ustalania kosztów usług zdrowotnych.
Opis zakładanych efektów kształcenia na studiach podyplomowych WIEDZA
Opis zakładanych efektów kształcenia na studiach podyplomowych Nazwa studiów: BIOSTATYSTYKA PRAKTYCZNE ASPEKTY STATYSTYKI W BADANIACH MEDYCZNYCH Typ studiów: doskonalące Symbol Efekty kształcenia dla studiów
EKONOMETRIA I SYLABUS
Załącznik nr 5 do Uchwały nr 1202 Senatu UwB z dnia 29 lutego 2012 r. EKONOMETRIA I SYLABUS A. Informacje ogólne Elementy składowe sylabusu Nazwa jednostki prowadzącej kierunek Nazwa kierunku studiów Poziom
Stanisław Cichocki Natalia Nehrebecka. Zajęcia 11-12
Stanisław Cichocki Natalia Nehrebecka Zajęcia 11-12 1. Zmienne pominięte 2. Zmienne nieistotne 3. Obserwacje nietypowe i błędne 4. Współliniowość - Mamy 2 modele: y X u 1 1 (1) y X X 1 1 2 2 (2) - Potencjalnie
Weryfikacja hipotez statystycznych. KG (CC) Statystyka 26 V / 1
Weryfikacja hipotez statystycznych KG (CC) Statystyka 26 V 2009 1 / 1 Sformułowanie problemu Weryfikacja hipotez statystycznych jest drugą (po estymacji) metodą uogólniania wyników uzyskanych w próbie
Mikroekonometria 14. Mikołaj Czajkowski Wiktor Budziński
Mikroekonometria 14 Mikołaj Czajkowski Wiktor Budziński Symulacje Analogicznie jak w przypadku ciągłej zmiennej zależnej można wykorzystać metody Monte Carlo do analizy różnego rodzaju problemów w modelach
Narzędzia statystyczne i ekonometryczne. Wykład 1. dr Paweł Baranowski
Narzędzia statystyczne i ekonometryczne Wykład 1 dr Paweł Baranowski Informacje organizacyjne Wydział Ek-Soc, pok. B-109 pawel@baranowski.edu.pl Strona: baranowski.edu.pl (w tym materiały) Konsultacje:
MODELE LINIOWE. Dr Wioleta Drobik
MODELE LINIOWE Dr Wioleta Drobik MODELE LINIOWE Jedna z najstarszych i najpopularniejszych metod modelowania Zależność między zbiorem zmiennych objaśniających, a zmienną ilościową nazywaną zmienną objaśnianą
Liczba godzin Punkty ECTS Sposób zaliczenia. ćwiczenia 16 zaliczenie z oceną
Wydział: Zarządzanie i Finanse Nazwa kierunku kształcenia: Finanse i Rachunkowość Rodzaj przedmiotu: podstawowy Opiekun: prof. nadzw. dr hab. Tomasz Kuszewski Poziom studiów (I lub II stopnia): II stopnia
Statystyka i Analiza Danych
Warsztaty Statystyka i Analiza Danych Gdańsk, 20-22 lutego 2014 Zastosowania wybranych technik regresyjnych do modelowania współzależności zjawisk Janusz Wątroba StatSoft Polska Centrum Zastosowań Matematyki
Podstawy statystyki dla psychologów. Podręcznik akademicki. Wydanie drugie poprawione. Wiesław Szymczak
Podstawy statystyki dla psychologów. Podręcznik akademicki. Wydanie drugie poprawione. Wiesław Szymczak Autor prezentuje spójny obraz najczęściej stosowanych metod statystycznych, dodatkowo omawiając takie
Rachunek prawdopodobieństwa WZ-ST1-AG--16/17Z-RACH. Liczba godzin stacjonarne: Wykłady: 15 Ćwiczenia: 30. niestacjonarne: Wykłady: 9 Ćwiczenia: 18
Karta przedmiotu Wydział: Wydział Zarządzania Kierunek: Analityka gospodarcza I. Informacje podstawowe Nazwa przedmiotu Rachunek prawdopodobieństwa Nazwa przedmiotu w j. ang. Język prowadzenia przedmiotu
STATYSTYKA wykład 1. Wanda Olech. Katedra Genetyki i Ogólnej Hodowli Zwierząt
STTYSTYK wykład 1 Wanda Olech Katedra Genetyki i Ogólnej Hodowli Zwierząt Plan wykładów Data WYKŁDY 1.X rachunek prawdopodobieństwa; 8.X zmienna losowa jednowymiarowa, funkcja rozkładu, dystrybuanta 15.X
KARTA KURSU. Kod Punktacja ECTS* 1
KARTA KURSU Nazwa Nazwa w j. ang. Wprowadzenie do statystyki Introduction to statistics Kod Punktacja ECTS* 1 Koordynator Prof. dr hab. Jerzy Wołek Zespół dydaktyczny Prof. dr hab. Jerzy Wołek doktoranci
Krakowska Akademia im. Andrzeja Frycza Modrzewskiego. Karta przedmiotu. obowiązuje studentów, którzy rozpoczęli studia w roku akademickim 2015/2016
Krakowska Akademia im. Andrzeja Frycza Modrzewskiego Karta przedmiotu obowiązuje studentów, którzy rozpoczęli studia w roku akademickim 015/016 WydziałZarządzania i Komunikacji Społecznej Kierunek studiów: