7. Identyfikacja defektów badanego obiektu
|
|
- Amelia Matuszewska
- 8 lat temu
- Przeglądów:
Transkrypt
1 7. Identyfikacja defektów badanego obiektu Pierwszym krokiem na drodze do identyfikacji defektów było przygotowanie tzw. odcisku palca poszczególnych defektów. W tym celu został napisany program Gaussian [45], którego okno przedstawia rysunku 7.1. Wszystkie parametry opisujące rozkłady częstościowo amplitudowe zostały poddane takiej samej procedurze. W kolumnę o nazwie Seria liczb zostały wpisane wszystkie wartości danego parametru, które znajdują się w Załączniku 1. Wynikiem działania programu na wprowadzonej serii liczb były parametry statystyczne opisujące tę serię. Parametry opisujące wprowadzoną serię liczb: - współczynnik koncentracji serii iloraz dolnego i górnego kwantylu serii liczb rzędu 0,15, - średnia arytmetyczna serii, - odchylenie standardowe serii, - procentowe odchylenie standardowe serii. Rys Okno programu Gaussian [45] Wartość rzędu kwantylu została narzucona a priori w celu zminimalizowania wpływu na wartość współczynnika koncentracji 69
2 przypadkowej wartości liczby w serii. Dla celów identyfikacji defektów przyjęto, że wartość współczynnika koncentracji serii jest równoznaczna wadze danego parametru. Program Gaussian umożliwia również porównanie dodatkowo wprowadzonej liczby z serią, podając jej gęstość prawdopodobieństwa. Analiza wszystkich rozkładów czasowych impulsów wyładowań niezupełnych doprowadziła do zredukowania liczby parametrów opisujących rozkłady fazowe do jednego: Qmax+/Qmax-. Wartość kąta fazowego, przy którym rejestrowano impulsy wnz, nie pozwalała na jednoznaczne uzależnienie wartości parametrów kątowych (kąt początkowy, kąt końcowy i kąt średni dla dodatniej i ujemnej połowy sinusoidy napięcia) od rodzaju defektu. Odcisk palca wszystkich badanych defektów jest przedstawiony w Załączniku 2. Kolejnym krokiem pracy było wyselekcjonowanie i usunięcie z odcisku palca tych parametrów, które nie nosiły informacji pozwalającej odróżnić poszczególne defekty. Po selekcji pozostały tylko te parametry, które choć dla jednego defektu spełniały kryterium braku części wspólnej zakresu zmienności parametru tego defektu z zakresami zmienności innych defektów. Zakres zmienności parametru należy rozumieć jako zakres od średniej arytmetycznej tego parametru pomniejszonej o odchylenie standardowe do średniej arytmetycznej tego parametru powiększonej o odchylenie standardowe. W ten sposób z odcisku palca zostały usunięte następujące parametry: - minimalna liczba wyładowań, - maksymalna liczba wyładowań, - dominanta ładunku, - współczynnik asymetrii ładunku, - współczynnik ekscesu liczby wyładowań, - współczynnik ekscesu ładunku, Dodatkowo z odcisku palca został usunięty parametr ładunek minimalny, którego wartość była w dużej części uzależniona od nastaw czułości aparatury pomiarowej. Załącznik 3 przedstawia odcisk palca wszystkich defektów po usunięciu wyżej wymienionych parametrów. Komórki zaznaczone kolorem oznaczają parametry, których zakres zmienności dla wskazywanego defektu nie pokrywa się z zakresem zmienności tego parametru dla pozostałych defektów. 70
3 Kolejnym krokiem było nadanie wagi zerowej tym wszystkim parametrom każdego defektu, których obszar zmienności choć częściowo pokrywał się z obszarami zmienności innych defektów. W ten sposób, do celów identyfikacji defektów, zostały wykorzystane tylko te parametry, których wartość pozwalała jednoznacznie zidentyfikować jeden z czterech defektów. Dodatkowym zabiegom poddano dwa ostatnie parametry: liczba mod oraz Qmax+/Qmax-. Z pomiarów wynika, że liczba mod rozkładu częstościowo amplitudowego tylko i wyłącznie dla defektu drugiego ma wartość równą dwa. We wszystkich pozostałych rozkładach stwierdzono pojedynczą modę. Niestety pewna, niewielka liczba zarejestrowanych rozkładów częstościowo amplitudowych tego defektu nie posiadała drugiej mody. Fakt ten został uwzględniony w odcisku palca w ten sposób, że zmodyfikowano wagę tego parametru. Jeśli badany rozkład miał dwie mody to waga tego parametru została ustalona na 100 %, natomiast w przypadku, gdy rozpoznana była tylko jedna moda, to waga tego parametru została ustalona na zero. Podobnie został rozwiązany problem parametru Qmax+/Qmax-. Defekt 4 ma zwykle zerową wartość tego parametru, co oznacza brak wyładowań niezupełnych w dodatniej połowie sinusoidy napięcia. Jednak zauważono, że sporadycznie takie wyładowania mogły się pojawić w obu połowach sinusoidy napięcia. Możliwość tę uwzględniono w ten sposób, że waga parametru Qmax+/Qmax- została ustalona na 100 % wtedy, gdy wartość tego parametru jest zerowa. Jeśli jednak wartość tego parametru była różna od zera to jego waga zostanie ustalona na zero. Na komentarz jeszcze zasługuje wartość parametru Qmax+/Qmaxdla defektu trzeciego. Została ona ustalona na więcej niż 12,4. Wynika ona z tego, że mikrowyładowania między stykami w badanych komorach gaszeniowych były rejestrowane przede wszystkim w dodatniej połowie sinusoidy napięcia. Jednak czasami były rejestrowane pojedyncze impulsy w ujemnej części sinusoidy napięcia co implikowało zmniejszeniem wartości Qmax+/Qmax- z nieskończoności do kilkudziesięciu lub kilkunastu. Wartość tego parametru równa 12,4 jest najmniejszą zarejestrowaną wartością podczas wszystkich pomiarów. Tablica z ostateczną zawartością odcisku palca przedstawiona jest w Załączniku 4. Na podstawie tej tablicy napisano program do identyfikacji defektów. Okno startowe programu Identyfikacja defektów [46] jest pokazane na rysunku
4 Rys Okno startowe programu Identyfikacja defektów [46] W celu zidentyfikowania defektu należy przejść następujące kroki: - zbadanie zdefektowanej komory gaszeniowej przy użyciu WAA oraz karty przetwornika A/C i uzyskanie plików wynikowych z obu urządzeń, - wprowadzenie plików wynikowych do programu Statys i AnSin oraz zapisanie wyników na pliku, - wskazanie programowi Identyfikacja defektów położenia pliku wynikowego z programu Statys oraz wskazanie obliczonej przez AnSin wartości w polu wyboru, - uruchomienie procedury identyfikacji defektów. Po wykonaniu obliczeń program generuje okno końcowe z hipotezą końcową rozpoznania defektów. Okno to, wraz z przykładowym rozwiązaniem, przedstawione jest na rysunku 7.3. Program rozpoznaje defekt wypisując w procentach stopień rozpoznania. Stopień rozpoznania jest liczony według wzoru: R n = ( r w ) n n w n, (7.1) gdzie: R n stopień rozpoznania defektu numer n, r n rozpoznanie parametru dla defektu n; gdy parametr nieznanego defektu zawiera się w zakresie wyznaczonym przez średnią arytmetyczną parametru i jej odchylenie standardowe, to r n =1, w przeciwnym wypadku r n =0, 72
5 w n suma wartości wszystkich wag odcisku palca dla defektu n, (r n w n ) suma wartości wszystkich iloczynów rozpoznania parametru i wagi dla defektu n, Stopień rozpoznania dla poszczególnych defektów nie musi po zsumowaniu wynosić 100%, gdyż są to wartości niezależne od siebie. Rys Okno programu Identyfikacja defektów z przykładowym wynikiem rozpoznania [46] Program Identyfikacja defektów może również pokazać szczegóły rozpoznania wszystkich defektów. Jest to przedstawione na rysunku 7.4. wraz z przykładowymi wartościami. 73
6 Rys Przykładowy stopień rozpoznania poszczególnych defektów, wygenerowany przez program Identyfikacja defektów [46] 74
8. Wyniki procesu identyfikacji
8. Wyniki procesu identyfikacji Podczas badań laboratoryjnych zostały wyodrębnione serie pomiarowe, które nie były brane pod uwagę w trakcie tworzenia odcisku palca defektów. Następnie serie te zostały
3. Metody identyfikacji defektów 3.1. Wprowadzenie
3. Metody identyfikacji defektów 3.1. Wprowadzenie Uzyskanie informacji na temat rodzaju defektu, a co za tym idzie stopnia zagrożenia dla poprawnego działania systemu izolacyjnego, pozwala na podjęcie
Sterowanie wielkością zamówienia w Excelu - cz. 3
Sterowanie wielkością zamówienia w Excelu - cz. 3 21.06.2005 r. 4. Planowanie eksperymentów symulacyjnych Podczas tego etapu ważne jest określenie typu rozkładu badanej charakterystyki. Dzięki tej informacji
OCENA PARAMETRÓW JAKOŚCI ENERGII ELEKTRYCZNEJ DOSTARCZANEJ ODBIORCOM WIEJSKIM NA PODSTAWIE WYNIKÓW BADAŃ
OCENA PARAMETRÓW JAKOŚCI ENERGII ELEKTRYCZNEJ DOSTARCZANEJ ODBIORCOM WIEJSKIM NA PODSTAWIE WYNIKÓW BADAŃ Jerzy Niebrzydowski, Grzegorz Hołdyński Politechnika Białostocka Streszczenie W referacie przedstawiono
1 Podstawy rachunku prawdopodobieństwa
1 Podstawy rachunku prawdopodobieństwa Dystrybuantą zmiennej losowej X nazywamy prawdopodobieństwo przyjęcia przez zmienną losową X wartości mniejszej od x, tzn. F (x) = P [X < x]. 1. dla zmiennej losowej
Często spotykany jest również asymetryczny rozkład gamma (Г), opisany za pomocą parametru skali θ i parametru kształtu k:
Statystyczne opracowanie danych pomiarowych W praktyce pomiarowej często spotykamy się z pomiarami wielokrotnymi, gdy podczas pomiaru błędy pomiarowe (szumy miernika, czynniki zewnętrzne) są na tyle duże,
Testowanie hipotez statystycznych.
Statystyka Wykład 10 Wrocław, 22 grudnia 2011 Testowanie hipotez statystycznych Definicja. Hipotezą statystyczną nazywamy stwierdzenie dotyczące parametrów populacji. Definicja. Dwie komplementarne w problemie
Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji
Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych Wydział Informatyki Politechniki
STATYSTYKA OPISOWA. LICZBOWE CHARAKTERYSTYKI(MIARY)
STATYSTYKA OPISOWA. LICZBOWE CHARAKTERYSTYKI(MIARY) Dla opisania rozkładu badanej zmiennej, korzystamy z pewnych charakterystyk liczbowych. Dzielimy je na cztery grupy.. Określenie przeciętnej wartości
Prognozowanie na podstawie modelu ekonometrycznego
Prognozowanie na podstawie modelu ekonometrycznego Przykład. Firma usługowa świadcząca usługi doradcze w ostatnich kwartałach (t) odnotowała wynik finansowy (yt - tys. zł), obsługując liczbę klientów (x1t)
-> Średnia arytmetyczna (5) (4) ->Kwartyl dolny, mediana, kwartyl górny, moda - analogicznie jak
Wzory dla szeregu szczegółowego: Wzory dla szeregu rozdzielczego punktowego: ->Średnia arytmetyczna ważona -> Średnia arytmetyczna (5) ->Średnia harmoniczna (1) ->Średnia harmoniczna (6) (2) ->Średnia
PODSTAWY BIOSTATYSTYKI ĆWICZENIA
PODSTAWY BIOSTATYSTYKI ĆWICZENIA FILIP RACIBORSKI FILIP.RACIBORSKI@WUM.EDU.PL ZAKŁAD PROFILAKTYKI ZAGROŻEŃ ŚRODOWISKOWYCH I ALERGOLOGII WUM PRZYPOMNIENIE ROZKŁAD NORMALNY http://www.zarz.agh.edu.pl/bsolinsk/statystyka.html
W1. Wprowadzenie. Statystyka opisowa
W1. Wprowadzenie. Statystyka opisowa dr hab. Jerzy Nakielski Zakład Biofizyki i Morfogenezy Roślin Plan wykładu: 1. O co chodzi w statystyce 2. Etapy badania statystycznego 3. Zmienna losowa, rozkład
Analiza i monitoring środowiska
Analiza i monitoring środowiska CHC 017003L (opracował W. Zierkiewicz) Ćwiczenie 1: Analiza statystyczna wyników pomiarów. 1. WSTĘP Otrzymany w wyniku przeprowadzonej analizy ilościowej wynik pomiaru zawartości
Charakterystyka mierników do badania oświetlenia Obiektywne badania warunków oświetlenia opierają się na wynikach pomiarów parametrów świetlnych. Podobnie jak każdy pomiar, również te pomiary, obarczone
RÓWNOWAŻNOŚĆ METOD BADAWCZYCH
RÓWNOWAŻNOŚĆ METOD BADAWCZYCH Piotr Konieczka Katedra Chemii Analitycznej Wydział Chemiczny Politechnika Gdańska Równoważność metod??? 2 Zgodność wyników analitycznych otrzymanych z wykorzystaniem porównywanych
WSKAZÓWKI DO WYKONANIA SPRAWOZDANIA Z WYRÓWNAWCZYCH ZAJĘĆ LABORATORYJNYCH
WSKAZÓWKI DO WYKONANIA SPRAWOZDANIA Z WYRÓWNAWCZYCH ZAJĘĆ LABORATORYJNYCH Dobrze przygotowane sprawozdanie powinno zawierać następujące elementy: 1. Krótki wstęp - maksymalnie pół strony. W krótki i zwięzły
Tom 4 Prace analityczne
Diagnostyka Stanu Nawierzchni - DSN Generalna Dyrekcja Dróg Krajowych i Autostrad Warszawa, 15 czerwca 2012 Historia dokumentu Nazwa dokumentu Nazwa pliku Tom 4 Prace analityczne,, Diagnostyka Stanu Nawierzchni
Statystyka w pracy badawczej nauczyciela Wykład 3: Analiza struktury zbiorowości statystycznej. dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.
Statystyka w pracy badawczej nauczyciela Wykład 3: Analiza struktury zbiorowości statystycznej dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl Zadania analityczne (1) Analiza przewiduje badanie podobieństw
Analiza Statystyczna
Lekcja 5. Strona 1 z 12 Analiza Statystyczna Do analizy statystycznej wykorzystać można wbudowany w MS Excel pakiet Analysis Toolpak. Jest on instalowany w programie Excel jako pakiet dodatkowy. Oznacza
Rozkład normalny, niepewność standardowa typu A
Podstawy Metrologii i Technik Eksperymentu Laboratorium Rozkład normalny, niepewność standardowa typu A Instrukcja do ćwiczenia nr 1 Zakład Miernictwa i Ochrony Atmosfery Wrocław, listopad 2010 r. Podstawy
1 n. s x x x x. Podstawowe miary rozproszenia: Wariancja z populacji: Czasem stosuje się też inny wzór na wariancję z próby, tak policzy Excel:
Wariancja z populacji: Podstawowe miary rozproszenia: 1 1 s x x x x k 2 2 k 2 2 i i n i1 n i1 Czasem stosuje się też inny wzór na wariancję z próby, tak policzy Excel: 1 k 2 s xi x n 1 i1 2 Przykład 38,
Pozyskiwanie wiedzy z danych
Pozyskiwanie wiedzy z danych dr Agnieszka Goroncy Wydział Matematyki i Informatyki UMK PROJEKT WSPÓŁFINANSOWANY ZE ŚRODKÓW UNII EUROPEJSKIEJ W RAMACH EUROPEJSKIEGO FUNDUSZU SPOŁECZNEGO Pozyskiwanie wiedzy
Narodowe Centrum Badań Jądrowych Dział Edukacji i Szkoleń ul. Andrzeja Sołtana 7, Otwock-Świerk
Narodowe Centrum Badań Jądrowych Dział Edukacji i Szkoleń ul. Andrzeja Sołtana 7, 05-400 Otwock-Świerk ĆWICZENIE L A B O R A T O R I U M F I Z Y K I A T O M O W E J I J Ą D R O W E J Zastosowanie pojęć
PARAMETRY, WŁAŚCIWOŚCI I FUNKCJE NIEZAWODNOŚCIOWE NAPOWIETRZNYCH LINII DYSTRYBUCYJNYCH 110 KV
Elektroenergetyczne linie napowietrzne i kablowe wysokich i najwyższych napięć PARAMETRY, WŁAŚCIWOŚCI I FUNKCJE NIEZAWODNOŚCIOWE NAPOWIETRZNYCH LINII DYSTRYBUCYJNYCH 110 KV Wisła, 18-19 października 2017
Szkoła z przyszłością. Zastosowanie pojęć analizy statystycznej do opracowania pomiarów promieniowania jonizującego
Szkoła z przyszłością szkolenie współfinansowane przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Narodowe Centrum Badań Jądrowych, ul. Andrzeja Sołtana 7, 05-400 Otwock-Świerk ĆWICZENIE
Ćw. 8: POMIARY Z WYKORZYSTANIE OSCYLOSKOPU Ocena: Podpis prowadzącego: Uwagi:
Wydział: EAIiE Imię i nazwisko (e mail): Rok: Grupa: Zespół: Data wykonania: LABORATORIUM METROLOGII Ćw. 8: POMIARY Z WYKORZYSTANIE OSCYLOSKOPU Ocena: Podpis prowadzącego: Uwagi: Wstęp Celem ćwiczenia
Statystyka. Opisowa analiza zjawisk masowych
Statystyka Opisowa analiza zjawisk masowych Typy rozkładów empirycznych jednej zmiennej Rozkładem empirycznym zmiennej nazywamy przyporządkowanie kolejnym wartościom zmiennej (x i ) odpowiadających im
Korzystanie z podstawowych rozkładów prawdopodobieństwa (tablice i arkusze kalkulacyjne)
Korzystanie z podstawowych rozkładów prawdopodobieństwa (tablice i arkusze kalkulacyjne) Przygotował: Dr inż. Wojciech Artichowicz Katedra Hydrotechniki PG Zima 2014/15 1 TABLICE ROZKŁADÓW... 3 ROZKŁAD
OBLICZENIE PRZEPŁYWÓW MAKSYMALNYCH ROCZNYCH O OKREŚLONYM PRAWDOPODOBIEŃSTWIE PRZEWYŻSZENIA. z wykorzystaniem programu obliczeniowego Q maxp
tel.: +48 662 635 712 Liczba stron: 15 Data: 20.07.2010r OBLICZENIE PRZEPŁYWÓW MAKSYMALNYCH ROCZNYCH O OKREŚLONYM PRAWDOPODOBIEŃSTWIE PRZEWYŻSZENIA z wykorzystaniem programu obliczeniowego Q maxp DŁUGIE
STATYSTYKA OPISOWA. LICZBOWE CHARAKTERYSTYKI(MIARY)
STATYSTYKA OPISOWA. LICZBOWE CHARAKTERYSTYKI(MIARY) Praca z danymi zaczyna się od badania rozkładu liczebności (częstości) zmiennych. Rozkład liczebności (częstości) zmiennej to jakie wartości zmienna
Skrypt 29. Statystyka. Opracowanie L2
Projekt Innowacyjny program nauczania matematyki dla liceów ogólnokształcących współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Skrypt 29 Statystyka 1. Przypomnienie
Testowanie hipotez statystycznych.
Bioinformatyka Wykład 4 Wrocław, 17 października 2011 Temat. Weryfikacja hipotez statystycznych dotyczących wartości oczekiwanej w dwóch populacjach o rozkładach normalnych. Model 3. Porównanie średnich
Inteligentna analiza danych
Numer indeksu 150946 Michał Moroz Imię i nazwisko Numer indeksu 150875 Grzegorz Graczyk Imię i nazwisko kierunek: Informatyka rok akademicki: 2010/2011 Inteligentna analiza danych Ćwiczenie I Wskaźniki
PODSTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH
PODSTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH Dr Benedykt R. Jany I Pracownia Fizyczna Ochrona Środowiska grupa F1 Rodzaje Pomiarów Pomiar bezpośredni - bezpośrednio
Modele i wnioskowanie statystyczne (MWS), sprawozdanie z laboratorium 3
Modele i wnioskowanie statystyczne (MWS), sprawozdanie z laboratorium 3 Konrad Miziński, nr albumu 233703 26 maja 2015 Zadanie 1 Wartość krytyczna c, niezbędna wyliczenia mocy testu (1 β) wyznaczono za
Po co nam charakterystyki liczbowe? Katarzyna Lubnauer 34
Po co nam charakterystyki liczbowe? Katarzyna Lubnauer 34 Def. Charakterystyki liczbowe to wielkości wyznaczone na podstawie danych statystycznych, charakteryzujące własności badanej cechy. Klasyfikacja
Testowanie hipotez statystycznych.
Bioinformatyka Wykład 9 Wrocław, 5 grudnia 2011 Temat. Test zgodności χ 2 Pearsona. Statystyka χ 2 Pearsona Rozpatrzmy ciąg niezależnych zmiennych losowych X 1,..., X n o jednakowym dyskretnym rozkładzie
Uwaga. Łącząc układ pomiarowy należy pamiętać o zachowaniu zgodności biegunów napięcia z generatora i zacisków na makiecie przetwornika.
PLANOWANIE I TECHNIKA EKSPERYMENTU Program ćwiczenia Temat: Badanie właściwości statycznych przetworników pomiarowych, badanie właściwości dynamicznych czujników temperatury Ćwiczenie 5 Spis przyrządów
Odchudzamy serię danych, czyli jak wykryć i usunąć wyniki obarczone błędami grubymi
Odchudzamy serię danych, czyli jak wykryć i usunąć wyniki obarczone błędami grubymi Piotr Konieczka Katedra Chemii Analitycznej Wydział Chemiczny Politechnika Gdańska D syst D śr m 1 3 5 2 4 6 śr j D 1
Tworzenie tabeli przestawnej krok po kroku
Tabele przestawne Arkusz kalkulacyjny jest narzędziem przeznaczonym do zapisu, przechowywania i analizy danych. Jeśli w arkuszu zamierzamy gromadzić dane o osobach i cechach je opisujących (np. skąd pochodzą,
ESTYMACJA PRZEDZIAŁOWA WYBRANYCH PARAMETRÓW
ESTYMACJA PRZEDZIAŁOWA WYBRANYCH PARAMETRÓW POPULACJI Szkic wykładu Wprowadzenie 1 Wprowadzenie 2 3 4 Przypomnienie dotychczasowych rozważań Przedziałem ufności nazywamy przedział losowy, o którym przypuszczamy
Kolokwium ze statystyki matematycznej
Kolokwium ze statystyki matematycznej 28.05.2011 Zadanie 1 Niech X będzie zmienną losową z rozkładu o gęstości dla, gdzie 0 jest nieznanym parametrem. Na podstawie pojedynczej obserwacji weryfikujemy hipotezę
Teoria błędów. Wszystkie wartości wielkości fizycznych obarczone są pewnym błędem.
Teoria błędów Wskutek niedoskonałości przyrządów, jak również niedoskonałości organów zmysłów wszystkie pomiary są dokonywane z określonym stopniem dokładności. Nie otrzymujemy prawidłowych wartości mierzonej
Projektowanie systemów pomiarowych
Projektowanie systemów pomiarowych 03 Konstrukcja mierników analogowych Zasada działania mierników cyfrowych Przetworniki pomiarowe wielkości elektrycznych 1 Analogowe przyrządy pomiarowe Podział ze względu
Wykład 4: Statystyki opisowe (część 1)
Wykład 4: Statystyki opisowe (część 1) Wprowadzenie W przypadku danych mających charakter liczbowy do ich charakterystyki można wykorzystać tak zwane STATYSTYKI OPISOWE. Za pomocą statystyk opisowych można
MIARY KLASYCZNE Miary opisujące rozkład badanej cechy w zbiorowości, które obliczamy na podstawie wszystkich zaobserwowanych wartości cechy
MIARY POŁOŻENIA Opisują średni lub typowy poziom wartości cechy. Określają tą wartość cechy, wokół której skupiają się wszystkie pozostałe wartości badanej cechy. Wśród nich można wyróżnić miary tendencji
Statystyczne Metody Opracowania Wyników Pomiarów
Statystyczne Metody Opracowania Wyników Pomiarów dla studentów Ochrony Środowiska Teresa Jaworska-Gołąb 2017/18 Co czytać [1] H. Szydłowski, Pracownia fizyczna, PWN, Warszawa 1999. [2] A. Zięba, Analiza
Statystyka opisowa. Robert Pietrzykowski.
Statystyka opisowa Robert Pietrzykowski email: robert_pietrzykowski@sggw.pl www.ekonometria.info 2 Na dziś Sprawy bieżące Przypominam, że 14.11.2015 pierwszy sprawdzian Konsultacje Sobota 9:00 10:00 pok.
Rozdział 8. Regresja. Definiowanie modelu
Rozdział 8 Regresja Definiowanie modelu Analizę korelacji można traktować jako wstęp do analizy regresji. Jeżeli wykresy rozrzutu oraz wartości współczynników korelacji wskazują na istniejąca współzmienność
Wskaźnik asymetrii Jeżeli: rozkład jest symetryczny, to = 0, rozkład jest asymetryczny lewostronnie, to < 0. Kwartylowy wskaźnik asymetrii
Miary asymetrii Miary asymetrii (skośności) określają kierunek rozkładu cech zmiennych w zbiorowości (rozkład może być symetryczny lub asymetryczny lewostronnie lub prawostronnie) oraz stopień odchylenia
MATEMATYKA Z ELEMENTAMI STATYSTYKI LABORATORIUM KOMPUTEROWE DLA II ROKU KIERUNKU ZARZĄDZANIE I INŻYNIERIA PRODUKCJI ZESTAWY ZADAŃ
MATEMATYKA Z ELEMENTAMI STATYSTYKI LABORATORIUM KOMPUTEROWE DLA II ROKU KIERUNKU ZARZĄDZANIE I INŻYNIERIA PRODUKCJI ZESTAWY ZADAŃ Opracowała: Milena Suliga Wszystkie pliki pomocnicze wymienione w treści
Porównanie generatorów liczb losowych wykorzystywanych w arkuszach kalkulacyjnych
dr Piotr Sulewski POMORSKA AKADEMIA PEDAGOGICZNA W SŁUPSKU KATEDRA INFORMATYKI I STATYSTYKI Porównanie generatorów liczb losowych wykorzystywanych w arkuszach kalkulacyjnych Wprowadzenie Obecnie bardzo
Porównaj płace pracowników obu zakładów, dokonując kompleksowej analizy struktury. Zastanów się, w którym zakładzie jest korzystniej pracować?
1 Zadanie 1.1 W dwóch zakładach produkcyjnych Złomex I i Złomex II, należących do tego samego przedsiębiorstwa Złomowanie na zawołanie w ostatnim miesiącu następująco kształtowały się wynagrodzenia pracowników.
Statystyka. Wykład 4. Magdalena Alama-Bućko. 13 marca Magdalena Alama-Bućko Statystyka 13 marca / 41
Statystyka Wykład 4 Magdalena Alama-Bućko 13 marca 2017 Magdalena Alama-Bućko Statystyka 13 marca 2017 1 / 41 Na poprzednim wykładzie omówiliśmy następujace miary rozproszenia: Wariancja - to średnia arytmetyczna
Dane dotyczące wartości zmiennej (cechy) wprowadzamy w jednej kolumnie. W przypadku większej liczby zmiennych wprowadzamy każdą w oddzielnej kolumnie.
STATISTICA INSTRUKCJA - 1 I. Wprowadzanie danych Podstawowe / Nowy / Arkusz Dane dotyczące wartości zmiennej (cechy) wprowadzamy w jednej kolumnie. W przypadku większej liczby zmiennych wprowadzamy każdą
Podstawy opracowania wyników pomiarów z elementami analizy niepewności pomiarowych
Podstawy opracowania wyników pomiarów z elementami analizy niepewności pomiarowych dla studentów Chemii 2007 Paweł Korecki 2013 Andrzej Kapanowski Po co jest Pracownia Fizyczna? 1. Obserwacja zjawisk i
Plan wykładu. Statystyka opisowa. Statystyka matematyczna. Dane statystyczne miary położenia miary rozproszenia miary asymetrii
Plan wykładu Statystyka opisowa Dane statystyczne miary położenia miary rozproszenia miary asymetrii Statystyka matematyczna Podstawy estymacji Testowanie hipotez statystycznych Żródła Korzystałam z ksiażek:
DOKUMENTACJA SYSTEMU ZARZĄDZANIA LABORATORIUM. Procedura szacowania niepewności
DOKUMENTACJA SYSTEMU ZARZĄDZANIA LABORATORIUM Procedura szacowania niepewności Szacowanie niepewności oznaczania / pomiaru zawartości... metodą... Data Imię i Nazwisko Podpis Opracował Sprawdził Zatwierdził
ANALIZA SPRZEDAŻY: - rozproszenia
KOŁO NAUKOWE CONTROLLINGU UNIWERSYTET ZIELONOGÓRSKI ANALIZA SPRZEDAŻY: - rozproszenia - koncentracji - sezonowości Spis treści Wstęp... 3 Analiza rozproszenia sprzedaży... 4 Analiza koncentracji sprzedaży...
4. Ultradźwięki Instrukcja
4. Ultradźwięki Instrukcja 1. Cel ćwiczenia Celem ćwiczenia jest poznanie właściwości fal ultradźwiękowych i ich wykorzystania w badaniach defektoskopowych. 2. Układ pomiarowy Układ pomiarowy składa się
5. Badania eksperymentalne
5. Badania eksperymentalne 5.1. Obiekt badań Obiektem badań była komora gaszeniowa wyłącznika próżniowego średniego napięcia typu KG 12166A, produkcji Zakładów Elektronowych LAMINA w Piasecznie (fotografia
Wykład 1. Podstawowe pojęcia Metody opisowe w analizie rozkładu cechy
Wykład Podstawowe pojęcia Metody opisowe w analizie rozkładu cechy Zbiorowość statystyczna - zbiór elementów lub wyników jakiegoś procesu powiązanych ze sobą logicznie (tzn. posiadających wspólne cechy
Wymagania egzaminacyjne z matematyki. Klasa 3C. MATeMATyka. Nowa Era. Klasa 3
Wymagania egzaminacyjne z matematyki. lasa 3C. MATeMATyka. Nowa Era. y są ze sobą ściśle powiązane ( + P + R + D + W), stanowiąc ocenę szkolną, i tak: ocenę dopuszczającą (2) otrzymuje uczeń, który spełnił
Instytut Fizyki Politechniki Łódzkiej Laboratorium Metod Analizy Danych Doświadczalnych Ćwiczenie 3 Generator liczb losowych o rozkładzie Rayleigha.
Instytut Fizyki Politechniki Łódzkiej Laboratorium Metod Analizy Danych Doświadczalnych Generator liczb losowych o rozkładzie Rayleigha. Generator liczb losowych o rozkładzie Rayleigha. 1. Cel ćwiczenia
RAPORT ZBIORCZY z diagnozy umiejętności matematycznych
RAPORT ZBIORCZY z diagnozy umiejętności matematycznych przeprowadzonej w klasach szóstych szkół podstawowych Analiza statystyczna Wskaźnik Wartość wskaźnika Wyjaśnienie Liczba uczniów Liczba uczniów, którzy
1. Opis tabelaryczny. 2. Graficzna prezentacja wyników. Do technik statystyki opisowej można zaliczyć:
Wprowadzenie Statystyka opisowa to dział statystyki zajmujący się metodami opisu danych statystycznych (np. środowiskowych) uzyskanych podczas badania statystycznego (np. badań terenowych, laboratoryjnych).
WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI ROZKŁAD EMPIRYCZNY
WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI ROZKŁAD EMPIRYCZNY Liczebności i częstości Liczebność liczba osób/respondentów/badanych, którzy udzielili tej konkretnej odpowiedzi. Podawana w osobach. Częstość odsetek,
Podstawowe pojęcia. Własności próby. Cechy statystyczne dzielimy na
Podstawowe pojęcia Zbiorowość statystyczna zbiór jednostek (obserwacji) nie identycznych, ale stanowiących logiczną całość Zbiorowość (populacja) generalna skończony lub nieskończony zbiór jednostek, które
LABORATORIUM: ROZDZIELANIE UKŁADÓW HETEROGENICZNYCH ĆWICZENIE 1 - PRZESIEWANIE
LABORATORIUM: ROZDZIELANIE UKŁADÓW HETEROGENICZNYCH ĆWICZENIE 1 - PRZESIEWANIE CEL ĆWICZENIA Celem ćwiczenia jest wykonanie analizy sitowej materiału ziarnistego poddanego mieleniu w młynie kulowym oraz
Rozpoznawanie obrazów
Rozpoznawanie obrazów Laboratorium Python Zadanie nr 1 Regresja liniowa autorzy: A. Gonczarek, J.M. Tomczak, S. Zaręba, M. Zięba, J. Kaczmar Cel zadania Celem zadania jest implementacja liniowego zadania
Testowanie hipotez statystycznych. Wprowadzenie
Wrocław University of Technology Testowanie hipotez statystycznych. Wprowadzenie Jakub Tomczak Politechnika Wrocławska jakub.tomczak@pwr.edu.pl 10.04.2014 Pojęcia wstępne Populacja (statystyczna) zbiór,
Statystyczne Metody Opracowania Wyników Pomiarów
Statystyczne Metody Opracowania Wyników Pomiarów dla studentów ZMIN Teresa Jaworska-Gołąb 2017/18 Co czytać [1] I Pracownia fizyczna, Andrzej Magiera red., Oficyna Wydawnicza IMPULS, Kraków 2006; http://www.1pf.if.uj.edu.pl/materialy/zalecana-literatura
7.4 Automatyczne stawianie prognoz
szeregów czasowych za pomocą pakietu SPSS Następnie korzystamy z menu DANE WYBIERZ OBSERWACJE i wybieramy opcję WSZYSTKIE OBSERWACJE (wówczas wszystkie obserwacje są aktywne). Wreszcie wybieramy z menu
UWAGA. Wszystkie wyniki zapisywać na dysku Dane E: Program i przebieg ćwiczenia:
Cel ćwiczenia: Zapoznanie się z. metodami badania i analitycznego wyznaczania parametrów dynamicznych obiektów rzeczywistych na przykładzie mikrotermostatu oraz z metodami symulacyjnymi umożliwiającymi
Edytor materiału nauczania
Edytor materiału nauczania I. Uruchomienie modułu zarządzania rozkładami planów nauczania... 2 II. Opuszczanie elektronicznej biblioteki rozkładów... 5 III. Wyszukiwanie rozkładu materiałów... 6 IV. Modyfikowanie
Statystyka. Wykład 7. Magdalena Alama-Bućko. 16 kwietnia Magdalena Alama-Bućko Statystyka 16 kwietnia / 35
Statystyka Wykład 7 Magdalena Alama-Bućko 16 kwietnia 2017 Magdalena Alama-Bućko Statystyka 16 kwietnia 2017 1 / 35 Tematyka zajęć: Wprowadzenie do statystyki. Analiza struktury zbiorowości miary położenia
Wprowadzenie 2010-10-20
PODSTAWY STATYSTYKI Dr hab. inż. Piotr Konieczka piotr.konieczka@pg.gda.pl 1 Wprowadzenie Wynik analityczny to efekt przeprowadzonego pomiaru(ów). Pomiar to zatem narzędzie wykorzystywane w celu uzyskania
STATYSTYKA I DOŚWIADCZALNICTWO. Wykład 2
STATYSTYKA I DOŚWIADCZALNICTWO Wykład Parametry przedziałowe rozkładów ciągłych określane na podstawie próby (przedziały ufności) Przedział ufności dla średniej s X t( α;n 1),X + t( α;n 1) n s n t (α;
Wykład 3 Hipotezy statystyczne
Wykład 3 Hipotezy statystyczne Hipotezą statystyczną nazywamy każde przypuszczenie dotyczące nieznanego rozkładu obserwowanej zmiennej losowej (cechy populacji generalnej) Hipoteza zerowa (H 0 ) jest hipoteza
Wydział Elektryczny Katedra Telekomunikacji i Aparatury Elektronicznej
Politechnika Białostocka Wydział Elektryczny Katedra Telekomunikacji i Aparatury Elektronicznej Instrukcja do zajęć laboratoryjnych z przedmiotu: Przetwarzanie Sygnałów Kod: TS1A400027 Temat ćwiczenia:
Regulacja dwupołożeniowa (dwustawna)
Regulacja dwupołożeniowa (dwustawna) I. Wprowadzenie Regulacja dwustawna (dwupołożeniowa) jest często stosowaną metodą regulacji temperatury w urządzeniach grzejnictwa elektrycznego. Polega ona na cyklicznym
Usługi Informatyczne "SZANSA" - Gabriela Ciszyńska-Matuszek ul. Świerkowa 25, Bielsko-Biała
Usługi Informatyczne "SZANSA" - Gabriela Ciszyńska-Matuszek ul. Świerkowa 25, 43-305 Bielsko-Biała NIP 937-22-97-52 tel. +48 33 488 89 39 zwcad@zwcad.pl www.zwcad.pl Aplikacja do rysowania wykresów i oznaczania
Systemy uczące się wykład 2
Systemy uczące się wykład 2 dr Przemysław Juszczuk Katedra Inżynierii Wiedzy, Uniwersytet Ekonomiczny 19 X 2018 Podstawowe definicje Fakt; Przesłanka; Konkluzja; Reguła; Wnioskowanie. Typy wnioskowania
Rozkład zmiennej losowej Polega na przyporządkowaniu każdej wartości zmiennej losowej prawdopodobieństwo jej wystąpienia.
Rozkład zmiennej losowej Polega na przyporządkowaniu każdej wartości zmiennej losowej prawdopodobieństwo jej wystąpienia. D A R I U S Z P I W C Z Y Ń S K I 2 2 ROZKŁAD ZMIENNEJ LOSOWEJ Polega na przyporządkowaniu
Ćw. 8: OCENA DOKŁADNOŚCI PRZYRZĄDÓW POMIAROWYCH
Ćw. 8: OCENA DOKŁADNOŚCI PRZYRZĄDÓW POMIAROWYCH I. Cel ćwiczenia Celem ćwiczenia jest poznanie zasad sprawdzania dokładności wskazań użytkowych przyrządów pomiarowych analogowych i cyfrowych oraz praktyczne
Funkcje Tablicowe podstawy
Funkcje Tablicowe podstawy Funkcje Tablicowe są dość rzadko używane w biznesie, a pomocne przede wszystkim w przypadku zaawansowanych obliczeń matematycznych i statystycznych. Lekcja ta ograniczy się tylko
Wydział Elektryczny Katedra Telekomunikacji i Aparatury Elektronicznej
Politechnika Białostocka Wydział Elektryczny Katedra Telekomunikacji i Aparatury Elektronicznej Instrukcja do zajęć laboratoryjnych z przedmiotu: Przetwarzanie Sygnałów Kod: TS1A400027 Temat ćwiczenia:
ODRZUCANIE WYNIKÓW POJEDYNCZYCH POMIARÓW
ODRZUCANIE WYNIKÓW OJEDYNCZYCH OMIARÓW W praktyce pomiarowej zdarzają się sytuacje gdy jeden z pomiarów odstaje od pozostałych. Jeżeli wykorzystamy fakt, że wyniki pomiarów są zmienną losową opisywaną
Opisowa analiza struktury zjawisk statystycznych
Statystyka Opisowa z Demografią oraz Biostatystyka Opisowa analiza struktury zjawisk statystycznych Aleksander Denisiuk denisjuk@euh-e.edu.pl Elblaska Uczelnia Humanistyczno-Ekonomiczna ul. Lotnicza 2
Załącznik nr 6 do rozporządzenia Ministra Gospodarki i Pracy ZASADNICZE WYMAGANIA SPECYFICZNE DLA WAG AUTOMATYCZNYCH CZĘŚĆ I. Przepisy ogólne. 1.
Załącznik nr 6 do rozporządzenia Ministra Gospodarki i Pracy ZASADNICZE WYMAGANIA SPECYFICZNE DLA WAG AUTOMATYCZNYCH CZĘŚĆ I. Przepisy ogólne. 1. Odpowiednie zasadnicze wymagania i wymagania specyficzne
Raport pochodzi z portalu
B3.1 Wartość dodana Analiza szczegółowa obszaru B3 rozpoczyna się od oceny sektorów/sekcji/działów gospodarki regionu pod względem spełnienia podstawowego kryterium wzrostu i innowacyjności. Pierwszym
Szukanie rozwiązań funkcji uwikłanych (równań nieliniowych)
Szukanie rozwiązań funkcji uwikłanych (równań nieliniowych) Funkcja uwikłana (równanie nieliniowe) jest to funkcja, która nie jest przedstawiona jawnym przepisem, wzorem wyrażającym zależność wartości
Procedura szacowania niepewności
DOKUMENTACJA SYSTEMU ZARZĄDZANIA LABORATORIUM Procedura szacowania niepewności Stron 7 Załączniki Nr 1 Nr Nr 3 Stron Symbol procedury PN//xyz Data Imię i Nazwisko Podpis Opracował Sprawdził Zatwierdził
Próba własności i parametry
Próba własności i parametry Podstawowe pojęcia Zbiorowość statystyczna zbiór jednostek (obserwacji) nie identycznych, ale stanowiących logiczną całość Zbiorowość (populacja) generalna skończony lub nieskończony
Wyznaczanie budżetu niepewności w pomiarach wybranych parametrów jakości energii elektrycznej
P. OTOMAŃSKI Politechnika Poznańska P. ZAZULA Okręgowy Urząd Miar w Poznaniu Wyznaczanie budżetu niepewności w pomiarach wybranych parametrów jakości energii elektrycznej Seminarium SMART GRID 08 marca
Średnie. Średnie. Kinga Kolczyńska - Przybycień
Czym jest średnia? W wielu zagadnieniach praktycznych, kiedy mamy do czynienia z jakimiś danymi, poszukujemy liczb, które w pewnym sensie charakteryzują te dane. Na przykład kiedy chcielibyśmy sklasyfikować,
Licznik rewersyjny MD100 rev. 2.48
Licznik rewersyjny MD100 rev. 2.48 Instrukcja obsługi programu PPH WObit mgr inż. Witold Ober 61-474 Poznań, ul. Gruszkowa 4 tel.061/8350-620, -800 fax. 061/8350704 e-mail: wobit@wobit.com.pl Instrukcja
WYZNACZANIE NIEPEWNOŚCI POMIARU METODAMI SYMULACYJNYMI
WYZNACZANIE NIEPEWNOŚCI POMIARU METODAMI SYMULACYJNYMI Stefan WÓJTOWICZ, Katarzyna BIERNAT ZAKŁAD METROLOGII I BADAŃ NIENISZCZĄCYCH INSTYTUT ELEKTROTECHNIKI ul. Pożaryskiego 8, 04-703 Warszawa tel. (0)