Wykład 5 Otwarte i wtórne operacje symetrii

Wielkość: px
Rozpocząć pokaz od strony:

Download "Wykład 5 Otwarte i wtórne operacje symetrii"

Transkrypt

1 Wykład 5 Otwarte i wtórne operacje symetrii 1.Otwarty iloczyn operacji symetrii 2.Osie śrubowe i płaszczyzny poślizgu 3.Sieci Bravais a 4.Wtórne operacje symetrii

2 Przekształecenia izometryczne Zamknięte Otwarte 1. oś obrotu 2. centrum inwersji (symetrii) 3. płaszczyzna symetrii 4. oś inwersyjna (obrót i odbicie w centrum) 1. Translacja 2. oś śrubowa (obrót + translacja) 3. płaszczyzna poślizgowa (odbicie + translacja)

3 Otwarty iloczyn operacji symetrii i translacji x = 0x - 1y + 0z + 0 y = 1x + 0y + 0z + 0 z = 0x + 0y + 1z + t x = a 11 x + a 13 y + a 13 z + t 1 y = a 21 x + a 22 y + a 23 z + t 2 z = a 31 x + a 32 y + a 33 z + t 3 Konsekwencją złożenia translacji z zamkniętymi operacjami symetrii będzie pojawienie się: nowych otwartych operacji symetrii: osi śrubowych oraz płaszczyzn ślizgowych, sieci translacyjnych (tzw. sieci Bravais a), wtórnych operacji symetrii.

4 Oś dwukrotna właściwa i dwukrotna śrubowa

5 Para osi enancjomorficznych

6 Osie śrubowe 6 1 i 6 5

7 Charakterystyka osi symetrii występujących w sieciach przestrzennych Oś symetrii jednokrotna właściwa jednokrotna inwersyjna* dwukrotna właściwa dwukrotna śrubowa dwukrotna inwersyjna** trójkrotna właściwa trójkrotna śrubowa trójkrotna inwersyjna czterokrotna właściwa czterokrotna śrubowa czterokrotna inwersyjna sześciokrotna właściwa sześciokrotna śrubowa sześciokrotna inwersyjna H-M = m symbol graficzny Wartość wektora translacji brak /2a o, 1/2b o lub 1/2c o - - 1/3c o 2/3c o - - 1/4c o *** 2/4c o *** 3/4c o *** - - 1/6c o 2/6c o 3/6c o 4/6c o 5/6c o -

8 Płaszczyzna poślizgowa

9 Rodzaje płaszczyzn symetrii Płaszczyzna symetrii Symbol międzynarodowy Wartość wektora translacji płaszczyzna zwierciadlana m płaszczyzna ślizgowa osiowa płaszczyzna ślizgowa diagonalna płaszczyzna ślizgowa diamentowa a b c n d a o /2 b o /2 c o /2 (a o +b o )/2, (b o +c o )/2, (a o +c o )/2 lub (a o +b o +c o )/2 (a o +b o )/4, (b o +c o )/4, (a o +c o )/4 lub (a o +b o +c o )/4

10 Sieć przestrzenna Bravais a centrowana na ścianach prostopadłych do osi OX (typ A) dwie sieci prymitywne przesunięte względem siebie równolegle

11 Komórka elementarna prymitywna i komórki centrowane

12 Typy sieci Bravais a Nazwa komórki Symbol komórki Położenia węzłów Ilość węzłów n na komórkę prymitywna P 0,0,0 n P = 8. 1/8 = 1 przestrzennie centrowana I 0,0,0; 1/2,1/2,1/2 n I = 8. 1/8 + 1 = 2 płasko centrowana F 0,0,0; 1/2,1/2,0; 1/2,0,1/2; 0,1/2,1/2 n F = 8. 1/ /2 = 4 A 0,0,0; 0,1/2,1/2 n A = 8. 1/ /2 = 2 centrowana na jednej parze ścian B 0,0,0; 1/2,0,1/2 n B = 8. 1/ /2 = 2 C 0,0,0; 1/2,1/2,0 n C = 8. 1/ /2 = 2 romboedryczna R 0,0,0; 1/3,2/3,2/3; 2/3,1/3,1/3 n F = 8. 1/8 + 2 = 3

13 Wybór komórki prymitywnej zamiast centrowanej na jednej parze ścian zamiast płasko centrowanej na jednej parze ścian typu B

14 Typy sieci Bravais a Układ krystalograficzny regularny tetragonalny ortorombowy heksagonalny jednoskośny Symbol sieci Bravais a cp ci cf tp ti op oi of o A ( l u b B, C ) hp hr mp mc Wartości wektorów translacji sieci* a, b=a, c=a a, b=a, c=a, (a+b+c)/2 a, b=a, c=a, (a+b)/2, (b+c)/2, (a+c)/2 a, b=a, c a, b=a, c, (a+b+c)/2 a, b, c a, b, c, (a+b+c)/2 a, b, c, (a+b)/2, (b+c)/2, (a+c)/2 a, b, c, (b+c)/2 (lub (a+c)/2,(a+b)/2) a, b, c a, b=a, c, (2a+b+c)/3 a, b, c a, b, c, (a+b)/2 trójskośny ap a, b, c

15 Struktura NaCl

16 Wtórne operacje symetrii

17 Wtórne operacje symetrii (2)

18 Wtórne operacje symetrii (3)

19 Grupy przestrzenne w klasie symetrii 4

20 Wtórne operacje symetrii - podsumowanie Elementy symetrii w klasie symetrii Wtórne elementy symetrii (w grupach przestrzennych) Oś właściwa Osie właściwe o tej samej krotności, równoległe do wyjściowej, - w innych położeniach niż oś pierwotna Oś inwersyjna Płaszczyzna zwierciadlana Centrum symetrii Osie właściwe o niższej krotności niż pierwotna np.: dla osi czterokrotnej dwukrotne, dla osi sześciokrotnej dwu i trójkrotne Osie śrubowe o krotności tej samej lub niższej niż oś wyjściowa Osie inwersyjne o tej samej krotności, równoległe do wyjściowej, w innych położeniach niż oś pierwotna Osie właściwe lub inwersyjne o niższej krotności niż pierwotna np.: dla osi czterokrotnej inwersyjnej dwukrotne właściwe lub inwersyjne (płaszczyzny), dla osi sześciokrotnej inwersyjnej dwu i trójkrotne Płaszczyzny zwierciadlane równoległe do pierwotnej Centra symetrii

21 Crystal System Laue Class Space Group 1 triclinic P1, P1 monoclinic 2/m P2, P2 1, C2, Pm, Pc, Cm, Cc, P2/m, P2 1 /m, C2/m, P2/c, P2 1 /c, C2/c orthorhombic mmm P222, P222 1, P , P , C222 1, C222, F222, I222, I , Pmm2, Pmc2 1, Pcc2, Pma2, Pca2 1, Pnc2, Pmn2 1, Pba2, Pna2 1, Pnn2, Cmm2, Cmc2 1, Ccc2, Amm2, Aem2, Ama2, Aea2, Fmm2, Fdd2, Imm2, Iba2, Ima2, Pmmm, Pnnn, Pccm, Pban, Pmma, Pnna, Pmna, Pcca, Pbam, Pccn, Pbcm, Pnnm, Pmmn, Pbcn, Pbca, Pnma, Cmcm, Cmce, Cmmm, Cccm, Cmme, Ccce, Fmmm, Fddd, Immm, Ibam, Ibca, Imma tetragonal 4/m P4, P4 1, P4 2, P4 3, I4, I4 1, P4, I4, P4/m, P4 2 /m, P4/n, P4 2 /n, I4/m, I4 1 /a tetragonal 4/mmm P422, P42 1 2, P4 1 22, P , P4 2 22, P , P4 3 22, P , I422, I4 1 22, P4mm, P4bm, P4 2 cm, P4 2 nm, P4cc, P4nc, P4 2 mc, P4 2 bc, I4mm, I4cm, I4 1 md, I4 1 cd, P42m, P42c, P42 1 m, P42 1 c, P4m2, P4c2, P4b2, P4n2, I4m2, I4c2, I42m, I42d, P4/mmm, P4/mcc, P4/nbm, P4/nnc, P4/mbm, P4/mnc, P4/nmm, P4/mcc, P4 2 /mmc, P4 2 /mcm, P4 2 /nbc, P4 2 /nnm, P4 2 /mbc, P4 2 /mnm, P4 2 /nmc, P4 2 /ncm, I4/mmm, I4/mcm, I4/amd, I4/ 1 acd trigonal 3 P3, P3 1, P3 2, R3, P3, R3, P312, P321, P3 trigonal 3m 1 12, P3 1 21, P3 2 12, P3 2 21, R32, P3m1, P31m, P3c1, P31c, R3m, R3c, P31m, P31c, P3m1, P3c1, R3m, R3c hexgonal 6/m P6, P6 1, P6 5, P6 2, P6 4, P6 3, P6, P6/m, P6 3 /m hexagonal 6/mmm P622, P6 1 22, P6 5 22, P6 2 22, P6 4 22, P6 3 22, P6mm, P6cc, P6 3 cm, P6 3 mc, P6m2, P6c2, P62m, P62c, P6/mmm, P6/mcc, P6 3 /mcm, P6 3 /mmc P23, F23, I23, P2 cubic m3 1 3, I2 1 3, Pm3, Pn3, Fm3, Fd3, Im3, Pa3, Ia3 P432, P4 cubic m3m 2 32, F432, F4 1 32, I432, P4 3 32, P4 1 32, I4 1 32, P43m, F43m, I43m, P43n, F43c, I43d, Pm3m, Pn3n, Pm3n, Pn3m, Fm3m, Fm3c, Fd3m, Fd3c, Im3m, Ia3d

Opracowanie: mgr inż. Antoni Konitz, dr hab inż. Jarosław Chojnacki Politechnika Gdańska, Gdańsk 2007, 2016

Opracowanie: mgr inż. Antoni Konitz, dr hab inż. Jarosław Chojnacki Politechnika Gdańska, Gdańsk 2007, 2016 4. Stosowanie międzynarodowych symboli grup przestrzennych. Zamiana skróconych symboli Hermanna - Mauguina na symbole pełne. Określanie układu krystalograficznego, klasy krystalograficznej oraz operacji

Bardziej szczegółowo

Układ regularny. Układ regularny. Możliwe elementy symetrii: Możliwe elementy symetrii: 3 osie 3- krotne. m płaszczyzny przekątne.

Układ regularny. Układ regularny. Możliwe elementy symetrii: Możliwe elementy symetrii: 3 osie 3- krotne. m płaszczyzny przekątne. Układ regularny Możliwe elementy symetrii: 3 osie 3- krotne m płaszczyzny równoległe do ścian m płaszczyzny przekątne 4 osie 4- krotne 2 osie 2- krotne Układ regularny Możliwe elementy symetrii: 3 osie

Bardziej szczegółowo

Grupy przestrzenne i ich symbolika

Grupy przestrzenne i ich symbolika Grupy przestrzenne i ich symbolika Po co mi (chemikowi) znajomość symboli grup przestrzennych? Informacje zawarte w symbolu układ krystalograficzny obecność operacji symetrii punktowej (spektroskopia)

Bardziej szczegółowo

Wykład 5. Komórka elementarna. Sieci Bravais go

Wykład 5. Komórka elementarna. Sieci Bravais go Wykład 5 Komórka elementarna Sieci Bravais go Doskonały kryształ składa się z atomów jonów, cząsteczek) uporządkowanych w sieci krystalicznej opisanej przez trzy podstawowe wektory translacji a, b, c,

Bardziej szczegółowo

Krystalochemia białek 2016/2017

Krystalochemia białek 2016/2017 Zestaw zadań 4. Grupy punktowe. Składanie elementów symetrii. Translacyjne elementy symetrii grupy punktowe, składanie elementów symetrii, translacyjne elementy symetrii: osie śrubowe, płaszczyzny ślizgowe

Bardziej szczegółowo

STRUKTURA CIAŁA STAŁEGO

STRUKTURA CIAŁA STAŁEGO STRUKTURA CIAŁA STAŁEGO Podział ciał stałych Ciała - bezpostaciowe (amorficzne) Szkła, żywice, tłuszcze, niektóre proszki. Nie wykazują żadnych regularnych płaszczyzn ograniczających, nie można w nich

Bardziej szczegółowo

Sieć przestrzenna. c r. b r. a r. komórka elementarna. r r

Sieć przestrzenna. c r. b r. a r. komórka elementarna. r r Sieć przestrzenna c r b r r r u a r vb uvw = + + w c v a r komórka elementarna V = r r a ( b c) v Układy krystalograficzne (7) i Sieci Bravais (14) Triclinic (P) a b c, α β γ 90 ο Monoclinic (P) a b c,

Bardziej szczegółowo

GRUPY SYMETRII Symetria kryształu

GRUPY SYMETRII Symetria kryształu GRUPY SYMETRII Smetria krstału Zamknięte (punktowe) operacje smetrii (minimum jeden punkt prestreni nie porusa się wskutek astosowania amkniętej operacji smetrii): Obrot i obrot inwersjne; Inwersja (smetria

Bardziej szczegółowo

Krystalografia i krystalochemia Wykład 15 Repetytorium

Krystalografia i krystalochemia Wykład 15 Repetytorium Krystalografia i krystalochemia Wykład 15 Repetytorium 1. Czym zajmuje się krystalografia i krystalochemia? 2. Podsumowanie wiadomości z krystalografii geometrycznej. 3. Symbolika Kreutza-Zaremby oraz

Bardziej szczegółowo

S 2, C 2h,D 2h,D 3d,D 4h, D 6h, O h

S 2, C 2h,D 2h,D 3d,D 4h, D 6h, O h Są tylko 32 grupy punktowe, które spełniają ten warunek, Można je pogrupować w 7 typów grup (spośród omówionych 12- tu), które spełniają powyższe własności S 2, C 2h,D 2h,D 3d,D 4h, D 6h, O h nazywają

Bardziej szczegółowo

Konwersatorium z chemii ciała stałego Specjalność: chemia budowlana ZESTAW 3. Symetria makro- i mikroskopowa

Konwersatorium z chemii ciała stałego Specjalność: chemia budowlana ZESTAW 3. Symetria makro- i mikroskopowa Konwersatorium z chemii ciała stałego Specjalność: chemia budowlana ZESTAW 3 Symetria makro- i mikroskopowa Kombinacje elementów symetrii; grupy punktowe i grupy przestrzenne projekcje cyklograficzne grup

Bardziej szczegółowo

STANY SKUPIENIA MATERII

STANY SKUPIENIA MATERII STANY SKUPIENIA MATERII Tradycyjne od XVII wieku wyróżniamy trzy stany skupienia: stały,ciekły, gazowy Obecnie fizyka wróżnia pięć (6?) stanów skupienia faza gazowa faza nadkrytyczna (między cieczą a gazem)

Bardziej szczegółowo

Elementy symetrii makroskopowej.

Elementy symetrii makroskopowej. Uniwersytet Śląski Instytut Chemii Zakład Krystalografii Laboratorium z Krystalografii Elementy symetrii makroskopowej. 2 godz. Cel ćwiczenia: zapoznanie się z działaniem elementów symetrii makroskopowej

Bardziej szczegółowo

Międzynarodowe Tablice Krystalograficzne (International Tables for Crystallography)

Międzynarodowe Tablice Krystalograficzne (International Tables for Crystallography) Uniwersytet Śląski Instytut Chemii Zakład Krystalografii Laboratorium z Krystalografii Międzynarodowe Tablice Krystalograficzne (International Tables for Crystallography) 2 godz. Cel ćwiczenia: analiza

Bardziej szczegółowo

Aby opisać strukturę krystaliczną, konieczne jest określenie jej części składowych: sieci przestrzennej oraz bazy atomowej.

Aby opisać strukturę krystaliczną, konieczne jest określenie jej części składowych: sieci przestrzennej oraz bazy atomowej. 2. Podstawy krystalografii Podczas naszych zajęć skupimy się przede wszystkim na strukturach krystalicznych. Kryształem nazywamy (def. strukturalna) substancję stałą zbudowaną z atomów, jonów lub cząsteczek

Bardziej szczegółowo

ROZDZIAŁ I. Symetria budowy kryształów

ROZDZIAŁ I. Symetria budowy kryształów ROZDZIAŁ I Symetria budowy kryształów I Ciała krystaliczne i amorficzne Każda substancja ciekła z wyjątkiem helu) podczas oziębiania traci swoje własności ciekłe i przechodzi w ciało stałe Jednakże proces

Bardziej szczegółowo

3. Operacje symetrii, macierze operacji symetrii. Grupy punktowe. Przypisywanie grupy punktowej dla zadanych obiektów

3. Operacje symetrii, macierze operacji symetrii. Grupy punktowe. Przypisywanie grupy punktowej dla zadanych obiektów 3. Operacje symetrii, macierze operacji symetrii. Grupy punktowe. Przypisywanie grupy punktowej dla zadanych obiektów Opracowanie: dr hab. inż. Jarosław Chojnacki, Politechnika Gdańska, Gdańsk 207 Każda

Bardziej szczegółowo

STRUKTURA KRYSTALICZNA

STRUKTURA KRYSTALICZNA PODSTAWY KRYSTALOGRAFII Struktura krystaliczna Wektory translacji sieci Komórka elementarna Komórka elementarna Wignera-Seitza Jednostkowy element struktury Sieci Bravais go 2D Sieci przestrzenne Bravais

Bardziej szczegółowo

Wykład 4: Struktura krystaliczna

Wykład 4: Struktura krystaliczna Wykład 4: Struktura krystaliczna Wg Blicharskiego, Wstęp do materiałoznawstwa http://webmineral.com/ Komórka elementarna Geometria komórki Dla zdefiniowania trójwymiarowej komórki elementarnej należy podać

Bardziej szczegółowo

Uniwersytet Śląski Instytut Chemii Zakład Krystalografii. Laboratorium z Krystalografii. 2 godz. Komórki Bravais go

Uniwersytet Śląski Instytut Chemii Zakład Krystalografii. Laboratorium z Krystalografii. 2 godz. Komórki Bravais go Uniwersytet Śląski Instytut Chemii Zakład Krystalografii Laboratorium z Krystalografii 2 godz. Komórki Bravais go Cel ćwiczenia: kształtowanie umiejętności: przyporządkowywania komórek translacyjnych Bravais

Bardziej szczegółowo

Położenia, kierunki, płaszczyzny

Położenia, kierunki, płaszczyzny Położenia, kierunki, płaszczyzny Dalsze pojęcia Osie krystalograficzne; Parametry komórki elementarnej; Wskaźniki punktów kierunków i płaszczyzn; Osie krystalograficzne Osie krystalograficzne: układ osi

Bardziej szczegółowo

MATERIA. = m i liczby całkowite. ciała stałe. - kryształy - ciała bezpostaciowe (amorficzne) - ciecze KRYSZTAŁY. Periodyczność

MATERIA. = m i liczby całkowite. ciała stałe. - kryształy - ciała bezpostaciowe (amorficzne) - ciecze KRYSZTAŁY. Periodyczność MATERIA ciała stałe - kryształy - ciała bezpostaciowe (amorficzne) - ciecze - gazy KRYSZTAŁY Periodyczność Kryształ (idealny) struktura zbudowana z powtarzających się w przestrzeni periodycznie identycznych

Bardziej szczegółowo

Elementy teorii powierzchni metali

Elementy teorii powierzchni metali Prof. dr hab. Adam Kiejna Elementy teorii powierzchni metali Wykład dla studentów fizyki Rok akademicki 2017/18 (30 godz.) Wykład 1 Plan wykładu Struktura periodyczna kryształów, sieć odwrotna Struktura

Bardziej szczegółowo

Rozwiązanie: Zadanie 2

Rozwiązanie: Zadanie 2 Podstawowe pojęcia. Definicja kryształu. Sieć przestrzenna i sieć krystaliczna. Osie krystalograficzne i jednostki osiowe. Ściana jednostkowa i stosunek osiowy. Położenie węzłów, prostych i płaszczyzn

Bardziej szczegółowo

STRUKTURA MATERIAŁÓW

STRUKTURA MATERIAŁÓW STRUKTURA MATERIAŁÓW ELEMENTY STRUKTURY MATERIAŁÓW 1. Wiązania miedzy atomami 2. Układ atomów w przestrzeni 3. Mikrostruktura 4. Makrostruktura 1. WIĄZANIA MIĘDZY ATOMAMI Siły oddziaływania między atomami

Bardziej szczegółowo

NOWA STRONA INTERNETOWA PRZEDMIOTU: http://xrd.ceramika.agh.edu.pl/

NOWA STRONA INTERNETOWA PRZEDMIOTU: http://xrd.ceramika.agh.edu.pl/ Wskaźnikowanie rentgenogramów i wyznaczanie parametrów sieciowych Wykład 8 1. Wskaźnikowanie rentgenogramów. 2. Metoda róŝnic wskaźnikowania rentgenogramów substancji z układu regularnego. 3. Metoda ilorazów

Bardziej szczegółowo

BUDOWA KRYSTALICZNA CIAŁ STAŁYCH. Stopień uporządkowania struktury wewnętrznej ciał stałych decyduje o ich podziale

BUDOWA KRYSTALICZNA CIAŁ STAŁYCH. Stopień uporządkowania struktury wewnętrznej ciał stałych decyduje o ich podziale BUDOWA KRYSTALICZNA CIAŁ STAŁYCH Stopień uporządkowania struktury wewnętrznej ciał stałych decyduje o ich podziale na: kryształy ciała o okresowym regularnym uporządkowaniu atomów, cząsteczek w całej swojej

Bardziej szczegółowo

Elementy teorii powierzchni metali

Elementy teorii powierzchni metali prof. dr hab. Adam Kiejna Elementy teorii powierzchni metali Wykład 2 v.16 Sieci płaskie i struktura powierzchni 1 Typy sieci dwuwymiarowych (płaskich) Przecinając monokryształ wzdłuż jednej z płaszczyzn

Bardziej szczegółowo

Międzynarodowe Tablice Krystalograficzne (International Tables for Crystallography)

Międzynarodowe Tablice Krystalograficzne (International Tables for Crystallography) Uniwersytet Śląski Instytut Chemii Zakład Krystalografii Laboratorium z Krystalografii Międzynarodowe Tablice Krystalograficzne (International Tables for Crystallography) 2 godz. Cel ćwiczenia: analiza

Bardziej szczegółowo

Krystalografia. Dyfrakcja na monokryształach. Analiza dyfraktogramów

Krystalografia. Dyfrakcja na monokryształach. Analiza dyfraktogramów Krystalografia Dyfrakcja na monokryształach. Analiza dyfraktogramów Wyznaczanie struktury Pomiar obrazów dyfrakcyjnych Stworzenie modelu niezdeformowanej sieci odwrotnej refleksów Wybór komórki elementarnej

Bardziej szczegółowo

S. Baran - Podstawy fizyki materii skondensowanej Struktura krystaliczna. Struktura krystaliczna

S. Baran - Podstawy fizyki materii skondensowanej Struktura krystaliczna. Struktura krystaliczna S. Baran - Podstawy fizyki materii skondensowanej Struktura krystaliczna Struktura krystaliczna Kwarc (SiO2) (źródło: Wikipedia) Piryt (FeS2) (źródło: Wikipedia) Halit/Sól kamienna (NaCl) (źródło: Wikipedia)

Bardziej szczegółowo

Fizyka Ciała Stałego

Fizyka Ciała Stałego Wykład III Struktura krystaliczna Fizyka Ciała Stałego Ciała stałe można podzielić na: Krystaliczne, o uporządkowanym ułożeniu atomów lub molekuł tworzącym sieć krystaliczną. Amorficzne, brak uporządkowania,

Bardziej szczegółowo

Zastosowanie teorii grup. Grupy symetrii w fizyce i chemii.

Zastosowanie teorii grup. Grupy symetrii w fizyce i chemii. Zastosowanie teorii grup Grupy symetrii w fizyce i chemii Katarzyna Kolonko Streszczenie Usystematyzowanie grup punktowych, omówienie ich na przykładzie molekuł Przedstawienie wkładu teorii grup w badanie

Bardziej szczegółowo

Uniwersytet Śląski w Katowicach str. 1 Wydział

Uniwersytet Śląski w Katowicach str. 1 Wydział Uniwersytet Śląski w Katowicach str. 1 Kierunek i poziom studiów: Chemia, pierwszy Sylabus modułu: Krystalografia (016) Nazwa wariantu modułu (opcjonalnie): _wariantu ( wariantu) 1. Informacje ogólne koordynator

Bardziej szczegółowo

Natęż. ężenie refleksu dyfrakcyjnego

Natęż. ężenie refleksu dyfrakcyjnego Natęż ężenie refleksu dyfrakcyjnego Wskaźnikowanie dyfraktogramów 1. Natężenie refleksu dyfrakcyjnego - od czego i jak zależy 1. Wskaźnikowanie dyfraktogramów -metoda różnic 3. Wygaszenia systematyczne

Bardziej szczegółowo

Międzynarodowe Tablice Krystalograficzne (International Tables for Crystallography)

Międzynarodowe Tablice Krystalograficzne (International Tables for Crystallography) Uniwersytet Śląski Instytut Chemii Zakład Krystalografii Laboratorium z Krystalografii Międzynarodowe Tablice Krystalograficzne (International Tables for Crystallography) 2 godz. Cel ćwiczenia: analiza

Bardziej szczegółowo

Metody badań monokryształów metoda Lauego

Metody badań monokryształów metoda Lauego Uniwersytet Śląski Instytut Chemii Zakład Krystalografii ul. Bankowa 14, pok. 132, 40 006 Katowice, Tel. 0323591627 e-mail: joanna_palion@poczta.fm opracowanie: mgr Joanna Palion Gazda Laboratorium z Krystalografii

Bardziej szczegółowo

Strukturalne elementy symetrii. Krystalograficzne grupy przestrzenne.

Strukturalne elementy symetrii. Krystalograficzne grupy przestrzenne. Uniwerstet Śląski Insttut Chemii Zakład Krstalografii Laboratorium Krstalografii Strukturalne element smetrii. Krstalograficne grup prestrenne. god. Cel ćwicenia: aponanie się diałaniem elementów smetrii

Bardziej szczegółowo

Wykład II Sieć krystaliczna

Wykład II Sieć krystaliczna Wykład II Sieć krystaliczna Podstawowe definicje Wiele z pośród ciał stałych ma budowę krystaliczną. To znaczy, Ŝe atomy z których się składają ułoŝone są w określonym porządku. Porządek ten daje się stosunkowo

Bardziej szczegółowo

ELEMENTY I OPERACJE SYMETRII Symbol Element symetrii Operacja symetrii

ELEMENTY I OPERACJE SYMETRII Symbol Element symetrii Operacja symetrii ELEMENTY I OPERACJE SYMETRII Symbol Element symetrii Operacja symetrii C n oś symetrii n-krotna (oś główna - oś o obrót wokół osi symetrii o kąt równy 360 0 /n najwyższej krotności) σ płaszczyzna symetrii

Bardziej szczegółowo

Układy krystalograficzne

Układy krystalograficzne Uniwersytet Śląski Instytut Chemii Zakład Krystalografii Laboratorium z Krystalografii 2 godz. Układy krystalograficzne Cel ćwiczenia: kształtowanie umiejętności wyboru komórki elementarnej i przyporządkowywania

Bardziej szczegółowo

Krystalografia. Typowe struktury pierwiastków i związków chemicznych

Krystalografia. Typowe struktury pierwiastków i związków chemicznych Krystalografia Typowe struktury pierwiastków i związków chemicznych Wiązania w kryształach jonowe silne, bezkierunkowe kowalencyjne silne, kierunkowe metaliczne słabe lub silne, bezkierunkowe van der Waalsa

Bardziej szczegółowo

Budowa ciał stałych. sieć krystaliczna układy krystalograficzne sieć realna defekty wiązania w ciałach stałych

Budowa ciał stałych. sieć krystaliczna układy krystalograficzne sieć realna defekty wiązania w ciałach stałych Budowa ciał stałych sieć krystaliczna układy krystalograficzne sieć realna defekty wiązania w ciałach stałych Ciała stałe to substancje o regularnej, przestrzennej budowie krystalicznej, czyli regularnym

Bardziej szczegółowo

Wykład 1. Symetria Budowy Kryształów

Wykład 1. Symetria Budowy Kryształów Wykład Symetria Budowy Kryształów Ciała krystaliczne i amorficzne Każda substancja ciekła (z wyjątkiem helu) podczas oziębiania traci swoje własności ciekłe i przechodzi w ciało stałe. Jednakże proces

Bardziej szczegółowo

= a (a c-c )x(3) 1/2. Grafit i nanorurki węglowe Grafen sieć rombowa (heksagonalna) z bazą dwuatomową

= a (a c-c )x(3) 1/2. Grafit i nanorurki węglowe Grafen sieć rombowa (heksagonalna) z bazą dwuatomową Grafit i nanorurki węglowe Grafen sieć rombowa (heksagonalna) z bazą dwuatomową a 1 = a (a c-c )x(3) 1/ ( 3 a, ), ( 3 a a a = a, ) wektory bazowe sieci odwrotnej definiuje się inaczej niż w 3D musi zachodzić

Bardziej szczegółowo

Symetria w fizyce materii

Symetria w fizyce materii Symetria w fizyce materii - Przekształcenia symetrii w dwóch i trzech wymiarach - Wprowadzenie w teorię grup; grupy symetrii - Wprowadzenie w teorię reprezentacji grup - Teoria grup a mechanika kwantowa

Bardziej szczegółowo

Rodzina i pas płaszczyzn sieciowych

Rodzina i pas płaszczyzn sieciowych Uniwersytet Śląski Instytut Chemii Zakład Krystalografii Laboratorium z Krystalografii 2 godz. Rodzina i pas płaszczyzn sieciowych Cel ćwiczenia: kształtowanie umiejętności posługiwania się modelami komórek

Bardziej szczegółowo

Laboratorium z Krystalografii. 2 godz.

Laboratorium z Krystalografii. 2 godz. Uniwersytet Śląski - Instytut Chemii Zakład Krystalografii ul. Bankowa 14, pok. 132, 40-006 Katowice tel. 0323591627, e-mail: ewa.malicka@us.edu.pl opracowanie: dr Ewa Malicka Laboratorium z Krystalografii

Bardziej szczegółowo

1. Elementy (abstrakcyjnej) teorii grup

1. Elementy (abstrakcyjnej) teorii grup 1. Elementy (abstrakcyjnej) teorii grup Grupy symetrii def. Grupy Zbiór (skończony lub nieskończony) elementów {g} tworzy grupę gdy: - zdefiniowana operacja mnożenia (złożenia) g 1 g 2 = g 3 є G - (g 1

Bardziej szczegółowo

Wstęp do Optyki i Fizyki Materii Skondensowanej. Mateusz Goryca

Wstęp do Optyki i Fizyki Materii Skondensowanej. Mateusz Goryca Wstęp do Optyki i Fizyki Materii Skondensowanej Mateusz Goryca mgoryca@fuw.edu.pl Uniwersytet Warszawski 2015 Materia skondensowana OC 6 H 13 H 13 C 6 O OC 6 H 13 H 17 C 8 O H 17 C 8 O N N Cu O O H 21

Bardziej szczegółowo

Fizyka Ciała Stałego. Struktura krystaliczna. Struktura amorficzna

Fizyka Ciała Stałego. Struktura krystaliczna. Struktura amorficzna Wykład II Struktura krystaliczna Fizyka Ciała Stałego Ciała stałe można podzielić na: Amorficzne, brak uporządkowania, np. szkła; Krystaliczne, o uporządkowanym ułożeniu atomów lub molekuł tworzącym sieć

Bardziej szczegółowo

Fizyka Ciała Stałego. Struktura krystaliczna. Struktura amorficzna

Fizyka Ciała Stałego. Struktura krystaliczna. Struktura amorficzna Wykład II Struktura krystaliczna Fizyka Ciała Stałego Ciała stałe można podzielić na: Amorficzne, brak uporządkowania, np. szkła; Krystaliczne, o uporządkowanym ułożeniu atomów lub molekuł tworzącym sieć

Bardziej szczegółowo

WYKŁAD 5 Zastosowanie teorii grup w analizie widm oscylacyjnych

WYKŁAD 5 Zastosowanie teorii grup w analizie widm oscylacyjnych WYKŁAD 5 Zastosowanie teorii grup w analizie widm oscylacyjnych Prof. dr hab. Halina Abramczyk Dr inż. Beata Brożek-Płuska POLITECHNIKA ŁÓDZKA Wydział Chemiczny, Instytut Techniki Radiacyjnej Laboratorium

Bardziej szczegółowo

Wstęp. Krystalografia geometryczna

Wstęp. Krystalografia geometryczna Wstęp Przedmiot badań krystalografii. Wprowadzenie do opisu struktury kryształów. Definicja sieci Bravais go i bazy atomowej, komórki prymitywnej i elementarnej. Podstawowe typy komórek elementarnych.

Bardziej szczegółowo

KRYSTALOGRAFIA Studia pierwszego stopnia, stacjonarne II rok

KRYSTALOGRAFIA Studia pierwszego stopnia, stacjonarne II rok Akademia Górniczo-Hutnicza Wydział Odlewnictwa Katedra Inżynierii Stopów i Kompozytów Odlewanych Nr ćwiczenia: 1 Opracowała Temat: Cel ćwiczenia: Zakres wymaganego materiału Przebieg ćwiczenia Materiały

Bardziej szczegółowo

Translacja jako operacja symetrii. Wybór komórki elementarnej wg A. Bravais, połowa XIX wieku wybieramy komórkę. Symetria sieci translacyjnej

Translacja jako operacja symetrii. Wybór komórki elementarnej wg A. Bravais, połowa XIX wieku wybieramy komórkę. Symetria sieci translacyjnej Trnslcj jko opercj symetrii Wykłd trzeci W obrębie figur nieskończonych przesunięcie (trnslcję) możn trktowć jko opercję symetrii Jest tk np. w szlkch ornmentcyjnych (bordiurch) i siecich krysztłów polimerów

Bardziej szczegółowo

Rejestracja dyfraktogramów polikrystalicznych związków. Wskaźnikowanie dyfraktogramów i wyznaczanie typu komórki Bravais go.

Rejestracja dyfraktogramów polikrystalicznych związków. Wskaźnikowanie dyfraktogramów i wyznaczanie typu komórki Bravais go. Uniwersytet Śląski Instytut Chemii Zakład Krystalografii ul. Bankowa 14, pok. 133, 40006 Katowice tel. 0323591503, email: izajen@wp.pl opracowanie: dr hab. Izabela Jendrzejewska Laboratorium z Krystalografii

Bardziej szczegółowo

STRUKTURA MATERIAŁÓW. Opracowanie: Dr hab.inż. Joanna Hucińska

STRUKTURA MATERIAŁÓW. Opracowanie: Dr hab.inż. Joanna Hucińska STRUKTURA MATERIAŁÓW Opracowanie: Dr hab.inż. Joanna Hucińska ELEMENTY STRUKTURY MATERIAŁÓW 1. Wiązania miedzy atomami 2. Układ atomów w przestrzeni 3. Mikrostruktura 4. Makrostruktura 1. WIĄZANIA MIĘDZY

Bardziej szczegółowo

FIGURY I PRZEKSZTAŁCENIA GEOMETRYCZNE

FIGURY I PRZEKSZTAŁCENIA GEOMETRYCZNE Umiejętności opracowanie: Maria Lampert LISTA MOICH OSIĄGNIĘĆ FIGURY I PRZEKSZTAŁCENIA GEOMETRYCZNE Co powinienem umieć Umiejętności znam podstawowe przekształcenia geometryczne: symetria osiowa i środkowa,

Bardziej szczegółowo

Odbicie lustrzane, oś symetrii

Odbicie lustrzane, oś symetrii Odbicie lustrzane, oś symetrii 1. Określ, czy poniższe figury są swoimi lustrzanymi odbiciami. Jeśli nie, odpowiedź uzasadnij. 2. Dokończ rysunki, tak aby dorysowana część była odbiciem lustrzanym. 3.

Bardziej szczegółowo

Elementy symetrii. obiekt geometryczny taki jak linia, płaszczyzna lub punkt, względem którego dokonuje się operacji symetrii.

Elementy symetrii. obiekt geometryczny taki jak linia, płaszczyzna lub punkt, względem którego dokonuje się operacji symetrii. ELEMENTY SYMETRII Element symetrii obiekt geometryczny taki jak linia, płaszczyzna lub punkt, względem którego dokonuje się operacji symetrii. ELEMENTY SYMETRII Elementy symetrii PŁASZZYZNA peracje symetrii

Bardziej szczegółowo

Dyfrakcja rentgenowska (XRD) w analizie fazowej Wykład 7

Dyfrakcja rentgenowska (XRD) w analizie fazowej Wykład 7 Dyfrakcja rentgenowska () w analizie fazowej Wykład 7 1. Opracowanie wyników pomiaru. 2. Korzystanie z kart identyfikacyjnych. 3. Parametry sieciowe a układ krystalograficzny. 4. Wskaźnikowanie rentgenogramów.

Bardziej szczegółowo

C h można przedstawić w bazie wektorów bazowych grafenu (*) (**) Nanorurki węglowe (jednościenne)

C h można przedstawić w bazie wektorów bazowych grafenu (*) (**) Nanorurki węglowe (jednościenne) Nanorurki węglowe (jednościenne) zwinięte paski arkusza grafenu (wstęgi grafenowej) (węzły sieciowe Bravais i węzły podsieci) wstęgi: chiralna fotelowa zykzak komórka elementarna jednoznacznie definiuje

Bardziej szczegółowo

Materiałoznawstwo optyczne. KRYSZTAŁY Y cz. 2

Materiałoznawstwo optyczne. KRYSZTAŁY Y cz. 2 Materiałoznawstwo optyczne KRYSZTAŁY Y cz. 2 Komórki elementarne Bravais Grupy translacyjne Bravais Układ Grupa translacyjna regularny P, I, F tetragonalny P, I rombowy P, C, I, F jednoskośny P, C, trójskośny

Bardziej szczegółowo

Kombinacje elementów symetrii. Klasy symetrii.

Kombinacje elementów symetrii. Klasy symetrii. Uniwersytet Śląski Instytut Chemii Zakładu Krystalografii ul. Bankowa 14, pok. 133, 40-006 Katowice tel. 0323591503, e-mail: izajen@wp.pl, opracowanie: dr Izabela Jendrzejewska Laboratorium z Krystalografii

Bardziej szczegółowo

Metody badań monokryształów metoda Lauego

Metody badań monokryształów metoda Lauego Uniwersytet Śląski Instytut Chemii Zakład Krystalografii ul. Bankowa 14, pok. 132, 40 006 Katowice, Tel. 0323591627 e-mail: joanna_palion@poczta.fm opracowanie: mgr Joanna Palion Gazda Laboratorium z Krystalografii

Bardziej szczegółowo

Dyfrakcja rentgenowska (XRD) w analizie fazowej Wykład 6 i 7

Dyfrakcja rentgenowska (XRD) w analizie fazowej Wykład 6 i 7 Dyfrakcja rentgenowska () w analizie fazowej Wykład 6 i 7 1. Wyniki pomiarów rentgenowskich w metodzie DSH. 2. Intensywność refleksów. 3. Reguły wygaszeń. 4. Parametry pomiarowe i przygotowanie próbek

Bardziej szczegółowo

UNIWERSYTET im. ADAMA MICKIEWICZA w POZNANIU WYDZIAŁ FIZYKI. specjalność: Fizyka z Informatyką Zakład Fizyki Kryształów PRACA MAGISTERSKA

UNIWERSYTET im. ADAMA MICKIEWICZA w POZNANIU WYDZIAŁ FIZYKI. specjalność: Fizyka z Informatyką Zakład Fizyki Kryształów PRACA MAGISTERSKA UNIWERSYTET im. ADAMA MICKIEWICZA w POZNANIU WYDZIAŁ FIZYKI specjalność: Fizyka z Informatyką Zakład Fizyki Kryształów PRACA MAGISTERSKA PRZEMIANY FAZOWE NA POWIERZCHNIACH KRYSZTAŁÓW FERROICZNYCH JUSTYNA

Bardziej szczegółowo

Struktura energetyczna ciał stałych. Fizyka II dla EiT oraz E, lato

Struktura energetyczna ciał stałych. Fizyka II dla EiT oraz E, lato Struktura energetyczna ciał stałych Fizyka II dla EiT oraz E, lato 016 1 Struktura kryształu Doskonały kryształ składa się z uporządkowanych atomów w sieci krystalicznej, opisanej przez trzy podstawowe

Bardziej szczegółowo

1. Podstawowe pojęcia. Stechiometria w komórce elementarnej. Wyznaczanie gęstości teoretycznej kryształu. Zamiana baz w układach współrzędnych

1. Podstawowe pojęcia. Stechiometria w komórce elementarnej. Wyznaczanie gęstości teoretycznej kryształu. Zamiana baz w układach współrzędnych 1. Podstawowe pojęcia. Stechiometria w komórce elementarnej. Wyznaczanie gęstości teoretycznej kryształu. Zamiana baz w układach współrzędnych Opracowanie: dr hab. inż. Jarosław Chojnacki i mgr inż. Antoni

Bardziej szczegółowo

STRUKTURA IDEALNYCH KRYSZTAŁÓW

STRUKTURA IDEALNYCH KRYSZTAŁÓW BUDOWA WEWNĘTRZNA MATERIAŁÓW METALICZNYCH Zakres tematyczny y 1 STRUKTURA IDEALNYCH KRYSZTAŁÓW 2 1 Sieć przestrzenna kryształu TRANSLACJA WĘZŁA TRANSLACJA PROSTEJ SIECIOWEJ TRANSLACJA PŁASZCZYZNY SIECIOWEJ

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI 2016/2017 (zakres podstawowy) klasa 3abc

WYMAGANIA EDUKACYJNE Z MATEMATYKI 2016/2017 (zakres podstawowy) klasa 3abc WYMAGANIA EDUKACYJNE Z MATEMATYKI 2016/2017 (zakres podstawowy) klasa 3abc 1, Ciągi zna definicję ciągu (ciągu liczbowego); potrafi wyznaczyć dowolny wyraz ciągu liczbowego określonego wzorem ogólnym;

Bardziej szczegółowo

Rejestracja dyfraktogramów polikrystalicznych związków. Wskaźnikowanie dyfraktogramów i wyznaczanie typu komórki Bravais go.

Rejestracja dyfraktogramów polikrystalicznych związków. Wskaźnikowanie dyfraktogramów i wyznaczanie typu komórki Bravais go. Uniwersytet Śląski Instytut Chemii Zakład Krystalografii ul. Bankowa 14, pok. 133, 40006 Katowice tel. 0323591503, email: izajen@wp.pl opracowanie: dr hab. Izabela Jendrzejewska Laboratorium z Krystalografii

Bardziej szczegółowo

Podstawowe pojęcia opisujące sieć przestrzenną

Podstawowe pojęcia opisujące sieć przestrzenną Uniwersytet Śląski Instytut Chemii akład Krystalografii Laboratorium z Krystalografii 2 godz. Podstawowe pojęcia opisujące sieć przestrzenną Cel ćwiczenia: kształtowanie umiejętności posługiwania się modelami

Bardziej szczegółowo

Metody dyfrakcyjne do wyznaczania struktury krystalicznej materiałów

Metody dyfrakcyjne do wyznaczania struktury krystalicznej materiałów Metody dyfrakcyjne do wyznaczania struktury krystalicznej materiałów prowadzący : dr inŝ. Marcin Małys (malys@mech.pw.edu.pl) dr inŝ. Wojciech Wróbel (wrobel@mech.pw.edu.pl) gdzie nas szykać: pok. 333

Bardziej szczegółowo

Struktura energetyczna ciał stałych. Fizyka II, lato

Struktura energetyczna ciał stałych. Fizyka II, lato Struktura energetyczna ciał stałych Fizyka II, lato 016 1 Stany związane Studnia potencjału o nieskończończonej głębokości jest idealizacją. W praktyce realizowalna jest skończona studnia, w której energia

Bardziej szczegółowo

Zadanie I. 2. Gdzie w przestrzeni usytuowane są punkty (w której ćwiartce leży dany punkt): F x E' E''

Zadanie I. 2. Gdzie w przestrzeni usytuowane są punkty (w której ćwiartce leży dany punkt): F x E' E'' GEOMETRIA WYKREŚLNA ĆWICZENIA ZESTAW I Rok akademicki 2012/2013 Zadanie I. 1. Według podanych współrzędnych punktów wykreślić je w przestrzeni (na jednym rysunku aksonometrycznym) i określić, gdzie w przestrzeni

Bardziej szczegółowo

MATERIAŁOZNAWSTWO Wydział Mechaniczny, Mechatronika, sem. I. dr inż. Hanna Smoleńska

MATERIAŁOZNAWSTWO Wydział Mechaniczny, Mechatronika, sem. I. dr inż. Hanna Smoleńska MATERIAŁOZNAWSTWO Wydział Mechaniczny, Mechatronika, sem. I dr inż. Hanna Smoleńska Struktura materiałów UKŁAD ATOMÓW W PRZESTRZENI CIAŁA KRYSTALICZNE Układ atomów/cząstek (a/cz) w przestrzeni jest statystyczne

Bardziej szczegółowo

Mechanika teoretyczna

Mechanika teoretyczna Wypadkowa -metoda analityczna Mechanika teoretyczna Wykład nr 2 Wypadkowa dowolnego układu sił. Równowaga. Rodzaje sił i obciążeń. Rodzaje ustrojów prętowych. Składowe poszczególnych sił układu: Składowe

Bardziej szczegółowo

Ciała stałe. Ciała krystaliczne. Ciała amorficzne. Bardzo często mamy do czynienia z ciałami polikrystalicznymi, rzadko monokryształami.

Ciała stałe. Ciała krystaliczne. Ciała amorficzne. Bardzo często mamy do czynienia z ciałami polikrystalicznymi, rzadko monokryształami. Ciała stałe Ciała krystaliczne Ciała amorficzne Bardzo często mamy do czynienia z ciałami polikrystalicznymi, rzadko monokryształami. r T = Kryształy rosną przez regularne powtarzanie się identycznych

Bardziej szczegółowo

I. Potęgi. Logarytmy. Funkcja wykładnicza.

I. Potęgi. Logarytmy. Funkcja wykładnicza. WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY TRZECIEJ LICEUM OGÓLNOKSZTAŁCĄCEGO ZAKRES PODSTAWOWY I. Potęgi. Logarytmy. Funkcja wykładnicza. dobrą, bardzo - oblicza potęgi o wykładnikach wymiernych; - zna

Bardziej szczegółowo

STRUKTURA KRYSZTAŁÓW

STRUKTURA KRYSZTAŁÓW STRUKTURA KRYSZTAŁÓW Skala wielkości spotykanych w krystalografii: Średnica atomu wodoru: 10 Rozmiar komórki elementarnej: od kilku do kilkudziesięciu Å o D = 1*10 m = 1A 1 Struktura = sieć + baza atomowa

Bardziej szczegółowo

Geometria analityczna

Geometria analityczna Wydział Matematyki Stosowanej Zestaw zadań nr 10 Akademia Górniczo-Hutnicza w Krakowie WEiP, energetyka, I rok Elżbieta Adamus maja 018r. 1 Działania na wektorach Zadanie 1. Oblicz długość wektorów: Geometria

Bardziej szczegółowo

Inwersja w przestrzeni i rzut stereograficzny zadania

Inwersja w przestrzeni i rzut stereograficzny zadania Inwersja w przestrzeni i rzut stereograficzny zadania Rozważmy sferę S o środku O i promieniu R. Inwersją względem sfery S nazywamy przekształcenie, które przekształca punkt A na punkt A leżący na półprostej

Bardziej szczegółowo

GEOMETRIA ANALITYCZNA W PRZESTRZENI

GEOMETRIA ANALITYCZNA W PRZESTRZENI Wykład z Podstaw matematyki dla studentów Inżynierii Środowiska Wykład 13. Egzaminy I termin wtorek 31.01 14:00 Aula A Wydział Budownictwa II termin poprawkowy czwartek 9.02 14:00 Aula A Wydział Budownictwa

Bardziej szczegółowo

Struktura energetyczna ciał stałych

Struktura energetyczna ciał stałych 011-05-0 Struktura energetyczna ciał stałych Fizyka II dla Elektroniki, lato 011 1 Stany związane Studnia potencjału o nieskończończonej głębokości jest idealizacją. W praktyce realizowalna jest skończona

Bardziej szczegółowo

Kombinacje elementów symetrii. Klasy symetrii.

Kombinacje elementów symetrii. Klasy symetrii. Uniwersytet Śląski Instytut Cheii Zakład Krystalografii Laboratoriu z Krystalografii Kobinacje eleentów syetrii. Klasy syetrii. 2 godz. Cel ćwiczenia: tworzenie kobinacji eleentów syetrii akroskopowej

Bardziej szczegółowo

Podsumowanie wiadomości o przekształceniach izometrycznych na płaszczyźnie

Podsumowanie wiadomości o przekształceniach izometrycznych na płaszczyźnie Podsumowanie wiadomości o przekształceniach izometrycznych na płaszczyźnie 1. Cele lekcji a) Wiadomości 1. Utrwalenie wiadomości o przekształceniach izometrycznych. b) Umiejętności 1. Uczeń potrafi zastąpić

Bardziej szczegółowo

Krystalografia. Symetria a właściwości fizyczne kryształów

Krystalografia. Symetria a właściwości fizyczne kryształów Krystalografia Symetria a właściwości fizyczne kryształów Właściwości fizyczne kryształów a ich symetria Grupy graniczne Piroelektryczność Piezoelektryczność Właściwości optyczne kryształów Właściwości

Bardziej szczegółowo

WYKŁAD I KONSTRUKCJE PODSTAWOWE RZUT RÓWNOLEGŁY RZUT PROSTOKĄTNY AKSONOMETRIA. AdamŚwięcicki

WYKŁAD I KONSTRUKCJE PODSTAWOWE RZUT RÓWNOLEGŁY RZUT PROSTOKĄTNY AKSONOMETRIA. AdamŚwięcicki WYKŁAD I KONSTRUKCJE PODSTAWOWE RZUT RÓWNOLEGŁY RZUT PROSTOKĄTNY AKSONOMETRIA AdamŚwięcicki KONSTRUKCJA PROSTEJ PRZECHODZĄCEJ PRZEZ DWA PUNKTY a B B A A KONSTRUKCJA ODCINKA B B A A wariant I KONSTRUKCJA

Bardziej szczegółowo

1. Potęgi. Logarytmy. Funkcja wykładnicza

1. Potęgi. Logarytmy. Funkcja wykładnicza 1. Potęgi. Logarytmy. Funkcja wykładnicza Tematyka zajęć: WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY KL. 3 POZIOM PODSTAWOWY Potęga o wykładniku rzeczywistym powtórzenie Funkcja wykładnicza i jej własności

Bardziej szczegółowo

Tomasz Tobiasz PLAN WYNIKOWY (zakres podstawowy)

Tomasz Tobiasz PLAN WYNIKOWY (zakres podstawowy) Tomasz Tobiasz PLAN WYNIKOWY (zakres podstawowy) klasa 3. PAZDRO Plan jest wykazem wiadomości i umiejętności, jakie powinien mieć uczeń ubiegający się o określone oceny na poszczególnych etapach edukacji

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY

PRÓBNY EGZAMIN MATURALNY PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW NR 142033 WYGENEROWANY AUTOMATYCZNIE W SERWISIE WWW.ZADANIA.INFO POZIOM PODSTAWOWY CZAS PRACY: 170 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT) Pole trójkata

Bardziej szczegółowo

Prosta i płaszczyzna w przestrzeni

Prosta i płaszczyzna w przestrzeni Prosta i płaszczyzna w przestrzeni Wybrane wzory i informacje Równanie prostej przechodzącej przez punkt P 0 = (x 0, y 0, z 0 ) o wektorze wodzącym r 0 i równoległej do wektora v = [a, b, c] : postać parametrycznego

Bardziej szczegółowo

Mechanika ogólna Wydział Budownictwa Politechniki Wrocławskiej Strona 1. MECHANIKA OGÓLNA - lista zadań 2016/17

Mechanika ogólna Wydział Budownictwa Politechniki Wrocławskiej Strona 1. MECHANIKA OGÓLNA - lista zadań 2016/17 Mechanika ogólna Wydział Budownictwa Politechniki Wrocławskiej Strona 1 MECHANIKA OGÓLNA - lista zadań 2016/17 Część 1 analiza kinematyczna układów płaskich Przeprowadzić analizę kinematyczną układu. Odpowiednią

Bardziej szczegółowo

Arkusz 6. Elementy geometrii analitycznej w przestrzeni

Arkusz 6. Elementy geometrii analitycznej w przestrzeni Arkusz 6. Elementy geometrii analitycznej w przestrzeni Zadanie 6.1. Obliczyć długości podanych wektorów a) a = [, 4, 12] b) b = [, 5, 2 2 ] c) c = [ρ cos φ, ρ sin φ, h], ρ 0, φ, h R c) d = [ρ cos φ cos

Bardziej szczegółowo

Dydaktyka matematyki III-IV etap edukacyjny (wykłady)

Dydaktyka matematyki III-IV etap edukacyjny (wykłady) Dydaktyka matematyki III-IV etap edukacyjny (wykłady) Wykład nr 9: Geometria w szkole geometria dynamiczna, miejsca geometryczne, przekształcenia geometryczne Semestr zimowy 2018/2019 DGS = Dynamic Geometry

Bardziej szczegółowo

Geometria analityczna

Geometria analityczna Geometria analityczna Wektory Zad Dane są wektory #» a, #» b, #» c Znaleźć długość wektora #» x (a #» a = [, 0, ], #» b = [0,, 3], #» c = [,, ], #» x = #» #» a b + 3 #» c ; (b #» a = [,, ], #» b = [,,

Bardziej szczegółowo

Wykład 14. Elementy algebry macierzy

Wykład 14. Elementy algebry macierzy Wykład 14 Elementy algebry macierzy dr Mariusz Grządziel 26 stycznia 2009 Układ równań z dwoma niewiadomymi Rozważmy układ równań z dwoma niewiadomymi: a 11 x + a 12 y = h 1 a 21 x + a 22 y = h 2 a 11,

Bardziej szczegółowo