Metody dyfrakcyjne do wyznaczania struktury krystalicznej materiałów
|
|
- Seweryna Szczepaniak
- 5 lat temu
- Przeglądów:
Transkrypt
1 Metody dyfrakcyjne do wyznaczania struktury krystalicznej materiałów prowadzący : dr inŝ. Marcin Małys (malys@mech.pw.edu.pl) dr inŝ. Wojciech Wróbel (wrobel@mech.pw.edu.pl) gdzie nas szykać: pok. 333 lub 711 Gmach Mechatronki (tel lub 816) zajęcia laboratoryjne: pok. 19 i 14 Gmach Fizyki Informacje:
2 Komórka elementarna: budulec krystalicznych ciał stałych z Podstawowe parametry, które definiują komórkę elementarną: a, b, c = wymiary komórki wzdłuŝ x, y, z α, β, γ = kąty pomiędzy b,c (α); a,c (β); a,b (γ) x y
3 Podstawowe typy komórek kryształów
4 Opis struktury krystalicznej BaLaMnO 4 (struktura typu K NiF 4 ): Grupa przestrzenna I4/mmm (# 139) a = b = 4 A, c=13.65 A BaLaMnO_4 Lambda: Magnif: 1.0 FWHM: 0.00 Space grp: I 4/m m m Direct cell: Ba(56) = 0,0,0.35 La(57)) = 0,0,0.35 Mn (5) = 0,0,0 O1(8) = 0,½,0 O(8) = 0,0,1/ dyfraktogram: h+k+l = nieparzyste, - refleksy niewidoczne
5 Co moŝemy uzyskać z metod dyfrakcyjnych: dyfrakcja = tutaj elastyczne rozproszenie fala padająca λ = fala odbita λ Co moŝemy uzyskać: identyfikacja materiału/faz wyznaczenie parametrów struktury szacowanie uporządkowania struktury Intensity (counts) Si powder neutron diffraction pattern C Chalk River λ = 1.39 Å θ ( 0 ) przejścia fazowe identyfikacja reakcji chemicznych powiązanie własności strukturalnych z innymi własnościami fizycznymi
6 Wyznaczanie struktury ciał stałych metodami dyfrakcyjnymi Trzy podstawowe techniki: Dyfrakcja X-ray Dyfrakcja elektronów Dyfrakcja neutronów na monokrysztale na polikrysztale (metoda proszkowa) Na czym polega dyfrakcja X na krysztale Fale rentgenowskie (X-rays) przechodząc przez kryształ są uginane pod róŝnymi kątami: proces dyfrakcji i interferecji Fale rentgenowskie oddziałują z elektronami atomów kryształu, tzn. są rozpraszane przez chmury elektronów w atomach.
7 Kąty pod jakimi fale rentgenowskie są uginane zaleŝą od odległości pomiędzy płaszczyznami wyznaczonymi przez atomy w krysztale. Fale uginane przez równoległe płaszczyzny ulegają wzmocnieniu gdy są w fazie. Wzmocnienie widoczne jest na kliszy w postaci kropek.
8 Fale uginane przez równoległe płaszczyzny ulegają wzmocnieniu gdy są w fazie. Wtedy musi być spełniony warunek BRAGGÓW: n λ= d sinθ W zaleŝności od struktury krystalicznej moŝe być wiele płaszczyzn o róŝnych odległościach d.
9 Płaszczyzny sieciowe i wskaźniki Millera KaŜda grupa równoległych płaszczyzn definiowana jest przez trójkę liczb (h, k, l) Wskaźniki (h,k,l) są definiowane: h = 1 X, k = 1 Y, l = 1 Z gdzie tutaj X, Y, Z są wartościami przecięcia płaszczyzny z osiami a, b, c ( 0kl ) (h0l ) (hk0) rodzina płaszczyzn równoległa do x y z
10 Odległość miedzy płaszczyznami z danej rodziny płaszczyzn (h,k,l) oznaczamy (d hkl ) d hkl D d' h k l n λ = d hkl sin θ hkl
11 Znając rodzaj struktury, wartości d hkl, moŝna policzyć rozmiar komórki kryształu a, b, c. ZaleŜność pomiędzy odległościami d hkl a rozmiarami komórki dla róŝnych struktur Cubic Tetragonal Orthorhombic a l k h d + + = 1 1 c l a k h d + + = 1 c l b k a h d + + = Dla pozostałych struktur wzory są bardziej skomplikowane.
12 Dyfrakcja na polikryształach, metoda proszkowa proszek = polikryształ duŝa liczba krystalitów o rozmiarach µm ułoŝonych przypadkowo Zalety przygotowania materiału do badań proszki moŝna przygotować w duŝych ilościach łatwa synteaza wielu związków związki w przyrodzie przewaŝnie występują w formie polikrytalicznej
13 Dyfrakcja na polikryształach, metoda proszkowa Ugięte fale rentgenowskie na probce proszku polikrystalicznego tworzą stoŝki. KaŜdy stoŝek odpowiada ugięciu na jednej rodzinie płaszczyzn,odpowiada zatem jednej odległości d hkl (kaŝdy stoŝek tworzony jest przez punkty-kropki powstające przez ugięcie od małych, zrientowanych przypadkowo, kryształków)
14 Dyfrakcja na polikryształach, metoda proszkowa
15 Dyfrakcja na polikryształach, metody pomiaru Debye Scherrer Camera (photographic film)
16 Dyfraktometr proszkowy Dyfrakcja na polikryształach, metody pomiaru
17 Detetkor rejstruje intensywność promieniowania w funkcji kąta obserwacji. Intensywność w funkcji kąta tworzy dwuwymiarowy obraz dyrakcyjny - dyfraktogram, który jest charakterystyczny, unikalny dla danego materiału. KaŜdy pik odpowiada ugięciu od konkretnej rodziny płaszczyzn (hkl). Intensity (00) (110) (400) (310) (301) (611) (31) (600) (411) (00) θ degrees
18 Dyfrakcja na proszkach a symetria krystału: Pozycje pików dla komórek o róŝnej symetrii z V = 64 Å 3 (λ = 1.54 Å). cubic hexagonal tetragonal Im wieksza symetria tym mniej widocznych pików dyfrakcyjnych orthorhombic monoclinic triclinic θ ( 0 ) efekt nakładania się pików : e.g. cubic d (100) = d (-100) = d (010) = d (0-10) = d (001) = d (00-1) orthorhombic d (100) = d (-100) d (010) = d (0-10) d (001) = d (00-1)
19 Jakie informacje moŝemy uzyskać z dyrfaktogramów Intensywność * pozycje atomowe w komórce * współ. termiczne drgań atomów * porządek/nieporządek sieci FWHM * rozmiar krystalitów θ ( ) * rodzaj struktury * wymiary komórki elekmentarnej * grupa przestrzenna
20 Indentyfikacja związków chemicznych Dyfraktogram jest odciskiem palców danego związku chemicznego. Dyfraktogramy roŝnych związków chemicznych są katalogowane bazie danych (database PDF by the Joint Committee on Powder Diffraction Standard, (JCPDS)) Identyfikacja polega na dopasowaniu mierzonego dyfraktogramu wg pozycji pików oraz ich intensywności do danych zawartych w bazie.
21 PDF - Powder Diffraction File Dane są stale uzupełniane (008 database contains 11,107 entries)
22
23 Identyfikacja produktu syntezy SrCO 3 +CuO? SrCuO Sr CuO 3 Product: SrCuO? Pattern for SrCuO from database Product: Sr CuO 3? Pattern for Sr CuO 3 from database
24 Czystość otrzymanego materiału Sr CuO F +δ Sr CuO F +δ + impurity *
25 Efekty domieszkowania związków 8 mol % Y O 3 in ZrO (cubic) 3 mol % Y O 3 in ZrO (tetragonal) ZrO (monoclinic)
26 Wyznaczanie podstawowych informacji o strukturze: 1 Rodzaj struktury Porównanie dyfraktogramu nieznanego związku chem. ze znanymi dyfraktogramami z bazie PDF (PDF database, calculated patterns) Indeksowanie Przypisanie indeksów h,k,l do pików 3 Wyznaczanie parametrów komórki Stosując równanie Bragg ów Np. dla kubicznej komórki ( h + k l ) sin θ = λ + 4a
27 C.D.N.
Strukturalne i termiczne metody charakteryzacji materiałów
Strukturalne i termiczne metody charakteryzacji materiałów prowadzący : dr inż. Marcin Małys (malys@if.pw.edu.pl) dr inż. Marzena Leszczyńska-Redek (leszczynska@if.pw.edu.pl) gdzie nas szukać: pok. 333
Bardziej szczegółowoDyfrakcja. Dyfrakcja to uginanie światła (albo innych fal) przez drobne obiekty (rozmiar porównywalny z długością fali) do obszaru cienia
Dyfrakcja 1 Dyfrakcja Dyfrakcja to uginanie światła (albo innych fal) przez drobne obiekty (rozmiar porównywalny z długością fali) do obszaru cienia uginanie na szczelinie uginanie na krawędziach przedmiotów
Bardziej szczegółowo10. Analiza dyfraktogramów proszkowych
10. Analiza dyfraktogramów proszkowych Celem ćwiczenia jest zapoznanie się zasadą analizy dyfraktogramów uzyskiwanych z próbek polikrystalicznych (proszków). Zwykle dyfraktometry wyposażone są w oprogramowanie
Bardziej szczegółowoWskaźnikowanie rentgenogramów i wyznaczanie parametrów sieciowych Wykład 8
Wskaźnikowanie rentgenogramów i wyznaczanie parametrów sieciowych Wykład 8 1. Wskaźnikowanie rentgenogramów. 2. Metoda róŝnic wskaźnikowania rentgenogramów substancji z układu regularnego. 3. Metoda ilorazów
Bardziej szczegółowoMetoda DSH. Dyfraktometria rentgenowska. 2. Dyfraktometr rentgenowski: - budowa anie - zastosowanie
Metoda DSH. Dyfraktometria rentgenowska 1. Teoria Braggów-Wulfa 2. Dyfraktometr rentgenowski: - budowa - działanie anie - zastosowanie Promieniowanie elektromagnetyczne radiowe mikrofale IR UV/VIS X γ
Bardziej szczegółowoRentgenografia - teorie dyfrakcji
Rentgenografia - teorie dyfrakcji widmo promieniowania rentgenowskiego Widmo emisyjne promieniowania rentgenowskiego: -promieniowanie charakterystyczne -promieniowanie ciągłe (białe) Efekt naświetlenia
Bardziej szczegółowoDyfrakcja rentgenowska (XRD) w analizie fazowej Wykład 2 i 3
Dyfrakcja rentgenowska () w analizie fazowej Wykład 2 i 3 1. Historia odkrycie promieniowania X i pierwsze eksperymenty z jego zastosowaniem. 2. Fale elektromagnetyczne. 3. Źródła promieniowania X, promieniowanie
Bardziej szczegółowoNatęż. ężenie refleksu dyfrakcyjnego
Natęż ężenie refleksu dyfrakcyjnego Wskaźnikowanie dyfraktogramów 1. Natężenie refleksu dyfrakcyjnego - od czego i jak zależy 1. Wskaźnikowanie dyfraktogramów -metoda różnic 3. Wygaszenia systematyczne
Bardziej szczegółowoZaawansowane Metody Badań Strukturalnych. Badania strukturalne materiałów Badania właściwości materiałów
Zaawansowane Metody Badań Strukturalnych Badania strukturalne materiałów Badania właściwości materiałów Zaawansowane Metody Badań Strukturalnych 1. Struktura próbki a metoda badań strukturalnych 2. Podział
Bardziej szczegółowoKrystalografia. Dyfrakcja na monokryształach. Analiza dyfraktogramów
Krystalografia Dyfrakcja na monokryształach. Analiza dyfraktogramów Wyznaczanie struktury Pomiar obrazów dyfrakcyjnych Stworzenie modelu niezdeformowanej sieci odwrotnej refleksów Wybór komórki elementarnej
Bardziej szczegółowoPromieniowanie rentgenowskie. Podstawowe pojęcia krystalograficzne
Promieniowanie rentgenowskie Podstawowe pojęcia krystalograficzne Krystalografia - podstawowe pojęcia Komórka elementarna (zasadnicza): najmniejszy, charakterystyczny fragment sieci przestrzennej (lub
Bardziej szczegółowoMonochromatyzacja promieniowania molibdenowej lampy rentgenowskiej
Uniwersytet Śląski Instytut Chemii Zakładu Krystalografii ul. Bankowa 14, pok. 133, 40 006 Katowice tel. (032)359 1503, e-mail: izajen@wp.pl, opracowanie: dr Izabela Jendrzejewska Laboratorium z Krystalografii
Bardziej szczegółowoDyfrakcja promieniowania rentgenowskiego
010-04-11 Dyfrakcja promieniowania rentgenowskiego Podstawowa metoda badania struktury ciał krystalicznych. Dyfrakcja Dyfrakcja: ugięcie fali na przeszkodzie małej w porównaniu z długością fali. Fala ugięta
Bardziej szczegółowoRejestracja dyfraktogramów polikrystalicznych związków. Wskaźnikowanie dyfraktogramów i wyznaczanie typu komórki Bravais go.
Uniwersytet Śląski Instytut Chemii Zakład Krystalografii ul. Bankowa 14, pok. 133, 40006 Katowice tel. 0323591503, email: izajen@wp.pl opracowanie: dr hab. Izabela Jendrzejewska Laboratorium z Krystalografii
Bardziej szczegółowoKatedra Fizyki Ciała Stałego Uniwersytetu Łódzkiego
Katedra Fizyki Ciała Stałego Uniwersytetu Łódzkiego Ćwiczenie 6 Elektronowy mikroskop transmisyjny w badaniach struktury metali metodą elektronograficzną Cel ćwiczenia: Celem ćwiczenia jest zbadanie struktury
Bardziej szczegółowoKrystalografia. Dyfrakcja
Krystalografia Dyfrakcja Podstawowe zagadnienia Rodzaje promieniowania używane w dyfrakcyjnych metodach badań struktur krystalicznych, ich źródła Fizyczne podstawy i warunki dyfrakcji Równania dyfrakcji:
Bardziej szczegółowoRejestracja dyfraktogramów polikrystalicznych związków. Wskaźnikowanie dyfraktogramów i wyznaczanie typu komórki Bravais go.
Uniwersytet Śląski Instytut Chemii Zakład Krystalografii ul. Bankowa 14, pok. 133, 40006 Katowice tel. 0323591503, email: izajen@wp.pl opracowanie: dr hab. Izabela Jendrzejewska Laboratorium z Krystalografii
Bardziej szczegółowoDyfrakcja rentgenowska (XRD) w analizie fazowej Wykład 5
Dyfrakcja rentgenowska () w analizie fazowej Wykład 5 1. Co to jest rentgenogram? Ogólna charakterystyka rentgenogramów substancji amorficznych i krystalicznych. 2. Parametry pomiarowe; jaki jest wpływ
Bardziej szczegółowoS. Baran - Podstawy fizyki materii skondensowanej Dyfrakcja na kryształach. Dyfrakcja na kryształach
S. Baran - Podstawy fizyki materii skondensowanej Dyfrakcja na kryształach Dyfrakcja na kryształach Warunki dyfrakcji źródło: Ch. Kittel Wstęp do fizyki..., rozdz. 2, rys. 6, str. 49 Konstrukcja Ewalda
Bardziej szczegółowoLaboratorium z Krystalografii. 2 godz.
Uniwersytet Śląski - Instytut Chemii Zakład Krystalografii ul. Bankowa 14, pok. 132, 40-006 Katowice tel. 0323591627, e-mail: ewa.malicka@us.edu.pl opracowanie: dr Ewa Malicka Laboratorium z Krystalografii
Bardziej szczegółowoSieć przestrzenna. c r. b r. a r. komórka elementarna. r r
Sieć przestrzenna c r b r r r u a r vb uvw = + + w c v a r komórka elementarna V = r r a ( b c) v Układy krystalograficzne (7) i Sieci Bravais (14) Triclinic (P) a b c, α β γ 90 ο Monoclinic (P) a b c,
Bardziej szczegółowoMetody badań monokryształów metoda Lauego
Uniwersytet Śląski Instytut Chemii Zakład Krystalografii ul. Bankowa 14, pok. 132, 40 006 Katowice, Tel. 0323591627 e-mail: joanna_palion@poczta.fm opracowanie: mgr Joanna Palion Gazda Laboratorium z Krystalografii
Bardziej szczegółowoCiała stałe. Ciała krystaliczne. Ciała amorficzne. Bardzo często mamy do czynienia z ciałami polikrystalicznymi, rzadko monokryształami.
Ciała stałe Ciała krystaliczne Ciała amorficzne Bardzo często mamy do czynienia z ciałami polikrystalicznymi, rzadko monokryształami. r T = Kryształy rosną przez regularne powtarzanie się identycznych
Bardziej szczegółowoBezpośredni opiekunowie laboratorium: Prof. dr hab. Marek Szafrański. Prof. dr hab. Maciej Kozak, dr Marceli Kaczmarski.
Bezpośredni opiekunowie laboratorium: Prof. dr hab. Marek Szafrański Prof. dr hab. Maciej Kozak, dr Marceli Kaczmarski. Ćwiczenia w tym laboratorium polegają na analizie obrazu dyfrakcyjnego promieni rentgenowskich.
Bardziej szczegółowoBUDOWA KRYSTALICZNA CIAŁ STAŁYCH. Stopień uporządkowania struktury wewnętrznej ciał stałych decyduje o ich podziale
BUDOWA KRYSTALICZNA CIAŁ STAŁYCH Stopień uporządkowania struktury wewnętrznej ciał stałych decyduje o ich podziale na: kryształy ciała o okresowym regularnym uporządkowaniu atomów, cząsteczek w całej swojej
Bardziej szczegółowoPołożenia, kierunki, płaszczyzny
Położenia, kierunki, płaszczyzny Dalsze pojęcia Osie krystalograficzne; Parametry komórki elementarnej; Wskaźniki punktów kierunków i płaszczyzn; Osie krystalograficzne Osie krystalograficzne: układ osi
Bardziej szczegółowoLaboratorium z Krystalografii. 2 godz.
Uniwersytet Śląski Instytut Chemii Zakład Krystalografii Laboratorium z Krystalografii 2 godz. Zbadanie zależności intensywności linii Kα i Kβ promieniowania charakterystycznego X emitowanego przez anodę
Bardziej szczegółowoFizyka Ciała Stałego
Wykład III Struktura krystaliczna Fizyka Ciała Stałego Ciała stałe można podzielić na: Krystaliczne, o uporządkowanym ułożeniu atomów lub molekuł tworzącym sieć krystaliczną. Amorficzne, brak uporządkowania,
Bardziej szczegółowoI.4 Promieniowanie rentgenowskie. Efekt Comptona. Otrzymywanie promieniowania X Pochłanianie X przez materię Efekt Comptona
r. akad. 004/005 I.4 Promieniowanie rentgenowskie. Efekt Comptona Otrzymywanie promieniowania X Pochłanianie X przez materię Efekt Comptona Jan Królikowski Fizyka IVBC 1 r. akad. 004/005 0.01 nm=0.1 A
Bardziej szczegółowoDyfrakcja rentgenowska (XRD) w analizie fazowej Wykład 7
Dyfrakcja rentgenowska () w analizie fazowej Wykład 7 1. Opracowanie wyników pomiaru. 2. Korzystanie z kart identyfikacyjnych. 3. Parametry sieciowe a układ krystalograficzny. 4. Wskaźnikowanie rentgenogramów.
Bardziej szczegółowoAby opisać strukturę krystaliczną, konieczne jest określenie jej części składowych: sieci przestrzennej oraz bazy atomowej.
2. Podstawy krystalografii Podczas naszych zajęć skupimy się przede wszystkim na strukturach krystalicznych. Kryształem nazywamy (def. strukturalna) substancję stałą zbudowaną z atomów, jonów lub cząsteczek
Bardziej szczegółowoMetody badań monokryształów metoda Lauego
Uniwersytet Śląski Instytut Chemii Zakład Krystalografii ul. Bankowa 14, pok. 132, 40 006 Katowice, Tel. 0323591627 e-mail: joanna_palion@poczta.fm opracowanie: mgr Joanna Palion Gazda Laboratorium z Krystalografii
Bardziej szczegółowoZaawansowane Metody Badań Materiałów. Badania strukturalne materiałów Badania właściwości materiałów
Zaawansowane Metody Badań Materiałów Badania strukturalne materiałów Badania właściwości materiałów Grafik zajęć wykłady i seminaria Wydział Inżynierii Materiałowej i Ceramiki Katedra Chemii Krzemianów
Bardziej szczegółowoDYFRAKCYJNE METODY BADANIA STRUKTURY CIAŁ STAŁYCH
LABORATORIUM INŻYNIERII MATERIAŁOWEJ W ENERGETYCE Ćwiczenie 7 DYFRAKCYJNE METODY BADANIA STRUKTURY CIAŁ STAŁYCH Instrukcja zawiera: 1. Cel ćwiczenia 2. Wprowadzenie teoretyczne; definicje i wzory 3. Opis
Bardziej szczegółowoSTRUKTURA CIAŁA STAŁEGO
STRUKTURA CIAŁA STAŁEGO Podział ciał stałych Ciała - bezpostaciowe (amorficzne) Szkła, żywice, tłuszcze, niektóre proszki. Nie wykazują żadnych regularnych płaszczyzn ograniczających, nie można w nich
Bardziej szczegółowoRENTGENOWSKA ANALIZA STRUKTURALNA
LABORATORIUM INŻYNIERII MATERIAŁOWEJ W ENERGETYCE Ćwiczenie 5 Instrukcja zawiera: RENTGENOWSKA ANALIZA STRUKTURALNA 1. Cel ćwiczenia 2. Wprowadzenie teoretyczne; definicje i wzory 3. Sposób przygotowania
Bardziej szczegółowoRozwiązanie: Zadanie 2
Podstawowe pojęcia. Definicja kryształu. Sieć przestrzenna i sieć krystaliczna. Osie krystalograficzne i jednostki osiowe. Ściana jednostkowa i stosunek osiowy. Położenie węzłów, prostych i płaszczyzn
Bardziej szczegółowoKrystalografia i krystalochemia Wykład 8 Rentgenografia metodą doświadczalną krystalografii. Wizualizacja struktur krystalicznych.
Krystalografia i krystalochemia Wykład 8 Rentgenografia metodą doświadczalną krystalografii. Wizualizacja struktur krystalicznych. 1. Eksperymentalna weryfikacja teorii sieciowej budowy kryształów. 2.
Bardziej szczegółowoDokładność i precyzja w dyfraktometrii rentgenowskiej
Dokładność i precyzja w dyfraktometrii rentgenowskiej Dokładność i precyzja ± 1σ = Α Ρ Legenda: Z A A S A R : prawdziwa" wartość : wynik pomiaru : dokładność : precyzja = odchylenie standardowe Z A A-Z
Bardziej szczegółowoZaawansowane Metody Badań Materiałów. Badania strukturalne materiałów Badania właściwości materiałów
Zaawansowane Metody Badań Materiałów Badania strukturalne materiałów Badania właściwości materiałów Grafik zajęć wykłady i seminaria Wydział Inżynierii Materiałowej i Ceramiki Katedra Chemii Krzemianów
Bardziej szczegółowoKrystalografia. Wykład VIII
Krystalografia Wykład VIII Plan wykładu Otrzymywanie i właściwow ciwości promieni rentgenowskich Sieć odwrotna Warunki dyfrakcji promieniowania rentgenowskiego 2 NajwaŜniejsze daty w analizie strukturalnej
Bardziej szczegółowoPromieniowanie X. Jak powstaje promieniowanie rentgenowskie Budowa lampy rentgenowskiej Widmo ciągłe i charakterystyczne promieniowania X
Promieniowanie X Jak powstaje promieniowanie rentgenowskie Budowa lampy rentgenowskiej Widmo ciągłe i charakterystyczne promieniowania X Lampa rentgenowska Lampa rentgenowska Promieniowanie rentgenowskie
Bardziej szczegółowoŚwiatło ma podwójną naturę:
Światło ma podwójną naturę: przejawia własności fal i cząstek W. C. Roentgen ( Nobel 1901) Istnieje ciągłe przejście pomiędzy tymi własnościami wzdłuż spektrum fal elektromagnetycznych Dla niskich częstości
Bardziej szczegółowoWyznaczanie struktury krystalicznej i molekularnej wybranego związku koordynacyjnego w oparciu o rentgenowską analizę strukturalną
INSTRUKCJA DO ĆWICZEŃ Wyznaczanie struktury krystalicznej i molekularnej wybranego związku koordynacyjnego w oparciu o rentgenowską analizę strukturalną I. Cel ćwiczenia Wyznaczenie struktury krystalicznej
Bardziej szczegółowoWstęp. Krystalografia geometryczna
Wstęp Przedmiot badań krystalografii. Wprowadzenie do opisu struktury kryształów. Definicja sieci Bravais go i bazy atomowej, komórki prymitywnej i elementarnej. Podstawowe typy komórek elementarnych.
Bardziej szczegółowoUniwersytet Śląski Instytut Chemii Zakład Krystalografii Laboratorium specjalizacyjne
Uniwersytet Śląski Instytut Chemii Zakład Krystalografii Laboratorium specjalizacyjne Opracowanie: dr hab. Izabela Jendrzejewska Specjalność: chemia sądowa Zastosowanie dyfrakcji rentgenowskiej do badania
Bardziej szczegółowoRok akademicki: 2013/2014 Kod: JFT s Punkty ECTS: 4. Poziom studiów: Studia II stopnia Forma i tryb studiów: Stacjonarne
Nazwa modułu: Struktury i symetrie ciała stałego Rok akademicki: 2013/2014 Kod: JFT-2-011-s Punkty ECTS: 4 Wydział: Fizyki i Informatyki Stosowanej Kierunek: Fizyka Techniczna Specjalność: Poziom studiów:
Bardziej szczegółowoPOLITECHNIKA WARSZAWSKA BADANIA STRUKTURY CIAŁ STAŁYCH
POLITECHNIKA WARSZAWSKA INSTYTUT FIZYKI Laboratorium IIp. Bogdan Pałosz Do użytku wewnętrznego BADANIA STRUKTURY CIAŁ STAŁYCH 1. Zasadnicze typy struktury ciał stałych Pierwiastki i związki chemiczne występować
Bardziej szczegółowoOpis efektów kształcenia dla modułu zajęć
Nazwa modułu: Rentgenografia Rok akademicki: 2015/2016 Kod: OWT-1-302-s Punkty ECTS: 2 Wydział: Odlewnictwa Kierunek: Wirtotechnologia Specjalność: - Poziom studiów: Studia I stopnia Forma i tryb studiów:
Bardziej szczegółowoInstrukcja do ćwiczenia. Analiza rentgenostrukturalna materiałów polikrystalicznych
nstrukcja do ćwiczenia naliza rentgenostrukturalna materiałów polikrystalicznych Katedra Chemii Nieorganicznej i Technologii Ciała Stałego Wydział Chemiczny Politechnika Warszawska Warszawa, 2007 Promieniowanie
Bardziej szczegółowoDyfrakcja rentgenowska (XRD) w analizie fazowej Wykład 6 i 7
Dyfrakcja rentgenowska () w analizie fazowej Wykład 6 i 7 1. Wyniki pomiarów rentgenowskich w metodzie DSH. 2. Intensywność refleksów. 3. Reguły wygaszeń. 4. Parametry pomiarowe i przygotowanie próbek
Bardziej szczegółowoPRACOWNIA BIOFIZYKI DLA ZAAWANSOWANYCH
PRACOWNIA BIOFIZYKI DLA ZAAWANSOWANYCH Ćwiczenia laboratoryjne dla studentów III roku kierunku Zastosowania fizyki w biologii i medycynie Biofizyka molekularna KRYSTALOGRAFIA RENTGENOWSKA WYZNACZANIE STRUKTUR
Bardziej szczegółowoUniwersytet Śląski w Katowicach str. 1 Wydział
Uniwersytet Śląski w Katowicach str. 1 Kierunek i poziom studiów: Chemia, drugi Sylabus modułu: Krystalografia (024) Nazwa wariantu modułu (opcjonalnie): _wariantu ( wariantu) 1. Informacje ogólne koordynator
Bardziej szczegółowoAnaliza danych proszkowej dyfrakcji X (XRPD) krótka instrukcja
Analiza danych proszkowej dyfrakcji X (XRPD) krótka instrukcja X-ray powder diffraction (XRPD): krótkie podsumowanie Analiza jakościowa: przygotowanie dyfraktogramu i poszukiwanie moŝliwych faz strukturalnych
Bardziej szczegółowoInstytut Fizyki Doświadczalnej Wydział Matematyki, Fizyki i Informatyki UNIWERSYTET GDAŃSKI
Instytut Fizyki Doświadczalnej Wydział Matematyki, Fizyki i Informatyki UNIWERSYTET GDAŃSKI I. Zagadnienia do opracowania. 1. Otrzymywanie promieni rentgenowskich. 2. Budowa lampy rentgenowskiej. 3. Własności
Bardziej szczegółowoInstytut Fizyki Doświadczalnej Wydział Matematyki, Fizyki i Informatyki UNIWERSYTET GDAŃSKI
Instytut Fizyki Doświadczalnej Wydział Matematyki, Fizyki i Informatyki UNIWERSYTET GDAŃSKI I. Zagadnienia do opracowania. 1. Otrzymywanie promieni rentgenowskich. 2. Budowa lampy rentgenowskiej. 3. Własności
Bardziej szczegółowoNOWA STRONA INTERNETOWA PRZEDMIOTU: http://xrd.ceramika.agh.edu.pl/
Wskaźnikowanie rentgenogramów i wyznaczanie parametrów sieciowych Wykład 8 1. Wskaźnikowanie rentgenogramów. 2. Metoda róŝnic wskaźnikowania rentgenogramów substancji z układu regularnego. 3. Metoda ilorazów
Bardziej szczegółowoDYFRAKTOMETRIA RENTGENOWSKA W BADANIACH NIENISZCZĄCYCH - NOWE NORMY EUROPEJSKIE
Sławomir Mackiewicz IPPT PAN DYFRAKTOMETRIA RENTGENOWSKA W BADANIACH NIENISZCZĄCYCH - NOWE NORMY EUROPEJSKIE 1. Wstęp Dyfraktometria rentgenowska jest techniką badawczą znaną i szeroko stosowaną w dziedzinie
Bardziej szczegółowoSTRUKTURA KRYSTALICZNA
PODSTAWY KRYSTALOGRAFII Struktura krystaliczna Wektory translacji sieci Komórka elementarna Komórka elementarna Wignera-Seitza Jednostkowy element struktury Sieci Bravais go 2D Sieci przestrzenne Bravais
Bardziej szczegółowoKrystalografia. Analiza wyników rentgenowskiej analizy strukturalnej i sposób ich prezentacji
Krystalografia Analiza wyników rentgenowskiej analizy strukturalnej i sposób ich prezentacji Opis geometrii Symetria: kryształu: grupa przestrzenna cząsteczki: grupa punktowa Parametry geometryczne współrzędne
Bardziej szczegółowoDyfrakcja rentgenowska (XRD) w analizie fazowej Wykład 2
Dyfrakcja rentgenowska () w analizie fazowej Wykład 2 1. Historia odkrycie promieniowania X i pierwsze eksperymenty z jego zastosowaniem. 2. Fale elektromagnetyczne. 3. Źródła promieniowania X, promieniowanie
Bardziej szczegółowoKrystalografia i krystalochemia Wykład 15 Repetytorium
Krystalografia i krystalochemia Wykład 15 Repetytorium 1. Czym zajmuje się krystalografia i krystalochemia? 2. Podsumowanie wiadomości z krystalografii geometrycznej. 3. Symbolika Kreutza-Zaremby oraz
Bardziej szczegółowoOpis efektów kształcenia dla modułu zajęć
Nazwa modułu: Krystalografia i rentgenografia Rok akademicki: 2012/2013 Kod: MIM-1-505-s Punkty ECTS: 5 Wydział: Inżynierii Metali i Informatyki Przemysłowej Kierunek: Inżynieria Materiałowa Specjalność:
Bardziej szczegółowoLaboratorium z Krystalografii. 2 godz.
Uniwersytet Śląski Instytut Chemii Zakład Krystalografii Laboratorium z Krystalografii 2 godz. Zbadanie zależności intensywności linii Ka i Kb promieniowania charakterystycznego X emitowanego przez anodę
Bardziej szczegółowoAnaliza struktury kompozytów polimerowych za pomocą dyfraktometru rentgenowskiego (SAXS)
Nanomateriały ĆWICZENIE 4 5 Analiza struktury kompozytów polimerowych za pomocą dyfraktometru rentgenowskiego (SAXS) Charakterystyka właściwości polimerów bezpostaciowych, krystalicznych i kryształów molekularnych.
Bardziej szczegółowoWŁASNOŚCI CIAŁ STAŁYCH I CIECZY
WŁASNOŚCI CIAŁ STAŁYCH I CIECZY Polimery Sieć krystaliczna Napięcie powierzchniowe Dyfuzja 2 BUDOWA CIAŁ STAŁYCH Ciała krystaliczne (kryształy): monokryształy, polikryształy Ciała amorficzne (bezpostaciowe)
Bardziej szczegółowoWyznaczanie stałej sieci metodą Debye a-scherrera-hulla (DSH)
Wyznaczanie stałej sieci metodą Debye a-scherrera-hulla (DSH) Tomasz Früboes Streszczenie Doświadczenie miało na celu wyznaczenie stałych sieci a drucika miedzianego i sproszkowanej substancji o strukturze
Bardziej szczegółowoEfekt Comptona. Efektem Comptona nazywamy zmianę długości fali elektromagnetycznej w wyniku rozpraszania jej na swobodnych elektronach
Efekt Comptona. Efektem Comptona nazywamy zmianę długości fali elektromagnetycznej w wyniku rozpraszania jej na swobodnych elektronach Efekt Comptona. p f Θ foton elektron p f p e 0 p e Zderzenia fotonów
Bardziej szczegółowoSpektroskopia charakterystycznych strat energii elektronów EELS (Electron Energy-Loss Spectroscopy)
Spektroskopia charakterystycznych strat energii elektronów EELS (Electron Energy-Loss Spectroscopy) Oddziaływanie elektronów ze stałą, krystaliczną próbką wstecznie rozproszone elektrony elektrony pierwotne
Bardziej szczegółowoRezonanse magnetyczne oraz wybrane techniki pomiarowe fizyki ciała stałego
Paweł Szroeder Rezonanse magnetyczne oraz wybrane techniki pomiarowe fizyki ciała stałego Wykład IX Rentgenografia strukturalna (XRD) Dyfrakcja sformułowanie Bragga Kryształ traktujemy jako układ równoodległych
Bardziej szczegółowoZaawansowane Metody Badań Strukturalnych. Dyfrakcja rentgenowska cz.2 Mikroskopia Sił Atomowych AFM
Zaawansowane Metody Badań Strukturalnych Dyfrakcja rentgenowska cz.2 Mikroskopia Sił Atomowych AFM Rentgenowska fazowa analiza ilościowa Parametry komórki elementarnej Wielkości krystalitów Budowa mikroskopu
Bardziej szczegółowoDyfrakcja rentgenowska (XRD) w analizie fazowej Wykład 4 i 5 1. Podział metod rentgenowskich ze wzgl
Dyfrakcja rentgenowska () w analizie fazowej Wykład 4 i 5 1. Podział metod rentgenowskich ze względu na badane materiały oraz rodzaj stosowanego promieniowania. 2. Metoda Lauego. 3. Metoda obracanego monokryształu.
Bardziej szczegółowoS. Baran - Podstawy fizyki materii skondensowanej Fonony. Fonony
Fonony Drgania płaszczyzn sieciowych podłużne poprzeczne źródło: Ch. Kittel Wstęp do fizyki..., rozdz. 4, rys. 2, 3, str. 118 Drgania płaszczyzn sieciowych Do opisu drgań sieci krystalicznej wystarczą
Bardziej szczegółowoInstytut Fizyki Doświadczalnej Wydział Matematyki, Fizyki i Informatyki UNIWERSYTET GDAŃSKI
Instytut Fizyki Doświadczalnej Wydział Matematyki, Fizyki i Informatyki UNIWERSYTET GDAŃSKI I. Zagadnienia do opracowania. 1. Otrzymywanie promieni rentgenowskich. 2. Budowa lampy rentgenowskiej. 3. Własności
Bardziej szczegółowoL1 Pomiar naprężeń mikroskopowych w metalach i stopach z wykorzystaniem dyfrakcji rentgenowskiej
FIZYKA METALI - LABORATORIUM 1 Pomiar naprężeo mikroskopowych w metalach i stopach z wykorzystaniem dyfrakcji rentgenowskiej 1. CEL ĆWICZENIA Celem dwiczenia jest identyfikacja naprężeo mikroskopowych
Bardziej szczegółowoCharakterystyka promieniowania molibdenowej lampy rentgenowskiej
Uniwersytet Śląski Instytut Chemii Zakładu Krystalografii ul. Bankowa 14, pok. 133, 40 006 Katowice tel. 0323591503, e-mail: izajen@wp.pl, opracowanie: dr hab. Izabela Jendrzejewska Laboratorium z Krystalografii
Bardziej szczegółowoInstytut Fizyki Doświadczalnej Wydział Matematyki, Fizyki i Informatyki UNIWERSYTET GDAŃSKI
Instytut Fizyki Doświadczalnej Wydział Matematyki, Fizyki i Informatyki UNIWERSYTET GDAŃSKI I. Zagadnienia do opracowania. 1. Otrzymywanie promieni rentgenowskich. 2. Budowa lampy rentgenowskiej. 3. Własności
Bardziej szczegółowoĆwiczenie nr 8 WYZNACZANIE GRUPY DYFRAKCYJNEJ KRYSZTAŁU Z WYKORZYSTANIEM KAMERY CCD
Ćwiczenie nr 8 WYZNACZANIE GRUPY DYFRAKCYJNEJ KRYSZTAŁU Z WYKORZYSTANIEM KAMERY CCD Wprowadzenie Proces analizy rentgenowskiej monokryształów można podzielić na dwa etapy: a) wyznaczenie parametrów komórki
Bardziej szczegółowoWskaźnikowanie elektronogramów
Materiały Pomocnicze do Laboratorium Metod Badania Materiałów Wskaźnikowanie elektronogramów Jan A. Kozubowski B C A' O 000 A Wydział Inżynierii Materiałowej P.W. Warszawa, 2000 2 Spis treści: 1. Podstawy
Bardziej szczegółowoDYFRAKCJA RENTGENOWSKA NA MATERIALE PROSZKOWYM: JAKOŚĆIOWA I ILOŚCIOWA ANALIZA MIESZANIN WIELOFAZOWYCH W CIELE STAŁYM
DYFRAKCJA RENTGENOWSKA NA MATERIALE PROSZKOWYM: JAKOŚĆIOWA I ILOŚCIOWA ANALIZA MIESZANIN WIELOFAZOWYCH W CIELE STAŁYM mgr Grzegorz Cichowicz Laboratorium Zaawansowanej Inżynierii Kryształów im. Jana Czochralskiego
Bardziej szczegółowoWykład II Sieć krystaliczna
Wykład II Sieć krystaliczna Podstawowe definicje Wiele z pośród ciał stałych ma budowę krystaliczną. To znaczy, Ŝe atomy z których się składają ułoŝone są w określonym porządku. Porządek ten daje się stosunkowo
Bardziej szczegółowoFizyka Ciała Stałego. Struktura krystaliczna. Struktura amorficzna
Wykład II Struktura krystaliczna Fizyka Ciała Stałego Ciała stałe można podzielić na: Amorficzne, brak uporządkowania, np. szkła; Krystaliczne, o uporządkowanym ułożeniu atomów lub molekuł tworzącym sieć
Bardziej szczegółowopółprzewodniki Plan na dzisiaj Optyka nanostruktur Struktura krystaliczna Dygresja Sebastian Maćkowski
Plan na dzisiaj Optyka nanostruktur Sebastian Maćkowski Instytut Fizyki Uniwersytet Mikołaja Kopernika Adres poczty elektronicznej: mackowski@fizyka.umk.pl Biuro: 365, telefon: 611-3250 półprzewodniki
Bardziej szczegółowoDr inż. Adam Bunsch RENTGENOWSKA ANALIZA STRUKTURALNA MATERIAŁY DO ĆWICZEŃ CZĘŚĆ II. Tekst w opracowaniu wersja z dnia
Tekst w opracowaniu wersja z dnia 24.07.2018 RENTGENOWSKA ANALIZA STRUKTURALNA MATERIAŁY DO ĆWICZEŃ CZĘŚĆ II Dr inż. Adam Bunsch Pracownia Krystalografii i Rentgenografii Katedra Metaloznawstwa i Metalurgii
Bardziej szczegółowoZaawansowane Metody Badań Strukturalnych. Dyfrakcja rentgenowska cz.2 Mikroskopia Sił Atomowych AFM
Zaawansowane Metody Badań Strukturalnych Dyfrakcja rentgenowska cz.2 Mikroskopia Sił Atomowych AFM Rentgenowska fazowa analiza jakościowa i ilościowa Parametry komórki elementarnej Wielkości krystalitów
Bardziej szczegółowoWykład 5. Komórka elementarna. Sieci Bravais go
Wykład 5 Komórka elementarna Sieci Bravais go Doskonały kryształ składa się z atomów jonów, cząsteczek) uporządkowanych w sieci krystalicznej opisanej przez trzy podstawowe wektory translacji a, b, c,
Bardziej szczegółowoBADANIA STRUKTURY MATERIAŁÓW. Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego
BADANIA STRUKTURY MATERIAŁÓW Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego 1. MAKROSTRUKTURA 2. MIKROSTRUKTURA 3. STRUKTURA KRYSTALICZNA Makrostruktura
Bardziej szczegółowoInterferencja. Dyfrakcja.
Interferencja. Dyfrakcja. Wykład 8 Wrocław University of Technology 05-05-0 Światło jako fala Zasada Huygensa: Wszystkie punkty czoła fali zachowują się jak punktowe źródła elementarnych kulistych fal
Bardziej szczegółowoFALOWE WŁASNOŚCI MIKROCZĄSTEK SPRAWDZANIE HIPOTEZY DE BROGLIE'A
FALOWE WŁASNOŚCI MIKROCZĄSTEK SPRAWDZANIE HIPOTEZY DE BROGLIE'A 1. PODSTAWY FIZYCZNE Podane przez Einsteina w 1905 roku wyjaśnienie efektu fotoelektrycznego jak również zaobserwowane w 1923r. zjawisko
Bardziej szczegółowoG:\AA_Wyklad 2000\FIN\DOC\FRAUN1.doc. "Drgania i fale" ii rok FizykaBC. Dyfrakcja: Skalarna teoria dyfrakcji: ia λ
Dyfrakcja: Skalarna teoria dyfrakcji: U iω t [ e ] ( t) Re U ( ) ;. c t U ( ; t) oraz [ + ] U ( ) k. U ia s ( ) A e ik r ( rs + r ) cos( n, ) cos( n, s ) ds s r. Dyfrakcja Fresnela (a) a dyfrakcja Fraunhofera
Bardziej szczegółowoTopografia rentgenowska wybranych pseudoperowskitów ABCO 4
Topografia rentgenowska wybranych pseudoperowskitów ABCO 4 Agnieszka Malinowska Wydział Fizyki Politechniki Warszawskiej Instytut Technologii Materiałów Elektronicznych w Warszawie Praca pod kierunkiem:
Bardziej szczegółowo12. WYBRANE METODY STOSOWANE W ANALIZACH GEOCHEMICZNYCH. Atomowa spektroskopia absorpcyjna
12. WYBRANE METODY TOOWANE W ANALIZACH EOCHEMICZNYCH Atomowa spektroskopia absorpcyjna (AA - atomic absorption spectroscopy) Atomowa spektroskopia absorpcyjna jest bardzo czułą metodą analityczną umożliwiającą
Bardziej szczegółowoPrawo Bragga. Różnica dróg promieni 1 i 2 wynosi: s = CB + BD: CB = BD = d sinθ
Prawo Bragga Prawo Bragga Prawo Bragga Różnica dróg promieni 1 i 2 wynosi: s = CB + BD: CB = BD = d sinθ d - odległość najbliższych płaszczyzn, w których są ułożone atomy, równoległych do powierzchni kryształu,
Bardziej szczegółowoFizyka Ciała Stałego. Struktura krystaliczna. Struktura amorficzna
Wykład II Struktura krystaliczna Fizyka Ciała Stałego Ciała stałe można podzielić na: Amorficzne, brak uporządkowania, np. szkła; Krystaliczne, o uporządkowanym ułożeniu atomów lub molekuł tworzącym sieć
Bardziej szczegółowoWYZNACZANIE GRUPY DYFRAKCYJNEJ KRYSZTAŁU Z WYKORZYSTANIEM KAMERY CCD. Instrukcja do ćwiczeń
WYZNACZANIE GRUPY DYFRAKCYJNEJ KRYSZTAŁU Z WYKORZYSTANIEM KAMERY CCD Instrukcja do ćwiczeń K. Ślepokura Zakład Krystalografii Wydział Chemii Uniwersytetu Wrocławskiego Wrocław, 2018 Wprowadzenie Proces
Bardziej szczegółowoLaboratorium techniki laserowej. Ćwiczenie 5. Modulator PLZT
Laboratorium techniki laserowej Katedra Optoelektroniki i Systemów Elektronicznych, WETI, Politechnika Gdaoska Gdańsk 006 1.Wstęp Rozwój techniki optoelektronicznej spowodował poszukiwania nowych materiałów
Bardziej szczegółowoWŁASNOŚCI FAL ELEKTROMAGNETYCZNYCH: INTERFERENCJA, DYFRAKCJA, POLARYZACJA
WŁASNOŚCI FAL ELEKTROMAGNETYCZNYCH: INTERFERENCJA, DYFRAKCJA, POLARYZACJA 1. Interferencja fal z dwóch źródeł 2. Fale koherentne i niekoherentne 3. Interferencja fal z wielu źródeł 4. Zasada Huygensa 5.
Bardziej szczegółowo