Materiałoznawstwo optyczne. KRYSZTAŁY Y cz. 2
|
|
- Barbara Kozak
- 7 lat temu
- Przeglądów:
Transkrypt
1 Materiałoznawstwo optyczne KRYSZTAŁY Y cz. 2
2 Komórki elementarne Bravais
3 Grupy translacyjne Bravais Układ Grupa translacyjna regularny P, I, F tetragonalny P, I rombowy P, C, I, F jednoskośny P, C, trójskośny P trygonalny R heksagonalny P
4 Pełna informacja o strukturze: Symbol grupy przestrzennej (czyli wszystkie przekształcenia symetrii) Parametry komórki elementarnej Współrzędne atomów bazy atomowej Bezpośrednia informacja o strukturze Liczba węzłów w komórce elementarnej Promień atomowy lub jonowy Gęstość upakowania Liczba koordynacyjna Wielościan koordynacyjny
5 Prawo Steno Kąty między analogicznymi ścianami, zmierzone na różnych egzemplarzach kryształu tej samej substancji w jednakowych warunkach fizykochemicznych są stałe, niezależne od wielkości kryształu.
6 Prawo równoległości ścian Naturalne ściany zewnętrzne kryształu (jeżeli są wykształcone) są zawsze równoległe do płaszczyzn sieciowych, a krawędzie tych ścian - do prostych sieciowych kryształu.
7 Obrót t wokół osi
8 Właściwa oś symetrii X Działanie właściwej osi symetrii X na element R Projekcja stereograficzna bieguna ściany (hkl) przekształcanego względem właściwej osi symetrii X = 360 o Krotności osi dozwolone w sieci = 180 o = 120 o cos krotność osi o 2 -½ 120 o o 4 ½ 60 o = 90 o = 60 o
9 Centrum inwersji (symetrii)
10 Płaszczyzna symetrii
11 Zamknięte operacje symetrii obrót obrót o 360 o obrót o 180 o obrót o 120 o obrót o 90 o obrót o 60 o odbicie względem płaszczyzny odbicie względem centrum inwersji (inwersja) PROSTE oś jednokrotna oś dwukrotna oś trójkrotna oś czterokrotna oś sześciokrotna płaszczyzna symetrii centrum inwersji obrót z inwersją ZŁOŻONE obrót o 360 o i inwersja obrót o 180 o i inwersja obrót o 120 o i inwersja obrót o 90 o i inwersja obrót o 60 o i inwersja oś jednokrotna inwersyjna centrum inwersji oś dwukrotna inwersyjna płaszczyzna symetrii oś trójkrotna inwersyjna oś czterokrotna inwersyjna oś sześciokrotna inwersyjna
12 Otwarte operacje symetrii translacja obrót śrubowy poślizg
13 Defekty strukturalne: Każde zaburzenie periodycznego uporządkowania atomów w krysztale jest defektem. Może to być zaburzenie: - Położenia atomów - Typu atomów Defekty sieci krystalicznej Typ i rodzaj defektów zależy od materiału, warunków (np. temperatura) i sposobu, w jaki materiał został wytworzony. Znaczenie defektów: Mają ogromny wpływ na właściwości materiału. Bez defektów nie istniałaby elektronika Kryształy były bezbarwne Ceramiki nie pękały
14 Defekty sieci krystalicznej Rodzaje defektów PUNKTOWE Wpływ defektów punktowych: właściwości elektryczne kolor
15 Defekty sieci krystalicznej Rodzaje defektów LINIOWE Dyslokacja śrubowa Dyslokacja krawędziowa
16 Dyfrakcyjne metody badania kryształów Metody Lauego metoda promieni przechodzących metoda promieni zwrotnych Metoda Braggów Metoda obracanego kryształu Metoda proszkowa Debye a, Scherrera i Hulla
17 Dyfrakcja w sieci krystalicznej wiązka pada pod kątem 0 ugina się pod kątem 1 a d b b-a = n d(cos - cos 0 ) = n
18 Dyfrakcyjne metody badania kryształów Warunki wzmocnienia promieniowania: Warunek Braggów; Warunek Lauego; Konstrukcja Ewalda i równoważność obu warunków; Czynniki, od których zależy intensywność refleksów dyfrakcyjnych: Rodzaj atomów; Rozmieszczenie atomów w komórce (czynnik struktury); Temperatura; Kąt dyfrakcji; Wielkość krystalitów.
19 Równania Lauego W trzech wymiarach : h=a(cos 0 - cos 1 )/ k=b(cos 0 - cos 1 )/ l=c(cos 0 - cos 1 )/ Max von Laue ( ) równania -1912, Nobel 1914
20 Wektorowe równania Lauego l k c k k b h k a k 0 k k hkl c b a,, zmiana wektora falowego wektory komórki podstawowej l k h c b a k 2 łącznie
21 Równanie Bragga (1913 r.) Odbicie od płaszczyzn sieciowych 2 a = n, a = d hkl sin n = 2 d hkl sin d a
22 Sieć odwrotna C B A,, - wektory bazowe sieci odwrotnej 2 c C b B a A a C b C c B a B c A b A c b a,, - wektory bazowe sieci rzeczywistej b a c b a C a c b a c B c b a c b A lc kb ha G hkl lc kb ha P hkl
23 Kula Ewalda związek sieci odwrotnej z równaniem Bragga - konstrukcja Ewalda k 0 k hkl Węzeł hkl sieci odwrotnej k hkl G hkl wiązka padająca kryształ 0 sin G hkl k 0 k 0 2 Węzeł 000 sieci odwrotnej
24 Równanie Lauego a równania Bragga G hkl ha kb lc równanie Lauego k a b c 2 h k l G hkl d hkl 2 k Ghkl khkl k0 2 2 G hkl 2 2k0 G hkl Ghkl sin G 2d hkl G hkl 2sin G 2 2 hkl hkl sin
25
26
27 Dyfraktogram Lauego
28
29 Metoda obracanego kryształu Kaseta cylindryczna z błoną rentgenowską Kryształ jest obracany lub oscyluje w zakresie kątów 2 20 wokół osi Z Kryształ jest zorientowany osią krystalograficzną w kierunku Z warstwice 2 y R
30
31 Interpretacja rentgenogramu Powstawanie warstwic jest analogią do powstawania stożków przy dyfrakcji od prostej sieciowej warstwica zerowa zawiera refleksy hk0, warstwica pierwsza hk1 itd. obracanie kryształu umożliwia ustawienie płaszczyzn w położenie dyfrakcyjne odległość warstwic wyznacza okres identyczności w kierunku osi obrotu Z CECHA METODY : W zasadzie można by wyznaczyć wszystkie stałe sieciowe a, b, c odpowiednio mocując kryształ w trzech położeniach
32 Metoda Braggów Stosowanie promieniowania monochromatycznego i pomiar goniometrem kątów odbłysku, otrzymanych na znanych ścianach kryształu. Wymaga użycia dużych kryształów o dobrze ukształtowanych powierzchniach Metoda proszkowa Debye a, Scherrera i Hulla Wiązka promieni monochromatycznych pada na drobno sproszkowaną substancję krystaliczną, umieszczoną najczęściej w cienkościennej rurce kapilarnej. Preparat znajduje się w środku cylindrycznej kamery, wyłożonej od wewnatrz ściśle przylegającą błoną fotograficzną. Każdy kryształek ma inne położenie względem kierunku promienia pierwotnego. Z powodu przypadkowej orientacji kryształków ugięcie promieni następuje w dowolnych płaszczyznach, wobec czego, promienie ugiete od danej rodziny płaszczyzn sieciowych będą dawały obraz w postaci linii debajogramu.
33 Właściwości optyczne kryształów Współczynnik absorpcji, załamania, odbicia. Anizotropia współczynnika załamania. Chiralność Dichroizm Polaryzacja światła
34 Właściwości optyczne kryształów - Dwójłomnością nazywamy zjawisko rozproszenia świtała na dwa promienie światła spolaryzowanego liniowo, występujące w ciałach anizotropowych. - Szkło (wolne od naprężeń) ośrodek izotropowy, zjawisko dwójłomności może się pojawić w szkłach w wyniku przyłożenia nieizotropowych obciążeń mechanicznych, przyłożenia nieizotropowych obciążeo termicznych, poprzez wytworzenie niejednorodności chemicznej, poprzez wytworzenie niejednorodności innych rodzajów, np. radiacyjnej
35 Właściwości optyczne kryształów - ośrodki jedno- (n x =n y n z ) lub dwuosiowe (n x n y n z n x ) Układ Trójskośny Jednoskośny Rombowy Tetragonalny Trygonalny Heksagonalny Regularny Typ kryształu Dwuosiowy Jednoosiowy Niedwójłomny - oś optyczna : w tym kierunku rozchodzą się dwie takie same fale (z tą samą prędkością); w ośrodkach jednoosiowych - jedna taka oś, w dwuosiowych dwie
36 Właściwości optyczne kryształów - w innych kierunkach : dwie fale zwyczajna i nadzwyczajna rozchodzą się z różnymi prędkościami (mają różne wsp.zał. n o i n e ) - padająca na kryształ fala świetlna rozdziela się w nim na dwie, zależy to od stanu polaryzacji fali padającej, tzn. ile będzie fali zwyczajnej a ile nadzwyczajnej - po przejściu przez kryształ fale zwyczajna i nadzwyczajna składają się, ale ponieważ wewnątrz kryształu nabyły różnych faz, końcowy stan polaryzacji różni się od wejściowego - różnica dróg optycznych R=(n o -n e )*d
37 Właściwości kryształów dwójłomnych - obserwacja w świetle spolaryzowanym (kryształ między skrzyżowanymi polaryzatorami) - efekty interferencyjne (kolory) - inne ciekawe zjawiska
38 Polaryskop Polaryzator P Obiekt badany Analizator A Wzór polaryskopowy (polaryskop skrzyżowany) m I out R I0TM sin f sin m m N m I out R 0 m
39
40 Rozpoznawanie azymutu próbki Dodatkowa Płytka fazowa o znanej różnicy faz R p oraz znanym kącie azymutu Azymuty zgodne: podwyższenie barwy R ' R R p Azymuty przeciwne: obniżenie barwy R ' R R p
41 Figury konoskopowe
42 Rozkłady izochrom
43 Kryształy jednoosiowe Kalcyt Kwarc Kwarc
44 Kryształy dwuosiowe Muskowit Danburyt Topaz
45 Właściwości kryształów dwójłomnych CHIRALNOŚĆ - geometryczna cecha sztywnych układów - właściwość cząsteczki związku chem., kryształu polegająca na tym, iż obiekt i jego odbicie w płaskim zwierciadle nie pokrywają się ze sobą mają się do siebie jak prawa ręka w stosunku do lewej; cząsteczki chiralne wykazują aktywność optyczną PLEOCHROIZM - W kryształach dwójłomnych współczynnik absorpcji promienia zwyczajnego i nadzwyczajnego może być różny (współczynnik absorpcji zależy od polaryzacji). - Dichroizm liniowy i kołowy, trichroizm.
46 Dwójłomność wymuszona Efekt piezooptyczny - zmiana dwójłomności wywołana naprężeniami naprężenia główne i ścinające kl F s k l n n 3 2 c p 1 2
47 Dwójłomność wymuszona Efekt elastooptyczny zmiana dwójłomności wywołana odkształceniami prawo Hooke a i s, i, j 1,2,... 6 ij j, xx, yy zz xy, yz, xz n n 3 p p 2 c e 1 2
48 Dwójłomność wymuszona ,, 2,,,,,, 0,, 3, 2,,, 0, E c E b E a n n E c E b E a n n kryształy bez środka symetrii efekt Pockelsa E a n n E a n n,,,, 0,,,, 0, kryształ ze środkiem symetrii lub ciało izotropowe efekt Kerra 2,,,, 0,, 2,, 0, E b n n E b n n Efekty elektrooptyczne
49 Dwójłomność wymuszona Komórki elektrooptyczne komórka Pockelsa n r 63 3 n o E z komórka Kerra n 3 2 R R n E z
50 Dwójłomność wymuszona Efekt Cottona-Mouttona - światło biegnie prostopadle do linii sił pola magnetycznego - indukowana dwójłomność jest proporcjonalna do kwadratu natężenia pola magnetycznego n CM CH 2
51 Dwójłomność wymuszona Efekt Faradaya - światło biegnie wzdłuż linii sił pola magnetycznego - dwójłomność jest proporcjonalna do natężenia pola magnetycznego V ' H n F - zjawisko zmiany azymutu stanu polaryzacji światła (zwane niepoprawnie skręceniem płaszczyzny polaryzacji światła) - stała Verdeta a kąt skręcenia: VdH
52 Efekt piezoelektryczny prosty Prosty efekt piezoelektryczny - powstawanie polaryzacji elektrycznej w ciele stałym pod wpływem przyłożonego naprężenia (odkrycie w 1880r. przez Piotra i Jakuba Curie)
53 Efekt piezoelektryczny odwrotny Odwrotny efekt piezoelektryczny - mechaniczna deformacja ciała stałego pod wpływem przyłożonego pola elektrycznego (eksperymentalne potwierdzenie rok 1881)
54 Efekt piezoelektryczny Materiały piezoelektryczne kwarc - dwutlenek krzemu SiO2 - syntetyczny i naturalny (odmiana α) w postaci kryształów niobian litu LiNbO3 w postaci kryształów ceramika PZT stałe roztwory cyrkonianu ołowiu (PbZrO3) i tytanianu ołowiu (PbTiO3) struktura polikrystaliczna
55 Efekt piezoelektryczny - zastosowania - czujniki pola elektrycznego - czujniki naprężeń - generatory i detektory fal akustycznych - diagnostyka ultradźwiękowa - mikroskopia ultradźwiękowa - defektoskopia - zapalarki do gazu i zapalniczek - wkładki gramofonowe - sygnalizatory akustyczne, głośniki - wtryski paliwa w systemie common-rail - brajlowski monitor komputerowy
56 Efekt piroelektryczny - generowanie siły elektromotorycznej pod wpływem temperatury (1842r. James Joule obserwacje niklu) - zjawisko odwrotne: efekt elektrokaloryczny - wszystkie ferroelektryki są piroelektrykami i piezoelektrykami, lecz na odwrót nie musi tak być - zastosowania: głównie w czujnikach promieniowania podczerwonego
57 Efekt magnetostrykcyjny - powstawanie odkształceń pod wpływem pola magnetycznego - zjawisko odwrotne: efekt Villariego (efekt magnetomechaniczny) - zastosowanie: a) czujniki drgań i przemieszczeń b) sonary, czujniki sejsmiczne c) mycie ultradźwiękowe d) czujniki pola magnetycznego
Właściwości optyczne kryształów
Właściwości optyczne kryształów -ośrodki jedno- (n x =n y n z ) lub dwuosiowe (n x n y n z n x ) - oś optyczna : w tym kierunku rozchodzą się dwie takie same fale (z tą samą prędkością); w ośrodkach jednoosiowych
Bardziej szczegółowoKrystalografia. Dyfrakcja na monokryształach. Analiza dyfraktogramów
Krystalografia Dyfrakcja na monokryształach. Analiza dyfraktogramów Wyznaczanie struktury Pomiar obrazów dyfrakcyjnych Stworzenie modelu niezdeformowanej sieci odwrotnej refleksów Wybór komórki elementarnej
Bardziej szczegółowoFala EM w izotropowym ośrodku absorbującym
Fala EM w izotropowym ośrodku absorbującym Fala EM powoduje generację zmienne pole elektryczne E Zmienne co do kierunku i natężenia, Pole E Nie wywołuje w ośrodku prądu elektrycznego Powoduje ruch elektronów
Bardziej szczegółowoPolaryzatory/analizatory
Polaryzatory/analizatory Polaryzator eliptyczny element układu optycznego lub układ optyczny, za którym światło jest spolaryzowane eliptycznie i o parametrach ściśle określonych przez polaryzator zazwyczaj
Bardziej szczegółowoUkład regularny. Układ regularny. Możliwe elementy symetrii: Możliwe elementy symetrii: 3 osie 3- krotne. m płaszczyzny przekątne.
Układ regularny Możliwe elementy symetrii: 3 osie 3- krotne m płaszczyzny równoległe do ścian m płaszczyzny przekątne 4 osie 4- krotne 2 osie 2- krotne Układ regularny Możliwe elementy symetrii: 3 osie
Bardziej szczegółowoLaboratorium techniki laserowej. Ćwiczenie 5. Modulator PLZT
Laboratorium techniki laserowej Katedra Optoelektroniki i Systemów Elektronicznych, WETI, Politechnika Gdaoska Gdańsk 006 1.Wstęp Rozwój techniki optoelektronicznej spowodował poszukiwania nowych materiałów
Bardziej szczegółowoRentgenografia - teorie dyfrakcji
Rentgenografia - teorie dyfrakcji widmo promieniowania rentgenowskiego Widmo emisyjne promieniowania rentgenowskiego: -promieniowanie charakterystyczne -promieniowanie ciągłe (białe) Efekt naświetlenia
Bardziej szczegółowoKrystalografia. Dyfrakcja
Krystalografia Dyfrakcja Podstawowe zagadnienia Rodzaje promieniowania używane w dyfrakcyjnych metodach badań struktur krystalicznych, ich źródła Fizyczne podstawy i warunki dyfrakcji Równania dyfrakcji:
Bardziej szczegółowoĆwiczenie nr 6. Zjawiska elektrooptyczne Sprawdzanie prawa Malusa, badanie komórki Pockelsa i Kerra
Ćwiczenie nr 6. Zjawiska elektrooptyczne Sprawdzanie prawa Malusa badanie komórki Pockelsa i Kerra Opracowanie: Ryszard Poprawski Katedra Fizyki Doświadczalnej Politechnika Wrocławska Wstęp Załamanie światła
Bardziej szczegółowoKrystalografia. Symetria a właściwości fizyczne kryształów
Krystalografia Symetria a właściwości fizyczne kryształów Właściwości fizyczne kryształów a ich symetria Grupy graniczne Piroelektryczność Piezoelektryczność Właściwości optyczne kryształów Właściwości
Bardziej szczegółowoMetody badań monokryształów metoda Lauego
Uniwersytet Śląski Instytut Chemii Zakład Krystalografii ul. Bankowa 14, pok. 132, 40 006 Katowice, Tel. 0323591627 e-mail: joanna_palion@poczta.fm opracowanie: mgr Joanna Palion Gazda Laboratorium z Krystalografii
Bardziej szczegółowoElementy symetrii makroskopowej.
Uniwersytet Śląski Instytut Chemii Zakład Krystalografii Laboratorium z Krystalografii Elementy symetrii makroskopowej. 2 godz. Cel ćwiczenia: zapoznanie się z działaniem elementów symetrii makroskopowej
Bardziej szczegółowoNatęż. ężenie refleksu dyfrakcyjnego
Natęż ężenie refleksu dyfrakcyjnego Wskaźnikowanie dyfraktogramów 1. Natężenie refleksu dyfrakcyjnego - od czego i jak zależy 1. Wskaźnikowanie dyfraktogramów -metoda różnic 3. Wygaszenia systematyczne
Bardziej szczegółowoKrystalografia i krystalochemia Wykład 15 Repetytorium
Krystalografia i krystalochemia Wykład 15 Repetytorium 1. Czym zajmuje się krystalografia i krystalochemia? 2. Podsumowanie wiadomości z krystalografii geometrycznej. 3. Symbolika Kreutza-Zaremby oraz
Bardziej szczegółowoMetody badań monokryształów metoda Lauego
Uniwersytet Śląski Instytut Chemii Zakład Krystalografii ul. Bankowa 14, pok. 132, 40 006 Katowice, Tel. 0323591627 e-mail: joanna_palion@poczta.fm opracowanie: mgr Joanna Palion Gazda Laboratorium z Krystalografii
Bardziej szczegółowoBADANIE WYMUSZONEJ AKTYWNOŚCI OPTYCZNEJ
ĆWICZENIE 89 BADANIE WYMUSZONEJ AKTYWNOŚCI OPTYCZNEJ Cel ćwiczenia: Zapoznanie się ze zjawiskiem Faradaya. Wyznaczenie stałej Verdeta dla danej próbki. Wyznaczenie wartości ładunku właściwego elektronu
Bardziej szczegółowoPOLARYZACJA ŚWIATŁA. Uporządkowanie kierunku drgań pola elektrycznego E w poprzecznej fali elektromagnetycznej (E B). światło niespolaryzowane
FALE ELEKTROMAGNETYCZNE Polaryzacja światła Sposoby polaryzacji Dwójłomność Skręcanie płaszczyzny polaryzacji Zastosowania praktyczne polaryzacji Efekty fotoelastyczne Stereoskopia Holografia Politechnika
Bardziej szczegółowoĆwiczenie 363. Polaryzacja światła sprawdzanie prawa Malusa. Początkowa wartość kąta 0..
Nazwisko... Data... Nr na liście... Imię... Wydział... Dzień tyg.... Godzina... Polaryzacja światła sprawdzanie prawa Malusa Początkowa wartość kąta 0.. 1 25 49 2 26 50 3 27 51 4 28 52 5 29 53 6 30 54
Bardziej szczegółowoSTRUKTURA CIAŁA STAŁEGO
STRUKTURA CIAŁA STAŁEGO Podział ciał stałych Ciała - bezpostaciowe (amorficzne) Szkła, żywice, tłuszcze, niektóre proszki. Nie wykazują żadnych regularnych płaszczyzn ograniczających, nie można w nich
Bardziej szczegółowoWykład 5. Komórka elementarna. Sieci Bravais go
Wykład 5 Komórka elementarna Sieci Bravais go Doskonały kryształ składa się z atomów jonów, cząsteczek) uporządkowanych w sieci krystalicznej opisanej przez trzy podstawowe wektory translacji a, b, c,
Bardziej szczegółowoBUDOWA KRYSTALICZNA CIAŁ STAŁYCH. Stopień uporządkowania struktury wewnętrznej ciał stałych decyduje o ich podziale
BUDOWA KRYSTALICZNA CIAŁ STAŁYCH Stopień uporządkowania struktury wewnętrznej ciał stałych decyduje o ich podziale na: kryształy ciała o okresowym regularnym uporządkowaniu atomów, cząsteczek w całej swojej
Bardziej szczegółowoMetody Optyczne w Technice. Wykład 8 Polarymetria
Metody Optyczne w Technice Wykład 8 Polarymetria Fala elektromagnetyczna div D div B 0 D E rot rot E H B t D t J B J H E Fala elektromagnetyczna 2 2 E H 2 t 2 E 2 t H 2 v n 1 0 0 c n 0 Fala elektromagnetyczna
Bardziej szczegółowoRozwiązanie: Zadanie 2
Podstawowe pojęcia. Definicja kryształu. Sieć przestrzenna i sieć krystaliczna. Osie krystalograficzne i jednostki osiowe. Ściana jednostkowa i stosunek osiowy. Położenie węzłów, prostych i płaszczyzn
Bardziej szczegółowoAby opisać strukturę krystaliczną, konieczne jest określenie jej części składowych: sieci przestrzennej oraz bazy atomowej.
2. Podstawy krystalografii Podczas naszych zajęć skupimy się przede wszystkim na strukturach krystalicznych. Kryształem nazywamy (def. strukturalna) substancję stałą zbudowaną z atomów, jonów lub cząsteczek
Bardziej szczegółowoPIEZOELEKTRYKI I PIROELEKTRYKI. Krajewski Krzysztof
PIEZOELEKTRYKI I PIROELEKTRYKI Krajewski Krzysztof Zjawisko piezoelektryczne Zjawisko zachodzące w niektórych materiałach krystalicznych, polegające na powstawaniu ładunku elektrycznego na powierzchniach
Bardziej szczegółowoĆwiczenie 373. Wyznaczanie stężenia roztworu cukru za pomocą polarymetru. Długość rurki, l [dm] Zdolność skręcająca a. Stężenie roztworu II d.
Nazwisko Data Nr na liście Imię Wydział Dzień tyg Godzina Ćwiczenie 373 Wyznaczanie stężenia roztworu cukru za pomocą polarymetru Stężenie roztworu I d [g/dm 3 ] Rodzaj cieczy Położenie analizatora [w
Bardziej szczegółowoPodstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 18, Radosław Chrapkiewicz, Filip Ozimek
Podstawy Fizyki IV Optyka z elementami fizyki współczesnej wykład 18, 23.04.2012 wykład: pokazy: ćwiczenia: Czesław Radzewicz Radosław Chrapkiewicz, Filip Ozimek Ernest Grodner Wykład 17 - przypomnienie
Bardziej szczegółowoLASERY I ICH ZASTOSOWANIE
LASERY I ICH ZASTOSOWANIE Laboratorium Instrukcja do ćwiczenia nr 3 Temat: Efekt magnetooptyczny 5.1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z metodą modulowania zmiany polaryzacji światła oraz
Bardziej szczegółowoWykład 1. Symetria Budowy Kryształów
Wykład Symetria Budowy Kryształów Ciała krystaliczne i amorficzne Każda substancja ciekła (z wyjątkiem helu) podczas oziębiania traci swoje własności ciekłe i przechodzi w ciało stałe. Jednakże proces
Bardziej szczegółowoMATERIA. = m i liczby całkowite. ciała stałe. - kryształy - ciała bezpostaciowe (amorficzne) - ciecze KRYSZTAŁY. Periodyczność
MATERIA ciała stałe - kryształy - ciała bezpostaciowe (amorficzne) - ciecze - gazy KRYSZTAŁY Periodyczność Kryształ (idealny) struktura zbudowana z powtarzających się w przestrzeni periodycznie identycznych
Bardziej szczegółowoAgata Saternus piątek Dwójłomność kryształów, dwójłomność światłowodów, dwójłomność próżni (z ang. vacuum birefringence)
Agata Saternus piątek 9.07.011 Dwójłomność kryształów, dwójłomność światłowodów, dwójłomność próżni (z ang. vacuum birefringence) Dwójłomność odkrył Rasmus Bartholin w 1669 roku, dwójłomność kryształu
Bardziej szczegółowoSTRUKTURA KRYSTALICZNA
PODSTAWY KRYSTALOGRAFII Struktura krystaliczna Wektory translacji sieci Komórka elementarna Komórka elementarna Wignera-Seitza Jednostkowy element struktury Sieci Bravais go 2D Sieci przestrzenne Bravais
Bardziej szczegółowoRejestracja dyfraktogramów polikrystalicznych związków. Wskaźnikowanie dyfraktogramów i wyznaczanie typu komórki Bravais go.
Uniwersytet Śląski Instytut Chemii Zakład Krystalografii ul. Bankowa 14, pok. 133, 40006 Katowice tel. 0323591503, email: izajen@wp.pl opracowanie: dr hab. Izabela Jendrzejewska Laboratorium z Krystalografii
Bardziej szczegółowoWykład 17: Optyka falowa cz.2.
Wykład 17: Optyka falowa cz.2. Dr inż. Zbigniew Szklarski Katedra Elektroniki, paw. C-1, pok.321 szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ 1 Interferencja w cienkich warstwach Załamanie
Bardziej szczegółowoPodstawy Fizyki III Optyka z elementami fizyki współczesnej. wykład 18, Mateusz Winkowski, Łukasz Zinkiewicz
Podstawy Fizyki III Optyka z elementami fizyki współczesnej wykład 18, 07.12.2017 wykład: pokazy: ćwiczenia: Czesław Radzewicz Mateusz Winkowski, Łukasz Zinkiewicz Radosław Łapkiewicz Wykład 17 - przypomnienie
Bardziej szczegółowoKrystalochemia białek 2016/2017
Zestaw zadań 4. Grupy punktowe. Składanie elementów symetrii. Translacyjne elementy symetrii grupy punktowe, składanie elementów symetrii, translacyjne elementy symetrii: osie śrubowe, płaszczyzny ślizgowe
Bardziej szczegółowoWłaściwości kryształów
Właściwości kryształów Związek pomiędzy właściwościami, strukturą, defektami struktury i wiązaniami chemicznymi Skład i struktura Skład materiału wpływa na wszystko, ale głównie na: właściwości fizyczne
Bardziej szczegółowoPOMIAR NATURALNEJ AKTYWNOŚCI OPTYCZNEJ
ĆWICZENIE 88 POMIAR NATURALNEJ AKTYWNOŚCI OPTYCZNEJ Cel ćwiczenia: Badanie zjawiska skręcenia płaszczyzny polaryzacji światła w cieczach i kryształach optycznie czynnych. Zagadnienia: polaryzacja światła,
Bardziej szczegółowoPodstawy fizyki wykład 8
Podstawy fizyki wykład 8 Dr Piotr Sitarek Katedra Fizyki Doświadczalnej, W11, PWr Optyka geometryczna Polaryzacja Odbicie zwierciadła Załamanie soczewki Optyka falowa Interferencja Dyfrakcja światła D.
Bardziej szczegółowoPL B1. POLITECHNIKA WROCŁAWSKA, Wrocław, PL BUP 02/08. PIOTR KURZYNOWSKI, Wrocław, PL JAN MASAJADA, Nadolice Wielkie, PL
RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 211200 (13) B1 Urząd Patentowy Rzeczypospolitej Polskiej (21) Numer zgłoszenia: 380223 (22) Data zgłoszenia: 17.07.2006 (51) Int.Cl. G01N 21/23 (2006.01)
Bardziej szczegółowoWłaściwości optyczne kryształów
Właściwości optyczne kryształów Właściwości optyczne i dielektryczne Właściwości optyczne i dielektryczne są ściśle ze sobą związane: n = ε χ = ε 1 Gdzie n jest współczynnikiem załamania światła, ε przenikalnością
Bardziej szczegółowoWłaściwości optyczne kryształów
Właściwości optyczne kryształów Światło Kolor Długość fali w próżni (nm) 660 610 580 550 470 410 1 Właściwości optyczne i dielektryczne Właściwości optyczne i dielektryczne są ściśle ze sobą związane:
Bardziej szczegółowoGrupy przestrzenne i ich symbolika
Grupy przestrzenne i ich symbolika Po co mi (chemikowi) znajomość symboli grup przestrzennych? Informacje zawarte w symbolu układ krystalograficzny obecność operacji symetrii punktowej (spektroskopia)
Bardziej szczegółowoS 2, C 2h,D 2h,D 3d,D 4h, D 6h, O h
Są tylko 32 grupy punktowe, które spełniają ten warunek, Można je pogrupować w 7 typów grup (spośród omówionych 12- tu), które spełniają powyższe własności S 2, C 2h,D 2h,D 3d,D 4h, D 6h, O h nazywają
Bardziej szczegółowoDyfrakcja. Dyfrakcja to uginanie światła (albo innych fal) przez drobne obiekty (rozmiar porównywalny z długością fali) do obszaru cienia
Dyfrakcja 1 Dyfrakcja Dyfrakcja to uginanie światła (albo innych fal) przez drobne obiekty (rozmiar porównywalny z długością fali) do obszaru cienia uginanie na szczelinie uginanie na krawędziach przedmiotów
Bardziej szczegółowoElementy teorii powierzchni metali
Prof. dr hab. Adam Kiejna Elementy teorii powierzchni metali Wykład dla studentów fizyki Rok akademicki 2017/18 (30 godz.) Wykład 1 Plan wykładu Struktura periodyczna kryształów, sieć odwrotna Struktura
Bardziej szczegółowoLASERY I ICH ZASTOSOWANIE W MEDYCYNIE
LASERY I ICH ZASTOSOWANIE W MEDYCYNIE Laboratorium Instrukcja do ćwiczenia nr 4 Temat: Modulacja światła laserowego: efekt magnetooptyczny 5.1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z metodą
Bardziej szczegółowo10. Analiza dyfraktogramów proszkowych
10. Analiza dyfraktogramów proszkowych Celem ćwiczenia jest zapoznanie się zasadą analizy dyfraktogramów uzyskiwanych z próbek polikrystalicznych (proszków). Zwykle dyfraktometry wyposażone są w oprogramowanie
Bardziej szczegółowoPodstawy Fizyki III Optyka z elementami fizyki współczesnej. wykład 19, Mateusz Winkowski, Łukasz Zinkiewicz
Podstawy Fizyki III Optyka z elementami fizyki współczesnej wykład 9, 08.2.207 wykład: pokazy: ćwiczenia: Czesław Radzewicz Mateusz Winkowski, Łukasz Zinkiewicz Radosław Łapkiewicz Wykład 8 - przypomnienie
Bardziej szczegółowoFizyka elektryczność i magnetyzm
Fizyka elektryczność i magnetyzm W5 5. Wybrane zagadnienia z optyki 5.1. Światło jako część widma fal elektromagnetycznych. Fale elektromagnetyczne, które współczesny człowiek potrafi wytwarzać, i wykorzystywać
Bardziej szczegółowoLaboratorium z Krystalografii. 2 godz.
Uniwersytet Śląski - Instytut Chemii Zakład Krystalografii ul. Bankowa 14, pok. 132, 40-006 Katowice tel. 0323591627, e-mail: ewa.malicka@us.edu.pl opracowanie: dr Ewa Malicka Laboratorium z Krystalografii
Bardziej szczegółowoPodstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 19, Radosław Chrapkiewicz, Filip Ozimek
Podstawy Fizyki IV Optyka z elementami fizyki współczesnej wykład 19, 27.04.2012 wykład: pokazy: ćwiczenia: Czesław Radzewicz Radosław Chrapkiewicz, Filip Ozimek Ernest Grodner Wykład 18 - przypomnienie
Bardziej szczegółowoPromieniowanie rentgenowskie. Podstawowe pojęcia krystalograficzne
Promieniowanie rentgenowskie Podstawowe pojęcia krystalograficzne Krystalografia - podstawowe pojęcia Komórka elementarna (zasadnicza): najmniejszy, charakterystyczny fragment sieci przestrzennej (lub
Bardziej szczegółowoSTRUKTURA MATERIAŁÓW
STRUKTURA MATERIAŁÓW ELEMENTY STRUKTURY MATERIAŁÓW 1. Wiązania miedzy atomami 2. Układ atomów w przestrzeni 3. Mikrostruktura 4. Makrostruktura 1. WIĄZANIA MIĘDZY ATOMAMI Siły oddziaływania między atomami
Bardziej szczegółowoMonochromatyzacja promieniowania molibdenowej lampy rentgenowskiej
Uniwersytet Śląski Instytut Chemii Zakładu Krystalografii ul. Bankowa 14, pok. 133, 40 006 Katowice tel. (032)359 1503, e-mail: izajen@wp.pl, opracowanie: dr Izabela Jendrzejewska Laboratorium z Krystalografii
Bardziej szczegółowoWYDZIAŁ.. LABORATORIUM FIZYCZNE
WSEiZ W WARSZAWIE WYDZIAŁ.. LABORATORIUM FIZYCZNE Ćw. nr 8 BADANIE ŚWIATŁA SPOLARYZOWANEGO: SPRAWDZANIE PRAWA MALUSA Warszawa 29 1. Wstęp Wiemy, że fale świetlne stanowią niewielki wycinek widma fal elektromagnetycznych
Bardziej szczegółowoCiała stałe. Ciała krystaliczne. Ciała amorficzne. Bardzo często mamy do czynienia z ciałami polikrystalicznymi, rzadko monokryształami.
Ciała stałe Ciała krystaliczne Ciała amorficzne Bardzo często mamy do czynienia z ciałami polikrystalicznymi, rzadko monokryształami. r T = Kryształy rosną przez regularne powtarzanie się identycznych
Bardziej szczegółowoMetoda DSH. Dyfraktometria rentgenowska. 2. Dyfraktometr rentgenowski: - budowa anie - zastosowanie
Metoda DSH. Dyfraktometria rentgenowska 1. Teoria Braggów-Wulfa 2. Dyfraktometr rentgenowski: - budowa - działanie anie - zastosowanie Promieniowanie elektromagnetyczne radiowe mikrofale IR UV/VIS X γ
Bardziej szczegółowoSTRUKTURA IDEALNYCH KRYSZTAŁÓW
BUDOWA WEWNĘTRZNA MATERIAŁÓW METALICZNYCH Zakres tematyczny y 1 STRUKTURA IDEALNYCH KRYSZTAŁÓW 2 1 Sieć przestrzenna kryształu TRANSLACJA WĘZŁA TRANSLACJA PROSTEJ SIECIOWEJ TRANSLACJA PŁASZCZYZNY SIECIOWEJ
Bardziej szczegółowoS. Baran - Podstawy fizyki materii skondensowanej Dyfrakcja na kryształach. Dyfrakcja na kryształach
S. Baran - Podstawy fizyki materii skondensowanej Dyfrakcja na kryształach Dyfrakcja na kryształach Warunki dyfrakcji źródło: Ch. Kittel Wstęp do fizyki..., rozdz. 2, rys. 6, str. 49 Konstrukcja Ewalda
Bardziej szczegółowo3. Operacje symetrii, macierze operacji symetrii. Grupy punktowe. Przypisywanie grupy punktowej dla zadanych obiektów
3. Operacje symetrii, macierze operacji symetrii. Grupy punktowe. Przypisywanie grupy punktowej dla zadanych obiektów Opracowanie: dr hab. inż. Jarosław Chojnacki, Politechnika Gdańska, Gdańsk 207 Każda
Bardziej szczegółowoWłaściwości optyczne materiału opisuje się za pomocą:
Właściwości optyczne materiału opisuje się za pomocą: Współczynnika absorpcji, załamania i odbicia. Wielkości ś i te są od siebie wzajemnie zależne. ż Są również związane z właściwościami dielektrycznymi
Bardziej szczegółowoUniwersytet Śląski Instytut Chemii Zakład Krystalografii. Laboratorium z Krystalografii. 2 godz. Komórki Bravais go
Uniwersytet Śląski Instytut Chemii Zakład Krystalografii Laboratorium z Krystalografii 2 godz. Komórki Bravais go Cel ćwiczenia: kształtowanie umiejętności: przyporządkowywania komórek translacyjnych Bravais
Bardziej szczegółowoOPTYKA FALOWA. W zjawiskach takich jak interferencja, dyfrakcja i polaryzacja światło wykazuje naturę
OPTYKA FALOWA W zjawiskach takich jak interferencja, dyfrakcja i polaryzacja światło wykazuje naturę falową. W roku 8 Thomas Young wykonał doświadczenie, które pozwoliło wyznaczyć długość fali światła.
Bardziej szczegółowoWykład 16: Optyka falowa
Wykład 16: Optyka falowa Dr inż. Zbigniew Szklarski Katedra Elektroniki, paw. C-1, pok.31 szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ Zasada Huyghensa Christian Huygens 1678 r. pierwsza falowa
Bardziej szczegółowoDr Piotr Sitarek. Instytut Fizyki, Politechnika Wrocławska
Podstawy fizyki Wykład 11 Dr Piotr Sitarek Instytut Fizyki, Politechnika Wrocławska D. Halliday, R. Resnick, J.Walker: Podstawy Fizyki, tom 3, Wydawnictwa Naukowe PWN, Warszawa 2003. K.Sierański, K.Jezierski,
Bardziej szczegółowoPolaryzacja chromatyczna
FOTON 11, Lato 013 5 Polaryzacja chromatyczna Jerzy Ginter Uniwersytet Warszawski Zjawisko Zwykle nie zdajemy sobie sprawy, że bardzo wiele przezroczystych ciał w naszym otoczeniu jest zbudowanych z substancji
Bardziej szczegółowoFizyka Ciała Stałego
Wykład III Struktura krystaliczna Fizyka Ciała Stałego Ciała stałe można podzielić na: Krystaliczne, o uporządkowanym ułożeniu atomów lub molekuł tworzącym sieć krystaliczną. Amorficzne, brak uporządkowania,
Bardziej szczegółowoKatedra Fizyki Ciała Stałego Uniwersytetu Łódzkiego. Ćwiczenie 1 Badanie efektu Faraday a w monokryształach o strukturze granatu
Katedra Fizyki Ciała Stałego Uniwersytetu Łódzkiego Ćwiczenie 1 Badanie efektu Faraday a w monokryształach o strukturze granatu Cel ćwiczenia: Celem ćwiczenia jest pomiar kąta skręcenia płaszczyzny polaryzacji
Bardziej szczegółowoRejestracja dyfraktogramów polikrystalicznych związków. Wskaźnikowanie dyfraktogramów i wyznaczanie typu komórki Bravais go.
Uniwersytet Śląski Instytut Chemii Zakład Krystalografii ul. Bankowa 14, pok. 133, 40006 Katowice tel. 0323591503, email: izajen@wp.pl opracowanie: dr hab. Izabela Jendrzejewska Laboratorium z Krystalografii
Bardziej szczegółowoPrawa optyki geometrycznej
Optyka Podstawowe pojęcia Światłem nazywamy fale elektromagnetyczne, o długościach, na które reaguje oko ludzkie, tzn. 380-780 nm. O falowych własnościach światła świadczą takie zjawiska, jak ugięcie (dyfrakcja)
Bardziej szczegółowoS P R A W O Z D A N I E D O ĆWICZENIA X 1 D E B Y E A SCHERRERA W Y Z N A C Z A N I E S T A Ł E J S I E C I M E T O DĄ.
S P R A W O Z D A N I E D O ĆWICZENIA X 1 W Y Z N A C Z A N I E S T A Ł E J S I E C I M E T O DĄ D E B Y E A SCHERRERA Wyznaczanie stałej sieci metodą Debey a Scherrera, 9 listopada 004 r. Celem doświadczenia
Bardziej szczegółowoProblemy optyki falowej. Teoretyczne podstawy zjawisk dyfrakcji, interferencji i polaryzacji światła.
. Teoretyczne podstawy zjawisk dyfrakcji, interferencji i polaryzacji światła. Rozwiązywanie zadań wykorzystujących poznane prawa I LO im. Stefana Żeromskiego w Lęborku 27 luty 2012 Dyfrakcja światła laserowego
Bardziej szczegółowoZADANIE 111 DOŚWIADCZENIE YOUNGA Z UŻYCIEM MIKROFAL
ZADANIE 111 DOŚWIADCZENIE YOUNGA Z UŻYCIEM MIKROFAL X L Rys. 1 Schemat układu doświadczalnego. Fala elektromagnetyczna (światło, mikrofale) po przejściu przez dwie blisko położone (odległe o d) szczeliny
Bardziej szczegółowoKrystalografia. Analiza wyników rentgenowskiej analizy strukturalnej i sposób ich prezentacji
Krystalografia Analiza wyników rentgenowskiej analizy strukturalnej i sposób ich prezentacji Opis geometrii Symetria: kryształu: grupa przestrzenna cząsteczki: grupa punktowa Parametry geometryczne współrzędne
Bardziej szczegółowoROZDZIAŁ I. Symetria budowy kryształów
ROZDZIAŁ I Symetria budowy kryształów I Ciała krystaliczne i amorficzne Każda substancja ciekła z wyjątkiem helu) podczas oziębiania traci swoje własności ciekłe i przechodzi w ciało stałe Jednakże proces
Bardziej szczegółowoBudowa ciał stałych. sieć krystaliczna układy krystalograficzne sieć realna defekty wiązania w ciałach stałych
Budowa ciał stałych sieć krystaliczna układy krystalograficzne sieć realna defekty wiązania w ciałach stałych Ciała stałe to substancje o regularnej, przestrzennej budowie krystalicznej, czyli regularnym
Bardziej szczegółowoSkręcenie płaszczyzny polaryzacji światła w cieczach (PF13)
Skręcenie płaszczyzny polaryzacji światła w cieczach (PF13) Celem ćwiczenia jest: obserwacja zjawiska skręcenia płaszczyzny polaryzacji światła w roztworach cukru, obserwacja zależności kąta skręcenia
Bardziej szczegółowoFizyczne Metody Badań Materiałów 2
Fizyczne Metody Badań Materiałów 2 Dr inż. Marek Chmielewski G.G. np.p.7-8 www.mif.pg.gda.pl/homepages/bzyk Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego
Bardziej szczegółowoZaawansowane Metody Badań Strukturalnych. Badania strukturalne materiałów Badania właściwości materiałów
Zaawansowane Metody Badań Strukturalnych Badania strukturalne materiałów Badania właściwości materiałów Zaawansowane Metody Badań Strukturalnych 1. Struktura próbki a metoda badań strukturalnych 2. Podział
Bardziej szczegółowoFala jest zaburzeniem, rozchodzącym się w ośrodku, przy czym żadna część ośrodka nie wykonuje zbyt dużego ruchu
Ruch falowy Fala jest zaburzeniem, rozchodzącym się w ośrodku, przy czym żadna część ośrodka nie wykonuje zbyt dużego ruchu Fala rozchodzi się w przestrzeni niosąc ze sobą energię, ale niekoniecznie musi
Bardziej szczegółowoPrawo Bragga. Różnica dróg promieni 1 i 2 wynosi: s = CB + BD: CB = BD = d sinθ
Prawo Bragga Prawo Bragga Prawo Bragga Różnica dróg promieni 1 i 2 wynosi: s = CB + BD: CB = BD = d sinθ d - odległość najbliższych płaszczyzn, w których są ułożone atomy, równoległych do powierzchni kryształu,
Bardziej szczegółowoWykład 16: Optyka falowa
Wykład 16: Optyka falowa Dr inż. Zbigniew Szklarski Katedra Elektroniki, paw. C-1, pok.321 szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ 1 Zasada Huyghensa Christian Huygens 1678 r. pierwsza
Bardziej szczegółowoMetody dyfrakcyjne do wyznaczania struktury krystalicznej materiałów
Metody dyfrakcyjne do wyznaczania struktury krystalicznej materiałów prowadzący : dr inŝ. Marcin Małys (malys@mech.pw.edu.pl) dr inŝ. Wojciech Wróbel (wrobel@mech.pw.edu.pl) gdzie nas szykać: pok. 333
Bardziej szczegółowoĆwiczenie: "Zagadnienia optyki"
Ćwiczenie: "Zagadnienia optyki" Opracowane w ramach projektu: "Wirtualne Laboratoria Fizyczne nowoczesną metodą nauczania realizowanego przez Warszawską Wyższą Szkołę Informatyki. Zakres ćwiczenia: 1.
Bardziej szczegółowoUkłady krystalograficzne
Uniwersytet Śląski Instytut Chemii Zakład Krystalografii Laboratorium z Krystalografii 2 godz. Układy krystalograficzne Cel ćwiczenia: kształtowanie umiejętności wyboru komórki elementarnej i przyporządkowywania
Bardziej szczegółowoWyznaczanie struktury krystalicznej i molekularnej wybranego związku koordynacyjnego w oparciu o rentgenowską analizę strukturalną
INSTRUKCJA DO ĆWICZEŃ Wyznaczanie struktury krystalicznej i molekularnej wybranego związku koordynacyjnego w oparciu o rentgenowską analizę strukturalną I. Cel ćwiczenia Wyznaczenie struktury krystalicznej
Bardziej szczegółowoElementy teorii powierzchni metali
prof. dr hab. Adam Kiejna Elementy teorii powierzchni metali Wykład 2 v.16 Sieci płaskie i struktura powierzchni 1 Typy sieci dwuwymiarowych (płaskich) Przecinając monokryształ wzdłuż jednej z płaszczyzn
Bardziej szczegółowoRok akademicki: 2013/2014 Kod: JFT s Punkty ECTS: 4. Poziom studiów: Studia II stopnia Forma i tryb studiów: Stacjonarne
Nazwa modułu: Struktury i symetrie ciała stałego Rok akademicki: 2013/2014 Kod: JFT-2-011-s Punkty ECTS: 4 Wydział: Fizyki i Informatyki Stosowanej Kierunek: Fizyka Techniczna Specjalność: Poziom studiów:
Bardziej szczegółowoCiekłe kryształy. - definicja - klasyfikacja - własności - zastosowania
Ciekłe kryształy - definicja - klasyfikacja - własności - zastosowania Nota biograficzna: Odkrywcą był austriacki botanik F. Reinitzer (1888), który został zaskoczony nienormalnym, dwustopniowym sposobem
Bardziej szczegółowoI. PROMIENIOWANIE CIEPLNE
I. PROMIENIOWANIE CIEPLNE - lata '90 XIX wieku WSTĘP Widmo promieniowania elektromagnetycznego zakres "pokrycia" różnymi rodzajami fal elektromagnetycznych promieniowania zawartego w danej wiązce. rys.i.1.
Bardziej szczegółowoBadanie właściwości optycznych roztworów.
ĆWICZENIE 4 (2018), STRONA 1/6 Badanie właściwości optycznych roztworów. Cel ćwiczenia - wyznaczenie skręcalności właściwej sacharozy w roztworach wodnych oraz badanie współczynnika załamania światła Teoria
Bardziej szczegółowoWłasności optyczne materii. Jak zachowuje się światło w zetknięciu z materią?
Własności optyczne materii Jak zachowuje się światło w zetknięciu z materią? Właściwości optyczne materiału wynikają ze zjawisk: Absorpcji Załamania Odbicia Rozpraszania Własności elektrycznych Refrakcja
Bardziej szczegółowoOpracowanie: mgr inż. Antoni Konitz, dr hab inż. Jarosław Chojnacki Politechnika Gdańska, Gdańsk 2007, 2016
4. Stosowanie międzynarodowych symboli grup przestrzennych. Zamiana skróconych symboli Hermanna - Mauguina na symbole pełne. Określanie układu krystalograficznego, klasy krystalograficznej oraz operacji
Bardziej szczegółowoLaboratorium z Krystalografii. 2 godz.
Uniwersytet Śląski Instytut Chemii Zakład Krystalografii Laboratorium z Krystalografii 2 godz. Zbadanie zależności intensywności linii Kα i Kβ promieniowania charakterystycznego X emitowanego przez anodę
Bardziej szczegółowoWŁASNOŚCI FAL ELEKTROMAGNETYCZNYCH: INTERFERENCJA, DYFRAKCJA, POLARYZACJA
WŁASNOŚCI FAL ELEKTROMAGNETYCZNYCH: INTERFERENCJA, DYFRAKCJA, POLARYZACJA 1. Interferencja fal z dwóch źródeł 2. Fale koherentne i niekoherentne 3. Interferencja fal z wielu źródeł 4. Zasada Huygensa 5.
Bardziej szczegółowoELEMENTY OPTYKI Fale elektromagnetyczne Promieniowanie świetlne Odbicie światła Załamanie światła Dyspersja światła Polaryzacja światła Dwójłomność
ELEMENTY OPTYKI Fale elektromagnetyczne Promieniowanie świetlne Odbicie światła Załamanie światła Dyspersja światła Polaryzacja światła Dwójłomność Holografia FALE ELEKTROMAGNETYCZNE Fale elektromagnetyczne
Bardziej szczegółowoZjawisko piezoelektryczne 1. Wstęp
Zjawisko piezoelektryczne. Wstęp W roku 880 Piotr i Jakub Curie stwierdzili, że na powierzchni niektórych kryształów poddanych działaniu zewnętrznych naprężeń mechanicznych indukują się ładunki elektryczne,
Bardziej szczegółowo4.Wprowadzenie do zagadnienia elastooptyki
4.Wprowadzenie do zagadnienia elastooptyki Definicja Dwójłomnością nazywamy zjawisko rozproszenia świtała na dwa promienie światła spolaryzowanego liniowo, występujące w ciałach anizotropowych. Jednak
Bardziej szczegółowo