Materiałoznawstwo optyczne. KRYSZTAŁY Y cz. 2

Wielkość: px
Rozpocząć pokaz od strony:

Download "Materiałoznawstwo optyczne. KRYSZTAŁY Y cz. 2"

Transkrypt

1 Materiałoznawstwo optyczne KRYSZTAŁY Y cz. 2

2 Komórki elementarne Bravais

3 Grupy translacyjne Bravais Układ Grupa translacyjna regularny P, I, F tetragonalny P, I rombowy P, C, I, F jednoskośny P, C, trójskośny P trygonalny R heksagonalny P

4 Pełna informacja o strukturze: Symbol grupy przestrzennej (czyli wszystkie przekształcenia symetrii) Parametry komórki elementarnej Współrzędne atomów bazy atomowej Bezpośrednia informacja o strukturze Liczba węzłów w komórce elementarnej Promień atomowy lub jonowy Gęstość upakowania Liczba koordynacyjna Wielościan koordynacyjny

5 Prawo Steno Kąty między analogicznymi ścianami, zmierzone na różnych egzemplarzach kryształu tej samej substancji w jednakowych warunkach fizykochemicznych są stałe, niezależne od wielkości kryształu.

6 Prawo równoległości ścian Naturalne ściany zewnętrzne kryształu (jeżeli są wykształcone) są zawsze równoległe do płaszczyzn sieciowych, a krawędzie tych ścian - do prostych sieciowych kryształu.

7 Obrót t wokół osi

8 Właściwa oś symetrii X Działanie właściwej osi symetrii X na element R Projekcja stereograficzna bieguna ściany (hkl) przekształcanego względem właściwej osi symetrii X = 360 o Krotności osi dozwolone w sieci = 180 o = 120 o cos krotność osi o 2 -½ 120 o o 4 ½ 60 o = 90 o = 60 o

9 Centrum inwersji (symetrii)

10 Płaszczyzna symetrii

11 Zamknięte operacje symetrii obrót obrót o 360 o obrót o 180 o obrót o 120 o obrót o 90 o obrót o 60 o odbicie względem płaszczyzny odbicie względem centrum inwersji (inwersja) PROSTE oś jednokrotna oś dwukrotna oś trójkrotna oś czterokrotna oś sześciokrotna płaszczyzna symetrii centrum inwersji obrót z inwersją ZŁOŻONE obrót o 360 o i inwersja obrót o 180 o i inwersja obrót o 120 o i inwersja obrót o 90 o i inwersja obrót o 60 o i inwersja oś jednokrotna inwersyjna centrum inwersji oś dwukrotna inwersyjna płaszczyzna symetrii oś trójkrotna inwersyjna oś czterokrotna inwersyjna oś sześciokrotna inwersyjna

12 Otwarte operacje symetrii translacja obrót śrubowy poślizg

13 Defekty strukturalne: Każde zaburzenie periodycznego uporządkowania atomów w krysztale jest defektem. Może to być zaburzenie: - Położenia atomów - Typu atomów Defekty sieci krystalicznej Typ i rodzaj defektów zależy od materiału, warunków (np. temperatura) i sposobu, w jaki materiał został wytworzony. Znaczenie defektów: Mają ogromny wpływ na właściwości materiału. Bez defektów nie istniałaby elektronika Kryształy były bezbarwne Ceramiki nie pękały

14 Defekty sieci krystalicznej Rodzaje defektów PUNKTOWE Wpływ defektów punktowych: właściwości elektryczne kolor

15 Defekty sieci krystalicznej Rodzaje defektów LINIOWE Dyslokacja śrubowa Dyslokacja krawędziowa

16 Dyfrakcyjne metody badania kryształów Metody Lauego metoda promieni przechodzących metoda promieni zwrotnych Metoda Braggów Metoda obracanego kryształu Metoda proszkowa Debye a, Scherrera i Hulla

17 Dyfrakcja w sieci krystalicznej wiązka pada pod kątem 0 ugina się pod kątem 1 a d b b-a = n d(cos - cos 0 ) = n

18 Dyfrakcyjne metody badania kryształów Warunki wzmocnienia promieniowania: Warunek Braggów; Warunek Lauego; Konstrukcja Ewalda i równoważność obu warunków; Czynniki, od których zależy intensywność refleksów dyfrakcyjnych: Rodzaj atomów; Rozmieszczenie atomów w komórce (czynnik struktury); Temperatura; Kąt dyfrakcji; Wielkość krystalitów.

19 Równania Lauego W trzech wymiarach : h=a(cos 0 - cos 1 )/ k=b(cos 0 - cos 1 )/ l=c(cos 0 - cos 1 )/ Max von Laue ( ) równania -1912, Nobel 1914

20 Wektorowe równania Lauego l k c k k b h k a k 0 k k hkl c b a,, zmiana wektora falowego wektory komórki podstawowej l k h c b a k 2 łącznie

21 Równanie Bragga (1913 r.) Odbicie od płaszczyzn sieciowych 2 a = n, a = d hkl sin n = 2 d hkl sin d a

22 Sieć odwrotna C B A,, - wektory bazowe sieci odwrotnej 2 c C b B a A a C b C c B a B c A b A c b a,, - wektory bazowe sieci rzeczywistej b a c b a C a c b a c B c b a c b A lc kb ha G hkl lc kb ha P hkl

23 Kula Ewalda związek sieci odwrotnej z równaniem Bragga - konstrukcja Ewalda k 0 k hkl Węzeł hkl sieci odwrotnej k hkl G hkl wiązka padająca kryształ 0 sin G hkl k 0 k 0 2 Węzeł 000 sieci odwrotnej

24 Równanie Lauego a równania Bragga G hkl ha kb lc równanie Lauego k a b c 2 h k l G hkl d hkl 2 k Ghkl khkl k0 2 2 G hkl 2 2k0 G hkl Ghkl sin G 2d hkl G hkl 2sin G 2 2 hkl hkl sin

25

26

27 Dyfraktogram Lauego

28

29 Metoda obracanego kryształu Kaseta cylindryczna z błoną rentgenowską Kryształ jest obracany lub oscyluje w zakresie kątów 2 20 wokół osi Z Kryształ jest zorientowany osią krystalograficzną w kierunku Z warstwice 2 y R

30

31 Interpretacja rentgenogramu Powstawanie warstwic jest analogią do powstawania stożków przy dyfrakcji od prostej sieciowej warstwica zerowa zawiera refleksy hk0, warstwica pierwsza hk1 itd. obracanie kryształu umożliwia ustawienie płaszczyzn w położenie dyfrakcyjne odległość warstwic wyznacza okres identyczności w kierunku osi obrotu Z CECHA METODY : W zasadzie można by wyznaczyć wszystkie stałe sieciowe a, b, c odpowiednio mocując kryształ w trzech położeniach

32 Metoda Braggów Stosowanie promieniowania monochromatycznego i pomiar goniometrem kątów odbłysku, otrzymanych na znanych ścianach kryształu. Wymaga użycia dużych kryształów o dobrze ukształtowanych powierzchniach Metoda proszkowa Debye a, Scherrera i Hulla Wiązka promieni monochromatycznych pada na drobno sproszkowaną substancję krystaliczną, umieszczoną najczęściej w cienkościennej rurce kapilarnej. Preparat znajduje się w środku cylindrycznej kamery, wyłożonej od wewnatrz ściśle przylegającą błoną fotograficzną. Każdy kryształek ma inne położenie względem kierunku promienia pierwotnego. Z powodu przypadkowej orientacji kryształków ugięcie promieni następuje w dowolnych płaszczyznach, wobec czego, promienie ugiete od danej rodziny płaszczyzn sieciowych będą dawały obraz w postaci linii debajogramu.

33 Właściwości optyczne kryształów Współczynnik absorpcji, załamania, odbicia. Anizotropia współczynnika załamania. Chiralność Dichroizm Polaryzacja światła

34 Właściwości optyczne kryształów - Dwójłomnością nazywamy zjawisko rozproszenia świtała na dwa promienie światła spolaryzowanego liniowo, występujące w ciałach anizotropowych. - Szkło (wolne od naprężeń) ośrodek izotropowy, zjawisko dwójłomności może się pojawić w szkłach w wyniku przyłożenia nieizotropowych obciążeń mechanicznych, przyłożenia nieizotropowych obciążeo termicznych, poprzez wytworzenie niejednorodności chemicznej, poprzez wytworzenie niejednorodności innych rodzajów, np. radiacyjnej

35 Właściwości optyczne kryształów - ośrodki jedno- (n x =n y n z ) lub dwuosiowe (n x n y n z n x ) Układ Trójskośny Jednoskośny Rombowy Tetragonalny Trygonalny Heksagonalny Regularny Typ kryształu Dwuosiowy Jednoosiowy Niedwójłomny - oś optyczna : w tym kierunku rozchodzą się dwie takie same fale (z tą samą prędkością); w ośrodkach jednoosiowych - jedna taka oś, w dwuosiowych dwie

36 Właściwości optyczne kryształów - w innych kierunkach : dwie fale zwyczajna i nadzwyczajna rozchodzą się z różnymi prędkościami (mają różne wsp.zał. n o i n e ) - padająca na kryształ fala świetlna rozdziela się w nim na dwie, zależy to od stanu polaryzacji fali padającej, tzn. ile będzie fali zwyczajnej a ile nadzwyczajnej - po przejściu przez kryształ fale zwyczajna i nadzwyczajna składają się, ale ponieważ wewnątrz kryształu nabyły różnych faz, końcowy stan polaryzacji różni się od wejściowego - różnica dróg optycznych R=(n o -n e )*d

37 Właściwości kryształów dwójłomnych - obserwacja w świetle spolaryzowanym (kryształ między skrzyżowanymi polaryzatorami) - efekty interferencyjne (kolory) - inne ciekawe zjawiska

38 Polaryskop Polaryzator P Obiekt badany Analizator A Wzór polaryskopowy (polaryskop skrzyżowany) m I out R I0TM sin f sin m m N m I out R 0 m

39

40 Rozpoznawanie azymutu próbki Dodatkowa Płytka fazowa o znanej różnicy faz R p oraz znanym kącie azymutu Azymuty zgodne: podwyższenie barwy R ' R R p Azymuty przeciwne: obniżenie barwy R ' R R p

41 Figury konoskopowe

42 Rozkłady izochrom

43 Kryształy jednoosiowe Kalcyt Kwarc Kwarc

44 Kryształy dwuosiowe Muskowit Danburyt Topaz

45 Właściwości kryształów dwójłomnych CHIRALNOŚĆ - geometryczna cecha sztywnych układów - właściwość cząsteczki związku chem., kryształu polegająca na tym, iż obiekt i jego odbicie w płaskim zwierciadle nie pokrywają się ze sobą mają się do siebie jak prawa ręka w stosunku do lewej; cząsteczki chiralne wykazują aktywność optyczną PLEOCHROIZM - W kryształach dwójłomnych współczynnik absorpcji promienia zwyczajnego i nadzwyczajnego może być różny (współczynnik absorpcji zależy od polaryzacji). - Dichroizm liniowy i kołowy, trichroizm.

46 Dwójłomność wymuszona Efekt piezooptyczny - zmiana dwójłomności wywołana naprężeniami naprężenia główne i ścinające kl F s k l n n 3 2 c p 1 2

47 Dwójłomność wymuszona Efekt elastooptyczny zmiana dwójłomności wywołana odkształceniami prawo Hooke a i s, i, j 1,2,... 6 ij j, xx, yy zz xy, yz, xz n n 3 p p 2 c e 1 2

48 Dwójłomność wymuszona ,, 2,,,,,, 0,, 3, 2,,, 0, E c E b E a n n E c E b E a n n kryształy bez środka symetrii efekt Pockelsa E a n n E a n n,,,, 0,,,, 0, kryształ ze środkiem symetrii lub ciało izotropowe efekt Kerra 2,,,, 0,, 2,, 0, E b n n E b n n Efekty elektrooptyczne

49 Dwójłomność wymuszona Komórki elektrooptyczne komórka Pockelsa n r 63 3 n o E z komórka Kerra n 3 2 R R n E z

50 Dwójłomność wymuszona Efekt Cottona-Mouttona - światło biegnie prostopadle do linii sił pola magnetycznego - indukowana dwójłomność jest proporcjonalna do kwadratu natężenia pola magnetycznego n CM CH 2

51 Dwójłomność wymuszona Efekt Faradaya - światło biegnie wzdłuż linii sił pola magnetycznego - dwójłomność jest proporcjonalna do natężenia pola magnetycznego V ' H n F - zjawisko zmiany azymutu stanu polaryzacji światła (zwane niepoprawnie skręceniem płaszczyzny polaryzacji światła) - stała Verdeta a kąt skręcenia: VdH

52 Efekt piezoelektryczny prosty Prosty efekt piezoelektryczny - powstawanie polaryzacji elektrycznej w ciele stałym pod wpływem przyłożonego naprężenia (odkrycie w 1880r. przez Piotra i Jakuba Curie)

53 Efekt piezoelektryczny odwrotny Odwrotny efekt piezoelektryczny - mechaniczna deformacja ciała stałego pod wpływem przyłożonego pola elektrycznego (eksperymentalne potwierdzenie rok 1881)

54 Efekt piezoelektryczny Materiały piezoelektryczne kwarc - dwutlenek krzemu SiO2 - syntetyczny i naturalny (odmiana α) w postaci kryształów niobian litu LiNbO3 w postaci kryształów ceramika PZT stałe roztwory cyrkonianu ołowiu (PbZrO3) i tytanianu ołowiu (PbTiO3) struktura polikrystaliczna

55 Efekt piezoelektryczny - zastosowania - czujniki pola elektrycznego - czujniki naprężeń - generatory i detektory fal akustycznych - diagnostyka ultradźwiękowa - mikroskopia ultradźwiękowa - defektoskopia - zapalarki do gazu i zapalniczek - wkładki gramofonowe - sygnalizatory akustyczne, głośniki - wtryski paliwa w systemie common-rail - brajlowski monitor komputerowy

56 Efekt piroelektryczny - generowanie siły elektromotorycznej pod wpływem temperatury (1842r. James Joule obserwacje niklu) - zjawisko odwrotne: efekt elektrokaloryczny - wszystkie ferroelektryki są piroelektrykami i piezoelektrykami, lecz na odwrót nie musi tak być - zastosowania: głównie w czujnikach promieniowania podczerwonego

57 Efekt magnetostrykcyjny - powstawanie odkształceń pod wpływem pola magnetycznego - zjawisko odwrotne: efekt Villariego (efekt magnetomechaniczny) - zastosowanie: a) czujniki drgań i przemieszczeń b) sonary, czujniki sejsmiczne c) mycie ultradźwiękowe d) czujniki pola magnetycznego

Właściwości optyczne kryształów

Właściwości optyczne kryształów Właściwości optyczne kryształów -ośrodki jedno- (n x =n y n z ) lub dwuosiowe (n x n y n z n x ) - oś optyczna : w tym kierunku rozchodzą się dwie takie same fale (z tą samą prędkością); w ośrodkach jednoosiowych

Bardziej szczegółowo

Krystalografia. Dyfrakcja na monokryształach. Analiza dyfraktogramów

Krystalografia. Dyfrakcja na monokryształach. Analiza dyfraktogramów Krystalografia Dyfrakcja na monokryształach. Analiza dyfraktogramów Wyznaczanie struktury Pomiar obrazów dyfrakcyjnych Stworzenie modelu niezdeformowanej sieci odwrotnej refleksów Wybór komórki elementarnej

Bardziej szczegółowo

Fala EM w izotropowym ośrodku absorbującym

Fala EM w izotropowym ośrodku absorbującym Fala EM w izotropowym ośrodku absorbującym Fala EM powoduje generację zmienne pole elektryczne E Zmienne co do kierunku i natężenia, Pole E Nie wywołuje w ośrodku prądu elektrycznego Powoduje ruch elektronów

Bardziej szczegółowo

Polaryzatory/analizatory

Polaryzatory/analizatory Polaryzatory/analizatory Polaryzator eliptyczny element układu optycznego lub układ optyczny, za którym światło jest spolaryzowane eliptycznie i o parametrach ściśle określonych przez polaryzator zazwyczaj

Bardziej szczegółowo

Układ regularny. Układ regularny. Możliwe elementy symetrii: Możliwe elementy symetrii: 3 osie 3- krotne. m płaszczyzny przekątne.

Układ regularny. Układ regularny. Możliwe elementy symetrii: Możliwe elementy symetrii: 3 osie 3- krotne. m płaszczyzny przekątne. Układ regularny Możliwe elementy symetrii: 3 osie 3- krotne m płaszczyzny równoległe do ścian m płaszczyzny przekątne 4 osie 4- krotne 2 osie 2- krotne Układ regularny Możliwe elementy symetrii: 3 osie

Bardziej szczegółowo

Laboratorium techniki laserowej. Ćwiczenie 5. Modulator PLZT

Laboratorium techniki laserowej. Ćwiczenie 5. Modulator PLZT Laboratorium techniki laserowej Katedra Optoelektroniki i Systemów Elektronicznych, WETI, Politechnika Gdaoska Gdańsk 006 1.Wstęp Rozwój techniki optoelektronicznej spowodował poszukiwania nowych materiałów

Bardziej szczegółowo

Rentgenografia - teorie dyfrakcji

Rentgenografia - teorie dyfrakcji Rentgenografia - teorie dyfrakcji widmo promieniowania rentgenowskiego Widmo emisyjne promieniowania rentgenowskiego: -promieniowanie charakterystyczne -promieniowanie ciągłe (białe) Efekt naświetlenia

Bardziej szczegółowo

Krystalografia. Dyfrakcja

Krystalografia. Dyfrakcja Krystalografia Dyfrakcja Podstawowe zagadnienia Rodzaje promieniowania używane w dyfrakcyjnych metodach badań struktur krystalicznych, ich źródła Fizyczne podstawy i warunki dyfrakcji Równania dyfrakcji:

Bardziej szczegółowo

Ćwiczenie nr 6. Zjawiska elektrooptyczne Sprawdzanie prawa Malusa, badanie komórki Pockelsa i Kerra

Ćwiczenie nr 6. Zjawiska elektrooptyczne Sprawdzanie prawa Malusa, badanie komórki Pockelsa i Kerra Ćwiczenie nr 6. Zjawiska elektrooptyczne Sprawdzanie prawa Malusa badanie komórki Pockelsa i Kerra Opracowanie: Ryszard Poprawski Katedra Fizyki Doświadczalnej Politechnika Wrocławska Wstęp Załamanie światła

Bardziej szczegółowo

Krystalografia. Symetria a właściwości fizyczne kryształów

Krystalografia. Symetria a właściwości fizyczne kryształów Krystalografia Symetria a właściwości fizyczne kryształów Właściwości fizyczne kryształów a ich symetria Grupy graniczne Piroelektryczność Piezoelektryczność Właściwości optyczne kryształów Właściwości

Bardziej szczegółowo

Metody badań monokryształów metoda Lauego

Metody badań monokryształów metoda Lauego Uniwersytet Śląski Instytut Chemii Zakład Krystalografii ul. Bankowa 14, pok. 132, 40 006 Katowice, Tel. 0323591627 e-mail: joanna_palion@poczta.fm opracowanie: mgr Joanna Palion Gazda Laboratorium z Krystalografii

Bardziej szczegółowo

Elementy symetrii makroskopowej.

Elementy symetrii makroskopowej. Uniwersytet Śląski Instytut Chemii Zakład Krystalografii Laboratorium z Krystalografii Elementy symetrii makroskopowej. 2 godz. Cel ćwiczenia: zapoznanie się z działaniem elementów symetrii makroskopowej

Bardziej szczegółowo

Natęż. ężenie refleksu dyfrakcyjnego

Natęż. ężenie refleksu dyfrakcyjnego Natęż ężenie refleksu dyfrakcyjnego Wskaźnikowanie dyfraktogramów 1. Natężenie refleksu dyfrakcyjnego - od czego i jak zależy 1. Wskaźnikowanie dyfraktogramów -metoda różnic 3. Wygaszenia systematyczne

Bardziej szczegółowo

Krystalografia i krystalochemia Wykład 15 Repetytorium

Krystalografia i krystalochemia Wykład 15 Repetytorium Krystalografia i krystalochemia Wykład 15 Repetytorium 1. Czym zajmuje się krystalografia i krystalochemia? 2. Podsumowanie wiadomości z krystalografii geometrycznej. 3. Symbolika Kreutza-Zaremby oraz

Bardziej szczegółowo

Metody badań monokryształów metoda Lauego

Metody badań monokryształów metoda Lauego Uniwersytet Śląski Instytut Chemii Zakład Krystalografii ul. Bankowa 14, pok. 132, 40 006 Katowice, Tel. 0323591627 e-mail: joanna_palion@poczta.fm opracowanie: mgr Joanna Palion Gazda Laboratorium z Krystalografii

Bardziej szczegółowo

BADANIE WYMUSZONEJ AKTYWNOŚCI OPTYCZNEJ

BADANIE WYMUSZONEJ AKTYWNOŚCI OPTYCZNEJ ĆWICZENIE 89 BADANIE WYMUSZONEJ AKTYWNOŚCI OPTYCZNEJ Cel ćwiczenia: Zapoznanie się ze zjawiskiem Faradaya. Wyznaczenie stałej Verdeta dla danej próbki. Wyznaczenie wartości ładunku właściwego elektronu

Bardziej szczegółowo

POLARYZACJA ŚWIATŁA. Uporządkowanie kierunku drgań pola elektrycznego E w poprzecznej fali elektromagnetycznej (E B). światło niespolaryzowane

POLARYZACJA ŚWIATŁA. Uporządkowanie kierunku drgań pola elektrycznego E w poprzecznej fali elektromagnetycznej (E B). światło niespolaryzowane FALE ELEKTROMAGNETYCZNE Polaryzacja światła Sposoby polaryzacji Dwójłomność Skręcanie płaszczyzny polaryzacji Zastosowania praktyczne polaryzacji Efekty fotoelastyczne Stereoskopia Holografia Politechnika

Bardziej szczegółowo

Ćwiczenie 363. Polaryzacja światła sprawdzanie prawa Malusa. Początkowa wartość kąta 0..

Ćwiczenie 363. Polaryzacja światła sprawdzanie prawa Malusa. Początkowa wartość kąta 0.. Nazwisko... Data... Nr na liście... Imię... Wydział... Dzień tyg.... Godzina... Polaryzacja światła sprawdzanie prawa Malusa Początkowa wartość kąta 0.. 1 25 49 2 26 50 3 27 51 4 28 52 5 29 53 6 30 54

Bardziej szczegółowo

STRUKTURA CIAŁA STAŁEGO

STRUKTURA CIAŁA STAŁEGO STRUKTURA CIAŁA STAŁEGO Podział ciał stałych Ciała - bezpostaciowe (amorficzne) Szkła, żywice, tłuszcze, niektóre proszki. Nie wykazują żadnych regularnych płaszczyzn ograniczających, nie można w nich

Bardziej szczegółowo

Wykład 5. Komórka elementarna. Sieci Bravais go

Wykład 5. Komórka elementarna. Sieci Bravais go Wykład 5 Komórka elementarna Sieci Bravais go Doskonały kryształ składa się z atomów jonów, cząsteczek) uporządkowanych w sieci krystalicznej opisanej przez trzy podstawowe wektory translacji a, b, c,

Bardziej szczegółowo

BUDOWA KRYSTALICZNA CIAŁ STAŁYCH. Stopień uporządkowania struktury wewnętrznej ciał stałych decyduje o ich podziale

BUDOWA KRYSTALICZNA CIAŁ STAŁYCH. Stopień uporządkowania struktury wewnętrznej ciał stałych decyduje o ich podziale BUDOWA KRYSTALICZNA CIAŁ STAŁYCH Stopień uporządkowania struktury wewnętrznej ciał stałych decyduje o ich podziale na: kryształy ciała o okresowym regularnym uporządkowaniu atomów, cząsteczek w całej swojej

Bardziej szczegółowo

Metody Optyczne w Technice. Wykład 8 Polarymetria

Metody Optyczne w Technice. Wykład 8 Polarymetria Metody Optyczne w Technice Wykład 8 Polarymetria Fala elektromagnetyczna div D div B 0 D E rot rot E H B t D t J B J H E Fala elektromagnetyczna 2 2 E H 2 t 2 E 2 t H 2 v n 1 0 0 c n 0 Fala elektromagnetyczna

Bardziej szczegółowo

Rozwiązanie: Zadanie 2

Rozwiązanie: Zadanie 2 Podstawowe pojęcia. Definicja kryształu. Sieć przestrzenna i sieć krystaliczna. Osie krystalograficzne i jednostki osiowe. Ściana jednostkowa i stosunek osiowy. Położenie węzłów, prostych i płaszczyzn

Bardziej szczegółowo

Aby opisać strukturę krystaliczną, konieczne jest określenie jej części składowych: sieci przestrzennej oraz bazy atomowej.

Aby opisać strukturę krystaliczną, konieczne jest określenie jej części składowych: sieci przestrzennej oraz bazy atomowej. 2. Podstawy krystalografii Podczas naszych zajęć skupimy się przede wszystkim na strukturach krystalicznych. Kryształem nazywamy (def. strukturalna) substancję stałą zbudowaną z atomów, jonów lub cząsteczek

Bardziej szczegółowo

PIEZOELEKTRYKI I PIROELEKTRYKI. Krajewski Krzysztof

PIEZOELEKTRYKI I PIROELEKTRYKI. Krajewski Krzysztof PIEZOELEKTRYKI I PIROELEKTRYKI Krajewski Krzysztof Zjawisko piezoelektryczne Zjawisko zachodzące w niektórych materiałach krystalicznych, polegające na powstawaniu ładunku elektrycznego na powierzchniach

Bardziej szczegółowo

Ćwiczenie 373. Wyznaczanie stężenia roztworu cukru za pomocą polarymetru. Długość rurki, l [dm] Zdolność skręcająca a. Stężenie roztworu II d.

Ćwiczenie 373. Wyznaczanie stężenia roztworu cukru za pomocą polarymetru. Długość rurki, l [dm] Zdolność skręcająca a. Stężenie roztworu II d. Nazwisko Data Nr na liście Imię Wydział Dzień tyg Godzina Ćwiczenie 373 Wyznaczanie stężenia roztworu cukru za pomocą polarymetru Stężenie roztworu I d [g/dm 3 ] Rodzaj cieczy Położenie analizatora [w

Bardziej szczegółowo

Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 18, Radosław Chrapkiewicz, Filip Ozimek

Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 18, Radosław Chrapkiewicz, Filip Ozimek Podstawy Fizyki IV Optyka z elementami fizyki współczesnej wykład 18, 23.04.2012 wykład: pokazy: ćwiczenia: Czesław Radzewicz Radosław Chrapkiewicz, Filip Ozimek Ernest Grodner Wykład 17 - przypomnienie

Bardziej szczegółowo

LASERY I ICH ZASTOSOWANIE

LASERY I ICH ZASTOSOWANIE LASERY I ICH ZASTOSOWANIE Laboratorium Instrukcja do ćwiczenia nr 3 Temat: Efekt magnetooptyczny 5.1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z metodą modulowania zmiany polaryzacji światła oraz

Bardziej szczegółowo

Wykład 1. Symetria Budowy Kryształów

Wykład 1. Symetria Budowy Kryształów Wykład Symetria Budowy Kryształów Ciała krystaliczne i amorficzne Każda substancja ciekła (z wyjątkiem helu) podczas oziębiania traci swoje własności ciekłe i przechodzi w ciało stałe. Jednakże proces

Bardziej szczegółowo

MATERIA. = m i liczby całkowite. ciała stałe. - kryształy - ciała bezpostaciowe (amorficzne) - ciecze KRYSZTAŁY. Periodyczność

MATERIA. = m i liczby całkowite. ciała stałe. - kryształy - ciała bezpostaciowe (amorficzne) - ciecze KRYSZTAŁY. Periodyczność MATERIA ciała stałe - kryształy - ciała bezpostaciowe (amorficzne) - ciecze - gazy KRYSZTAŁY Periodyczność Kryształ (idealny) struktura zbudowana z powtarzających się w przestrzeni periodycznie identycznych

Bardziej szczegółowo

Agata Saternus piątek Dwójłomność kryształów, dwójłomność światłowodów, dwójłomność próżni (z ang. vacuum birefringence)

Agata Saternus piątek Dwójłomność kryształów, dwójłomność światłowodów, dwójłomność próżni (z ang. vacuum birefringence) Agata Saternus piątek 9.07.011 Dwójłomność kryształów, dwójłomność światłowodów, dwójłomność próżni (z ang. vacuum birefringence) Dwójłomność odkrył Rasmus Bartholin w 1669 roku, dwójłomność kryształu

Bardziej szczegółowo

STRUKTURA KRYSTALICZNA

STRUKTURA KRYSTALICZNA PODSTAWY KRYSTALOGRAFII Struktura krystaliczna Wektory translacji sieci Komórka elementarna Komórka elementarna Wignera-Seitza Jednostkowy element struktury Sieci Bravais go 2D Sieci przestrzenne Bravais

Bardziej szczegółowo

Rejestracja dyfraktogramów polikrystalicznych związków. Wskaźnikowanie dyfraktogramów i wyznaczanie typu komórki Bravais go.

Rejestracja dyfraktogramów polikrystalicznych związków. Wskaźnikowanie dyfraktogramów i wyznaczanie typu komórki Bravais go. Uniwersytet Śląski Instytut Chemii Zakład Krystalografii ul. Bankowa 14, pok. 133, 40006 Katowice tel. 0323591503, email: izajen@wp.pl opracowanie: dr hab. Izabela Jendrzejewska Laboratorium z Krystalografii

Bardziej szczegółowo

Wykład 17: Optyka falowa cz.2.

Wykład 17: Optyka falowa cz.2. Wykład 17: Optyka falowa cz.2. Dr inż. Zbigniew Szklarski Katedra Elektroniki, paw. C-1, pok.321 szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ 1 Interferencja w cienkich warstwach Załamanie

Bardziej szczegółowo

Podstawy Fizyki III Optyka z elementami fizyki współczesnej. wykład 18, Mateusz Winkowski, Łukasz Zinkiewicz

Podstawy Fizyki III Optyka z elementami fizyki współczesnej. wykład 18, Mateusz Winkowski, Łukasz Zinkiewicz Podstawy Fizyki III Optyka z elementami fizyki współczesnej wykład 18, 07.12.2017 wykład: pokazy: ćwiczenia: Czesław Radzewicz Mateusz Winkowski, Łukasz Zinkiewicz Radosław Łapkiewicz Wykład 17 - przypomnienie

Bardziej szczegółowo

Krystalochemia białek 2016/2017

Krystalochemia białek 2016/2017 Zestaw zadań 4. Grupy punktowe. Składanie elementów symetrii. Translacyjne elementy symetrii grupy punktowe, składanie elementów symetrii, translacyjne elementy symetrii: osie śrubowe, płaszczyzny ślizgowe

Bardziej szczegółowo

Właściwości kryształów

Właściwości kryształów Właściwości kryształów Związek pomiędzy właściwościami, strukturą, defektami struktury i wiązaniami chemicznymi Skład i struktura Skład materiału wpływa na wszystko, ale głównie na: właściwości fizyczne

Bardziej szczegółowo

POMIAR NATURALNEJ AKTYWNOŚCI OPTYCZNEJ

POMIAR NATURALNEJ AKTYWNOŚCI OPTYCZNEJ ĆWICZENIE 88 POMIAR NATURALNEJ AKTYWNOŚCI OPTYCZNEJ Cel ćwiczenia: Badanie zjawiska skręcenia płaszczyzny polaryzacji światła w cieczach i kryształach optycznie czynnych. Zagadnienia: polaryzacja światła,

Bardziej szczegółowo

Podstawy fizyki wykład 8

Podstawy fizyki wykład 8 Podstawy fizyki wykład 8 Dr Piotr Sitarek Katedra Fizyki Doświadczalnej, W11, PWr Optyka geometryczna Polaryzacja Odbicie zwierciadła Załamanie soczewki Optyka falowa Interferencja Dyfrakcja światła D.

Bardziej szczegółowo

PL B1. POLITECHNIKA WROCŁAWSKA, Wrocław, PL BUP 02/08. PIOTR KURZYNOWSKI, Wrocław, PL JAN MASAJADA, Nadolice Wielkie, PL

PL B1. POLITECHNIKA WROCŁAWSKA, Wrocław, PL BUP 02/08. PIOTR KURZYNOWSKI, Wrocław, PL JAN MASAJADA, Nadolice Wielkie, PL RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 211200 (13) B1 Urząd Patentowy Rzeczypospolitej Polskiej (21) Numer zgłoszenia: 380223 (22) Data zgłoszenia: 17.07.2006 (51) Int.Cl. G01N 21/23 (2006.01)

Bardziej szczegółowo

Właściwości optyczne kryształów

Właściwości optyczne kryształów Właściwości optyczne kryształów Właściwości optyczne i dielektryczne Właściwości optyczne i dielektryczne są ściśle ze sobą związane: n = ε χ = ε 1 Gdzie n jest współczynnikiem załamania światła, ε przenikalnością

Bardziej szczegółowo

Właściwości optyczne kryształów

Właściwości optyczne kryształów Właściwości optyczne kryształów Światło Kolor Długość fali w próżni (nm) 660 610 580 550 470 410 1 Właściwości optyczne i dielektryczne Właściwości optyczne i dielektryczne są ściśle ze sobą związane:

Bardziej szczegółowo

Grupy przestrzenne i ich symbolika

Grupy przestrzenne i ich symbolika Grupy przestrzenne i ich symbolika Po co mi (chemikowi) znajomość symboli grup przestrzennych? Informacje zawarte w symbolu układ krystalograficzny obecność operacji symetrii punktowej (spektroskopia)

Bardziej szczegółowo

S 2, C 2h,D 2h,D 3d,D 4h, D 6h, O h

S 2, C 2h,D 2h,D 3d,D 4h, D 6h, O h Są tylko 32 grupy punktowe, które spełniają ten warunek, Można je pogrupować w 7 typów grup (spośród omówionych 12- tu), które spełniają powyższe własności S 2, C 2h,D 2h,D 3d,D 4h, D 6h, O h nazywają

Bardziej szczegółowo

Dyfrakcja. Dyfrakcja to uginanie światła (albo innych fal) przez drobne obiekty (rozmiar porównywalny z długością fali) do obszaru cienia

Dyfrakcja. Dyfrakcja to uginanie światła (albo innych fal) przez drobne obiekty (rozmiar porównywalny z długością fali) do obszaru cienia Dyfrakcja 1 Dyfrakcja Dyfrakcja to uginanie światła (albo innych fal) przez drobne obiekty (rozmiar porównywalny z długością fali) do obszaru cienia uginanie na szczelinie uginanie na krawędziach przedmiotów

Bardziej szczegółowo

Elementy teorii powierzchni metali

Elementy teorii powierzchni metali Prof. dr hab. Adam Kiejna Elementy teorii powierzchni metali Wykład dla studentów fizyki Rok akademicki 2017/18 (30 godz.) Wykład 1 Plan wykładu Struktura periodyczna kryształów, sieć odwrotna Struktura

Bardziej szczegółowo

LASERY I ICH ZASTOSOWANIE W MEDYCYNIE

LASERY I ICH ZASTOSOWANIE W MEDYCYNIE LASERY I ICH ZASTOSOWANIE W MEDYCYNIE Laboratorium Instrukcja do ćwiczenia nr 4 Temat: Modulacja światła laserowego: efekt magnetooptyczny 5.1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z metodą

Bardziej szczegółowo

10. Analiza dyfraktogramów proszkowych

10. Analiza dyfraktogramów proszkowych 10. Analiza dyfraktogramów proszkowych Celem ćwiczenia jest zapoznanie się zasadą analizy dyfraktogramów uzyskiwanych z próbek polikrystalicznych (proszków). Zwykle dyfraktometry wyposażone są w oprogramowanie

Bardziej szczegółowo

Podstawy Fizyki III Optyka z elementami fizyki współczesnej. wykład 19, Mateusz Winkowski, Łukasz Zinkiewicz

Podstawy Fizyki III Optyka z elementami fizyki współczesnej. wykład 19, Mateusz Winkowski, Łukasz Zinkiewicz Podstawy Fizyki III Optyka z elementami fizyki współczesnej wykład 9, 08.2.207 wykład: pokazy: ćwiczenia: Czesław Radzewicz Mateusz Winkowski, Łukasz Zinkiewicz Radosław Łapkiewicz Wykład 8 - przypomnienie

Bardziej szczegółowo

Fizyka elektryczność i magnetyzm

Fizyka elektryczność i magnetyzm Fizyka elektryczność i magnetyzm W5 5. Wybrane zagadnienia z optyki 5.1. Światło jako część widma fal elektromagnetycznych. Fale elektromagnetyczne, które współczesny człowiek potrafi wytwarzać, i wykorzystywać

Bardziej szczegółowo

Laboratorium z Krystalografii. 2 godz.

Laboratorium z Krystalografii. 2 godz. Uniwersytet Śląski - Instytut Chemii Zakład Krystalografii ul. Bankowa 14, pok. 132, 40-006 Katowice tel. 0323591627, e-mail: ewa.malicka@us.edu.pl opracowanie: dr Ewa Malicka Laboratorium z Krystalografii

Bardziej szczegółowo

Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 19, Radosław Chrapkiewicz, Filip Ozimek

Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 19, Radosław Chrapkiewicz, Filip Ozimek Podstawy Fizyki IV Optyka z elementami fizyki współczesnej wykład 19, 27.04.2012 wykład: pokazy: ćwiczenia: Czesław Radzewicz Radosław Chrapkiewicz, Filip Ozimek Ernest Grodner Wykład 18 - przypomnienie

Bardziej szczegółowo

Promieniowanie rentgenowskie. Podstawowe pojęcia krystalograficzne

Promieniowanie rentgenowskie. Podstawowe pojęcia krystalograficzne Promieniowanie rentgenowskie Podstawowe pojęcia krystalograficzne Krystalografia - podstawowe pojęcia Komórka elementarna (zasadnicza): najmniejszy, charakterystyczny fragment sieci przestrzennej (lub

Bardziej szczegółowo

STRUKTURA MATERIAŁÓW

STRUKTURA MATERIAŁÓW STRUKTURA MATERIAŁÓW ELEMENTY STRUKTURY MATERIAŁÓW 1. Wiązania miedzy atomami 2. Układ atomów w przestrzeni 3. Mikrostruktura 4. Makrostruktura 1. WIĄZANIA MIĘDZY ATOMAMI Siły oddziaływania między atomami

Bardziej szczegółowo

Monochromatyzacja promieniowania molibdenowej lampy rentgenowskiej

Monochromatyzacja promieniowania molibdenowej lampy rentgenowskiej Uniwersytet Śląski Instytut Chemii Zakładu Krystalografii ul. Bankowa 14, pok. 133, 40 006 Katowice tel. (032)359 1503, e-mail: izajen@wp.pl, opracowanie: dr Izabela Jendrzejewska Laboratorium z Krystalografii

Bardziej szczegółowo

WYDZIAŁ.. LABORATORIUM FIZYCZNE

WYDZIAŁ.. LABORATORIUM FIZYCZNE WSEiZ W WARSZAWIE WYDZIAŁ.. LABORATORIUM FIZYCZNE Ćw. nr 8 BADANIE ŚWIATŁA SPOLARYZOWANEGO: SPRAWDZANIE PRAWA MALUSA Warszawa 29 1. Wstęp Wiemy, że fale świetlne stanowią niewielki wycinek widma fal elektromagnetycznych

Bardziej szczegółowo

Ciała stałe. Ciała krystaliczne. Ciała amorficzne. Bardzo często mamy do czynienia z ciałami polikrystalicznymi, rzadko monokryształami.

Ciała stałe. Ciała krystaliczne. Ciała amorficzne. Bardzo często mamy do czynienia z ciałami polikrystalicznymi, rzadko monokryształami. Ciała stałe Ciała krystaliczne Ciała amorficzne Bardzo często mamy do czynienia z ciałami polikrystalicznymi, rzadko monokryształami. r T = Kryształy rosną przez regularne powtarzanie się identycznych

Bardziej szczegółowo

Metoda DSH. Dyfraktometria rentgenowska. 2. Dyfraktometr rentgenowski: - budowa anie - zastosowanie

Metoda DSH. Dyfraktometria rentgenowska. 2. Dyfraktometr rentgenowski: - budowa anie - zastosowanie Metoda DSH. Dyfraktometria rentgenowska 1. Teoria Braggów-Wulfa 2. Dyfraktometr rentgenowski: - budowa - działanie anie - zastosowanie Promieniowanie elektromagnetyczne radiowe mikrofale IR UV/VIS X γ

Bardziej szczegółowo

STRUKTURA IDEALNYCH KRYSZTAŁÓW

STRUKTURA IDEALNYCH KRYSZTAŁÓW BUDOWA WEWNĘTRZNA MATERIAŁÓW METALICZNYCH Zakres tematyczny y 1 STRUKTURA IDEALNYCH KRYSZTAŁÓW 2 1 Sieć przestrzenna kryształu TRANSLACJA WĘZŁA TRANSLACJA PROSTEJ SIECIOWEJ TRANSLACJA PŁASZCZYZNY SIECIOWEJ

Bardziej szczegółowo

S. Baran - Podstawy fizyki materii skondensowanej Dyfrakcja na kryształach. Dyfrakcja na kryształach

S. Baran - Podstawy fizyki materii skondensowanej Dyfrakcja na kryształach. Dyfrakcja na kryształach S. Baran - Podstawy fizyki materii skondensowanej Dyfrakcja na kryształach Dyfrakcja na kryształach Warunki dyfrakcji źródło: Ch. Kittel Wstęp do fizyki..., rozdz. 2, rys. 6, str. 49 Konstrukcja Ewalda

Bardziej szczegółowo

3. Operacje symetrii, macierze operacji symetrii. Grupy punktowe. Przypisywanie grupy punktowej dla zadanych obiektów

3. Operacje symetrii, macierze operacji symetrii. Grupy punktowe. Przypisywanie grupy punktowej dla zadanych obiektów 3. Operacje symetrii, macierze operacji symetrii. Grupy punktowe. Przypisywanie grupy punktowej dla zadanych obiektów Opracowanie: dr hab. inż. Jarosław Chojnacki, Politechnika Gdańska, Gdańsk 207 Każda

Bardziej szczegółowo

Właściwości optyczne materiału opisuje się za pomocą:

Właściwości optyczne materiału opisuje się za pomocą: Właściwości optyczne materiału opisuje się za pomocą: Współczynnika absorpcji, załamania i odbicia. Wielkości ś i te są od siebie wzajemnie zależne. ż Są również związane z właściwościami dielektrycznymi

Bardziej szczegółowo

Uniwersytet Śląski Instytut Chemii Zakład Krystalografii. Laboratorium z Krystalografii. 2 godz. Komórki Bravais go

Uniwersytet Śląski Instytut Chemii Zakład Krystalografii. Laboratorium z Krystalografii. 2 godz. Komórki Bravais go Uniwersytet Śląski Instytut Chemii Zakład Krystalografii Laboratorium z Krystalografii 2 godz. Komórki Bravais go Cel ćwiczenia: kształtowanie umiejętności: przyporządkowywania komórek translacyjnych Bravais

Bardziej szczegółowo

OPTYKA FALOWA. W zjawiskach takich jak interferencja, dyfrakcja i polaryzacja światło wykazuje naturę

OPTYKA FALOWA. W zjawiskach takich jak interferencja, dyfrakcja i polaryzacja światło wykazuje naturę OPTYKA FALOWA W zjawiskach takich jak interferencja, dyfrakcja i polaryzacja światło wykazuje naturę falową. W roku 8 Thomas Young wykonał doświadczenie, które pozwoliło wyznaczyć długość fali światła.

Bardziej szczegółowo

Wykład 16: Optyka falowa

Wykład 16: Optyka falowa Wykład 16: Optyka falowa Dr inż. Zbigniew Szklarski Katedra Elektroniki, paw. C-1, pok.31 szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ Zasada Huyghensa Christian Huygens 1678 r. pierwsza falowa

Bardziej szczegółowo

Dr Piotr Sitarek. Instytut Fizyki, Politechnika Wrocławska

Dr Piotr Sitarek. Instytut Fizyki, Politechnika Wrocławska Podstawy fizyki Wykład 11 Dr Piotr Sitarek Instytut Fizyki, Politechnika Wrocławska D. Halliday, R. Resnick, J.Walker: Podstawy Fizyki, tom 3, Wydawnictwa Naukowe PWN, Warszawa 2003. K.Sierański, K.Jezierski,

Bardziej szczegółowo

Polaryzacja chromatyczna

Polaryzacja chromatyczna FOTON 11, Lato 013 5 Polaryzacja chromatyczna Jerzy Ginter Uniwersytet Warszawski Zjawisko Zwykle nie zdajemy sobie sprawy, że bardzo wiele przezroczystych ciał w naszym otoczeniu jest zbudowanych z substancji

Bardziej szczegółowo

Fizyka Ciała Stałego

Fizyka Ciała Stałego Wykład III Struktura krystaliczna Fizyka Ciała Stałego Ciała stałe można podzielić na: Krystaliczne, o uporządkowanym ułożeniu atomów lub molekuł tworzącym sieć krystaliczną. Amorficzne, brak uporządkowania,

Bardziej szczegółowo

Katedra Fizyki Ciała Stałego Uniwersytetu Łódzkiego. Ćwiczenie 1 Badanie efektu Faraday a w monokryształach o strukturze granatu

Katedra Fizyki Ciała Stałego Uniwersytetu Łódzkiego. Ćwiczenie 1 Badanie efektu Faraday a w monokryształach o strukturze granatu Katedra Fizyki Ciała Stałego Uniwersytetu Łódzkiego Ćwiczenie 1 Badanie efektu Faraday a w monokryształach o strukturze granatu Cel ćwiczenia: Celem ćwiczenia jest pomiar kąta skręcenia płaszczyzny polaryzacji

Bardziej szczegółowo

Rejestracja dyfraktogramów polikrystalicznych związków. Wskaźnikowanie dyfraktogramów i wyznaczanie typu komórki Bravais go.

Rejestracja dyfraktogramów polikrystalicznych związków. Wskaźnikowanie dyfraktogramów i wyznaczanie typu komórki Bravais go. Uniwersytet Śląski Instytut Chemii Zakład Krystalografii ul. Bankowa 14, pok. 133, 40006 Katowice tel. 0323591503, email: izajen@wp.pl opracowanie: dr hab. Izabela Jendrzejewska Laboratorium z Krystalografii

Bardziej szczegółowo

Prawa optyki geometrycznej

Prawa optyki geometrycznej Optyka Podstawowe pojęcia Światłem nazywamy fale elektromagnetyczne, o długościach, na które reaguje oko ludzkie, tzn. 380-780 nm. O falowych własnościach światła świadczą takie zjawiska, jak ugięcie (dyfrakcja)

Bardziej szczegółowo

S P R A W O Z D A N I E D O ĆWICZENIA X 1 D E B Y E A SCHERRERA W Y Z N A C Z A N I E S T A Ł E J S I E C I M E T O DĄ.

S P R A W O Z D A N I E D O ĆWICZENIA X 1 D E B Y E A SCHERRERA W Y Z N A C Z A N I E S T A Ł E J S I E C I M E T O DĄ. S P R A W O Z D A N I E D O ĆWICZENIA X 1 W Y Z N A C Z A N I E S T A Ł E J S I E C I M E T O DĄ D E B Y E A SCHERRERA Wyznaczanie stałej sieci metodą Debey a Scherrera, 9 listopada 004 r. Celem doświadczenia

Bardziej szczegółowo

Problemy optyki falowej. Teoretyczne podstawy zjawisk dyfrakcji, interferencji i polaryzacji światła.

Problemy optyki falowej. Teoretyczne podstawy zjawisk dyfrakcji, interferencji i polaryzacji światła. . Teoretyczne podstawy zjawisk dyfrakcji, interferencji i polaryzacji światła. Rozwiązywanie zadań wykorzystujących poznane prawa I LO im. Stefana Żeromskiego w Lęborku 27 luty 2012 Dyfrakcja światła laserowego

Bardziej szczegółowo

ZADANIE 111 DOŚWIADCZENIE YOUNGA Z UŻYCIEM MIKROFAL

ZADANIE 111 DOŚWIADCZENIE YOUNGA Z UŻYCIEM MIKROFAL ZADANIE 111 DOŚWIADCZENIE YOUNGA Z UŻYCIEM MIKROFAL X L Rys. 1 Schemat układu doświadczalnego. Fala elektromagnetyczna (światło, mikrofale) po przejściu przez dwie blisko położone (odległe o d) szczeliny

Bardziej szczegółowo

Krystalografia. Analiza wyników rentgenowskiej analizy strukturalnej i sposób ich prezentacji

Krystalografia. Analiza wyników rentgenowskiej analizy strukturalnej i sposób ich prezentacji Krystalografia Analiza wyników rentgenowskiej analizy strukturalnej i sposób ich prezentacji Opis geometrii Symetria: kryształu: grupa przestrzenna cząsteczki: grupa punktowa Parametry geometryczne współrzędne

Bardziej szczegółowo

ROZDZIAŁ I. Symetria budowy kryształów

ROZDZIAŁ I. Symetria budowy kryształów ROZDZIAŁ I Symetria budowy kryształów I Ciała krystaliczne i amorficzne Każda substancja ciekła z wyjątkiem helu) podczas oziębiania traci swoje własności ciekłe i przechodzi w ciało stałe Jednakże proces

Bardziej szczegółowo

Budowa ciał stałych. sieć krystaliczna układy krystalograficzne sieć realna defekty wiązania w ciałach stałych

Budowa ciał stałych. sieć krystaliczna układy krystalograficzne sieć realna defekty wiązania w ciałach stałych Budowa ciał stałych sieć krystaliczna układy krystalograficzne sieć realna defekty wiązania w ciałach stałych Ciała stałe to substancje o regularnej, przestrzennej budowie krystalicznej, czyli regularnym

Bardziej szczegółowo

Skręcenie płaszczyzny polaryzacji światła w cieczach (PF13)

Skręcenie płaszczyzny polaryzacji światła w cieczach (PF13) Skręcenie płaszczyzny polaryzacji światła w cieczach (PF13) Celem ćwiczenia jest: obserwacja zjawiska skręcenia płaszczyzny polaryzacji światła w roztworach cukru, obserwacja zależności kąta skręcenia

Bardziej szczegółowo

Fizyczne Metody Badań Materiałów 2

Fizyczne Metody Badań Materiałów 2 Fizyczne Metody Badań Materiałów 2 Dr inż. Marek Chmielewski G.G. np.p.7-8 www.mif.pg.gda.pl/homepages/bzyk Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego

Bardziej szczegółowo

Zaawansowane Metody Badań Strukturalnych. Badania strukturalne materiałów Badania właściwości materiałów

Zaawansowane Metody Badań Strukturalnych. Badania strukturalne materiałów Badania właściwości materiałów Zaawansowane Metody Badań Strukturalnych Badania strukturalne materiałów Badania właściwości materiałów Zaawansowane Metody Badań Strukturalnych 1. Struktura próbki a metoda badań strukturalnych 2. Podział

Bardziej szczegółowo

Fala jest zaburzeniem, rozchodzącym się w ośrodku, przy czym żadna część ośrodka nie wykonuje zbyt dużego ruchu

Fala jest zaburzeniem, rozchodzącym się w ośrodku, przy czym żadna część ośrodka nie wykonuje zbyt dużego ruchu Ruch falowy Fala jest zaburzeniem, rozchodzącym się w ośrodku, przy czym żadna część ośrodka nie wykonuje zbyt dużego ruchu Fala rozchodzi się w przestrzeni niosąc ze sobą energię, ale niekoniecznie musi

Bardziej szczegółowo

Prawo Bragga. Różnica dróg promieni 1 i 2 wynosi: s = CB + BD: CB = BD = d sinθ

Prawo Bragga. Różnica dróg promieni 1 i 2 wynosi: s = CB + BD: CB = BD = d sinθ Prawo Bragga Prawo Bragga Prawo Bragga Różnica dróg promieni 1 i 2 wynosi: s = CB + BD: CB = BD = d sinθ d - odległość najbliższych płaszczyzn, w których są ułożone atomy, równoległych do powierzchni kryształu,

Bardziej szczegółowo

Wykład 16: Optyka falowa

Wykład 16: Optyka falowa Wykład 16: Optyka falowa Dr inż. Zbigniew Szklarski Katedra Elektroniki, paw. C-1, pok.321 szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ 1 Zasada Huyghensa Christian Huygens 1678 r. pierwsza

Bardziej szczegółowo

Metody dyfrakcyjne do wyznaczania struktury krystalicznej materiałów

Metody dyfrakcyjne do wyznaczania struktury krystalicznej materiałów Metody dyfrakcyjne do wyznaczania struktury krystalicznej materiałów prowadzący : dr inŝ. Marcin Małys (malys@mech.pw.edu.pl) dr inŝ. Wojciech Wróbel (wrobel@mech.pw.edu.pl) gdzie nas szykać: pok. 333

Bardziej szczegółowo

Ćwiczenie: "Zagadnienia optyki"

Ćwiczenie: Zagadnienia optyki Ćwiczenie: "Zagadnienia optyki" Opracowane w ramach projektu: "Wirtualne Laboratoria Fizyczne nowoczesną metodą nauczania realizowanego przez Warszawską Wyższą Szkołę Informatyki. Zakres ćwiczenia: 1.

Bardziej szczegółowo

Układy krystalograficzne

Układy krystalograficzne Uniwersytet Śląski Instytut Chemii Zakład Krystalografii Laboratorium z Krystalografii 2 godz. Układy krystalograficzne Cel ćwiczenia: kształtowanie umiejętności wyboru komórki elementarnej i przyporządkowywania

Bardziej szczegółowo

Wyznaczanie struktury krystalicznej i molekularnej wybranego związku koordynacyjnego w oparciu o rentgenowską analizę strukturalną

Wyznaczanie struktury krystalicznej i molekularnej wybranego związku koordynacyjnego w oparciu o rentgenowską analizę strukturalną INSTRUKCJA DO ĆWICZEŃ Wyznaczanie struktury krystalicznej i molekularnej wybranego związku koordynacyjnego w oparciu o rentgenowską analizę strukturalną I. Cel ćwiczenia Wyznaczenie struktury krystalicznej

Bardziej szczegółowo

Elementy teorii powierzchni metali

Elementy teorii powierzchni metali prof. dr hab. Adam Kiejna Elementy teorii powierzchni metali Wykład 2 v.16 Sieci płaskie i struktura powierzchni 1 Typy sieci dwuwymiarowych (płaskich) Przecinając monokryształ wzdłuż jednej z płaszczyzn

Bardziej szczegółowo

Rok akademicki: 2013/2014 Kod: JFT s Punkty ECTS: 4. Poziom studiów: Studia II stopnia Forma i tryb studiów: Stacjonarne

Rok akademicki: 2013/2014 Kod: JFT s Punkty ECTS: 4. Poziom studiów: Studia II stopnia Forma i tryb studiów: Stacjonarne Nazwa modułu: Struktury i symetrie ciała stałego Rok akademicki: 2013/2014 Kod: JFT-2-011-s Punkty ECTS: 4 Wydział: Fizyki i Informatyki Stosowanej Kierunek: Fizyka Techniczna Specjalność: Poziom studiów:

Bardziej szczegółowo

Ciekłe kryształy. - definicja - klasyfikacja - własności - zastosowania

Ciekłe kryształy. - definicja - klasyfikacja - własności - zastosowania Ciekłe kryształy - definicja - klasyfikacja - własności - zastosowania Nota biograficzna: Odkrywcą był austriacki botanik F. Reinitzer (1888), który został zaskoczony nienormalnym, dwustopniowym sposobem

Bardziej szczegółowo

I. PROMIENIOWANIE CIEPLNE

I. PROMIENIOWANIE CIEPLNE I. PROMIENIOWANIE CIEPLNE - lata '90 XIX wieku WSTĘP Widmo promieniowania elektromagnetycznego zakres "pokrycia" różnymi rodzajami fal elektromagnetycznych promieniowania zawartego w danej wiązce. rys.i.1.

Bardziej szczegółowo

Badanie właściwości optycznych roztworów.

Badanie właściwości optycznych roztworów. ĆWICZENIE 4 (2018), STRONA 1/6 Badanie właściwości optycznych roztworów. Cel ćwiczenia - wyznaczenie skręcalności właściwej sacharozy w roztworach wodnych oraz badanie współczynnika załamania światła Teoria

Bardziej szczegółowo

Własności optyczne materii. Jak zachowuje się światło w zetknięciu z materią?

Własności optyczne materii. Jak zachowuje się światło w zetknięciu z materią? Własności optyczne materii Jak zachowuje się światło w zetknięciu z materią? Właściwości optyczne materiału wynikają ze zjawisk: Absorpcji Załamania Odbicia Rozpraszania Własności elektrycznych Refrakcja

Bardziej szczegółowo

Opracowanie: mgr inż. Antoni Konitz, dr hab inż. Jarosław Chojnacki Politechnika Gdańska, Gdańsk 2007, 2016

Opracowanie: mgr inż. Antoni Konitz, dr hab inż. Jarosław Chojnacki Politechnika Gdańska, Gdańsk 2007, 2016 4. Stosowanie międzynarodowych symboli grup przestrzennych. Zamiana skróconych symboli Hermanna - Mauguina na symbole pełne. Określanie układu krystalograficznego, klasy krystalograficznej oraz operacji

Bardziej szczegółowo

Laboratorium z Krystalografii. 2 godz.

Laboratorium z Krystalografii. 2 godz. Uniwersytet Śląski Instytut Chemii Zakład Krystalografii Laboratorium z Krystalografii 2 godz. Zbadanie zależności intensywności linii Kα i Kβ promieniowania charakterystycznego X emitowanego przez anodę

Bardziej szczegółowo

WŁASNOŚCI FAL ELEKTROMAGNETYCZNYCH: INTERFERENCJA, DYFRAKCJA, POLARYZACJA

WŁASNOŚCI FAL ELEKTROMAGNETYCZNYCH: INTERFERENCJA, DYFRAKCJA, POLARYZACJA WŁASNOŚCI FAL ELEKTROMAGNETYCZNYCH: INTERFERENCJA, DYFRAKCJA, POLARYZACJA 1. Interferencja fal z dwóch źródeł 2. Fale koherentne i niekoherentne 3. Interferencja fal z wielu źródeł 4. Zasada Huygensa 5.

Bardziej szczegółowo

ELEMENTY OPTYKI Fale elektromagnetyczne Promieniowanie świetlne Odbicie światła Załamanie światła Dyspersja światła Polaryzacja światła Dwójłomność

ELEMENTY OPTYKI Fale elektromagnetyczne Promieniowanie świetlne Odbicie światła Załamanie światła Dyspersja światła Polaryzacja światła Dwójłomność ELEMENTY OPTYKI Fale elektromagnetyczne Promieniowanie świetlne Odbicie światła Załamanie światła Dyspersja światła Polaryzacja światła Dwójłomność Holografia FALE ELEKTROMAGNETYCZNE Fale elektromagnetyczne

Bardziej szczegółowo

Zjawisko piezoelektryczne 1. Wstęp

Zjawisko piezoelektryczne 1. Wstęp Zjawisko piezoelektryczne. Wstęp W roku 880 Piotr i Jakub Curie stwierdzili, że na powierzchni niektórych kryształów poddanych działaniu zewnętrznych naprężeń mechanicznych indukują się ładunki elektryczne,

Bardziej szczegółowo

4.Wprowadzenie do zagadnienia elastooptyki

4.Wprowadzenie do zagadnienia elastooptyki 4.Wprowadzenie do zagadnienia elastooptyki Definicja Dwójłomnością nazywamy zjawisko rozproszenia świtała na dwa promienie światła spolaryzowanego liniowo, występujące w ciałach anizotropowych. Jednak

Bardziej szczegółowo