ZWIERCIADŁA WYMAGANIA STAWIANE ZWIERCIADŁOM

Wielkość: px
Rozpocząć pokaz od strony:

Download "ZWIERCIADŁA WYMAGANIA STAWIANE ZWIERCIADŁOM"

Transkrypt

1 ZWIERCIADŁA WYMAGANIA STAWIANE ZWIERCIADŁOM. Współczyk odbca R ~ 90%.. Odpore mechacze o dostatecze dużej adhezj do podłoża. 3. Stable w czase. PODZIAŁ ZWIERCIADEŁ ZE WZGĘDU NA ZASTOSOWANIE (a) Zwercadła do urządzeń optyczych (zwercadła zewętrze) (b) Zwercadła kosmetycze (zwercadła wewętrze) ZWIERCIADŁA DO URZĄDZEŃ OPTYCZNYC I. ZWIERCIADŁA METAOWE Współczyk odbca zwercadeł cekowarstwowych zawsze wyższy ż współczyk odbca dla powerzch wypolerowaych wykoaych z tych samych metal. II. ZWIERCIADA METAOWE POKRYTE WARSTWĄ DIEEKTRYCZNĄ Ceka warstwa delektrycza o grubośc d λ peł rolę zabezpeczea mechaczego oraz zwększa współczyk odbca, p.: Al AlO3 ( λ ) Al MgF ( λ ), CeO ( λ ) III. ZWIERCIADŁA DIEEKTRYCZNE

2 Ad I. ZWIERCIADŁA METAOWE [Al] - powszeche stosowae zalety: duże odbce w zakrese UV, obszaru wdzalego, podczerwe (IR), dobra adhezja do welu materałów, także tworzyw, a powerzch tworzy sę samorzute warstwa zabezpeczająca tleku Al, łatwość tworzea pokryca wykoaego z Al. [Ag] ajwyższy współczyk odbca (95 99%) w obszarze wdzalym (spośród zaych metal). Wada podstawowa: ulega zmatoweu przy ekspozycj w powetrzu (tworzy sę sarczek srebra). Moża stosować w praktyce przez klka mesęcy, po czym warstwę aparować poowe. [Au] złoto jest prawdopodobe ajlepszym materałem a zwercadła pracujące w podczerwe. Wady: odbce gwałtowe spada pożej λ 0, 7 µ m warstwy złota a szkle: mała adhezja twardość podate a uszkodzea mechacze (w praktyce dla zwększea adhezj stosuje sę Cr Au lub NCr Au) [Rh][Pt] współczyk odbca zacze ższy ż Au lub Ag. W obszarze wdzalym awet R<80%. Zalety: bardzo duża adhezja, bardzo duża odporość a korozję czyk atmosferycze, stable w czase.

3 Zależość współczyka odbca R od długośc fal λ dla różych metal.

4 AD II. ZWIERCIADŁA METAOWE Z POKRYCIEM DIEEKTRYCZNYM Jak zwększyć współczyk odbca dla zwercadeł metalowych? przez pokryce metalu układem warstw o grubośc optyczej ( λ ) p.: przykład: (Al) 0,8 5,99 (MgF ),38 (CeO ) Rys. Zależość współczyka odbca R od długośc fal λ dla czystego alumum oraz dla alumum z aesoym dwoma param ćwerćfalowych warstw MgF CeO.

5 Kedy wysoka wartość współczyka odbca ( R blske 00%) ma stote zaczee? w bardzej skomplkowaych przyrządach optyczych gdze mamy wele odbć:

6 Ad.III. ZWIERCIADŁA DIEEKTRYCZNE Dla zwercadeł metalowych mamy: R T A gdze: R-odbce, T - trasmsja, A absorpcja. Poeważ A 0 mamy straty eerg padającej >>agrzewae sę lustra. Moża wykoać zwercadła o wysokm R oraz A 0 w oparcu o pokryca delektrycze (bezabsorpcyje). dea : 0s R max dla 0s d (m λ )

7 Współczyk odbca zwercadeł delektryczych wykoaych a baze rożych materałów obszar wdzzly podczerweń dla szkła,5 R % szkło ( λ ) ZS,35 R 33% szkło ( λ ) TO,6 R 0% szkło ( λ ) szkło ( λ ) S 3,6 R 63% Ge R 69% szkło ( λ ) Te 5 R 79% Wosek:. Aby zwększyć odbce śwatła od delektryka ależy go pokryć warstwą o wysokm współczyku odbca >moża zwększyć odbce do R ~ 80%.. Aby uzyskać współczyk odbca R~90% ależy stosować welowarstwowe pokryca delektrycze.

8 WIEOWARSTWOWE ZWIERCIADŁA DIEEKTRYCZNE IDEA > ależy wykoać pokryca podłoża eparzystą loścą warstw ( 3,5,7,9...) w/g schematu: przy czym:,3,5,7... ) ( λ m d ) ( λ m d m,,3,.. Wypadkowy współczyk odbca takego układu /Epste Turer/: max s o s o s o s o R Nech: eff -efektywy współczyk załamaa (wysok), wówczas: Uwaga! Welowarstwowe pokryce zastępujemy jedą warstwą!!!

9 R max eff eff o o s s Przykład: Zwercadło delektrycze a dł. fal 0,6 µm a baze: ZS ( ZS,3) kroltu: Na 3 AlF 6 (,3) a podłożu szklaym s,5. warstwa D R 3%,3 3 warstwy D R 69,5% eff 3,9 5 warstw D R 89,% eff 6,7 7 warstw D R 96,% eff, 9 warstw D R 98,8% eff 9, Krzywe teoretycze R(λ) dla zwercadeł delektryczych o różej lośc warstw (3,5,7,9), λ każda, λ max 60 m. o grubośc optyczej ( )

10 Zależość λ R 0 dla układu 9 ( ) :,35 ( ZS ),,35 ( Na3 AlF6 ) λ λ. Szerokość pasm o wysokm współczyku odbca wyos: g π s, gdze λ 0 g. λ czyl dla: -szej strefy: 3-cej strefy: 5-tej strefy: g 3 g 5 g ZWIERCIADŁA DIEEKTRYCZNE PODSUMOWANIE: ) Dla welowarstwowych pokryć delektryczych moża uzyskać bardzo wysoke współczyk odbca R ~ 00%. )Absorpcja dla zwercadeł delektryczych A 0! Może występować jedak rozpraszae dyfuzyje śwatła a welu warstwach zwercadła, które powoduje, że R T <. W praktyce A0,05 0,% zwązaa z rozpraszaem dyfuzyjym. 3)Zwercadła delektrycze pracują w określoych przedzałach wdma. ) Wypadkowy współczyk odbca welowarstwowego zwercadła delektryczego zależy od lośc użytych warstw, o grubośc optyczej d ( λ ) Jeśl to R

11 ZWIERCIADŁA ZASTOSOWANIA.Zwercadła o współczyku odbca R 00% warstw p.: R 99,9% (Sb S 3 ),7, dla λ µm (CaF ), warstw p.: dla λ 0,63µm R 99,8% (ZS),3, (ThOF ),5.Fltry terferecyje a)metalowe: Warstwy półprzepuszczale b) delektrycze: Rys. Fltr metalowy Rys. Fltr delektryczy

12 3.Zwercadła półprzepuszczale Rys. Zwercadło półprzepuszczale (dzelk śwatła). Zwercadła laserowe Rys. Układ zwercadeł w laserze. 5. Zme lustra Cold ght Reflectors (-CR-) dea: Rys. Zwercadło projektora flmowego.

13 Wymagaa stawae zmym lustrom: ) Wysok współczyk odbca w obszarze wdzalym wdma dla (00 < λ < 700 m) R > 95 98%. ) Wysok współczyk trasmsj dla podczerwe, tj. dla λ m. 3) Absorpcja rozpraszae w warstwach < % ) Duża stablość termcza warstw dla T > C. 5) Czas życa ~ 5000 h. W praktyce aparowuje sę lustra 9 3 warstwowe (komproms mędzy stawaym wymagaam a stopem złożoośc lustra) Przykład: - warstwowe zme lustro: Rys. Rozkład warstw dla - warstwowego zmego lustra a podłożu szklaym. Vs IR Rys. Charakterystyka spektrala zmego lustra.

14 6.Welowarstwowe zwercadła dla podczerwe IR REFECTING MUTIAYER FIMS Rys. Charakterystyka spektrala zwercadła dla podczerwe Zastosowae:w celu zwększea wydajośc źródeł śwatła UWAGA: wększość eerg wypromeowaej przez lampy halogeowe przypada a obszar podczerwe >>lampy są wec mało-wydaje Vs Rys. Charakterystyka spektrala welowarstwowego zwercadła delektryczego zwększającego odbce śwatła w podczerwe. - współczyk odbca promeowaa podczerwoego ~ 80%! - współczyk przepuszczalośc dla obszaru wdzalego>90%

15 Promeowae podczerwoe po odbcu od zwercadła ogskowae a włóke lampy halogeowej > astępuje wzrost temperatury włóka!!! Moża zaoszczędzć ~ 0% eerg elektryczej przy tym samym strumeu śwatła! Przykład: źródło 00W (ze zwercadłem) <> źródło 500 W źródło 50 W (ze zwercadłem) <> źródło 300 W Rys. Żarówka dla lumatorów z welowarstwowym zwercadłem delektryczym. W praktyce wytwarza sę 3 typy zmych luster: mękke zme lustra (soft CR) MgF MgF (,35) / ZS (,8) półtwarde zme lustra (sem hard CR) SO (,6) / ZS (,8) twarde zme lustra (hard CR) SO (,6) / TO (,) (Najlepsze parametry tz. chemcza fzycza stablość, dług czas życa) Zastosowae zmych luster a.projektory dla kotechk, projektory dla slajdów oraz mkroflmów, b.dla układów ośwetlających a salach operacyjych, ośwetlacze detystycze, c.w edoskopach śwatłowodowych, d.w ośwetlaczach mkroskopowych, Zabezpeczae przed przegrzaem tkaek bologczych Uwaga: Wprowadzee lamp halogeowych do 5-cm reflektorów spowodowało wzrost zapotrzebowaa a zme lustra ~ szt./rok! Rys. Reflektor halogeowy z zmym lustrem

16 7.Zwercadła samochodowe a) klasycze zwercadła: płaske, sferycze asferycze Rys. Przykładowe kostrukcje zwercadeł samochodowych b) o regulowaym współczyku odbca sta : R 70% dla U 0 V sta : R 0% dla U, V Rys. Układ zwercadła samochodowego o regulowaym współczyku odbca śwatła

CIENKIE WARSTWY prof. dr hab. inż. Krzysztof Patorski

CIENKIE WARSTWY prof. dr hab. inż. Krzysztof Patorski CIENKIE WARSTWY prof. dr hab. inż. Krzysztof Patorski Nakładając na pewne podłoże (np. powierzchnię soczewki) kilka warstw dielektrycznych (przez naparowanie / napylenie) o odpowiednio dobranych współczynnikach

Bardziej szczegółowo

OBLICZANIE NIEPEWNOŚCI METODĄ TYPU B

OBLICZANIE NIEPEWNOŚCI METODĄ TYPU B OBLICZANIE NIEPEWNOŚCI METODĄ TYPU B W przypadku gdy e występuje statystyczy rozrzut wyków (wszystke pomary dają te sam wyk epewość pomaru wyzaczamy w y sposób. Główą przyczyą epewośc pomaru jest epewość

Bardziej szczegółowo

Pomiary parametrów napięć i prądów przemiennych

Pomiary parametrów napięć i prądów przemiennych Ćwczee r 3 Pomary parametrów apęć prądów przemeych Cel ćwczea: zapozae z pomaram wartośc uteczej, średej, współczyków kształtu, szczytu, zekształceń oraz mocy czyej, berej, pozorej współczyka cosϕ w obwodach

Bardziej szczegółowo

Statystyczna analiza miesięcznych zmian współczynnika szkodowości kredytów hipotecznych

Statystyczna analiza miesięcznych zmian współczynnika szkodowości kredytów hipotecznych dr Ewa Wycka Wyższa Szkoła Bakowa w Gdańsku Wtold Komorowsk, Rafał Gatowsk TZ SKOK S.A. Statystycza aalza mesęczych zma współczyka szkodowośc kredytów hpoteczych Wskaźk szkodowośc jest marą obcążea kwoty/lczby

Bardziej szczegółowo

Modelowanie i Analiza Danych Przestrzennych

Modelowanie i Analiza Danych Przestrzennych Modelowae Aalza Daych Przestrzeych Wykład 8 Adrze Leśak Katedra Geoformatyk Iformatyk Stosowae Akadema Górczo-Hutcza w Krakowe Jaką postać ma warogram daych z tredem? Moża o wylczyć teoretycze prostego

Bardziej szczegółowo

Planowanie eksperymentu pomiarowego I

Planowanie eksperymentu pomiarowego I POLITECHNIKA ŚLĄSKA W GLIWICACH WYDZIAŁ INŻYNIERII ŚRODOWISKA ENERGETYKI INSTYTUT MASZYN URZĄDZEŃ ENERGETYCZNYCH Plaowae eksperymetu pomarowego I Laboratorum merctwa (M 0) Opracował: dr ż. Grzegorz Wcak

Bardziej szczegółowo

Projekt 3 Analiza masowa

Projekt 3 Analiza masowa Wydzał Mechaczy Eergetyk Lotctwa Poltechk Warszawskej - Zakład Saolotów Śgłowców Projekt 3 Aalza asowa Nejszy projekt składa sę z dwóch częśc. Perwsza polega projekce wstępy wętrza kaby (kadłuba). Druga

Bardziej szczegółowo

Statystyczne charakterystyki liczbowe szeregu

Statystyczne charakterystyki liczbowe szeregu Statystycze charakterystyk lczbowe szeregu Aalzę badaej zmeej moża uzyskać posługując sę parametram opsowym aczej azywaym statystyczym charakterystykam lczbowym szeregu. Sytetycza charakterystyka zborowośc

Bardziej szczegółowo

Jego zależy od wysokości i częstotliwości wypłat kuponów odsetkowych, ceny wykupu, oczekiwanej stopy zwrotu oraz zapłaconej ceny za obligację.

Jego zależy od wysokości i częstotliwości wypłat kuponów odsetkowych, ceny wykupu, oczekiwanej stopy zwrotu oraz zapłaconej ceny za obligację. Wrażlwość oblgacj Jedym z czyków ryzyka westowaa w oblgacje jest zmeość rykowych stóp procetowych. Iżyera fasowa dyspouje metodam pozwalającym zabezpeczyć portfel przed egatywym skutkam zma stóp procetowych.

Bardziej szczegółowo

D P. Rys. 1 Schemat hydrauliczny obliczeń filtracji przez zaporę ziemną z drenażem

D P. Rys. 1 Schemat hydrauliczny obliczeń filtracji przez zaporę ziemną z drenażem Kostrukcje budowle zeme OBLICZENIA WSPÓŁCZYNNIKA STATECZNOŚCI SKAPY ODWODNEJ METODĄ FELLENIUSA DLA ZAPOY ZIEMNEJ BEZ ELEMENTÓW USZCZELNIAJĄCYCH Z DENAŻEM Zapora zema posadowoa a podłożu przepuszczalym

Bardziej szczegółowo

PODSTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH

PODSTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH PODTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH I Pracowa IF UJ Luy 03 PODRĘCZNIKI Wsęp do aalzy błędu pomarowego Joh R. Taylor Wydawcwo Naukowe PWN Warszawa 999 I Pracowa

Bardziej szczegółowo

LABORATORIUM FIZYKI PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ W NYSIE

LABORATORIUM FIZYKI PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ W NYSIE LABORATORIUM FIZYKI PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ W NYSIE Ćwiczenie nr 7 Temat: Pomiar kąta załamania i kąta odbicia światła. Sposoby korekcji wad wzroku. 1. Wprowadzenie Zestaw ćwiczeniowy został

Bardziej szczegółowo

Współczynnik przenikania ciepła U v. 4.00

Współczynnik przenikania ciepła U v. 4.00 Współczynnk przenkana cepła U v. 4.00 1 WYMAGANIA Maksymalne wartośc współczynnków przenkana cepła U dla ścan, stropów, stropodachów, oken drzw balkonowych podano w załącznku do Rozporządzena Mnstra Infrastruktury

Bardziej szczegółowo

Podstawy opracowania wyników pomiarowych, analiza błędów

Podstawy opracowania wyników pomiarowych, analiza błędów Podstawy opracowaa wyków pomarowych, aalza błędów I Pracowa Fzycza IF UJ Grzegorz Zuzel Lteratura I Pracowa fzycza Pod redakcją Adrzeja Magery Istytut Fzyk UJ Kraków 2006 Wstęp do aalzy błędu pomarowego

Bardziej szczegółowo

Podstawy analizy niepewności pomiarowych (I Pracownia Fizyki)

Podstawy analizy niepewności pomiarowych (I Pracownia Fizyki) Podstawy aalzy epewośc pomarowych (I Pracowa Fzyk) Potr Cygak Zakład Fzyk Naostruktur Naotecholog Istytut Fzyk UJ Pok. 47 Tel. 0-663-5838 e-mal: potr.cygak@uj.edu.pl Potr Cygak 008 Co to jest błąd pomarowy?

Bardziej szczegółowo

TESTY NORMALNOŚCI. ( Cecha X populacji ma rozkład normalny). Hipoteza alternatywna H1( Cecha X populacji nie ma rozkładu normalnego).

TESTY NORMALNOŚCI. ( Cecha X populacji ma rozkład normalny). Hipoteza alternatywna H1( Cecha X populacji nie ma rozkładu normalnego). TESTY NORMALNOŚCI Test zgodośc Hpoteza zerowa H 0 ( Cecha X populacj ma rozkład ormaly). Hpoteza alteratywa H1( Cecha X populacj e ma rozkładu ormalego). Weryfkacja powyższych hpotez za pomocą tzw. testu

Bardziej szczegółowo

Profile aluminiowe serii LB 1

Profile aluminiowe serii LB 1 Profile aluminiowe serii LB PARAMETRY TECHNICZNE WG DIN EN 2020- Stop AL Mg Si 0,5 F25 Materiał numer Nr 3.3206.72 Właściwości mechaniczne: Wytrzymałość na rozciąganie Rm; min. 2 N/mm 2 Granica plastyczności

Bardziej szczegółowo

Fotonika. Plan: Wykład 9: Interferencja w układach warstwowych

Fotonika. Plan: Wykład 9: Interferencja w układach warstwowych Fotonika Wykład 9: Interferencja w układach warstwowych Plan: metody macierzowe - macierze przejścia i rozpraszania Proste układy warstwowe powłoki antyrefleksyjne interferometr Fabry-Pérot tunelowanie

Bardziej szczegółowo

MATERIAŁ ELWOM 25. Mikrostruktura kompozytu W-Cu25: ciemne obszary miedzi na tle jasnego szkieletu wolframowego; pow. 250x.

MATERIAŁ ELWOM 25. Mikrostruktura kompozytu W-Cu25: ciemne obszary miedzi na tle jasnego szkieletu wolframowego; pow. 250x. MATERIAŁ ELWOM 25.! ELWOM 25 jest dwufazowym materiałem kompozytowym wolfram-miedź, przeznaczonym do obróbki elektroerozyjnej węglików spiekanych. Kompozyt ten jest wykonany z drobnoziarnistego proszku

Bardziej szczegółowo

Permutacje. } r ( ) ( ) ( ) 1 2 n. f = M. Przybycień Matematyczne Metody Fizyki I Wykład 2-2

Permutacje. } r ( ) ( ) ( ) 1 2 n. f = M. Przybycień Matematyczne Metody Fizyki I Wykład 2-2 Permutacje { 2,,..., } Defcja: Permutacją zboru lczb azywamy dowolą różowartoścową fukcję określoą a tym zborze o wartoścach w tym zborze. Uwaga: Lczba wszystkch permutacj wyos! Permutacje zapsujemy w

Bardziej szczegółowo

Kwantowa natura promieniowania elektromagnetycznego

Kwantowa natura promieniowania elektromagnetycznego Efekt Comptona. Kwantowa natura promenowana elektromagnetycznego Zadane 1. Foton jest rozpraszany na swobodnym elektrone. Wyznaczyć zmanę długośc fal fotonu w wynku rozproszena. Poneważ układ foton swobodny

Bardziej szczegółowo

Chemia nieorganiczna. Copyright 2000 by Harcourt, Inc. All rights reserved.

Chemia nieorganiczna. Copyright 2000 by Harcourt, Inc. All rights reserved. Chemia nieorganiczna 1. Układ okresowy metale i niemetale 2. Oddziaływania inter- i intramolekularne 3. Ciała stałe rodzaje sieci krystalicznych 4. Przewodnictwo ciał stałych Pierwiastki 1 1 H 3 Li 11

Bardziej szczegółowo

Portfel złożony z wielu papierów wartościowych

Portfel złożony z wielu papierów wartościowych Portfel westycyy ćwczea Na odst. Wtold Jurek: Kostrukca aalza, rozdzał 4 dr Mchał Kooczyńsk Portfel złożoy z welu aerów wartoścowych. Zwrot ryzyko Ozaczea: w kwota ulokowaa rzez westora w aery wartoścowe

Bardziej szczegółowo

INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Z WYTRZYMAŁOŚCI MATERIAŁÓW

INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Z WYTRZYMAŁOŚCI MATERIAŁÓW INSTYTUT MASZYN I URZĄDZEŃ ENERGETYCZNYCH Politechika Śląska w Gliwicach INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Z WYTRZYMAŁOŚCI MATERIAŁÓW BADANIE ODKSZTAŁCEŃ SPRĘŻYNY ŚRUBOWEJ Opracował: Dr iż. Grzegorz

Bardziej szczegółowo

Stanisław Cichocki Natalia Nehrebecka. Zajęcia 7-8

Stanisław Cichocki Natalia Nehrebecka. Zajęcia 7-8 Stasław Cchock Natala Nehreecka Zajęca 7-8 . Testowae łączej stotośc wyraych regresorów. Założea klasyczego modelu regresj lowej 3. Własośc estymatora MNK w KMRL Wartość oczekwaa eocążoość estymatora Waracja

Bardziej szczegółowo

Włókna na średnią i daleką podczerwień, z eliptycznym rdzeniem oraz typu D. Mid- and Long- Infrared as well as Elliptical Core and D-shape Fibers

Włókna na średnią i daleką podczerwień, z eliptycznym rdzeniem oraz typu D. Mid- and Long- Infrared as well as Elliptical Core and D-shape Fibers Włókna na średnią i daleką podczerwień, z eliptycznym rdzeniem oraz typu D Mid- and Long- Infrared as well as Elliptical Core and D-shape Fibers Wprowadzenie Włókna ze szkieł domieszkowanych: HMFG HMGG

Bardziej szczegółowo

N ( µ, σ ). Wyznacz estymatory parametrów µ i. Y które są niezależnymi zmiennymi losowymi.

N ( µ, σ ). Wyznacz estymatory parametrów µ i. Y które są niezależnymi zmiennymi losowymi. 3 Metody estymacj N ( µ, σ ) Wyzacz estymatory parametrów µ 3 Populacja geerala ma rozład ormaly mometów wyorzystując perwszy momet zwyły drug momet cetraly z prób σ metodą 3 Zmea losowa ma rozład geometryczy

Bardziej szczegółowo

Podstawowe zadanie statystyki. Statystyczna interpretacja wyników eksperymentu. Zalety statystyki II. Zalety statystyki

Podstawowe zadanie statystyki. Statystyczna interpretacja wyników eksperymentu. Zalety statystyki II. Zalety statystyki tatystycza terpretacja wyków eksperymetu Małgorzata Jakubowska Katedra Chem Aaltyczej Wydzał IŜyer Materałowej Ceramk AGH Podstawowe zadae statystyk tatystyka to uwersale łatwo dostępe arzędze, które pomaga

Bardziej szczegółowo

Wstęp do fizyki budowli

Wstęp do fizyki budowli Wstęp do fzyk budowl Xella Polska sp. z o.o. 0.06.200 Plan prezentacj Izolacyjność termczna Przenkane pary wodnej Podcągane kaplarne Wentylacja budynków Xella Polska sp. z o.o. 0.06.200 2 Współczynnk przewodzena

Bardziej szczegółowo

POMIAR WSPÓŁCZYNNIKA POCHŁANIANIA PROMIENIOWANIA γ

POMIAR WSPÓŁCZYNNIKA POCHŁANIANIA PROMIENIOWANIA γ Ćwczee 56 POMIAR WSPÓŁCZYNNIKA POCHŁANIANIA PROMIENIOWANIA γ 56.. Wadomośc ogóle Rozpatrzmy wąską skolmowaą wązkę prome γ o atężeu I 0, padającą a płytkę substacj o grubośc x (rys. 56.). Natężee promeowaa

Bardziej szczegółowo

LUSTRA ANTYCZNE LUSTRA POSTARZANE. jako element ekskluzywny we wnętrzach

LUSTRA ANTYCZNE LUSTRA POSTARZANE. jako element ekskluzywny we wnętrzach LUSTRA ANTYCZNE LUSTRA POSTARZANE jako element ekskluzywny we wnętrzach PROJEKTY I REALIZACJE 2016/2017 SZTUKA LUSTRZANEGO ODBICIA Dzieje lustra liczą tysiące lat, ale o tak doskonałym odbiciu rzeczywistości

Bardziej szczegółowo

W zadaniu nie ma polecenia wyznaczania estymatora nieobciążonego o minimalnej wariancji. σ σ σ σ σ = =

W zadaniu nie ma polecenia wyznaczania estymatora nieobciążonego o minimalnej wariancji. σ σ σ σ σ = = 4. Na podstawe erówośc Cramera Rao wyzacz dole ograczee dla waracj eobcążoego estymatora waracj σ w rozkładze ormalym N(0, σ ). W zadau e ma polecea wyzaczaa estymatora eobcążoego o mmalej waracj dla σ,

Bardziej szczegółowo

Tablica Galtona. Mechaniczny model rozkładu normalnego (M10)

Tablica Galtona. Mechaniczny model rozkładu normalnego (M10) Tablca Galtoa. Mechaczy model rozkładu ormalego (M) I. Zestaw przyrządów: Tablca Galtoa, komplet kulek sztuk. II. Wykoae pomarów.. Wykoać 8 pomarów, wrzucając kulk pojedyczo.. Uporządkować wyk pomarów,

Bardziej szczegółowo

TARCIE CIĘGIEN O POWIERZCHNIĘ WALCOWĄ WZÓR EULERA

TARCIE CIĘGIEN O POWIERZCHNIĘ WALCOWĄ WZÓR EULERA Ćwczee 8 TARCIE CIĘGIEN O POWIERZCHNIĘ WALCOWĄ WZÓR EULERA 8.. Cel ćwczea Celem ćwczea jest wyzaczee statyczego współczyka tarca pomędzy walcową powerzchą cała a opasującą je lą. Poadto a drodze eksperymetalej

Bardziej szczegółowo

!!!DEL są źródłami światła niespójnego.

!!!DEL są źródłami światła niespójnego. Dioda elektroluminescencyjna DEL Element czynny DEL to złącze p-n. Gdy zostanie ono spolaryzowane w kierunku przewodzenia, to w obszarze typu p, w warstwie o grubości rzędu 1µm, wytwarza się stan inwersji

Bardziej szczegółowo

08 Model planowania sieci dostaw 1Po_2Pr_KT+KM

08 Model planowania sieci dostaw 1Po_2Pr_KT+KM Nr Tytuł: Autor: 08 Model plaowaa sec dostaw 1Po_2Pr_KT+KM Potr SAWICKI Zakład Systeów Trasportowych WIT PP potr.sawck@put.poza.pl potr.sawck.pracowk.put.poza.pl www.facebook.co/potr.sawck.put Przedot:

Bardziej szczegółowo

Spektrometr XRF THICK 800A

Spektrometr XRF THICK 800A Spektrometr XRF THICK 800A DO POMIARU GRUBOŚCI POWŁOK GALWANIZNYCH THICK 800A spektrometr XRF do szybkich, nieniszczących pomiarów grubości powłok i ich składu. Zaprojektowany do pomiaru grubości warstw

Bardziej szczegółowo

Zadanie 1. Rzucamy symetryczną monetą tak długo, aż w dwóch kolejnych rzutach pojawią się,,reszki. Oblicz wartość oczekiwaną liczby wykonanych rzutów.

Zadanie 1. Rzucamy symetryczną monetą tak długo, aż w dwóch kolejnych rzutach pojawią się,,reszki. Oblicz wartość oczekiwaną liczby wykonanych rzutów. Pradopodobeństo statystya 6..3r. Zadae. Rzucamy symetryczą moetą ta długo aż dóch olejych rzutach pojaą sę resz. Oblcz artość oczeaą lczby yoaych rzutó. (A) 7 (B) 8 (C) 9 (D) (E) 6 Wsazóa: jeśl rzuce umer

Bardziej szczegółowo

THICK 800A DO POMIARU GRUBOŚCI POWŁOK. THICK 800A spektrometr XRF do szybkich, nieniszczących pomiarów grubości powłok i ich składu.

THICK 800A DO POMIARU GRUBOŚCI POWŁOK. THICK 800A spektrometr XRF do szybkich, nieniszczących pomiarów grubości powłok i ich składu. THICK 800A DO POMIARU GRUBOŚCI POWŁOK THICK 800A spektrometr XRF do szybkich, nieniszczących pomiarów grubości powłok i ich składu. Zoptymalizowany do pomiaru grubości warstw Detektor Si-PIN o rozdzielczości

Bardziej szczegółowo

Światłowody II. Właściwości i zastosowania światłowodów. Wprowadzenie. Uwaga: Wykład zawiera podsumowanie wiadomości z wykładu Światłowody I

Światłowody II. Właściwości i zastosowania światłowodów. Wprowadzenie. Uwaga: Wykład zawiera podsumowanie wiadomości z wykładu Światłowody I Światłowody II Właściwości i zastosowaia światłowodów Wprowadzeie Uwaga: Wykład zawiera podsumowaie wiadomości z wykładu Światłowody I Prezetacja zawiera kopie olii omawiaych a wykładzie. Niiejsze opracowaie

Bardziej szczegółowo

Podstawowe pojęcia optyki geometrycznej. c prędkość światła w próżni v < c prędkość światła w danym ośrodku

Podstawowe pojęcia optyki geometrycznej. c prędkość światła w próżni v < c prędkość światła w danym ośrodku Optyka geometrycza Podstawowe pojęcia optyki geometryczej Bezwzględy współczyik załamaia c prędkość światła w próżi v < c prędkość światła w daym ośrodku c v > 1 Aksjomaty Światło w ośrodku jedorodym propaguje

Bardziej szczegółowo

LASERY NA CIELE STAŁYM BERNARD ZIĘTEK

LASERY NA CIELE STAŁYM BERNARD ZIĘTEK LASERY NA CIELE STAŁYM BERNARD ZIĘTEK TEK Lasery na ciele stałym lasery, których ośrodek czynny jest: -kryształem i ciałem amorficznym (również proszkiem), - dielektrykiem i półprzewodnikiem. 2 Podział

Bardziej szczegółowo

UOGÓLNIONA ANALIZA WRAŻLIWOŚCI ZYSKU W PRZEDSIĘBIORSTWIE PRODUKUJĄCYM N-ASORTYMENTÓW. 1. Wprowadzenie

UOGÓLNIONA ANALIZA WRAŻLIWOŚCI ZYSKU W PRZEDSIĘBIORSTWIE PRODUKUJĄCYM N-ASORTYMENTÓW. 1. Wprowadzenie B A D A N I A O P E R A C Y J N E I D E C Y J E Nr 2 2007 Aa ĆWIĄKAŁA-MAŁYS*, Woletta NOWAK* UOGÓLNIONA ANALIA WRAŻLIWOŚCI YSKU W PREDSIĘBIORSTWIE PRODUKUJĄCYM N-ASORTYMENTÓW Przedstawoo ajważejsze elemety

Bardziej szczegółowo

Propagacja wielodrogowa. Paweł Kułakowski

Propagacja wielodrogowa. Paweł Kułakowski Propagacja welodrogowa Paweł Kułakowsk Pla wykładu. Propagacja welodrogowa ops zjawska w dzedze czasu częstotlwośc przypadek propagacj przyzemej. Zak sygału radowego 3. Iterferecje mędzysymbolowe . Propagacja

Bardziej szczegółowo

ź Ś ś ś Ś Ś ś ś ś ś ś ś ź ś ś Ś Ś Ś źś Ń Ś ś Ą Ź ś ś ś ś Ś ś ś Ą Ś Ą Ą ś ś Ś Ś ść ś Ś ś ś Ś ś ś ś ź ś Ś Ś Ś Ś ś Ś Ź ś ś ś ś ś Ś ś Ś ć ć Ś Ś Ą ć ć Ś Ś Ś ś Ś ś Ę Ś Ę ś Ś Ś Ś Ś ś ś ś Ś Ś Ś Ś ś ś ć Ć Ę Ś Ś

Bardziej szczegółowo

PRZECIWZUŻYCIOWE POWŁOKI CERAMICZNO-METALOWE NANOSZONE NA ELEMENT SILNIKÓW SPALINOWYCH

PRZECIWZUŻYCIOWE POWŁOKI CERAMICZNO-METALOWE NANOSZONE NA ELEMENT SILNIKÓW SPALINOWYCH PRZECIWZUŻYCIOWE POWŁOKI CERAMICZNO-METALOWE NANOSZONE NA ELEMENT SILNIKÓW SPALINOWYCH AUTOR: Michał Folwarski PROMOTOR PRACY: Dr inż. Marcin Kot UCZELNIA: Akademia Górniczo-Hutnicza Im. Stanisława Staszica

Bardziej szczegółowo

Sprawdzenie stateczności skarpy wykopu pod składowisko odpadów komunalnych

Sprawdzenie stateczności skarpy wykopu pod składowisko odpadów komunalnych Sprawdzee stateczośc skarpy wykopu pod składowsko odpadów koualych Ustalee wartośc współczyka stateczośc wykoae zostae uproszczoą etodą Bshopa, w oparcu o poższą forułę: [ W s( α )] ( φ ) ( φ ) W ta F

Bardziej szczegółowo

Optyka kurs wyrównawczy optyka geometryczna przyrządy optyczne, aberracje. 2011 r.

Optyka kurs wyrównawczy optyka geometryczna przyrządy optyczne, aberracje. 2011 r. Optyka kurs wyrówawczy optyka geometrycza przyrządy optycze, aberracje 0 r. Przyrządy do obserwcji okiem Gdy obserwujemy okiem, to waże jest powiększeie kątowe Powiększeie liiowe w przypadku teleskopu

Bardziej szczegółowo

VI. Elementy techniki, lasery

VI. Elementy techniki, lasery Światłowody VI. Elementy techniki, lasery BERNARD ZIĘTEK http://www.fizyka.umk.pl www.fizyka.umk.pl/~ /~bezet a) Sprzęgacze czołowe 1. Sprzęgacze światłowodowe (czołowe, boczne, stałe, rozłączalne) Złącza,

Bardziej szczegółowo

Elementy arytmetyki komputerowej

Elementy arytmetyki komputerowej Elemety arytmetyk komputerowej cz. I Elemety systemów lczbowych /materał pomocczy do wykładu Iformatyka sem II/ Sps treśc. Wprowadzee.... Wstępe uwag o systemach lczbowych... 3. Przegląd wybraych systemów

Bardziej szczegółowo

Chemia nieorganiczna. Pierwiastki. niemetale Be. 27 Co. 28 Ni. 26 Fe. 29 Cu. 45 Rh. 44 Ru. 47 Ag. 46 Pd. 78 Pt. 76 Os.

Chemia nieorganiczna. Pierwiastki. niemetale Be. 27 Co. 28 Ni. 26 Fe. 29 Cu. 45 Rh. 44 Ru. 47 Ag. 46 Pd. 78 Pt. 76 Os. Chemia nieorganiczna 1. Układ okresowy metale i niemetale 2. Oddziaływania inter- i intramolekularne 3. Ciała stałe rodzaje sieci krystalicznych 4. Przewodnictwo ciał stałych Copyright 2000 by Harcourt,

Bardziej szczegółowo

SPRAWDZANIE PRAWA MALUSA

SPRAWDZANIE PRAWA MALUSA INSTYTUT ELEKTRONIKI I SYSTEMÓW STEROWANIA WYDZIAŁ ELEKTRYCZNY POLITECHNIKA CZĘSTOCHOWSKA LABORATORIUM FIZYKI ĆWICZENIE NR O- SPRAWDZANIE PRAWA MALUSA I. Zagadnena do przestudowana 1. Fala elektromagnetyczna,

Bardziej szczegółowo

Lasery. Własności światła laserowego Zasada działania Rodzaje laserów

Lasery. Własności światła laserowego Zasada działania Rodzaje laserów Lasery Własności światła laserowego Zasada działania Rodzaje laserów Lasery Laser - nazwa utworzona jako akronim od Light Amplification by Stimulated Emission of Radiation - wzmocnienie światła poprzez

Bardziej szczegółowo

Zrobotyzowane urządzenie laserowe do obróbki tworzyw sztucznych

Zrobotyzowane urządzenie laserowe do obróbki tworzyw sztucznych Instytut Maszyn Przepływowych PAN Centrum Techniki Plazmowej i Laserowej Gdańsk, ul. Fiszera 14, Zrobotyzowane urządzenie laserowe do obróbki tworzyw sztucznych dr hab. Marek Kocik Spis tematów 1. Cel

Bardziej szczegółowo

PRZYRZĄDY DO POMIARU USTAWIENIA I ŚWIATŁOŚCI ŚWIATEŁPOJAZDU. Piotr Domański Piotr Papierz

PRZYRZĄDY DO POMIARU USTAWIENIA I ŚWIATŁOŚCI ŚWIATEŁPOJAZDU. Piotr Domański Piotr Papierz PRZYRZĄDY DO POMIARU USTAWIENIA I ŚWIATŁOŚCI ŚWIATEŁPOJAZDU Piotr Domański Piotr Papierz Przyrząd optyczny KS-20B Jest starą konstrukcją, wycofana ze sprzedaży. Służy do ustawienia wysokości strumienia

Bardziej szczegółowo

Systemy laserowe. dr inż. Adrian Zakrzewski dr inż. Tomasz Baraniecki

Systemy laserowe. dr inż. Adrian Zakrzewski dr inż. Tomasz Baraniecki Systemy laserowe dr inż. Adrian Zakrzewski dr inż. Tomasz Baraniecki Metody analizy i kształtowania wiązki laserowej Źródło: Beyer Wiązka gaussowska Natężenia promieniowania poprzecznie do kierunku propagacji

Bardziej szczegółowo

Politechnika Poznańska

Politechnika Poznańska Politechika Pozańska Temat: Laboratorium z termodyamiki Aaliza składu spali powstałych przy spalaiu paliw gazowych oraz pomiar ich prędkości przepływu za pomocą Dopplerowskiego Aemometru Laserowego (LDA)

Bardziej szczegółowo

METODY KOMPUTEROWE 1

METODY KOMPUTEROWE 1 MTODY KOMPUTROW WIADOMOŚCI WSTĘPN MTODA ULRA Mcał PŁOTKOWIAK Adam ŁODYGOWSKI Kosultacje aukowe dr z. Wtold Kąkol Pozań 00/00 MTODY KOMPUTROW WIADOMOŚCI WSTĘPN Metod umercze MN pozwalają a ormułowae matematczc

Bardziej szczegółowo

LABORATORIUM SPEKTRALNEJ ANALIZY CHEMICZNEJ (L-6)

LABORATORIUM SPEKTRALNEJ ANALIZY CHEMICZNEJ (L-6) LABORATORIUM SPEKTRALNEJ ANALIZY CHEMICZNEJ (L-6) Posiadane uprawnienia: ZAKRES AKREDYTACJI LABORATORIUM BADAWCZEGO NR AB 120 wydany przez Polskie Centrum Akredytacji Wydanie nr 5 z 18 lipca 2007 r. Kierownik

Bardziej szczegółowo

Zespolona funkcja dielektryczna metalu

Zespolona funkcja dielektryczna metalu Zespolona funkcja dielektryczna metalu Przenikalność elektryczna ośrodków absorbujących promieniowanie elektromagnetyczne jest zespolona, a także zależna od częstości promieniowania, które przenika przez

Bardziej szczegółowo

Współczynnik korelacji rangowej badanie zależności między preferencjami

Współczynnik korelacji rangowej badanie zależności między preferencjami Współczyk korelacj ragowej badae zależośc mędzy preferecjam Przemysław Grzegorzewsk Istytut Badań Systymowych PAN ul. Newelska 6 01-447 Warszawa E-mal: pgrzeg@bspa.waw.pl Pla referatu: Klasycze metody

Bardziej szczegółowo

PODSTAWY FIZYKI LASERÓW Wstęp

PODSTAWY FIZYKI LASERÓW Wstęp PODSTAWY FIZYKI LASERÓW Wstęp LASER Light Amplification by Stimulation Emission of Radiation Składa się z: 1. ośrodka czynnego. układu pompującego 3.Rezonator optyczny - wnęka rezonansowa Generatory: liniowe

Bardziej szczegółowo

I. Elementy analizy matematycznej

I. Elementy analizy matematycznej WSTAWKA MATEMATYCZNA I. Elementy analzy matematycznej Pochodna funkcj f(x) Pochodna funkcj podaje nam prędkość zman funkcj: df f (x + x) f (x) f '(x) = = lm x 0 (1) dx x Pochodna funkcj podaje nam zarazem

Bardziej szczegółowo

FINANSE II. Model jednowskaźnikowy Sharpe a.

FINANSE II. Model jednowskaźnikowy Sharpe a. ODELE RYNKU KAPITAŁOWEGO odel jedowskaźkowy Sharpe a. odel ryku kaptałowego - CAP (Captal Asset Prcg odel odel wycey aktywów kaptałowych). odel APT (Arbtrage Prcg Theory Teora artrażu ceowego). odel jedowskaźkowy

Bardziej szczegółowo

ZAGADNIENIE TRANSPORTOWE

ZAGADNIENIE TRANSPORTOWE ZAGADNIENIE TRANSPORTOWE ZT.. Zagadee trasportowe w postac tablcy Z m puktów (odpowedo A,...,A m ) wysyłamy edorody produkt w loścach a,...,a m do puktów odboru (odpowedo B,...,B ), gdze est odberay w

Bardziej szczegółowo

Pomiary bezpośrednie i pośrednie obarczone błędem przypadkowym

Pomiary bezpośrednie i pośrednie obarczone błędem przypadkowym Pomary bezpośrede pośrede obarczoe błędem przypadkowym I. Szacowae wartośc przyblŝoej graczego błędu przypadkowego a przykładze bezpośredego pomaru apęca elem ćwczea jest oszacowae wartośc przyblŝoej graczego

Bardziej szczegółowo

Lasery półprzewodnikowe. przewodnikowe. Bernard Ziętek

Lasery półprzewodnikowe. przewodnikowe. Bernard Ziętek Lasery półprzewodnikowe przewodnikowe Bernard Ziętek Plan 1. Rodzaje półprzewodników 2. Parametry półprzewodników 3. Złącze p-n 4. Rekombinacja dziura-elektron 5. Wzmocnienie 6. Rezonatory 7. Lasery niskowymiarowe

Bardziej szczegółowo

Matematyka dyskretna. 10. Funkcja Möbiusa

Matematyka dyskretna. 10. Funkcja Möbiusa Matematyka dyskreta 10. Fukcja Möbusa Defcja 10.1 Nech (P, ) będze zborem uporządkowaym. Mówmy, że zbór uporządkoway P jest lokale skończoy, jeśl każdy podzał [a, b] P jest skończoy, a, b P Uwaga 10.1

Bardziej szczegółowo

INTERFERENCJA WIELOPROMIENIOWA

INTERFERENCJA WIELOPROMIENIOWA INTERFERENCJA WIELOPROMIENIOWA prof. dr hab. inż. Krzysztof Patorski W tej części wykładu rozważymy przypadek koherentnej superpozycji większej liczby wiązek niż dwie. Najważniejszym interferometrem wielowiązkowym

Bardziej szczegółowo

Laboratorium zimnych atomów przy powierzchni Zakład Optyki Atomowej

Laboratorium zimnych atomów przy powierzchni Zakład Optyki Atomowej Laboratorium zimnych atomów przy powierzchni Zakład Optyki Atomowej Tomasz Kawalec 15 listopada 2007 Spektroskopii Fali Zanikającej Zakład Optyki Atomowej Tomasz Kawalec WFAIS 15 listopada 2007 1 / 8 LIAD

Bardziej szczegółowo

PERMUTACJE Permutacją zbioru n-elementowego X nazywamy dowolną wzajemnie jednoznaczną funkcję f : X X X

PERMUTACJE Permutacją zbioru n-elementowego X nazywamy dowolną wzajemnie jednoznaczną funkcję f : X X X PERMUTACJE Permutacą zboru -elemetowego X azywamy dowolą wzaeme edozaczą fucę f : X X f : X X Przyład permutac X = { a, b, c, d } f (a) = d, f (b) = a, f (c) = c, f (d) = b a b c d Zaps permutac w postac

Bardziej szczegółowo

Zadanie 2. Przeprowadzono następujące doświadczenie: Wyjaśnij przebieg tego doświadczenia. Zadanie: 3. Zadanie: 4

Zadanie 2. Przeprowadzono następujące doświadczenie: Wyjaśnij przebieg tego doświadczenia. Zadanie: 3. Zadanie: 4 Zadanie: 1 Do niebieskiego, wodnego roztworu soli miedzi wrzucono żelazny gwóźdź i odstawiono na pewien czas. Opisz zmiany zachodzące w wyglądzie: roztworu żelaznego gwoździa Zadanie 2. Przeprowadzono

Bardziej szczegółowo

Poprawa charakterystyk promieniowania diod laserowych dużej mocy poprzez zastosowanie struktur periodycznych w płaszczyźnie złącza

Poprawa charakterystyk promieniowania diod laserowych dużej mocy poprzez zastosowanie struktur periodycznych w płaszczyźnie złącza Poprawa charakterystyk promieniowania diod laserowych dużej mocy poprzez zastosowanie struktur periodycznych w płaszczyźnie złącza Grzegorz Sobczak, Elżbieta Dąbrowska, Marian Teodorczyk, Joanna Kalbarczyk,

Bardziej szczegółowo

Spalanie. 1. Skład paliw. 1.1. Paliwa gazowe (1) kmol C. kmol H 2. gdzie: H. , itd. udziały molowe składników paliwa w gazie. suchym. kmol.

Spalanie. 1. Skład paliw. 1.1. Paliwa gazowe (1) kmol C. kmol H 2. gdzie: H. , itd. udziały molowe składników paliwa w gazie. suchym. kmol. Salae / 1 Salae Salae jet zybko rzebegającym roceem utleaa ołączoym z ydzelaem ę ceła. Salau z reguły toarzyzy emja śatła. Podtaoym eratkam alym alach ą ęgel odór. W ale moża yróżć część alą ealy balat.

Bardziej szczegółowo

Stopnie wzmacniające

Stopnie wzmacniające PUAV Wykład 7 Najprostszy wzmacniacz R Tranzystor pracuje w zakresie nasycenia Konduktancja jściowa tranzystora do pominięcia: g ds

Bardziej szczegółowo

Mh n. 2 ε. h h/ n n. Ekstrapolacja Richardsona (szacowanie błędu) błąd. ekstrapolowana wartość całki I. kwadratury z adaptowanym krokiem

Mh n. 2 ε. h h/ n n. Ekstrapolacja Richardsona (szacowanie błędu) błąd. ekstrapolowana wartość całki I. kwadratury z adaptowanym krokiem Ekstrapolacja Rchardsoa (szacowae błędu) dla daej, ustaloej metody błąd Mh zakładając, że M jest w przyblżeu ezależe od h I I + Mh h h/ / I I + Mh ekstrapolowaa wartość całk I I e I h / + Ih / ( I h )

Bardziej szczegółowo

Analiza dokładności pomiaru, względnego rozkładu egzytancji widmowej źródeł światła, dokonanego przy użyciu spektroradiometru kompaktowego

Analiza dokładności pomiaru, względnego rozkładu egzytancji widmowej źródeł światła, dokonanego przy użyciu spektroradiometru kompaktowego doi:1.15199/48.215.4.38 Eugeiusz CZECH 1, Zbigiew JAROZEWCZ 2,3, Przemysław TABAKA 4, rea FRYC 5 Politechika Białostocka, Wydział Elektryczy, Katedra Elektrotechiki Teoretyczej i Metrologii (1), stytut

Bardziej szczegółowo

Laboratorium z Biomechatroniki Ćwiczenie 3 Wyznaczanie położenia środka masy ciała człowieka za pomocą dźwigni jednostronnej

Laboratorium z Biomechatroniki Ćwiczenie 3 Wyznaczanie położenia środka masy ciała człowieka za pomocą dźwigni jednostronnej Wydzał: Mechaczy Techologczy Keruek: Grupa dzekańska: Semestr: perwszy Dzeń laboratorum: Godza: Laboratorum z Bomechatrok Ćwczee 3 Wyzaczae położea środka masy cała człoweka za pomocą dźwg jedostroej 1.

Bardziej szczegółowo

Wzmacniacze optyczne

Wzmacniacze optyczne Wzmacniacze optyczne Wzmocnienie sygnału optycznego bez konwersji na sygnał elektryczny. Prezentacja zawiera kopie folii omawianych na wykładzie. Niniejsze opracowanie chronione jest prawem autorskim.

Bardziej szczegółowo

Wzmacniacze optyczne ZARYS PODSTAW

Wzmacniacze optyczne ZARYS PODSTAW Wzmacniacze optyczne ZARYS PODSTAW REGENERATOR konwertuje sygnał optyczny na elektryczny, wzmacnia sygnał elektryczny, a następnie konwertuje wzmocniony sygnał elektryczny z powrotem na sygnał optyczny

Bardziej szczegółowo

Wyrażanie niepewności pomiaru

Wyrażanie niepewności pomiaru Wyrażae epewośc pomaru Adrzej Kubaczyk Wydzał Fzyk, Poltechka Warszawska Warszawa, 05 Iformacje wstępe Każdy pomar welkośc fzyczej dokoyway jest ze skończoą dokładoścą, co ozacza, że wyk tego pomaru dokoyway

Bardziej szczegółowo

Miary położenia wskazują miejsce wartości najlepiej reprezentującej wszystkie wielkości danej zmiennej. Mówią o przeciętnym poziomie analizowanej

Miary położenia wskazują miejsce wartości najlepiej reprezentującej wszystkie wielkości danej zmiennej. Mówią o przeciętnym poziomie analizowanej Podstawy Mary położea wskazują mejsce wartośc ajlepej reprezetującej wszystke welkośc daej zmeej. Mówą o przecętym pozome aalzowaej cechy. Średa arytmetycza suma wartośc zmeej wszystkch jedostek badaej

Bardziej szczegółowo

Układ sterowania górniczego wielosilnikowego przenośnika taśmowego

Układ sterowania górniczego wielosilnikowego przenośnika taśmowego dr ż. ARIAN HYLA Poltechka Śląska Katedra Eergoelektrok, Napędu Elektryczego Robotyk Układ sterowaa górczego weloslkowego przeośka taśmowego W artykule przedstawoo kocepcję realzację praktyczą układu sterowaa

Bardziej szczegółowo

Absorpcja promieni rentgenowskich 2 godz.

Absorpcja promieni rentgenowskich 2 godz. Uniwersytet Śląski - Instytut Chemii Zakład Krystalografii ul. Bankowa 14, pok. 133, 40-006 Katowice tel. (032)3591627, e-mail: joanna_palion@poczta.fm opracowanie: mgr Joanna Palion-Gazda Laboratorium

Bardziej szczegółowo

POLITECHNIKA OPOLSKA

POLITECHNIKA OPOLSKA POLITCHIKA OPOLSKA ISTYTUT AUTOMATYKI I IFOMATYKI LABOATOIUM MTOLOII LKTOICZJ 7. KOMPSATOY U P U. KOMPSATOY APIĘCIA STAŁO.. Wstęp... Zasada pomiaru metodą kompesacyją. Metoda kompesacyja pomiaru apięcia

Bardziej szczegółowo

Właściwości światła laserowego

Właściwości światła laserowego Właściwości światła laserowego Cechy charakterystyczne światła laserowego: rozbieżność (równoległość) wiązki, pasmo spektralne, gęstość mocy spójność (koherencja). Równoległość wiązki Dyfrakcyjną rozbieżność

Bardziej szczegółowo

Badanie uporządkowania magnetycznego w ultracienkich warstwach kobaltu w pobliżu reorientacji spinowej.

Badanie uporządkowania magnetycznego w ultracienkich warstwach kobaltu w pobliżu reorientacji spinowej. Tel.: +48-85 7457229, Fax: +48-85 7457223 Zakład Fizyki Magnetyków Uniwersytet w Białymstoku Ul.Lipowa 41, 15-424 Białystok E-mail: vstef@uwb.edu.pl http://physics.uwb.edu.pl/zfm Praca magisterska Badanie

Bardziej szczegółowo

II. Badanie charakterystyki spektralnej źródła termicznego promieniowania elektromagnetycznego

II. Badanie charakterystyki spektralnej źródła termicznego promieniowania elektromagnetycznego 1 II. Badanie charakterystyki spektralnej źródła termicznego promieniowania elektromagnetycznego Cel ćwiczenia: Wyznaczenie charakterystyki spektralnej termicznego źródła promieniowania (lampa halogenowa)

Bardziej szczegółowo

Azotkowe diody laserowe na podłożach GaN o zmiennym zorientowaniu

Azotkowe diody laserowe na podłożach GaN o zmiennym zorientowaniu Azotkowe diody laserowe na podłożach GaN o zmiennym zorientowaniu Marcin Sarzyński Badania finansuje narodowe centrum Badań i Rozwoju Program Lider Instytut Wysokich Cisnień PAN Siedziba 1. Diody laserowe

Bardziej szczegółowo

PŁASKA GEOMETRIA MAS. Środek ciężkości figury płaskiej

PŁASKA GEOMETRIA MAS. Środek ciężkości figury płaskiej PŁAKA GEOMETRIA MA Środek cężkośc fgury płaskej Mometam statyczym M x M y fgury płaskej względem os x lub y (rys. 7.1) azywamy gracę algebraczej sumy loczyów elemetarych pól d przez ch odległośc od os,

Bardziej szczegółowo

Stanisław Cichocki. Natalia Nehrebecka. Zajęcia 5

Stanisław Cichocki. Natalia Nehrebecka. Zajęcia 5 Stasław Cchock Natala Nehreecka Zajęca 5 . Testowae łączej stotośc wyraych regresorów. Założea klasyczego modelu regresj lowej 3. Własośc estymatora MNK w KMRL Wartośd oczekwaa eocążoośd estymatora Waracja

Bardziej szczegółowo

2012-10-11. Definicje ogólne

2012-10-11. Definicje ogólne 0-0- Defncje ogólne Logstyka nauka o przepływe surowców produktów gotowych rodowód wojskowy Utrzyywane zapasów koszty zwązane.n. z zarożene kaptału Brak w dostawach koszty zwązane.n. z przestoje w produkcj

Bardziej szczegółowo

( ) L 1. θ θ = M. Przybycień Rachunek prawdopodobieństwa i statystyka. = θ. min

( ) L 1. θ θ = M. Przybycień Rachunek prawdopodobieństwa i statystyka. = θ. min Fukca warogodośc Nech będze daa próba losowa prosta o lczebośc z rozkładu f (x;. Fukcą warogodośc dla próby x azywamy welkość: ( x; f ( x ; L Twerdzee (Cramera-Rao: Mmala wartość warac m dowolego eobcążoego

Bardziej szczegółowo

OCZYSZCZANIE MECHANICZNE I TERMICZNE PODŁOŻY ZE STALI I ŻELIWA. Prowadzący: Magdalena Rutkowska-Matela

OCZYSZCZANIE MECHANICZNE I TERMICZNE PODŁOŻY ZE STALI I ŻELIWA. Prowadzący: Magdalena Rutkowska-Matela OCZYSZCZANIE MECHANICZNE I TERMICZNE PODŁOŻY ZE STALI I ŻELIWA Prowadzący: Magdalena Rutkowska-Matela 1. OCZYSZCZANIE MECHANICZNE W warunkach budowlanych rdzę i zgorzelinę najczęściej usuwa się metodą

Bardziej szczegółowo

BADANIA WYTRZYMAŁOŚCIOWE CERAMIKA A STOPY DENTYSTYCZNE W KONTEKŚCIE WYBRANYCH RODZAJÓW STOPÓW PROTETYCZNYCH

BADANIA WYTRZYMAŁOŚCIOWE CERAMIKA A STOPY DENTYSTYCZNE W KONTEKŚCIE WYBRANYCH RODZAJÓW STOPÓW PROTETYCZNYCH WyŜsza Szkoła InŜynierii Dentystycznej im. prof. Meissnera w Ustroniu BADANIA WYTRZYMAŁOŚCIOWE CERAMIKA A STOPY DENTYSTYCZNE W KONTEKŚCIE WYBRANYCH RODZAJÓW STOPÓW PROTETYCZNYCH CEL PRACY Celem pracy było

Bardziej szczegółowo

Powinowactwo chemiczne Definicja oraz sens potencjału chemicznego, aktywność Termodynamiczne funkcje mieszania

Powinowactwo chemiczne Definicja oraz sens potencjału chemicznego, aktywność Termodynamiczne funkcje mieszania ermdyamka układów rzeczywstych 2.7.1. Pwwactw chemcze 2.7.2. Defcja raz ses tecjału chemczeg aktywść 2.7.3. ermdyamcze fukcje meszaa 2.7.4. Klasyfkacja rztwrów Waruk ztermcz-zchrycze ) ( V F F j V V d

Bardziej szczegółowo

PODSTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH. dr Michał Silarski

PODSTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH. dr Michał Silarski PODTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH dr Mchał larsk I Pracowa Fzycza IF UJ, 9.0.06 Pomar Pomar zacowae wartośc prawdzwej Bezpośred (welkość fzycza merzoa jest

Bardziej szczegółowo

Instytut Technologii Materiałów Elektronicznych

Instytut Technologii Materiałów Elektronicznych WPŁYW TRAWIENIA CHEMICZNEGO NA PARAMETRY ELEKTROOPTYCZNE KRAWĘDZIOWYCH OGNIW FOTOWOLTAICZNYCH Joanna Kalbarczyk, Marian Teodorczyk, Elżbieta Dąbrowska, Konrad Krzyżak, Jerzy Sarnecki kontakt srebrowy kontakt

Bardziej szczegółowo

POLSKA FEDERACJA STOWARZYSZEŃ RZECZOZNAWCÓW MAJĄTKOWYCH POWSZECHNE KRAJOWE ZASADY WYCENY (PKZW) KRAJOWY STANDARD WYCENY SPECJALISTYCZNY NR 4 KSWS 4

POLSKA FEDERACJA STOWARZYSZEŃ RZECZOZNAWCÓW MAJĄTKOWYCH POWSZECHNE KRAJOWE ZASADY WYCENY (PKZW) KRAJOWY STANDARD WYCENY SPECJALISTYCZNY NR 4 KSWS 4 POZECHNE KRAJOE ZAADY YCENY (PKZ) KRAJOY TANDARD YCENY PECJALITYCZNY NR 4 K 4 INETYCJE LINIOE - ŁUŻEBNOŚĆ PRZEYŁU I BEZUMONE KORZYTANIE Z NIERUCHOMOŚCI 1. PROADZENIE 1.1. Nejszy stadard przedstawa reguły

Bardziej szczegółowo

STATYSTYKA OPISOWA WYKŁAD 3,4

STATYSTYKA OPISOWA WYKŁAD 3,4 STATYSTYKA OPISOWA WYKŁAD 3,4 5 Szereg rozdzelczy przedzałowy (dae pogrupowae) (stosujemy w przypadku dużej lczby epowtarzających sę daych) Przedzał (w ; w + ) Środek x& Lczebość Lczebość skumulowaa s

Bardziej szczegółowo