[ (1. [( 6 3 0, 75 x2 LIGA MATEMATYCZNO-FIZYCZNA DLA KLAS I ETAP III

Wielkość: px
Rozpocząć pokaz od strony:

Download "[ (1. [( 6 3 0, 75 x2 LIGA MATEMATYCZNO-FIZYCZNA DLA KLAS I ETAP III"

Transkrypt

1 LIGA MATEMATYCZNO-FIZYCZNA DLA KLAS I ETAP III Zad. Podstawy trójkąta i równoległoboku mają tę samą długość. Wysokość trójkąta jest równa 0 cm. Jaką długość ma wysokość równoległoboku, jeżeli pola obu figur są równe? Zad.2 Oblicz: [ ) : )]: = 3 Zad.3 Jeden bok prostokąta jest dwa razy dłuższy od drugiego boku. Pole prostokąta wynosi 20,48 cm 2.Oblicz obwód tego prostokąta. Zad.4 Środki dwóch kolejnych boków kwadratu połączono ze sobą i z wierzchołkiem nie należącym do tych boków. Oblicz pole otrzymanego w ten sposób trójkąta, jeżeli bok kwadratu ma długość a. Jaką częścią pola kwadratu jest pole tego trójkąta? Zad.5 Jeden bok prostokąta zwiększono o 0%, a drugi zmniejszono o 0%. Czy pole tego prostokąta uległo zmianie? Jeśli tak to o ile %? Zad.6 Obwód czworokąta PRST jest 5 razy większy od długości przekątnej RT. Obwód trójkąta PRT jest równy 40, a obwód trójkąta RST jest równy 23. Jaką długość ma przekątna RT? Zad.7 Oblicz x z równania: [ 6 3 0, 75 x2 7 0,35 ) ] 2,8+,75 :0,05=235 Zad.8 Aby skosić łan zboża: pierwszy kosiarz potrzebuje 6 h, drugi kosiarz 5 h, trzeci - 4 h, czwarty - 34 h, piąty - 2 h Ile godzin zajmie im skoszenie łanu zboża, jeśli będą pracować razem, każdy ze swoją wydajnością? Zad.9 Koza i krowa zajadają razem wóz siana w ciągu 45 dni, krowa i owca w ciągu 60 dni, zaś owca i koza w ciągu 90 dni. W ciągu ilu dni zjedzą wóz siana: koza, krowa i owca razem?

2 Zad.0 Trójkąt ABC ma obwód równy 37 cm. Na boku BC wyznaczono punkt D tak, że kąt CAD będzie się równał kątowi ACD. Oblicz długość boku AC, jeśli wiadomo, że trójkąt ABC ma obwód równy 24 cm. Zad. Przez wierzchołek prostokąta, w którym jeden z boków jest dwa razy krótszy od drugiego, poprowadzono prostą, która podzieliła prostokąt na trójkąt o polu 8 cm 2 i trapezu o polu 24 cm 2. Oblicz długości podstaw trapezu. Rozważ wszystkie możliwości. Zad.2 Dwa boki kwadratu przedłużono o 25%, a dwa pozostałe skrócono o 40%. W ten sposób powstał prostokąt. O ile % mniejsze jest pole tego prostokąta od pola kwadratu? Zad.3 Oblicz [2 5 ) x ]: 2+7=0 5 Zad.4 Cena biletu na mecz piłki nożnej wynosiła 30 zł. Gdy cenę tę obniżono, to okazało się, że liczba widzów wzrosła o 50%, a dochód ze sprzedaży wrósł o 25%. O ile złotych obniżono cenę biletu? Zad.5 Do zbiornika w kształcie prostopadłościanu o wymiarach 20 dm, 0 dm i 0 dm wlano 5000 l mleka o zawartości 3,4% tłuszczu. Resztę dopełniono mlekiem o zawartości tłuszczu 4,2%. Ile procent tłuszczu obecnie zawiera mleko w zbiorniku? Zad.6 Mama potrzebuje do sporządzenia przetworów ocet o stężeniu6%, ale w domu ma tylko ocet o stężeniu 0%. Ile powinna wziąć octu o stężeniu 0%, a ile wody, aby otrzymać 0 litrów octu o stężeniu 6%? Zad.7 Rafał wykonuje pewną pracę w ciągu 4 dni, a wspólnie z Kasią wykonywałby tę pracę w ciągu 0 dni. W ciągu ilu dni wykona tę pracę sama Kasia? Zad.8 Dziadek dał swoim wnukom pewną ilość orzechów. Najstarszemu wnukowi dał 4 orzechy i czwartą część pozostałych, drugiemu dał 3 orzechy i trzecia część pozostałych. Trzeci wnuk otrzymał 2 orzechy i połowę pozostałych, a dla najmłodszego został orzech. Ile orzechów rozdał dziadek czterem wnukom? Zad.9 Dorota jest trzy razy młodsza od swojego taty, a 4 lata temu była od niego cztery razy młodsza. Ile lat ma Dorota? Zad.20 Adam jest 3 razy starszy od Ewy. Za 5 lat będzie już tylko 2 razy starszy. Ile lat maja obecnie? Zad.2 Jacek jest o 6 lat młodszy od Wojtka. Za 8 lat będą mieli razem 28 lat. Ile lat maja obecnie?

3 Zad.22 Ile trzeba zmieszać wodnych roztworów soli kuchennej o stężeniu 0% i 5%, aby otrzymać 5 kg roztworu 2%? Zad.23 Obwód czworokąta wynosi 0,28 m. Drugi bok jest o 5 cm większy od 3 pierwszego, trzeci zaś bok stanowi 75% drugiego, a 20% czwartego boku. Oblicz boki tego czworokąta. Zad.24 Uzupełnij odpowiednia liczbą: 4 3 4) : 2 4 0,75 ) =0 Zad.25 Wyznacz liczbę, której 2,5% wynosi: 3: 2 5 0,09: 0,5:2 2). 0,32 6+0, 035,33, 88)+0, 67 Zad.26 Pierwszego dnia sprzedano 5 wszystkich jabłek, drugiego dnia 0 pozostałych, a w sklepie było jeszcze 90 kg jabłek. Ile jabłek było na początku? Zad.27 Oblicz 8% wartości wyrażenia: 2,5 [ 8 5 ] 0,5) [, 75+ 6)] :2,625 Zad.28 Rozwiąż równania: a) 22x+7) x2 5 =9+2x b) 23x+0) x+8 =3 5+5) 4 Zad.29 Oblicz wartość wyrażenia: 0,76: 3 0,5 ) ,2: 3 5) Zad.30 Oblicz wartość wyrażenia 4,5) ,4) 3 8 2,5 [0,8),5)3,3]:0,3 :0,6.. Zad.3 Średnia temperatura pierwszych dwunastu dni grudnia wyniosła 3 o C, a pierwszych trzynastu dni grudnia 2 o C. Jaka była temperatura 3 grudnia? Zad.32-4 lata temu byłem 4 razy młodszy od mamy, a 0 lat temu byłem od niej młodszy 0 razy. Ile lat ma autor wypowiedzi? Zad.33 Ile solanki sześcioprocentowej należy wlać do 2 kg solanki dwuprocentowej, aby otrzymać solankę trzyprocentową?

4 Zad.34 Arek ma w dzienniczku piątki, czwórki i trójki. Trójek ma najwięcej, o 0 więcej niż piątek. Czwórek ma 3 razy więcej niż piątek. Ile ma czwórek, trójek i piątek, jeśli średnia jego ocen jest niższa niż 3,6? Zad.35 Oblicz wartość wyrażenia: 2 25) [ 34) ,8) : 32)] 35). Zad.36 Oblicz wartość wyrażenia ) ) 5) ). Zad.37 Oblicz wartość wyrażenia 8 : 3 4 0,8+ 2 3,5+4,8: 8 9). Zad.38 Oblicz wartość wyrażenia 5 4 :4+7, : ) 3. :3 Zad.39 Oblicz wartość wyrażenia ) ) ). Zad.40 Oblicz 6% z wyrażenia: + 2) 23 [ 3 5 0,45) ]. [, 35 :2 25)] 34 Zadanie. Zadania z fizyki Pociąg TGV kursuje między Paryżem a Lyonem z prędkością 320 km h. Oba miasta dzieli odległość około 400 km. a) Oblicz, jaką drogę pokonuje pociąg TGV w ciągu każdej sekundy. Wynik zaokrąglij do pełnych metrów.

5 b) Ile minut trwałaby podróż z Paryża do Lyonu przy założeniu, że pociąg poruszał się ze stałą prędkością na całej trasie? c) Oblicz, jaką drogę pokonuje pociąg TGV w ciągu kwadransa, jadąc z prędkością 320 km h Zadanie 2. Na wykresie przedstawiono wartość prędkości, z jaką poruszała się Ania w czasie testowania swojego roweru. a) Jakim ruchem poruszała się Ania w czasie 60 początkowych sekund ruchu? b) Jaką prędkość Ania osiągnęła po 60 sekundach od chwili startu, a jaką po 80 sekundach? c) Z jakim przyspieszeniem oraz opóźnieniem poruszała się Ania? Zadanie 3. Radar jest urządzeniem umożliwiającym pomiar odległości różnych obiektów od miejsca, w którym się znajduje. Istota jego działania polega na wysyłaniu fal rozchodzących się w powietrzu z prędkością około km s. Taka fala po dotarciu do przeszkody np. lecącego samolotu) odbija się od niej i wraca do miejsca, z którego została wysłana. Pomiar czasu, w jakim fala poruszała się w obie strony, pozwala wyznaczyć odległość przeszkody od radaru. a) W jakiej odległości znajdowała się przeszkoda, jeżeli fala wysłana przez radar wróciła do niego

6 po upływie 0,002 s? b) Jaką odległość pokonuje fala wysłana przez radar w czasie mrugnięcia okiem, które trwa około 0,5 s.. Odległość równą długości równika, czyli km, fala wysłana z radaru pokonałaby w czasie równym około ? Zadanie 4. Pociąg Shuttle kursuje przez tunel pod kanałem La Manche z prędkością 60 km h. Oba końce tunelu dzieli odległość około 50 km. a) Oblicz, jaką drogę pokonuje pociąg Shuttle w ciągu każdej sekundy. Wynik zaokrąglij do pełnych metrów. b) Ile minut trwałaby podróż przez tunel przy założeniu, że pociąg poruszał się ze stałą prędkością na całej trasie? c) Oblicz, jaką drogę pokonuje pociąg Shuttle w ciągu kwadransa, jadąc z prędkością 60 km h. Zadanie 5. Na wykresie przedstawiono wartość prędkości, z jaką poruszała się Ania w czasie testowania swojego roweru. a) Jakim ruchem poruszała się Ania w czasie 40 początkowych sekund ruchu? b) Jaką prędkość Ania osiągnęła po 20 sekundach od chwili startu, a jaką po 40 sekundach? c) Z jakim przyspieszeniem oraz opóźnieniem poruszała się Ania?

7 Zadanie 6. Na rysunku pokazano kolejne położenia samochodu uchwycone w odstępie 0,4 s. Zaznaczono też wektory ilustrujące prędkości samochodu w poszczególnych chwilach. a) Określ, jakim ruchem jednostajnym, przyspieszonym czy opóźnionym) poruszał się samochód, gdy znajdował się w obszarach A i B. A B b) Oblicz przyspieszenie, z jakim poruszał się samochód w obszarze A. Zadanie 7. Zamień jednostki prędkości 0 [ m s ] =? [ km h ] 4 [ m s ] =? [ km h ] 3 [ m s ] =? [ km h ] Zadanie 8. 0 [ km h ] =? [ m s ] 20 [ km h ] =? [ m s ] 56 [ km h ] =? [ m s ] Zadanie 9. Z Czerska wyrusza rowerzysta w kierunku Gdańska z prędkością 25 km h, w tym samym czasie inny rowerzysta wyruszył z Gdańska do Czerska z prędkością 5 km h.

8 Odległość jaka dzieli Gdańsk od Czerska to 00 km. W jakim czasie i w jakiej odległości od Czerska nastąpi spotkanie rowerzystów, jeśli założymy, iż będą poruszali się ze stałą prędkością. Zadanie 0. Rowerzysta poruszał się w ciągu pierwszych 0 minut z prędkością 2 km h, a następnie przebył odległość 4 km z prędkością 24 km h. Oblicz średnią prędkość rowerzysty. Zadanie. Na podstawie wykresu określ: * jakimi ruchami poruszało się ciało na poszczególnych odcinkach? * wartość prędkości ciała w 2 s i 5 s ruchu, * drogę przebytą w ciągu 8 s, * wartość przyspieszenia na obu odcinkach, * średnią prędkość w tym ruchu. Zadanie 2. Jacek stoi przed ścianą lasu, wystrzelił z pistoletu hukowego i usłyszał echo wystrzału po 4 sekundach. W jakiej odległości znajduje się las, jeśli prędkość rozchodzenia się dźwięku w powietrzu wynosi 330m/s? Zadanie 3. Krysia jest strasznie roztargniona i pewnego dnia wyjechała z domu o godzinie 8:00 na zakupy z Czerska do Berlina zapomniawszy dokumentów, pieniędzy, telefonu. Krysia jeździ ostrożnie i porusza się ze średnią prędkością 50 km h. Domownicy zorientowali się o godzinie 9:30, że Krysi nie uda się przekroczyć granicy, zatem zorganizowali i wysłali za nią ekspedycję ratunkową,

9 która poruszała się ze średnią prędkością 70 km h. W jakiej odległości od Czerska i o której godzinie ratownicy powinni spotkać Krysię? Zadanie 4. Jak długo będzie spadał z wysokości 200 m worek z piaskiem? Proszę pominąć opory ruchu. Przyspieszenie ziemskie przyjąć jako 0 m s 2. Zadanie 5. Pociąg rusza z miejsca ruchem jednostajnie przyspieszonym i w ciągu 5s osiąga prędkość 24 km h. Oblicz średnie przyspieszenie tego pociągu i odległość jaką przebył w ciągu tych 5s. Zadanie 6. Największą prędkość w przyrodzie ma światło, które w próżni przebywa km w czasie s. W jakim czasie światło przebywa odległość km dzielącą Ziemię od Słońca. Zadanie 7. Samochód w ciągu 20 minut przebył drogę 2 km, w ciągu następnego kwadransa drogę 9 km, a w wciągu ostatnich 0 min drogę 6000 m. Oblicz prędkość średnią jego ruchu. Czy ruch samochodu był jednostajny? Zadanie 8. Odstęp czasu pomiędzy błyskiem, a grzmotem pioruna wynosił 3s. Oszacuj odległość w jakiej jest burza względem punktu w którym dokonano pomiaru. Prędkość dźwięku w powietrzu wynosi w przybliżeniu 340 m/s. Zadanie 9. W pociągu, który jedzie z prędkością 60 km h pewien pasażer porusza się z prędkością 2 m/s względem podłogi pociągu. Jaka jest prędkość pasażera względem ziemi, prędkość podaj w km/h? Zadanie 20. O ile zmieni się prędkość rowerzysty w czasie 8 sekund jeżeli porusza się z przyspieszeniem 2 m s 2?

LIGA MATEMATYCZNO-FIZYCZNA DLA KLAS I ETAP III

LIGA MATEMATYCZNO-FIZYCZNA DLA KLAS I ETAP III LIGA MATEMATYCZNO-FIZYCZNA DLA KLAS I ETAP III Zad1 Podstawy trójkąta i równoległoboku mają tę samą długość Wysokość trójkąta jest równa 10 cm Jaką długość ma wysokość równoległoboku, jeżeli pola obu figur

Bardziej szczegółowo

LIGA MATEMATYCZNO-FIZYCZNA KLASA VII ETAP II. Zad.1 Wyznacz liczbę, której 0,25% wynosi

LIGA MATEMATYCZNO-FIZYCZNA KLASA VII ETAP II. Zad.1 Wyznacz liczbę, której 0,25% wynosi LIGA MATEMATYCZNO-FIZYCZNA KLASA VII ETAP II Zad.1 Wyznacz liczbę, której 0,25% wynosi 1 1 1 8 4 11 :9 4 5 3 2 2 14: 2 + 8 9 5 + 2 1 7 1 5 2 : 3 3 Zad.2 W magazynie znajdowało się 25 kg owoców, w tym 8

Bardziej szczegółowo

LIGA MATEMATYCZNO-FIZYCZNA KLASA I ETAP III

LIGA MATEMATYCZNO-FIZYCZNA KLASA I ETAP III LIGA MATEMATYCZNO-FIZYCZNA KLASA I ETAP III. Dla oznakowania stron encyklopedii uŝyto 6873 cyfry. Ile stron ma encyklopedia? 2. Uczeń kupił 4 ksiąŝki. Wszystkie bez pierwszej kosztowały 42 zł, wszystkie

Bardziej szczegółowo

LIGA MATEMATYCZNO-FIZYCZNA DLA KLAS VII ETAP III

LIGA MATEMATYCZNO-FIZYCZNA DLA KLAS VII ETAP III LIGA MATEMATYCZNO-FIZYCZNA DLA KLAS VII ETAP III Zad.1 Podstawy trójkąta i równoległoboku mają tę samą długość. Wysokość trójkąta jest równa 10 cm. aką długość ma wysokość równoległoboku, jeżeli pola obu

Bardziej szczegółowo

LIGA MATEMATYCZNO-FIZYCZNA KLASA I ETAP II. Zad. 1. Oblicz wartość wyrażenia: I znajdź liczbę, której 13% stanowi wartość tego wyrażenia

LIGA MATEMATYCZNO-FIZYCZNA KLASA I ETAP II. Zad. 1. Oblicz wartość wyrażenia: I znajdź liczbę, której 13% stanowi wartość tego wyrażenia LIGA MATEMATYCZNO-FIZYCZNA KLASA I ETAP II Zad.. Oblicz wartość wyrażenia: 6,6 +, :,7 + ( ) 7 I znajdź liczbę, której % stanowi wartość tego wyrażenia Zad.. Wyznacz liczbę, której 0,% wynosi 8 :9 : + 8

Bardziej szczegółowo

Rozłóż na czynniki pierwsze, oblicz NWW i NWD, sumę NWW i NWD, różnicę NWW i NWD liczb 490 i 350.

Rozłóż na czynniki pierwsze, oblicz NWW i NWD, sumę NWW i NWD, różnicę NWW i NWD liczb 490 i 350. LIGA MATEMATYCZNO-FIZYCZNA KLASA VII ETAP II Zad1 Wyznacz liczbę, której 0,25% wynosi 1 1 1 15 84 119: 2 : 4 53 33 2 2 2 14 :2 8 1 9 5 7 Zad2 W magazynie znajdowało się 25 kg owoców, w tym 8 kg gruszek

Bardziej szczegółowo

55? Odpowiedź uzasadnij.

55? Odpowiedź uzasadnij. LIGA MATEMATYCZNO-FIZYCZNA KLASA II ETAP II Zad. 1 Która z liczb jest większa 55 czy Zad. Rozwiąż układ równań metodą podstawiania ( x y)( x + y) ( x + 1) 3 ( y + ) 3x + y 3x + 1 5 Zad. 3 Rozwiąż układ

Bardziej szczegółowo

( ) ( 2 ) Zadania na I etap Szkolnej Ligi Matematyczni-Fizycznej klasa II

( ) ( 2 ) Zadania na I etap Szkolnej Ligi Matematyczni-Fizycznej klasa II Zadania na I etap Szkolnej Ligi Matematyczni-Fizycznej klasa II Zad... ( 7 6-8 ) : ( 8 ). (7 0-8 4 + 4 9 8 8 ) : (4 4 ) Zad.. 0,8 ( ) ( ) : Zad.. a) ( ) 6 + 4 9 8 9 6 ( ) : Zad.4. Oblicz + + +... + + 4

Bardziej szczegółowo

LIGA MATEMATYCZNO-FIZYCZNA KLASA II ETAP II. 55? Odpowiedź uzasadnij. 22 czy. 1. Która z liczb jest większa

LIGA MATEMATYCZNO-FIZYCZNA KLASA II ETAP II. 55? Odpowiedź uzasadnij. 22 czy. 1. Która z liczb jest większa LIGA MATEMATYCZNO-FIZYCZNA KLASA II ETAP II 1. Która z liczb jest większa 55 czy. O ile liczba a jest mniejsza od liczby b, jeśli: 1 1 1 1 a : 1, 5 b 6 : 1. 0, 4 4 55? Odpowiedź uzasadnij. 3. Ile razy

Bardziej szczegółowo

KL. I. ZAD. 2 Zapytano rybaka, ile waży złowiona przez niego rybka. Rybak odpowiedział:

KL. I. ZAD. 2 Zapytano rybaka, ile waży złowiona przez niego rybka. Rybak odpowiedział: KL. I ZAD. 1 2 3 0,5 x 3 5 Oblicz x : 1, 2 7 3 1 1,4 : 2 20 4 ZAD. 2 Zapytano rybaka, ile waży złowiona przez niego rybka. Rybak odpowiedział: 2 2 kg i jeszcze 2 razy po swojej masy. Ile waży złowiona

Bardziej szczegółowo

Zestaw powtórzeniowy z matematyki dla uczniów kl II PG nr 3. Część 3 (równania i nierówności; twierdzenie Pitagorasa)

Zestaw powtórzeniowy z matematyki dla uczniów kl II PG nr 3. Część 3 (równania i nierówności; twierdzenie Pitagorasa) Zestaw powtórzeniowy z matematyki dla uczniów kl II PG nr 3 Część 3 (równania i nierówności; twierdzenie Pitagorasa) 1. Zapisz w postaci równania: a) Różnica liczby x i i liczby 8 jest równa połowie liczby

Bardziej szczegółowo

Zad. 7. Z pola zebrano 50 kg ogórków, które zawierały 96% wody. Po kilku dniach zawartość wody zmalała do 95% masy ogórków. Ile ważą teraz ogórki?

Zad. 7. Z pola zebrano 50 kg ogórków, które zawierały 96% wody. Po kilku dniach zawartość wody zmalała do 95% masy ogórków. Ile ważą teraz ogórki? LIGA MATEMATYCZNO-FIZYCZNA KLASA II ETAP I Zad.. Oblicz wartość wyrażenia: 6 6 + :7 + ( ) 7 I znajdź liczbę której % stanowi wartość tego wyrażenia Zad.. Wyznacz liczbę której 0% wynosi 8 :9 : + 8 9 +

Bardziej szczegółowo

LIGA MATEMATYCZNO-FIZYCZNA DLA KLAS I ETAP IV

LIGA MATEMATYCZNO-FIZYCZNA DLA KLAS I ETAP IV LIGA MATEMATYCZNO-FIZYCZNA DLA KLAS I ETAP IV Zad.1 Janek oszczędza, aby kupić komputer, który kosztuje 5400 zł. Zapytany, ile już zgromadził pieniędzy, odpowiedział : Nawet gdybym miał o jedną piątą więcej

Bardziej szczegółowo

KONKURS PRZEDMIOTOWY Z MATEMATYKI dla uczniów szkół podstawowych 24 marca 2017 r. zawody III stopnia (wojewódzkie)

KONKURS PRZEDMIOTOWY Z MATEMATYKI dla uczniów szkół podstawowych 24 marca 2017 r. zawody III stopnia (wojewódzkie) Kod ucznia Liczba zdobytych punktów KONKURS PRZEDMIOTOWY Z MATEMATYKI dla uczniów szkół podstawowych 24 marca 2017 r. zawody III stopnia (wojewódzkie) Drogi Uczniu, przed Tobą test składający się z 24

Bardziej szczegółowo

Zależność prędkości od czasu

Zależność prędkości od czasu prędkość {km/h} KINEMATYKA ruch jednostajny i przyspieszony 1. Na trasie z Olesna do Poznania kursuje autobus pospieszny i osobowy. Autobus zwykły wyjechał o 8 00 i jechał ze średnią prędkością 40 km/h.

Bardziej szczegółowo

ZESTAW POWTÓRKOWY (1) KINEMATYKA POWTÓRKI PRZED EGZAMINEM ZADANIA WYKONUJ SAMODZIELNIE!

ZESTAW POWTÓRKOWY (1) KINEMATYKA POWTÓRKI PRZED EGZAMINEM ZADANIA WYKONUJ SAMODZIELNIE! Imię i nazwisko: Kl. Termin oddania: Liczba uzyskanych punktów: /50 Ocena: ZESTAW POWTÓRKOWY (1) KINEMATYKA POWTÓRKI PRZED EGZAMINEM ZADANIA WYKONUJ SAMODZIELNIE! 1. /(0-2) Przelicz jednostki szybkości:

Bardziej szczegółowo

ZADANIA Z KINEMATYKI

ZADANIA Z KINEMATYKI ZADANIA Z KINEMATYKI 1. Określ na poszczególnych przykładach czy względem określonego układu odniesienia ciało jest w ruchu, czy w spoczynku: a) kubek stojący na stole względem stołu b) kubek stojący na

Bardziej szczegółowo

Powtórzenie wiadomości z klasy I. Temat: Ruchy prostoliniowe. Obliczenia

Powtórzenie wiadomości z klasy I. Temat: Ruchy prostoliniowe. Obliczenia Powtórzenie wiadomości z klasy I Temat: Ruchy prostoliniowe. Obliczenia Ruch jest względny 1.Ruch i spoczynek są pojęciami względnymi. Można jednocześnie być w ruchu względem jednego ciała i w spoczynku

Bardziej szczegółowo

Zadania egzaminacyjne - matematyka

Zadania egzaminacyjne - matematyka Zad.1 Zad.2 Zad.3 Zad.4 Zad.5 1 Zad.6 Zad.7 2 Zad.8 Zad.9 Zad.10 3 Zad.11 Zad.12 Zad.13 Zad.14 Zad.15 4 Zad.16 Zad.17 Zad.18 Zad.19 Zade.20 5 Zad.21 Zad.22 Zad.23 Zad.24 Zad.25 Zad.26 6 Zad.27 Zad.28 Zad.29

Bardziej szczegółowo

KONKURS MATEMATYCZNY w szkole podstawowej 2010/2011 ETAP WOJEWÓDZKI

KONKURS MATEMATYCZNY w szkole podstawowej 2010/2011 ETAP WOJEWÓDZKI Kod ucznia Liczba uzyskanych punktów Nr zadania 1 14 15 16 17 18 Liczba punktów Drogi Uczniu! Witamy Cię w trzecim etapie konkursu. Przed Tobą test składający się z 14 zadań zamkniętych i 4 zadań otwartych.

Bardziej szczegółowo

Zadanie 1( 15 pkt) Zamień procenty na ułamki: a) 4%, 30%, 4,2%, 0,8%, 64%, 120%, 242,2%, 22,5% b) 2 4 %, 6 %, %, %, 14 %, 33 %

Zadanie 1( 15 pkt) Zamień procenty na ułamki: a) 4%, 30%, 4,2%, 0,8%, 64%, 120%, 242,2%, 22,5% b) 2 4 %, 6 %, %, %, 14 %, 33 % Zadanie 1( 15 pkt) Zamień procenty na ułamki: a) 4%, 30%, 4,2%, 0,8%, 64%, 120%, 242,2%, 22,5% b) 2 4 %, 6 %, %, %, 14 %, 33 % Zad. 2 ( 15 pkt ) Zamień ułamki na procenty: a) 0,36; 0,03; 3,6; 0,4; 0,375;

Bardziej szczegółowo

EGZAMIN WSTĘPNY Z MATEMATYKI

EGZAMIN WSTĘPNY Z MATEMATYKI EGZAMIN WSTĘPNY Z MATEMATYKI 1. Przed sobą masz egzamin z matematyki, który składa się z dwóch części. Osoby, które chcą się dostać do klasy matematycznej muszą napisać obie części poniższego egzaminu

Bardziej szczegółowo

Materiał powtórzeniowy dla klas pierwszych

Materiał powtórzeniowy dla klas pierwszych Materiał powtórzeniowy dla klas pierwszych 1. Paweł trzyma w ręku teczkę siłą 20N zwróconą do góry. Ciężar teczki ma wartośd: a) 0N b) 10N c) 20N d) 40N 2. Wypadkowa sił działających na teczkę trzymaną

Bardziej szczegółowo

Sprawdzian 1. Zadanie 3. (0 1). Dokończ poniższe zdanie wybierz odpowiedź spośród podanych.

Sprawdzian 1. Zadanie 3. (0 1). Dokończ poniższe zdanie wybierz odpowiedź spośród podanych. Sprawdzian Zadanie. (0 ). Podaj poprawne wartości poniższych wyrażeń arytmetycznych. Wybierz liczbę spośród oznaczonych literami A i B oraz liczbę spośród oznaczonych literami C i D. 27 7 2 A / B A. 3

Bardziej szczegółowo

Kuratorium Oświaty w Lublinie ZESTAW ZADAŃ KONKURSOWYCH Z MATEMATYKI DLA UCZNIÓW SZKOŁY PODSTAWOWEJ ROK SZKOLNY 2014/2015 ETAP WOJEWÓDZKI

Kuratorium Oświaty w Lublinie ZESTAW ZADAŃ KONKURSOWYCH Z MATEMATYKI DLA UCZNIÓW SZKOŁY PODSTAWOWEJ ROK SZKOLNY 2014/2015 ETAP WOJEWÓDZKI Kuratorium Oświaty w Lublinie KOD UCZNIA ZESTAW ZADAŃ KONKURSOWYCH Z MATEMATYKI DLA UCZNIÓW SZKOŁY PODSTAWOWEJ ROK SZKOLNY 2014/2015 ETAP WOJEWÓDZKI Instrukcja dla ucznia 1. Zestaw konkursowy zawiera 14

Bardziej szczegółowo

Zadania na IV etap Ligi Matematyczni-Fizycznej. klasa I

Zadania na IV etap Ligi Matematyczni-Fizycznej. klasa I Zadania na IV etap Ligi Matematyczni-Fizycznej klasa I 1. Wykaż, że różnica każdych dwóch liczb trzycyfrowych napisanych przy pomocy takich samych cyfr jest podzielna przez 3 2. Znajdź sześć liczb, z których

Bardziej szczegółowo

Klasa 6. Pola wielokątów

Klasa 6. Pola wielokątów Klasa 6. Pola wielokątów gr. A str. 1/4... imię i nazwisko...... klasa data 1. Jedna przekątna rombu ma 6 cm, a druga jest od niej o 3 cm krótsza. Dokończ zdania. Wybierz właściwe odpowiedzi spośród A

Bardziej szczegółowo

Międzyszkolne Zawody Matematyczne Klasa I LO i I Technikum - zakres podstawowy Etap wojewódzki 02.04.2005 rok Czas rozwiązywania zadań 150 minut

Międzyszkolne Zawody Matematyczne Klasa I LO i I Technikum - zakres podstawowy Etap wojewódzki 02.04.2005 rok Czas rozwiązywania zadań 150 minut Klasa I - zakres podstawowy Etap wojewódzki 17.04.004 rok Zad 1 ( 6 pkt) Znajdź wszystkie liczby czterocyfrowe podzielne przez 15, w których cyfrą tysięcy jest jeden, a cyfrą dziesiątek dwa. Odpowiedź

Bardziej szczegółowo

MARATON MATEMATYCZNY-MARZEC 2015 KLASA I. Zadanie 1. Zadanie 2

MARATON MATEMATYCZNY-MARZEC 2015 KLASA I. Zadanie 1. Zadanie 2 MARATON MATEMATYCZNY-MARZEC 2015 KLASA I Obwód poniższej figury wynosi: Zredukuj wyrażenia Zadanie 2 Uprość wyrażenia, a następnie oblicz ich wartości dla: a = -1, b = 2 Wyłącz wspólny czynnik przed nawias.

Bardziej szczegółowo

Zadania z fizyki. Promień rażenia ładunku wybuchowego wynosi 100 m. Pewien saper pokonuje taką odległość z. cm. s

Zadania z fizyki. Promień rażenia ładunku wybuchowego wynosi 100 m. Pewien saper pokonuje taką odległość z. cm. s c) 6(3x - 2) + 5(1-3x) = 7(x + 2) 3(1-2x) d) - 4)(5x + 3) + (4x - 3)(6x + 3) = (6x - 6)(8x + 3) + (9x 2-10) Zadanie 1. Zadania z fizyki Działająca na motocykl siła, której źródłem jest jego silnik, ma

Bardziej szczegółowo

Zadanie 2 Narysuj wykres zależności przemieszczenia (x) od czasu(t) dla ruchu pewnego ciała. m Ruch opisany jest wzorem x( t)

Zadanie 2 Narysuj wykres zależności przemieszczenia (x) od czasu(t) dla ruchu pewnego ciała. m Ruch opisany jest wzorem x( t) KINEMATYKA Zadanie 1 Na spotkanie naprzeciw siebie wyszło dwóch kolegów, jeden szedł z prędkością 2m/s, drugi biegł z prędkością 4m/s po prostej drodze. Spotkali się po 10s. W jakiej maksymalnej odległości

Bardziej szczegółowo

II ETAP LIGI MATEMATYCZNO FIZYCZNEJ DLA KLAS III

II ETAP LIGI MATEMATYCZNO FIZYCZNEJ DLA KLAS III II ETAP LIGI MATEMATYCZNO FIZYCZNEJ DLA KLAS III Zadanie 1 Jaka jest cyfra tysięcy iloczynu liczb naturalnych od 10 do 0 włącznie? Zadanie Jaką liczbę należy wpisać w równaniu 5( + x)(x + 1)-4(1+x) =80,

Bardziej szczegółowo

Klasa I. 5. Cenę pewnego towaru dwukrotnie zwiększono o 30% i obecnie kosztuje on 422,50 zł. Jaka była początkowa cena tego towaru?

Klasa I. 5. Cenę pewnego towaru dwukrotnie zwiększono o 30% i obecnie kosztuje on 422,50 zł. Jaka była początkowa cena tego towaru? Klasa I. Na planie wykonanym w skali : 2000 odległość między domem Kasi a domem Basi wynosi7,3 cm. Jaka jest rzeczywista odległość między ich domami? 2. Jaką miarę ma kąt przyległy do kąta o mierze 62?

Bardziej szczegółowo

ZADANIA MATEMATYCZNE DLA UCZNIÓW KLAS VI zestaw drugi.

ZADANIA MATEMATYCZNE DLA UCZNIÓW KLAS VI zestaw drugi. ZADANIA MATEMATYCZNE DLA UCZNIÓW KLAS VI zestaw drugi. 21. Za bilety wstępu do pijalni wód mineralnych dla 4 osób dorosłych i 40 dzieci zapłacono 106 zł. Bilet dla osoby dorosłej kosztował 3,50 zł. Ile

Bardziej szczegółowo

SPRAWDZIAN Nr 1 (wersja A)

SPRAWDZIAN Nr 1 (wersja A) SPRAWDZIAN Nr 1 (wersja A) 1. Parasol leżący na fotelu jadącego samochodu względem tego samochodu Ojest w ruchu spoczywa względem szosy, po której jedzie samochód x (m)n Qjest w ruchu spoczywa 4^> 2. Chłopiec

Bardziej szczegółowo

KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH

KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH ...... kod pracy ucznia pieczątka nagłówkowa szkoły KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH ETAP SZKOLNY Drogi Uczniu, witaj na I etapie konkursu matematycznego. Przeczytaj uważnie instrukcję

Bardziej szczegółowo

Matematyka test dla uczniów klas piątych

Matematyka test dla uczniów klas piątych Matematyka test dla uczniów klas piątych szkół podstawowych w roku szkolnym 2010/2011 Etap międzyszkolny (60 minut) [suma punktów]..... Imię i nazwisko Nazwa (numer) szkoły, miejscowość W sklepie sportowym

Bardziej szczegółowo

WOJEWÓDZKI KONKURS MATEMATYCZNY

WOJEWÓDZKI KONKURS MATEMATYCZNY Pieczątka szkoły Kod ucznia Liczba punktów WOJEWÓDZKI KONKURS MATEMATYCZNY DLA UCZNIÓW DOTYCHCZASOWYCH GIMNAZJÓW W ROKU SZKOLNYM 018/019.10.018 1. Test konkursowy zawiera zadania. Są to zadania zamknięte

Bardziej szczegółowo

LIGA MATEMATYCZNO FIZYCZNA KLASA III ETAP 3

LIGA MATEMATYCZNO FIZYCZNA KLASA III ETAP 3 LIGA MATEMATYCZNO FIZYCZNA KLASA III ETAP 3 1. W wyścigu grupa kolarzy ma do mety jeszcze 120 km i jedzie ze średnią prędkością 40 km/h. Przedstaw odległości tej grupy od celu jako funkcję czasu i ustal

Bardziej szczegółowo

Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów województwa wielkopolskiego

Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów województwa wielkopolskiego Data urodzenia ucznia Dzień miesiąc rok Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów ETAP WOJEWÓDZKI Rok szkolny 2012/2013 Instrukcja dla ucznia 1. Sprawdź, czy test zawiera 12 stron. Ewentualny

Bardziej szczegółowo

KONKURS MATEMATYCZNO FIZYCZNY 4 grudnia 2008 r. Klasa II

KONKURS MATEMATYCZNO FIZYCZNY 4 grudnia 2008 r. Klasa II ...... imię i nazwisko ucznia... klasa KONKURS MATEMATYCZNO FIZYCZNY 4 grudnia 008 r. Klasa II... ilość punktów Drogi uczniu! Przed Tobą zestaw 4 zadań. Pierwsze 0 to zadania zamknięte. Rozwiązanie tych

Bardziej szczegółowo

Maraton Matematyczny zadania dla klasy I wrzesień 2014

Maraton Matematyczny zadania dla klasy I wrzesień 2014 ZADANIE Wykonaj działanie - 4 : ( -2 ) ( -8 )= -5* (-3) +46= 2-(-4)+ 25= (43 6 3 7+6+) (-2) = Maraton Matematyczny zadania dla klasy I wrzesień 204 ZADANIE 2 Podaj przybliżenia ułamków: 6,3456; 0,28065;

Bardziej szczegółowo

Zad. 1 Samochód przejechał drogę s = 15 km w czasie t = 10 min ze stałą prędkością. Z jaką prędkością v jechał samochód?

Zad. 1 Samochód przejechał drogę s = 15 km w czasie t = 10 min ze stałą prędkością. Z jaką prędkością v jechał samochód? Segment A.I Kinematyka I Przygotował: dr Łukasz Pepłowski. Zad. 1 Samochód przejechał drogę s = 15 km w czasie t = 10 min ze stałą prędkością. Z jaką prędkością v jechał samochód? v = s/t, 90 km/h. Zad.

Bardziej szczegółowo

MATEMATYCZNEJ LIGI ZADANIOWEJ

MATEMATYCZNEJ LIGI ZADANIOWEJ ZAPRASZAMY DO ROZWIĄZANIA ZADAŃ V ETAPU MATEMATYCZNEJ LIGI ZADANIOWEJ TERMIN ODDAWANIA PRAC UPŁYWA 5 KWIETNIA 2013 R. POWODZENIA! KLASA IV Na kolonie wyjechało 131 osób trzema autobusami. W pierwszym i

Bardziej szczegółowo

Rodzaje zadań w nauczaniu fizyki

Rodzaje zadań w nauczaniu fizyki Jan Tomczak Rodzaje zadań w nauczaniu fizyki Typologia zadań pisemnych wg. prof. B. Niemierki obejmuje 2 rodzaje, 6 form oraz 15 typów zadań. Rodzaj: Forma: Typ: Otwarte Rozszerzonej odpowiedzi - czynności

Bardziej szczegółowo

Test na koniec nauki w klasie trzeciej gimnazjum

Test na koniec nauki w klasie trzeciej gimnazjum 8 Test na koniec nauki w klasie trzeciej gimnazjum imię i nazwisko ucznia...... data klasa Test 2 1 Na przeciwległych ścianach każdej z pięciu sześciennych kostek umieszczono odpowiednio liczby: 1 i 1,

Bardziej szczegółowo

Ruch jednostajny prostoliniowy

Ruch jednostajny prostoliniowy Ruch jednostajny prostoliniowy Ruch jednostajny prostoliniowy to taki ruch, którego torem jest linia prosta, a ciało w jednakowych odcinkach czasu przebywa jednakową drogę. W ruchu jednostajnym prostoliniowym

Bardziej szczegółowo

LIGA MATEMATYCZNO-FIZYCZNA DLA KLAS I ETAP III

LIGA MATEMATYCZNO-FIZYCZNA DLA KLAS I ETAP III LIGA MATEMATYCZNO-FIZYCZNA DLA KLAS I ETAP III Zad Podstawy trójkąta i równoległoboku mają tę samą długość Wysokość trójkąta jest równa 0 cm Jaką długość ma wysokość równoległoboku, jeżeli eli pola obu

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY

PRÓBNY EGZAMIN MATURALNY PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO POZIOM PODSTAWOWY 6 MARCA 2010 CZAS PRACY: 170 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT.) ( 5 Liczba 3 4 2 1 2

Bardziej szczegółowo

Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów województwa wielkopolskiego

Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów województwa wielkopolskiego Kod ucznia Data urodzenia ucznia Dzień miesiąc rok Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów ETAP SZKOLNY Rok szkolny 2017/2018 Instrukcja dla ucznia 1. Sprawdź, czy test zawiera 12 stron.

Bardziej szczegółowo

I POLA FIGUR zadania łatwe i średnie

I POLA FIGUR zadania łatwe i średnie I POLA FIGUR zadania łatwe i średnie EWA MOLL- RYDZEWSKA IMIĘ I NAZWISKO: KLASA: GRUPA A 1. W trójkącie boki mają długości a = 9 cm i b = 6 cm. Wysokość poprowadzona na bok a ma długość 4 cm. Jaką długość

Bardziej szczegółowo

31 MAJA 2012 CZAS PRACY: 90 MIN.

31 MAJA 2012 CZAS PRACY: 90 MIN. IMIE I NAZWISKO MAJA 202 CZAS PRACY: 90 MIN. ZADANIE Asia jeździła rowerem 2 godziny. Na diagramie przedstawiono w procentach (w %) czas jazdy Asi po leśnej drodze, ścieżce rowerowej i polnej drodze, ale

Bardziej szczegółowo

Próbny Egzamin Gimnazjalny z Matematyki Zestaw przygotowany przez serwis 28 marca 2015 Czas pracy: 90 minut

Próbny Egzamin Gimnazjalny z Matematyki Zestaw przygotowany przez serwis  28 marca 2015 Czas pracy: 90 minut /Gimnazjum Próbny Egzamin Gimnazjalny z Matematyki Zestaw przygotowany przez serwis www.zadania.info 28 marca 2015 Czas pracy: 90 minut Zadanie 1 (1 pkt) Na diagramie przedstawiono wysokość miesięcznych

Bardziej szczegółowo

1. Po upływie jakiego czasu ciało drgające ruchem harmonicznym o okresie T = 8 s przebędzie drogę równą: a) całej amplitudzie b) czterem amplitudom?

1. Po upływie jakiego czasu ciało drgające ruchem harmonicznym o okresie T = 8 s przebędzie drogę równą: a) całej amplitudzie b) czterem amplitudom? 1. Po upływie jakiego czasu ciało drgające ruchem harmonicznym o okresie T = 8 s przebędzie drogę równą: a) całej amplitudzie b) czterem amplitudom? 2. Ciało wykonujące drgania harmoniczne o amplitudzie

Bardziej szczegółowo

LUBELSKA PRÓBA PRZED MATURĄ MATEMATYKA - poziom podstawowy

LUBELSKA PRÓBA PRZED MATURĄ MATEMATYKA - poziom podstawowy 1 MATEMATYKA - poziom podstawowy LUTY 2015 Instrukcja dla zdającego Czas pracy: 170 minut 1. Sprawdź, czy arkusz zawiera 16 stron. 2. Rozwiązania zadań i odpowiedzi zamieść w miejscu na to przeznaczonym.

Bardziej szczegółowo

Szkolna Liga Matematyczna zestaw nr 3 dla klasy 3

Szkolna Liga Matematyczna zestaw nr 3 dla klasy 3 zestaw nr 3 dla klasy 3 W magazynie stoją dwa worki z ryżem. W pierwszym worku jest trzykrotnie więcej ryżu niż w drugim, a w drugim o 24 kg mniej niż w pierwszym. Ile ryżu znajduje się łącznie w obydwu

Bardziej szczegółowo

EGZAMIN ÓSMOKLASISTY od roku szkolnego 2018/2019

EGZAMIN ÓSMOKLASISTY od roku szkolnego 2018/2019 EGZAMIN ÓSMOKLASISTY od roku szkolnego 2018/2019 MATEMATYKA Przykładowy arkusz egzaminacyjny (EO_C) Czas pracy: 100 minut Czas pracy może być przedłużony zgodnie z przyznanym dostosowaniem. GRUDZIEŃ 2017

Bardziej szczegółowo

EGZAMIN WSTĘPNY Z MATEMATYKI

EGZAMIN WSTĘPNY Z MATEMATYKI Egzamin wstępny do I Społecznego Liceum Ogólnokształcącego BEDNARSKA Kod zdającego EGZAMIN WSTĘPNY Z MATEMATYKI 1. Przed sobą masz egzamin wstępny z matematyki, który składa się z dwóch części. Osoby,

Bardziej szczegółowo

WOJEWÓDZKI KONKURS MATEMATYCZNY

WOJEWÓDZKI KONKURS MATEMATYCZNY Kod ucznia Liczba punktów WOJEWÓDZKI KONKURS MATEMATYCZNY DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH W ROKU SZKOLNYM 2014/2015 13 STYCZNIA 2015 1. Test konkursowy zawiera 23 zadania. Są to zadania zamknięte i otwarte.

Bardziej szczegółowo

We wszystkich zadaniach przyjmij wartość przyspieszenia ziemskiego g = 10 2

We wszystkich zadaniach przyjmij wartość przyspieszenia ziemskiego g = 10 2 m We wszystkich zadaniach przyjmij wartość przyspieszenia ziemskiego g = 10 2. s Zadanie 1. (1 punkt) Pasażer samochodu zmierzył za pomocą stopera w telefonie komórkowym, że mija słupki kilometrowe co

Bardziej szczegółowo

Konkurs matematyczny 2013/ etap wojewódzki

Konkurs matematyczny 2013/ etap wojewódzki Konkurs matematyczny 2013/2014 - etap wojewódzki Kod ucznia Liczba uzyskanych punktów Nr zadania 1-10 (1p) Liczba punktów 11-14 (2p) 15 (4p) 16 (4p) 17 (4p) Drogi Uczniu! Przed Tobą wojewódzki etap konkursu.

Bardziej szczegółowo

WYPEŁNIA KOMISJA KONKURSOWA

WYPEŁNIA KOMISJA KONKURSOWA WOJEWÓDZKI KONKURS PRZEDMIOTOWY DLA UCZNIÓW GIMNAZJÓW WOJEWÓDZTWA ŚLĄSKIEGO W ROKU SZKOLNYM 016/017 MATEMATYKA Informacje dla ucznia 1. Na stronie tytułowej arkusza w wyznaczonym miejscu wpisz swój kod

Bardziej szczegółowo

v=s/t [m/s] s=v t [(m/s) s=m]

v=s/t [m/s] s=v t [(m/s) s=m] Ruch prostoliniowy jednostajny to ruch, w którym: wartość prędkości pozostaje stała: v=constans prędkość obliczamy ze wzoru: v=s/t [m/s] gdzie s- droga, t- czas wykres zależności prędkości od czasu v(t)

Bardziej szczegółowo

WOJEWÓDZKI KONKURS MATEMATYCZNY DLA UCZNIÓW SZKÓŁ GIMNAZJALNYCH ETAP SZKOLNY. 18 listopada 2013 r. godz. 13:00

WOJEWÓDZKI KONKURS MATEMATYCZNY DLA UCZNIÓW SZKÓŁ GIMNAZJALNYCH ETAP SZKOLNY. 18 listopada 2013 r. godz. 13:00 WOJEWÓDZKI KONKURS MATEMATYCZNY DLA UCZNIÓW SZKÓŁ GIMNAZJALNYCH ETAP SZKOLNY 18 listopada 2013 r. godz. 13:00 Kod pracy ucznia Suma punktów Czas pracy: 90 minut Liczba punktów możliwych do uzyskania: 30

Bardziej szczegółowo

Bukiety matematyczne dla szkoły podstawowej http://www.mat.uni.torun.pl/~kolka/

Bukiety matematyczne dla szkoły podstawowej http://www.mat.uni.torun.pl/~kolka/ Bukiety matematyczne dla szkoły podstawowej http://www.mat.uni.torun.pl/~kolka/ 12 IX rok 2003/2004 Bukiet 1 O pewnych liczbach A, B i C wiadomo, że: A + B = 32, B + C = 40, C + A = 26. 1. Ile wynosi A

Bardziej szczegółowo

Zadania przygotowawcze do konkursu o tytuł NAJLEPSZEGO MATEMATYKA KLAS PIERWSZYCH I DRUGICH POWIATU BOCHEŃSKIEGO rok szk. 2017/2018.

Zadania przygotowawcze do konkursu o tytuł NAJLEPSZEGO MATEMATYKA KLAS PIERWSZYCH I DRUGICH POWIATU BOCHEŃSKIEGO rok szk. 2017/2018. Zadania przygotowawcze do konkursu o tytuł NAJLEPSZEGO MATEMATYKA KLAS PIERWSZYCH I DRUGICH POWIATU BOCHEŃSKIEGO rok szk. 017/018 19 grudnia 017 1 1 Klasy pierwsze - poziom podstawowy 1. Dane są zbiory

Bardziej szczegółowo

Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów województwa wielkopolskiego

Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów województwa wielkopolskiego Data urodzenia ucznia Dzień miesiąc rok Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów ETAP REJONOWY Rok szkolny 2012/2013 Instrukcja dla ucznia 1. Sprawdź, czy test zawiera 12 stron. Ewentualny

Bardziej szczegółowo

Trójkąty Zad. 0 W trójkącie ABC, AB=40, BC=23, wyznacz AC wiedząc że jest ono sześcianem liczby naturalnej.

Trójkąty Zad. 0 W trójkącie ABC, AB=40, BC=23, wyznacz AC wiedząc że jest ono sześcianem liczby naturalnej. C Trójkąty Zad. 0 W trójkącie ABC, AB=40, BC=23, wyznacz AC wiedząc że jest ono sześcianem liczby naturalnej. Zad. 1 Oblicz pole trójkąta o bokach 13 cm, 14 cm, 15cm. Zad. 2 W trójkącie ABC rys. 1 kąty

Bardziej szczegółowo

Oto przykład konspektu lekcji jaką przeprowadziłam w klasie pierwszej gimnazjum.

Oto przykład konspektu lekcji jaką przeprowadziłam w klasie pierwszej gimnazjum. Metody aktywizujące na lekcjach matematyki. Przygotowując lekcje matematyki staram się tak dobrać metody pracy, żebybyłyone atrakcyjne dla ucznia oraz zachęcały do intensywnej nauki. Podczas lekcji utrwalających

Bardziej szczegółowo

VII POWIATOWY KONKURS MATEMATYCZNY SZKÓŁ GIMNAZJALNYCH W POGONI ZA INDEKSEM ZADANIA PRZYGOTOWAWCZE ROZWIĄZANIA I ODPOWIEDZI rok szkolny 2015/2016

VII POWIATOWY KONKURS MATEMATYCZNY SZKÓŁ GIMNAZJALNYCH W POGONI ZA INDEKSEM ZADANIA PRZYGOTOWAWCZE ROZWIĄZANIA I ODPOWIEDZI rok szkolny 2015/2016 3. Pierwszy piechur w ciągu minuty przebywa 1/a drogi, drugi 1/b drogi. Obaj piechurzy przebywają 1/a+1/b czyli (b+a)/ab b a ab Odp. Piechurzy spotkają się po 1 : minut ab b a 4. (5a+1) 4 (5b+4) 4 = (

Bardziej szczegółowo

PRĘDKOŚĆ, DROGA, CZAS

PRĘDKOŚĆ, DROGA, CZAS Imię i nazwisko... Klasa... PRĘDKOŚĆ, DROGA, CZAS GRUPA A 1. Rowerzysta jedzie z prędkością 20 km h. W ciągu godziny pokona: A. 1 3 km B. 60 km C. 20 km D. 10 km 2. Jaką trasę pokona w ciągu pół godziny

Bardziej szczegółowo

PRÓBNY EGZAMIN ÓSMOKLASISTY

PRÓBNY EGZAMIN ÓSMOKLASISTY PRÓBNY EGZAMIN ÓSMOKLASISTY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO 16 MARCA 2019 CZAS PRACY: 100 MINUT 1 ZADANIE 1 (1 PKT) Firma transportowa Paka korzysta z samochodów dostawczych,

Bardziej szczegółowo

Praca kontrolna nr 3, listopad 2018 termin oddania pracy do ,( ) ma cyfrę 6 na dziewiątym miejscu po przecinku?

Praca kontrolna nr 3, listopad 2018 termin oddania pracy do ,( ) ma cyfrę 6 na dziewiątym miejscu po przecinku? Praca kontrolna nr 3, listopad 2018 termin oddania pracy do 3.12.2018 Imię i nazwisko... klasa III Zadanie 1. (0 1) Ile z następujących liczb: 2 3, 1 6, 0,( 62 ), 0 626,( ) ma cyfrę 6 na dziewiątym miejscu

Bardziej szczegółowo

Blok 6: Pęd. Zasada zachowania pędu. Praca. Moc.

Blok 6: Pęd. Zasada zachowania pędu. Praca. Moc. Blok 6: Pęd. Zasada zachowania pędu. Praca. Moc. ZESTAW ZADAŃ NA ZAJĘCIA ROZGRZEWKA 1. Przypuśćmy, że wszyscy ludzie na świecie zgromadzili się w jednym miejscu na Ziemi i na daną komendę jednocześnie

Bardziej szczegółowo

14P POWTÓRKA FIKCYJNY EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII. POZIOM PODSTAWOWY (od początku do grawitacji)

14P POWTÓRKA FIKCYJNY EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII. POZIOM PODSTAWOWY (od początku do grawitacji) Włodzimierz Wolczyński 14P POWTÓRKA FIKCYJNY EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII POZIOM PODSTAWOWY (od początku do grawitacji) Rozwiązanie zadań należy zapisać w wyznaczonych miejscach pod treścią

Bardziej szczegółowo

Matematyk Roku gminny konkurs matematyczny. FINAŁ 19 maja 2017 KLASA PIERWSZA

Matematyk Roku gminny konkurs matematyczny. FINAŁ 19 maja 2017 KLASA PIERWSZA Twój kod:.. "Matematyka nie taka straszna jak ją malują Matematyk Roku 2017 - gminny konkurs matematyczny FINAŁ 19 maja 2017 KLASA PIERWSZA 1. Przed Tobą zestaw 20 zadań konkursowych. Zanim rozpoczniesz

Bardziej szczegółowo

Określ zbiór wartości i przedziały monotoniczności funkcji.

Określ zbiór wartości i przedziały monotoniczności funkcji. Zadanie 1 Sprowadź do postaci ogólnej funkcję kwadratową Zadanie 2 Wyznacz zbiór wartości funkcji Zadanie 3 Określ zbiór wartości i przedziały monotoniczności funkcji Zadanie 4 Wykres funkcji kwadratowej

Bardziej szczegółowo

KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH Etap Wojewódzki

KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH Etap Wojewódzki Kod ucznia - - Dzień Miesiąc Rok pieczątka WKK DATA URODZENIA UCZNIA KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH Etap Wojewódzki Drogi Uczniu Witaj na III etapie konkursu matematycznego. Przeczytaj

Bardziej szczegółowo

KONKURS MATEMATYCZNO FIZYCZNY 3 marca 2009 r. Klasa II

KONKURS MATEMATYCZNO FIZYCZNY 3 marca 2009 r. Klasa II ...... imię i nazwisko ucznia... klasa KONKURS MATEMATYCZNO FIZYCZNY marca 2009 r. Klasa II... ilość punktów Drogi uczniu! Przed Tobą zestaw 14 zadań. Pierwsze 10 to zadania zamknięte. Rozwiązanie tych

Bardziej szczegółowo

EGZAMIN GIMNAZJALNY W ROKU SZKOLNYM 2011/2012

EGZAMIN GIMNAZJALNY W ROKU SZKOLNYM 2011/2012 Centralna Komisja Egzaminacyjna EGZAMIN GIMNAZJALNY W ROKU SZKOLNYM 2011/2012 CZĘŚĆ MATEMATYCZNO-PRZYRODNICZA MATEMATYKA PRZYKŁADOWY ZESTAW ZADAŃ PAŹDZIERNIK 2011 czas (w procentach) Zadanie 1. Do przygotowania

Bardziej szczegółowo

OBLICZANIE PÓL I OBWODÓW FIGUR PŁASKICH

OBLICZANIE PÓL I OBWODÓW FIGUR PŁASKICH OBLICZANIE PÓL I OBWODÓW FIGUR PŁASKICH Zadanie 1 Jeden z boków prostokąta ma 5 cm, a drugi jest 3 razy dłuższy. Oblicz pole prostokąta. Zadanie 2 Oblicz pole kwadratu, którego obwód wynosi 6 dm. Zadanie

Bardziej szczegółowo

Kuratorium Oświaty w Bydgoszczy. Wojewódzki Konkurs Przedmiotowy z Matematyki dla uczniów szkół podstawowych etap wojewódzki część I

Kuratorium Oświaty w Bydgoszczy. Wojewódzki Konkurs Przedmiotowy z Matematyki dla uczniów szkół podstawowych etap wojewódzki część I Kod ucznia: Bydgoszcz, 31.01.2015r. Wojewódzki Konkurs Przedmiotowy z Matematyki dla uczniów szkół podstawowych etap wojewódzki część I Wypełnia komisja konkursowa Numer zadania 1 2 3 4 5 Razem Punktacja

Bardziej szczegółowo

KONKURS PRZEDMIOTOWY Z MATEMATYKI dla uczniów szkół podstawowych województwa lubuskiego 14 stycznia 2012 r. zawody II stopnia (rejonowe)

KONKURS PRZEDMIOTOWY Z MATEMATYKI dla uczniów szkół podstawowych województwa lubuskiego 14 stycznia 2012 r. zawody II stopnia (rejonowe) Kod ucznia Ilość zdobytych punktów KONKURS PRZEDMIOTOWY Z MATEMATYKI dla uczniów szkół podstawowych województwa lubuskiego stycznia 0 r. zawody II stopnia (rejonowe) Drogi Uczniu, przed Tobą test składający

Bardziej szczegółowo

Zad. 1 Korzystając z rysunku oblicz długość odcinka OA, jeśli CD=4, AB=5, OC=8

Zad. 1 Korzystając z rysunku oblicz długość odcinka OA, jeśli CD=4, AB=5, OC=8 Testy do gimnazjum Jednokładność, podobieństwo, twierdzenie Talesa. Test dla klasy III Przekształcenia geometryczne. Grupa I Zad. Korzystając z rysunku oblicz długość odcinka OA, jeśli CD=4, AB=5, OC=

Bardziej szczegółowo

SPRAWDZIAN NR Na wykresie przedstawiono zależność prędkości pociągu od czasu.

SPRAWDZIAN NR Na wykresie przedstawiono zależność prędkości pociągu od czasu. SPRAWDZIAN NR 1 AGNIESZKA JASTRZĘBSKA IMIĘ I NAZWISKO: KLASA: GRUPA A 1. Na wykresie przedstawiono zależność prędkości pociągu od czasu. Dokończ zdanie. Wybierz stwierdzenie A albo B oraz jego uzasadnienie

Bardziej szczegółowo

KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH 2012/2013

KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH 2012/2013 .... pieczątka WKK Kod ucznia Dzień Miesiąc Rok DATA URODZENIA UCZNIA KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH 2012/2013 ETAP WOJEWÓDZKI Drogi Uczniu! Witaj na etapie wojewódzkim konkursu matematycznego.

Bardziej szczegółowo

KONKURS NA 6 MATEMATYKA

KONKURS NA 6 MATEMATYKA KONKURS NA 6 MATEMATYKA ZAD.1. Znajdź takie trzy liczby, żeby ich największy wspólny dzielnik był równy najmniejszej wspólnej wielokrotności liczb 24, 30 i 36, a najmniejsza wspólna wielokrotność równała

Bardziej szczegółowo

Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów. Etap Wojewódzki 17 lutego 2016 Czas 90 minut

Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów. Etap Wojewódzki 17 lutego 2016 Czas 90 minut kod ucznia Zadanie 1-10 11 12 13 14 15 suma punkty (wypełnia komisja) Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów. Etap Wojewódzki 17 lutego 2016 Czas 90 minut 1. Otrzymujesz do rozwiązania 10

Bardziej szczegółowo

Imię i nazwisko ucznia Data... Klasa... Ruch i siły wer. 1

Imię i nazwisko ucznia Data... Klasa... Ruch i siły wer. 1 Przygotowano za pomocą programu Ciekawa fizyka. Bank zadań Copyright by Wydawnictwa Szkolne i Pedagogiczne sp. z o.o., Warszawa 2011 strona 1 Imię i nazwisko ucznia Data...... Klasa... Zadanie 1. Znajdź

Bardziej szczegółowo

Kuratorium Oświaty w Lublinie KONKURS MATEMATYCZNY DLA UCZNIÓW SZKOŁY PODSTAWOWEJ ZESTAW ZADAŃ KONKURSOWYCH ROK SZKOLNY 2018/2019 ETAP TRZECI

Kuratorium Oświaty w Lublinie KONKURS MATEMATYCZNY DLA UCZNIÓW SZKOŁY PODSTAWOWEJ ZESTAW ZADAŃ KONKURSOWYCH ROK SZKOLNY 2018/2019 ETAP TRZECI Kuratorium Oświaty w Lublinie.. Imię i nazwisko ucznia Pełna nazwa szkoły Liczba uzyskanych punktów KONKURS MATEMATYCZNY DLA UCZNIÓW SZKOŁY PODSTAWOWEJ ZESTAW ZADAŃ KONKURSOWYCH ROK SZKOLNY 2018/2019 ETAP

Bardziej szczegółowo

PRÓBNY EGZAMIN GIMNAZJALNY

PRÓBNY EGZAMIN GIMNAZJALNY PRÓBNY EGZAMIN GIMNAZJALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO 28 MARCA 2015 CZAS PRACY: 90 MINUT 1 ZADANIE 1 (1 PKT) Na diagramie przedstawiono wysokość miesięcznych zarobków

Bardziej szczegółowo

Powodzenia! Zadanie 1 (0-1) Średnia arytmetyczna liczb a, b, c, wynosi 15. Średnia liczb a + 7, b + 3, c + 8 wynosi:

Powodzenia! Zadanie 1 (0-1) Średnia arytmetyczna liczb a, b, c, wynosi 15. Średnia liczb a + 7, b + 3, c + 8 wynosi: Razem Kod ucznia Nr zadania 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Liczba punktów możliwych do zdobycia Liczba punktów zdobytych 1 1 1 1 1 1 1 1 1 3 5 3 3 3 4 30 XV Powiatowy Konkurs z Matematyki dla uczniów

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY

PRÓBNY EGZAMIN MATURALNY PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO POZIOM PODSTAWOWY+ 5 MARCA 2011 CZAS PRACY: 170 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT.) Cena towaru bez podatku

Bardziej szczegółowo

Ruch jednostajnie zmienny prostoliniowy

Ruch jednostajnie zmienny prostoliniowy Ruch jednostajnie zmienny prostoliniowy Przyspieszenie w ruchu jednostajnie zmiennym prostoliniowym Jest to taki ruch, w którym wektor przyspieszenia jest stały, co do wartości (niezerowej), kierunku i

Bardziej szczegółowo

PRÓBNY EGZAMIN GIMNAZJALNY

PRÓBNY EGZAMIN GIMNAZJALNY PRÓBNY EGZAMIN GIMNAZJALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO 29 MARCA 2014 CZAS PRACY: 90 MINUT 1 ZADANIE 1 (1 PKT) Na diagramie przedstawiono wyniki pracy klasowej z matematyki

Bardziej szczegółowo

Sprawdzian z matematyki na zakończenie nauki w drugiej klasie gimnazjum

Sprawdzian z matematyki na zakończenie nauki w drugiej klasie gimnazjum Wypełnia uczeń Kod ucznia Sprawdzian z matematyki na zakończenie nauki w drugiej klasie gimnazjum Informacje dla ucznia 1. Sprawdź, czy sprawdzian ma 6 stron. Ewentualny brak stron lub inne usterki zgłoś

Bardziej szczegółowo

Ćwiczenie: "Kinematyka"

Ćwiczenie: Kinematyka Ćwiczenie: "Kinematyka" Opracowane w ramach projektu: "Wirtualne Laboratoria Fizyczne nowoczesną metodą nauczania realizowanego przez Warszawską Wyższą Szkołę Informatyki. Zakres ćwiczenia: 1. Ruch punktu

Bardziej szczegółowo

ZESTAW EGZAMINACYJNY NR 1.

ZESTAW EGZAMINACYJNY NR 1. ZESTAW EGZAMINACYJNY NR 1. 1. (0-1p.) Ze zbiornika I, w którym znajdowało się 100 litrów wody, przelewano wodę do zbiornika II. Na wykresie przedstawiono, jak zmieniała się objętość wody w zbiorniku II

Bardziej szczegółowo

SPIS TREŚCI. Do Nauczyciela... 4. Regulamin konkursu... 5. Zadania

SPIS TREŚCI. Do Nauczyciela... 4. Regulamin konkursu... 5. Zadania SPIS TREŚCI Do Nauczyciela... 4 Regulamin konkursu... 5 Zadania Liczby i wyrażenia algebraiczne... 7 Funkcje... 12 Wielokąty, koła i okręgi... 18 Przekształcenia geometryczne... 23 Figury podobne... 28

Bardziej szczegółowo

Test z matematyki. Małe olimpiady przedmiotowe. Imię i nazwisko. Drogi Uczniu,

Test z matematyki. Małe olimpiady przedmiotowe. Imię i nazwisko. Drogi Uczniu, Małe olimpiady przedmiotowe Test z matematyki ORGANIZATORZY: Wydział Edukacji Urzędu Miasta w Koszalinie Centrum Edukacji Nauczycieli w Koszalinie Imię i nazwisko. Szkoła Szkoła Podstawowa nr 7 w Koszalinie

Bardziej szczegółowo