ADAM KONSTANTYNOWICZ MATEMATYKA KOREPETYCJE GIMNAZJALISTY
|
|
- Wanda Kowal
- 8 lat temu
- Przeglądów:
Transkrypt
1
2 ADAM KONSTANTYNOWICZ MATEMATYKA KOREPETYCJE GIMNAZJALISTY
3 Redaktor serii: Marek Jannasz Redakcja: Inga Linder-Kopiecka Korekta: Marek Kowalik Projekt okładki: Teresa Chylińska-Kur, KurkaStudio Projekt makiety i opracowanie graficzne: Kaja Mikoszewska Copyright by Wydawnictwo Lingo sp. j., Warszawa ISBN: ISBN wydania elektronicznego: Skład i łamanie: Kaja Mikoszewska Druk i oprawa: Pozkal
4 MATEMATYKA KOREPETYCJE GIMNAZJALISTY LICZBY WYMIERNE POTĘGI I PIERWIASTKI PROCENTY WYRAŻENIA ALGEBRAICZNE RÓWNANIA WYKRESY FUNKCJI STATYSTYKA OPISOWA I WPROWADZENIE DO RACHUNKU PRAWDOPODOBIEŃSTWA FIGURY PŁASKIE BRYŁY
5 4 WSTĘP Korepetycje z matematyki to publikacja dostosowana do potrzeb uczniów gimnazjum klas I III i opracowana zgodnie z nową podstawą programową. Książka jest napisana przystępnym językiem, ułatwiającym zrozumienie i zapamiętanie materiału. Najważniejsze treści zilustrowano licznymi wyjaśniającymi przykładami, istotne informacje ujęto w widoczny sposób. Jej czytelny podział i przejrzysta szata graficzna wpływają na lepszy odbiór przyswajanej wiedzy. Korepetycje z matematyki zawierają 9 rozdziałów podanych zgodnie z kolejnością w podstawie programowej: 1. Liczby wymierne; 2. Potęgi i pierwiastki; 3. Procenty; 4. Wyrażenia algebraiczne; 5. Równania; 6. Wykresy funkcji; 7. Statystyka; 8. Figury płaskie; 9. Bryły. STARA DOBRA SZKOŁA
6 WSTĘP 5 Na początku każdego działu znajdują się zagadnienia teoretyczne wraz z odpowiednimi rozwiązanymi przykładami. Po treściach teoretycznych zamieszczone są: najważniejsze informacje do zapamiętania ujęte w danym rozdziale (część Zapamiętaj), ciekawostka nawiązująca do omawianych treści (część Ciekawostka) oraz zadania sprawdzające wiedzę i umiejętności z omawianego działu (część Sprawdź się). Zadania zostały opracowane zgodnie z nową formułą egzaminu gimnazjalnego obowiązującą od 2012 r. Na końcu każdego działu zamieszczono rozwiązania i wskazówki do wszystkich zadań z zestawów Sprawdź się. Pozwolą one wyjaśnić wątpliwości lub naprowadzą na właściwe rozwiązanie zadania. Korepetycje z matematyki są znakomitym uzupełnieniem podręczników do matematyki w gimnazjum. Mogą być wykorzystane przez nauczycieli i uczniów na lekcjach matematyki, na zajęciach dodatkowych w klasach I III gimnazjum oraz przez uczniów samodzielnie przygotowujących się do prac klasowych i sprawdzianów. Dzięki tej publikacji lepiej i łatwiej przygotujesz się również do egzaminu gimnazjalnego z matematyki. Powodzenia Adam Konstantynowicz
7 6 SPIS TREŚCI Wstęp 3 ROZDZIAŁ 1. LICZBY WYMIERNE 9 1. Liczby naturalne i całkowite Rzymski sposób zapisywania liczb Liczby wymierne dodatnie Liczby wymierne (dodatnie i niedodatnie) 20 Sprawdź się 26 ROZDZIAŁ 2. POTĘGI I PIERWIASTKI Potęga o wykładniku naturalnym 34 Określenie 34 Zapisywanie iloczynów o jednakowych czynnikach w postaci potęg 34 Zapisywanie liczb w postaci potęg 35 Obliczanie potęg liczb wymiernych 35 Iloczyn i iloraz potęg o tej samej podstawie 35 Potęgowanie iloczynu, ilorazu i potęgi Potęga o wykładniku całkowitym ujemnym Notacja wykładnicza Obliczanie wartości liczbowych wyrażeń zawierających potęgi Pierwiastek kwadratowy i sześcienny 39 Pierwiastek kwadratowy 39 Określenie 39 Obliczanie pierwiastków kwadratowych liczb nieujemnych 39 Określenie 40 Obliczanie pierwiastków sześciennych z liczb 40 Pierwiastek z iloczynu, iloczyn pierwiastków 40 Pierwiastek z ilorazu, iloraz pierwiastków 41 Obliczanie wartości liczbowych wyrażeń zawierających pierwiastki 42 Wyłączanie czynnika przed znak pierwiastka 42 Szacowanie wyrażeń zawierających pierwiastki 43 Działania na potęgach i pierwiastkach 44 Działania na potęgach i pierwiastkach w wyrażeniach algebraicznych 44 Sprawdź się 46 ROZDZIAŁ 3. PROCENTY Pojęcie procentu Obliczanie procentu danej liczby Obliczanie liczby, gdy ma się dany jej procent Obliczanie, jakim procentem jednej liczby jest druga liczba Procenty w zadaniach tekstowych 62 Obliczenia procentowe do rozwiązywania problemów w kontekście praktycznym obniżki, podwyżki 62 Obliczenia procentowe VAT 63 Obliczenia procentowe lokaty 64 Obliczenia procentowe stężenia Pojęcie promila 65 Sprawdź się 69 ROZDZIAŁ 4. WYRAŻENIA ALGEBRAICZNE Wyrażenie algebraiczne i jego wartość liczbowa Sumy algebraiczne 81 Sprawdź się 88 ROZDZIAŁ 5. RÓWNANIA Rozwiązywanie równań Zadania tekstowe na zastosowanie równań Przekształcanie wzorów Układy równań Zadania tekstowe na zastosowanie układów równań 114 Sprawdź się 120 STARA DOBRA SZKOŁA
8 SPIS TREŚCI 7 ROZDZIAŁ 6. WYKRESY FUNKCJI Układ współrzędnych Funkcje i ich własności 137 Sprawdź się 146 ROZDZIAŁ 7. STATYSTYKA OPISOWA I WPROWADZENIE DO RACHUNKU PRAWDOPODOBIEŃSTWA Odczytywanie i interpretowanie danych przedstawionych w postaci diagramów, wykresów i tabel Przedstawianie danych tabelarycznie, za pomocą diagramów i wykresów Średnia arytmetyczna i mediana zestawu danych Proste doświadczenia losowe oraz prawdopodobieństwo zdarzeń 161 Sprawdź się 164 ROZDZIAŁ 9. BRYŁY Graniastosłupy proste Ostrosłupy Walec Stożek Kula 240 Sprawdź się 243 ROZDZIAŁ 8. FIGURY PŁASKIE Podstawowe figury geometryczne Wielokąty i ich własności Pola figur Trójkąty prostokątne Figury przystające Symetria względem prostej Symetria względem punktu Koło i okrąg Figury podobne 211 Sprawdź się 216
9 8 MATEMATYKA KOREPETYCJE GIMNAZJALISTY STARA DOBRA SZKOŁA
10 ROZDZIAŁ 1. LICZBY WYMIERNE (dodatnie i niedodatnie) Liczba jest istotą wszystkich rzeczy. Te słowa Pitagorasa, wypowiedziane około 30 tysięcy lat po tym, gdy prawdopodobnie zaczęto po raz pierwszy używać liczb, są jak najbardziej słuszne. Wprowadzanie nazw zbiorów liczb następowało stopniowo, a prace matematyków nad teorią liczb trwają do dzisiaj. Liczby przedstawione w tym rozdziale to tylko wierzchołek góry lodowej.
11 10 MATEMATYKA KOREPETYCJE GIMNAZJALISTY 1. Liczby naturalne i całkowite Liczbami naturalnymi są liczby: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 Do zapisywania liczb naturalnych używamy dziesięciu znaków zwanych cyframi. Są to: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. Liczby 243 i 342 zawierają te same cyfry, ale nie są równe. Znaczenie cyfry w liczbie zależy od miejsca (pozycji), na którym się znajduje, dlatego taki sposób zapisu liczb nazywamy systemem pozycyjnym. Wśród liczb naturalnych istnieje liczba najmniejsza. Jest to liczba 0. Nie istnieje natomiast liczba największa. Liczby naturalne służą m.in. do numerowania i do liczenia przedmiotów. Do odczytywania temperatury w zimie albo wielkości zadłużenia potrzebne są nam liczby ujemne, czyli mniejsze od 0. Liczby 0, 1, 2, 3 oraz 1, 2, 3 to liczby całkowite. Liczby możemy przedstawiać na osi liczbowej, czyli prostej, na której ustalono zwrot, obrano punkt zerowy i ustalono jednostkę odległości. Liczby odpowiadające zaznaczonym punktom na osi liczbowej nazywamy ich współrzędnymi. PRZYKŁAD 1 Zaznacz na osi liczbowej punkty o współrzędnych 3, 2, 0, 1, 4. A B C D E Punkt A ma współrzędną 3, punkt B ma współrzędną 2, punkt C ma współrzędną 0, punkt D ma współrzędną 1, punkt E ma współrzędną 4. Liczby 1 i 1, 2 i 2, 3 i 3 to pary liczb przeciwnych. Takim liczbom odpowiadają punkty leżące na osi liczbowej po przeciwnych stronach punktu zerowego i w tej samej odległości od niego. STARA DOBRA SZKOŁA
12 1. Liczby wymierne (dodatnie i niedodatnie) 11 PRZYKŁAD 2 Zaznacz na osi liczbowej punkty odpowiadające liczbom przeciwnym: 1 i 1, 2 i 2, 7 i 7, 10 i Na osi liczbowej na prawo od 0 leżą liczby dodatnie, zaś na lewo liczby ujemne. Liczba 0 nie jest ani liczbą dodatnią, ani liczbą ujemną. Porównując liczby całkowite, warto pamiętać, że każda liczba dodatnia jest zawsze większa od każdej liczby ujemnej. Również liczba 0 jest większa od każdej liczby ujemnej. Z dwóch liczb ujemnych większa zaś jest ta liczba, która odpowiada punktowi leżącemu bliżej 0 na osi liczbowej. PRZYKŁAD 3 Porównaj liczby całkowite: a) 6 i 3; b) 7 i 2; c) 0 i 6. a) 6 > 3, bo każda liczba dodatnia jest większa od każdej liczby ujemnej; b) 7 < 2, bo punkt o współrzędnej 2 leży bliżej 0; c) 0 > 6, bo liczba 0 jest większa od każdej liczby ujemnej. 2. Rzymski sposób zapisywania liczb System rzymski zapisywania liczb wykorzystuje cyfry pochodzenia etruskiego, które Rzymianie przejęli i zmodyfikowali ok. 500 r. p.n.e. Jest on wygodny przy zapisie liczb naturalnych, lecz nie można w nim zapisywać ułamków oraz wykonywać pisemnych działań matematycznych. Dzisiaj system rzymski używany jest do: numeracji wieków, tomów, ksiąg, rozdziałów, imion panujących władców, do zapisywania numerów szkół (np. liceów ogólnokształcących).
13 12 MATEMATYKA KOREPETYCJE GIMNAZJALISTY Do zapisu liczb w systemie rzymskim używa się siedmiu cyfr: I, V, X, L, C, D, M. Poszczególne cyfry oznaczają: I 1, V 5, X 10, L 50, C 100, D 500, M Przy zapisywaniu lub odczytywaniu liczb w systemie rzymskim należy pamiętać, że jeżeli znak oznaczający mniejszą liczbę stoi po prawej stronie znaku oznaczającego większą liczbę, to stosujemy dodawanie, a jeśli po lewej stronie, to odejmowanie. PRZYKŁAD 1 Odczytaj liczby zapisane w systemie rzymskim. a) XI; b) XXVII; c) XCIX; d) CM. a) XI = = 11; b) XXVII = = = 27; c) XCIX = [100 + (10 1)] 10 = ( ) 10 = = 99; lub XCIX = (100 10) + (10 1) = = 99; d) CM = = 900. Należy pamiętać, że obok siebie zapisujemy co najwyżej trzy jednakowe znaki. PRZYKŁAD 2 Zamień liczby zapisane w systemie dziesiątkowym na zapisane w systemie rzymskim. a) 12; b) 135; c) 1579; d) a) 12 = XII; b) 135 = CXXXV; c) 1579 = MDLXXIX; d) 2850 = MMDCCCL. STARA DOBRA SZKOŁA
14 1. Liczby wymierne (dodatnie i niedodatnie) Liczby wymierne dodatnie Ułamkiem zwykłym (np. 1 ) nazywamy iloraz dwóch liczb całkowitych, z których 3 dzielna jest licznikiem, dzielnik mianownikiem, a kreska ułamkowa zastępuje znak dzielenia. Mianownik musi być liczbą różną od 0. Wśród ułamków wyróżniamy ułamki właściwe i niewłaściwe. Ułamki właściwe (np. 2 ) to te, w których licznik jest mniejszy od mianownika. 7 Są one mniejsze od 1. Ułamki niewłaściwe (np. 12 5, 7 ) to te, w których licznik jest większy od mianownika lub równy mianownikowi. Są one większe od 1 lub równe 7 1. Liczby w postaci 1 1 5, 47 8, 91 to liczby mieszane. 2 Skracaniem ułamka nazywamy czynność polegającą na podzieleniu jego licznika i mianownika przez tę samą liczbę różną od 0, np : 12 = : 12 = 2 3. Rozszerzanie ułamka to czynność polegająca na pomnożeniu licznika i mianownika przez tę samą liczbę różną od 0, np. 2 3 = = Każde dwa ułamki możemy porównać. Porównując dwa ułamki zwykłe, zazwyczaj doprowadzamy je do ułamków o równych mianownikach lub równych licznikach, np. 5 6 > 1 10, bo 4 12 > 3 12 ; 4 51 < 10 20, bo < Najprościej dodaje się lub odejmuje ułamki o jednakowych mianownikach. Wystarczy dodać lub odjąć liczniki, a mianownik pozostawić bez zmian, np = 4 5 ; = Aby dodać lub odjąć ułamki o różnych mianownikach, należy najpierw sprowadzić je do wspólnego mianownika, następnie dodać lub odjąć liczniki, a mianownik pozostawić bez zmian. PRZYKŁAD 1 Wykonaj działania: a) ; b) a) = = = ; b) = = = Odpowiedź: = ; =
15 14 MATEMATYKA KOREPETYCJE GIMNAZJALISTY Ułamki zwykłe również mnożymy i dzielimy, trzeba pamiętać o różnych sposobach wykonywania tych działań. Aby pomnożyć ułamek przez liczbę całkowitą, należy pomnożyć licznik tego ułamka przez tę liczbę, a mianownik pozostawić bez zmian. Iloczyn ułamków jest ułamkiem, którego licznik jest iloczynem liczników, a mianownik iloczynem mianowników. Gdy czynnik jest liczbą mieszaną, zazwyczaj zamieniamy tę liczbę na ułamek niewłaściwy i wykonujemy mnożenie. Przy mnożeniu liczników oraz mianowników warto pamiętać o możliwości skracania. PRZYKŁAD 2 Oblicz: a) ; b) ; c) a) = = ; b) = = ; c) = 3 2 = = = Odpowiedź: = 12; = 2 27 ; = Mnożenie ułamków stosujemy na przykład przy obliczaniu ułamka danej liczby. Np. 3 4 liczby 60 = 3 60 = Gdy iloczyn dwu liczb jest równy 1, to mówimy, że jedna z nich jest odwrotnością drugiej, zatem odwrotnością liczby a 0 jest liczba 1 a. Odwrotnością ułamka a b jest ułamek b, gdzie a 0 i b 0, np. odwrotnością a liczby 5 jest liczba 1,4. 7 Aby podzielić ułamek przez ułamek, mnożymy pierwszy ułamek przez odwrotność drugiego, np. 7 8 : 3 4 = = 7 6 = Dzielenie ułamków wykorzystujemy na przykład przy wyznaczaniu liczby z danego jej ułamka. Ułamki zwykłe, które w mianowniku mają 10, 100, 1000,, nazywamy ułamkami dziesiętnymi. Możemy je zapisać w postaci dziesiętnej, tzn. bez kreski ułam- STARA DOBRA SZKOŁA
16 1. Liczby wymierne (dodatnie i niedodatnie) 15 kowej, z zastosowaniem przecinka oddzielającego część całkowitą od części ułamkowej, np = 0,023. Dodawanie i odejmowanie ułamków dziesiętnych wykonujemy tak, jak dodawanie i odejmowanie liczb naturalnych. Proste rachunki wykonujemy w pamięci, a bardziej skomplikowane sposobem pisemnym, pamiętając, aby wszystkie przecinki zapisać w jednej kolumnie. PRZYKŁAD 3 Wykonaj obliczenia sposobem pisemnym. a) 1, ,9 + 0,67; b) 10,2 3,81. a) b) 1, , _ + 0, , , 2 3, 8 6, Odpowiedź: 1, ,9 + 0,67 = 26,927; 10,2 3,81 = 6,39. Przy mnożeniu ułamka dziesiętnego przez 10, 100, 1000 przesuwamy przecinek w tym ułamku w prawo odpowiednio o jedno, dwa, trzy miejsca, np. 3, = 324,1. Przy dzieleniu ułamka dziesiętnego przez 10, 100, 1000 przesuwamy przecinek w tym ułamku w lewo odpowiednio o jedno, dwa, trzy miejsca, np. 650,2 : 1000 = 0,6502. Mnożąc ułamki dziesiętne sposobem pisemnym, zapisujemy je tak, jak w mnożeniu liczb naturalnych, nie zwracając uwagi na położenie przecinka, a w iloczynie oddzielamy przecinkiem od prawej strony (od końca) tyle cyfr, ile jest łącznie po przecinkach w obu czynnikach.
17 16 MATEMATYKA KOREPETYCJE GIMNAZJALISTY Dzieląc ułamek dziesiętny przez liczbę naturalną, postępujemy tak samo, jak przy dzieleniu liczb naturalnych, a przecinek w ilorazie zapisujemy nad przecinkiem dzielnej. Przy dzieleniu liczby przez ułamek dziesiętny należy przesunąć przecinek w dzielnej i dzielniku o tyle miejsc, aby dzielnik stał się liczbą naturalną, a następnie wykonać to dzielenie. PRZYKŁAD 4 Oblicz sposobem pisemnym: a) 15,23 3,6; b) 25,6 : 0,25. a) , 2 3 3, , b) 25,6 : 0,25 = 2560 : , : 2 5 _ _ _ Odpowiedź: 15,23 3,6 = 54,828; 25,6 : 0,25 = 102,4. Jeżeli każdy ułamek zwykły traktujemy jako iloraz dwóch liczb całkowitych, to możemy wykonać dzielenie licznika tego ułamka przez jego mianownik. Wynikiem tego dzielenia jest ułamek dziesiętny. Ułamek zwykły może mieć rozwinięcie dziesiętne skończone lub rozwinięcie dziesiętne nieskończone. Znajdź rozwinięcia dziesiętne ułamków: a) 3 8 ; b) na stronie obok STARA DOBRA SZKOŁA
18 1. Liczby wymierne (dodatnie i niedodatnie) 17 PRZYKŁAD 5 a) 0, 3 3 : _ 5 _ b) 0, : _ _ _ Odpowiedź: 3 8 = 0,375; 5 11 = 0,4545 Rozwinięcia dziesiętne nieskończone, w których od pewnego miejsca powtarza się cyfra lub grupa cyfr, nazywamy dziesiętnymi okresowymi. Powtarzającą się cyfrę lub najkrótszą grupę cyfr nazywamy okresem i zapisujemy go w nawiasie, np. 0,24343 = 0,2(43). Ułamki zwykłe o rozwinięciu dziesiętnym skończonym możemy zamieniać na ułamki dziesiętne, rozszerzając lub skracając je tak, aby w mianowniku była liczba 10, 100, 1000, np. 3 5 = 6 10 ; = Rozwinięć dziesiętnych nieskończonych w praktyce używa się często jako rozwinięć dziesiętnych ograniczonych do jednego lub kilku miejsc po przecinku. Mówimy wtedy o przybliżeniu dziesiętnym z określoną dokładnością, czyli o zaokrągleniu liczby do jednego, dwóch, trzech miejsc po przecinku (czyli do części dziesiątych, setnych, tysięcznych itd.). Zaokrąglając liczby, możemy korzystać z ogólnie przyjętych zasad. Jeżeli pierwsza z odrzucanych cyfr rozwinięcia dziesiętnego jest mniejsza od 5, to ostatnią zachowaną cyfrę zostawiamy bez zmian i podajemy przybliżenie liczby
19 18 MATEMATYKA KOREPETYCJE GIMNAZJALISTY z niedomiarem. Jeżeli zaś pierwsza z odrzucanych cyfr rozwinięcia dziesiętnego jest większa lub równa 5, to ostatnią zachowaną cyfrę powiększamy o 1 i podajemy przybliżenie liczby z nadmiarem. PRZYKŁAD 6 Podaj przybliżenie liczby 23, z dokładnością do a) części tysięcznych; b) części setnych i określ, czy jest ono z niedomiarem czy z nadmiarem. a) 23, ,148 z niedomiarem; b) 23, ,15 z nadmiarem. Czasami w życiu codziennym kierujemy się zasadami zaokrąglania innymi niż matematyczne. Mówimy wówczas o szacowaniu. W sklepie zastanawiamy się, czy kwota, którą posiadamy, wystarczy nam na zakup zaplanowanych produktów, szacujemy wtedy ich wartość, stosując przybliżenia z nadmiarem. Obliczając wartość wyrażenia arytmetycznego, korzystamy z własności działań: przemienności dodawania: a + b = b + a; łączności dodawania: (a + b) + c = a + (b + c); przemienności mnożenia: a b = b a; łączności mnożenia: (a b) c = a (b c); rozdzielności mnożenia względem dodawania: a (b + c) = a b + a c. Pamiętajmy o tym, że: dodając 0, nie zmieniamy wartości wyrażenia: a + 0 = a; mnożąc przez 1, nie zmieniamy wartości wyrażenia: a 1 = a; gdy jednym z czynników iloczynu jest 0, to iloczyn wynosi 0. Przy obliczaniu wartości liczbowej wyrażenia arytmetycznego należy pamiętać o kolejności wykonywania działań. Jeżeli w wyrażeniu występuje tylko dodawanie i odejmowanie albo tylko mnożenie i dzielenie, to wykonujemy je w kolej- STARA DOBRA SZKOŁA
20 1. Liczby wymierne (dodatnie i niedodatnie) 19 ności od lewej do prawej. Gdy w wyrażeniu występuje dodawanie, odejmowanie, mnożenie lub dzielenie, to najpierw wykonujemy mnożenie i dzielenie, a potem dodawanie i odejmowanie. W wyrażeniach zawierających nawiasy najpierw wykonujemy działania w tych nawiasach, które nie zawierają innych nawiasów. Zastępując znak dzielenia kreską ułamkową, traktujemy wyrażenia w liczniku i mianowniku tak, jakby były ujęte w nawiasy. Wykonując obliczenia, w których występują ułamki zwykłe i dziesiętne, możemy ułamki dziesiętne zamieniać na ułamki zwykłe lub o ile to możliwe zamieniać ułamki zwykłe na dziesiętne, a następnie wykonywać działania zgodnie z kolejnością. PRZYKŁAD 7 Oblicz wartości wyrażeń: a) ; b) 3 8 : 2 : 4 7; c) 2,6 + 8,4 : 1,2 0,1 6; d) 2 (6 20 : (4 + 1)); 5 15 : ( 3) + 7 e) ; 2 f) 2 3 (0,6 5 1,4) : ( 2,7). 6 a) = = = = 10; b) 3 8 : 2 : 4 7 = 24 : 2 : 4 7 = 12 : 4 7 = 3 7 = 21; c) 2,6 + 8,4 : 1,2 0,1 6 = 2, ,6 = 9,6 0,6 = 9; d) 2 5 (6 20 : (4 + 1)) = 2 5 (6 20 : 5) = 2 5 (6 4) = = 4 5 ; e) 15 : ( 3) = = 2 2 = 1; f) 2 3 (0, ,4) : ( 2,7) = 2 3 ( ,4 ) : ( 2,7) = = 2 3 (0,5 1,4) : ( 2,7) = 2 3 ( 0,9) : ( 2,7) = 2 3 ( 10) 9 : ( 10) 27 = = 2 3 ( 10) 9 ( 27) 10 = =
21 20 MATEMATYKA KOREPETYCJE GIMNAZJALISTY 4. Liczby wymierne (dodatnie i niedodatnie) Każdą liczbę, którą da się przedstawić w postaci ułamka zwykłego, o liczniku będącym dowolną liczbą całkowitą i mianowniku będącym liczbą całkowitą różną od 0, nazywamy liczbą wymierną. Liczbami wymiernymi są np. liczby: 2 3, 5 8, 1,3, 0, 1 4, 17 49, 61, 9, 18,15. 3 Liczby te mają rozwinięcie dziesiętne skończone lub nieskończone okresowe. Każdą z nich można przedstawić w postaci ułamka zwykłego na nieskończenie wiele sposobów. PRZYKŁAD 1 Zapisz liczby wymierne: a) 5; b) 0; c) 6; d) 0,8; e) 2 1 ; f) 8,4. 3 w postaci ułamków. a) 5 = 5 1 = 10 2 = 15 3 = ; b) 0 = 0 2 = 0 6 = 0 21 = ; c) 6 = 6 1 = 12 2 = 84 8 = ; d) 0,8 = = 4 5 = = ; e) = 7 3 = = = ; f) 8,4 = = 42 5 = = Porównując liczby, często wykorzystujemy położenie na osi liczbowej punktów o odpowiadających im współrzędnych. PRZYKŁAD 2 Uporządkuj rosnąco liczby: 2 1 2, 1,5, 0, 21 4, 1 2. Rysujemy oś liczbową, obieramy jednostkę i zaznaczamy punkty o danych współrzędnych , Odpowiedź: < 1 2 < 0 < 1,5 < STARA DOBRA SZKOŁA
22 1. Liczby wymierne (dodatnie i niedodatnie) 21 Odległość pomiędzy dwoma punktami leżącymi na osi liczbowej możemy obliczać, odejmując ich współrzędne. PRZYKŁAD 3 Oblicz odległość między punktami o współrzędnych: a) 3 i 4; b) 7 i 2; c) 3 i 8. 7 a) AB = 4 ( 3) = 7; 3 A 4 B b) CD = 2 ( 7) = 5; c) EF = 8 3 = C D E F Na osi liczbowej możemy zaznaczać liczby oraz zbiory liczb. Jeżeli chcemy wśród liczb podać te, które są np. większe od 4, to nie możemy wymienić ich wszystkich, bo jest ich nieskończenie wiele. Zbiór ten zaznaczamy na osi liczbowej. PRZYKŁAD 4 Zaznacz na osi liczbowej zbiory liczb spełniających określone warunki. a) x > 2; b) x < 4; c) x 3; d) x 1. a) x > 2; b) x < 4;
23 22 MATEMATYKA KOREPETYCJE GIMNAZJALISTY c) x 3; d) x Wykonując działania na dowolnych liczbach wymiernych, musimy zawsze zwracać uwagę na znak każdej z liczb i pamiętać o własnościach działań. PRZYKŁAD 5 Wykonaj dodawanie liczb wymiernych. a) o takich samych znakach: b) o różnych znakach: 3 + 5; ( 3) + ( 5); ( 3) + 5; 3 + ( 5); a) = 8; ( 3) + ( 5) = 8; b) ( 3) + 5 = 2; 3 + ( 5) = 2. Suma dwóch liczb dodatnich jest liczbą dodatnią, zaś suma dwóch liczb ujemnych jest liczbą ujemną. PRZYKŁAD 6 Wykonaj mnożenie liczb wymiernych. a) o takich samych znakach: 4 5; ( 4) ( 5); b) o różnych znakach: ( 4) 5; 4 ( 5). a) 4 5 = 20; ( 4) ( 5) = 20; b) ( 4) 5 = 20; 4 ( 5) = 20. Iloczyn dwóch liczb o różnych znakach jest liczbą ujemną, zaś iloczyn dwóch liczb o jednakowych znakach jest liczbą dodatnią. PRZ. 7 Oblicz iloraz dwóch liczb wymiernych. a) o takich samych znakach: 48 : 6; ( 48) : ( 6); b) o różnych znakach: 48 : ( 6); ( 48) : 6. STARA DOBRA SZKOŁA
24 1. Liczby wymierne (dodatnie i niedodatnie) 23 a) 48 : 6 = 8; ( 48) : ( 6) = 8; b) 48 : ( 6) = 8; ( 48) : 6 = 8. Iloraz dwóch liczb o różnych znakach jest liczbą ujemną, zaś iloraz dwóch liczb o jednakowych znakach jest liczbą dodatnią. Przy obliczeniach na liczbach dodatnich i ujemnych musimy pamiętać o obowiązującej kolejności wykonywania działań. Najpierw wykonujemy działania w nawiasach, następnie mnożymy i dzielimy, a na końcu dodajemy i odejmujemy. Należy również pamiętać o opuszczaniu niepotrzebnych nawiasów. PRZYKŁAD 8 Oblicz wartość liczbową wyrażenia arytmetycznego. a) ( 5) + ( 23) + 6 1,5 4 : ( 1) ( 6,5) ( 2) + 7; b) [( 2) ( 8) ( 30) : 5] : ( 11) + ( 3) 2 ( 7 ) [ ( 8)]; c) 0 0, : ( 10) ( 10) : 0,1 + 0,01 ( 1000); d) ( 1 2) ( 12) [ 1 5 : ( 2 5) ] : ( 2 3) : ( 3). a) ( 5) + ( 23) + 6 1,5 4 : ( 1) ( 6,5) ( 2) + 7 = = = = 21; b) [( 2) ( 8) ( 30) : 5] : ( 11) + ( 3) 2 ( 7 ) [ ( 8)] = = (16 + 6) : ( 11) = 22 : ( 11) = = = 7 16 = 9; c) 0 0, : ( 10) ( 10) : 0,1 + 0,01 ( 1000) = = = = 79; d) ( 1 2) ( 12) [ 1 5 : ( 2 5) ] : ( 2 3) : ( 3) = = 3 4 ( 1 + 2) ( 3 2) = , = 1,5. Przy rozwiązywaniu prostych zadań z zastosowaniem liczb wymiernych pamiętajmy o prawach działań i kolejności wykonywania działań.
25 24 MATEMATYKA KOREPETYCJE GIMNAZJALISTY PRZYKŁAD 9 Znajdź liczbę, której 2 jest równe wartości liczbowej wyrażenia 3 ( 3) 1,3 + 1,8 : ( 0,6) ( 0,2 + 0,1 5) ( 2). : Obliczamy wartość liczbową wyrażenia: ( 3) 1,3 + 1,8 : ( 0,6) ( 0,2 + 0,1 5) ( 2) = 3,9 3 ( 0,2 + 0,5) + 2 = 6,9 2,3 = 3; Szukamy liczby, której 2 3 jest równe 3. 3 : 2 3 = = 4,5. Odpowiedź: Szukana liczba to 4,5. PRZYKŁAD 10 O ile liczba a jest mniejsza od liczby b, jeśli: a = 1,3 2,8 : ( 1,4) ( 2 1 3), b = 0, ( 2 5 0,75 0,2 ) : ( 1 3 5)? : Obliczamy wartość a. a = 1,3 2,8 : ( 1,4) ( 2 1 3) = 1, ( 7 3) = 0,7 2,8 = 2,1. Obliczamy wartość b. b = 0, ( 2 5 0,75 0,2 ) : ( 1 3 5) = ( ,2 ) : ( 8 5) = = ( 5 8) = = 1. Obliczamy różnicę liczb b i a: 1 ( 2,1) = 1 + 2,1 = 3,1 Odpowiedź: Liczba a jest mniejsza od liczby b o 3,1. Rozwiązując zadania z treścią prowadzące do działań na liczbach wymiernych, pamiętajmy o wszystkich zasadach poznanych wcześniej oraz o czytaniu treści zadania ze zrozumieniem. PRZYKŁAD 11 Oblicz, jaką kwotą dysponowała Kasia, jeżeli po zakupie zeszytu za 2,70 zł, ołówka za 1,20 zł, gumki za 40 gr, odebraniu długu od Zosi w wysokości 5,90 zł i od Marcina 1,50 zł oraz zakupie książki za 17 zł pozostało jej 1,90 zł? STARA DOBRA SZKOŁA
26 1. Liczby wymierne (dodatnie i niedodatnie) 25 : Zadanie rozwiązujemy w odwrotnej kolejności, niż następowały zdarzenia. Obliczamy wydatki Kasi: 2,70 + 1,20 + 0, = 21,30 (zł). Obliczamy przychody Kasi: 5,90 + 1,50 = 7,40 (zł). Do pozostałej kwoty dodajemy wydatki, a odejmujemy przychody: 1, ,30 7,40 = 15,80 (zł). Odpowiedź: Kasia dysponowała kwotą 15,80 zł. CIEKAWOSTKA Według legendy na kamiennym grobie Diofantosa, wielkiego matematyka starożytnej Grecji, był ułożony przez Eutropiusa taki napis: Pod tym kamieniem spoczywają prochy Diofantosa, który umarł w głębokiej starości. Przez szóstą część swojego życia był dzieckiem, przez dwunastą część młodzieńcem. Następnie upłynęła siódma część, zanim się ożenił. W pięć lat po zawarciu związku małżeńskiego urodził mu się syn, który żył dwa razy krócej od niego. W cztery lata po śmierci swego syna Diofantos, opłakiwany przez swych najbliższych, zasnął snem wiecznym. Ile lat żył Diofantos? ZAPAMIĘTAJ Liczbami naturalnymi są liczby: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 Liczbami całkowitymi są liczby:... 3, 2, 1, 0, 1, 2, 3 Liczby 1 i 1, 2 i 2, 3 i 3 to pary liczb przeciwnych. Do zapisu liczb w systemie rzymskim używa się siedmiu cyfr: I, V, X, L, C, D, M. Poszczególne cyfry oznaczają: I 1, V 5, X 10, L 50, C 100, D 500, M
27 26 MATEMATYKA KOREPETYCJE GIMNAZJALISTY Skracaniem ułamka nazywamy czynność polegającą na podzieleniu jego licznika i mianownika przez tę samą liczbę różną od 0, np : 12 = : 12 = 2 3. Rozszerzanie ułamka to czynność polegająca na pomnożeniu licznika i mianownika przez tę samą liczbę różną od 0, np. 2 3 = = Iloczyn ułamków jest ułamkiem, którego licznik jest iloczynem liczników, a mianownik iloczynem mianowników. Aby podzielić ułamek przez ułamek, mnożymy pierwszy ułamek przez odwrotność drugiego. Każdą liczbę, którą da się przedstawić w postaci ułamka zwykłego, o liczniku będącym dowolną liczbą całkowitą i mianowniku będącym liczbą całkowitą różną od 0, nazywamy liczbą wymierną. Najpierw wykonujemy działania w nawiasach, następnie mnożymy i dzielimy, a na końcu dodajemy i odejmujemy. Sprawdź się Zad. 1. Zaznacz na osi liczbowej punkty o współrzędnych 5, 3, 0, 2, 7. Znajdź liczby przeciwne do liczb będących współrzędnymi zaznaczonych punktów. Zad. 2. Określ prawdziwość zdań, zaznaczając P, jeśli zdanie jest prawdziwe, lub F, jeśli zdanie jest fałszywe. Liczba 169 zapisana w systemie rzymskim to CXLIX. P F Liczba CCCXXIV to 324. P F Liczba 1649 zapisana w systemie rzymskim to MDCXLIX. P F Liczba MMCCXXIII to P F STARA DOBRA SZKOŁA
28 1. Liczby wymierne (dodatnie i niedodatnie) 27 Zad. 3. Oblicz: a) ; b) ; c) Zad. 4. Wykonaj działania: a) ( 3 16 ) ( 8 9 ) ( 11 2 ); b) ( 11 3 ) : 2 3 : ( 1 2 ); c) ( 21 3 ) : : ( 11 8 ). Zad. 5. Wykonaj obliczenia sposobem pisemnym. a) 12, ,89 + 0,7; b) 120,02 83,95. Zad. 6. Wybierz T, jeśli stwierdzenie jest prawdziwe, lub N, jeśli jest fałszywe. Rozwinięciem dziesiętnym ułamka 1 3 jest 0,333 T N Ułamek 2 5 ma rozwinięcie dziesiętne równe 0,25. T N Zamieniając ułamek zwykły 1 na ułamek dziesiętny, 7 otrzymamy 0,(142857). Wszystkie liczby wymierne mają rozwinięcia dziesiętne skończone lub nieskończone. Zad. 7. Oblicz wartość wyrażenia (0,5 3) (41 5) 2 (0,5 2 ) : Zad. 8. Zaznacz na osi liczbowej zbiory liczb spełniających określone warunki: a) x > 4; b) x 6. Zad. 9. Oblicz wartość liczbową wyrażenia arytmetycznego [ (0, ) : 1,4 3 5 ] : Zad. 10. Do cukierni zakupiono 20 kg rodzynek po 5,80 zł za 1 kg, 10 kg migdałów po 12,60 zł za 1 kg i 10 kg owoców kandyzowanych po 6,20 zł za 1 kg. Sporządzono z nich mieszankę do deserów. Oblicz cenę 1 kg tej mieszanki. T T N N
29 28 MATEMATYKA KOREPETYCJE GIMNAZJALISTY Rozwiązania Zad Liczby przeciwne to: 5, 3, 0, 2, 7.. Zad. 2. Liczba 169 zapisana w systemie rzymskim to CXLIX. P F Liczba CCCXXIV to 324. P F Liczba 1649 zapisana w systemie rzymskim to MDCXLIX. P F Liczba MMCCXXIII to P F Zad. 3. a) = = = ; b) = = = 12 6 = 11 3 ; c) = = = = = Zad. 4. a) ( 3 16) ( 8 9) ( 1 1 2) = 1 6 ( 3 2) = 1 4 ; b) ( 1 1 3) : 2 3 : ( 1 2) = ( 4 3) 3 2 ( 2) = ( 2) ( 2) = 4; c) ( 2 1 3) : : ( 1 1 8) = ( 7 3) ( 8 9) = = Zad. 5. a) b) + 1 2, , , , _ 1 2 0, , , 0 7 STARA DOBRA SZKOŁA
30 1. Liczby wymierne (dodatnie i niedodatnie) 29 Zad. 6. Rozwinięciem dziesiętnym ułamka 1 3 jest 0,333 T N Ułamek 2 5 ma rozwinięcie dziesiętne równe 0,25. T N Zamieniając ułamek zwykły 1 na ułamek dziesiętny, 7 otrzymamy 0,(142857). Wszystkie liczby wymierne mają rozwinięcia dziesiętne skończone lub nieskończone okresowe. T T N N Zad. 7. (0,5 3) (41 2 5) (0,5 2 3 ) : 1 3 Zad. 8. = ( 2,5) ( 0,5) 1,25 ( 1 2 ) 3 = ( 3 4 ) 3 = 1, = 1,25 0,5 = 2, a) x > 4; b) x Zad. 9. [ (0,6 + 1 ) : 1, ] : 31 6 = [ 23 (0,6 + 0,5) : 1, ] : 19 = ( ) = = = ( ) 6 19 = Zad. 10. Obliczamy wagę mieszanki: = 40 (kg). Obliczamy wartość zakupionych produktów: 20 5, , ,20 = 300 (zł). Obliczamy cenę 1 kg mieszanki: 300 : 40 = 7,50 (zł).
31 30 Notatki STARA DOBRA SZKOŁA
KLASA 3 GIMNAZJUM. 1. LICZBY I WYRAŻENIA ALGEBRAICZNE (26 h) 1. Lekcja organizacyjna 1. 2. System dziesiątkowy 2-4. 3. System rzymski 5-6
KLASA 3 GIMNAZJUM TEMAT LICZBA GODZIN LEKCYJNYCH 1. LICZBY I WYRAŻENIA ALGEBRAICZNE (26 h) 1. Lekcja organizacyjna 1 2. System dziesiątkowy 2-4 WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ Z XII 2008 R.
'()(*+,-./01(23/*4*567/8/23/*98:)2(!."/+)012+3$%-4#"4"$5012#-4#"4-6017%*,4.!"#$!"#%&"!!!"#$%&"#'()%*+,-+
'()(*+,-./01(23/*4*567/8/23/*98:)2(!."/+)012+3$%-4#"4"$5012#-4#"4-6017%*,4.!"#$!"#%&"!!!"#$%&"#'()%*+,-+ Ucze interpretuje i tworzy teksty o charakterze matematycznym, u ywa j zyka matematycznego do opisu
Test całoroczny z matematyki. Wersja A
Test całoroczny z matematyki klasa IV Wersja A Na kartce masz zapisanych 20 zadań. Opuść więc te, których rozwiązanie okaże się zbyt trudne dla Ciebie. Wrócisz do niego później. W niektórych zadaniach
Analiza wyników egzaminu gimnazjalnego. Test matematyczno-przyrodniczy matematyka. Test GM-M1-122,
Analiza wyników egzaminu gimnazjalnego Test matematyczno-przyrodniczy Test GM-M1-122, Zestaw zadań z zakresu matematyki posłużył w dniu 25 kwietnia 2012 r. do sprawdzenia, u uczniów kończących trzecią
ROZWIĄZANIA ZADAŃ Zestaw P3 Odpowiedzi do zadań zamkniętych
PRZYKŁADOWY ARKUSZ EGZAMINACYJNY POZIOM PODSTAWOWY ROZWIĄZANIA ZADAŃ Zestaw P3 Odpowiedzi do zadań zamkniętych Numer zadania 1 3 4 5 6 7 8 9 10 11 1 13 14 15 16 17 18 19 0 Odpowiedź A B B C C D C B B C
PRACA KLASOWA PO REALIZACJI PROGRAMU NAUCZANIA W KLASIE 4
PRACA KLASOWA PO REALZACJ PROGRAMU NAUCZANA W KLASE 4 PLAN PRACY KLASOWEJ Nr zad. Czynności sprawdzane Cele / Wymagania Odniesienie do podstawy programowej Odpowiedzi 1 zapisywanie liczby w systemie dziesiątkowym
Wymagania na poszczególne oceny klasa 4
Wymagania na poszczególne oceny klasa 4 a) Wymagania konieczne (na ocenę dopuszczającą) obejmują wiadomości i umiejętności umożliwiające uczniowi dalszą naukę, bez których uczeń nie jest w stanie zrozumieć
Odpowiedzi i schematy oceniania Arkusz 23 Zadania zamknięte. Wskazówki do rozwiązania. Iloczyn dwóch liczb ujemnych jest liczbą dodatnią, zatem
Odpowiedzi i schematy oceniania Arkusz Zadania zamknięte Numer zadania Poprawna odpowiedź Wskazówki do rozwiązania B W ( ) + 8 ( ) 8 W ( 7) ( 7) ( 7 ) 8 ( 7) ( 8) 8 ( 8) Iloczyn dwóch liczb ujemnych jest
Własności figur płaskich
Klasa VI Liczby naturalne Oblicza różnice czasu proste Wymienia jednostki opisujące prędkość, drogę, czas. Rozwiązuje proste zadania dotyczące obliczania wydatków. Dodaje, odejmuje, mnoży, dzieli liczby
WYMAGANIA EDUKACYJNE I KRYTERIA OCENIANIA Z MATEMATYKI W KLASACH IV-VI
WYMAGANIA EDUKACYJNE I KRYTERIA OCENIANIA Z MATEMATYKI W KLASACH IV-VI obowiązujące od roku 2015/16 I. Kryteria oceny semestralnej i końcowej dla klasy czwartej. 1. Ocenę dopuszczającą otrzymuje uczeń,
EGZAMIN MATURALNY Z MATEMATYKI
Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. MMA 016 KOD UZUPEŁNIA ZDAJĄCY PESEL miejsce na naklejkę dysleksja EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY DATA: 9
WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY Z MATEMATYKI KLASA IV SZKOŁA PODSTAWOWA W KLĘCZANACH ROK SZKOLNY
WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY Z MATEMATYKI KLASA IV SZKOŁA PODSTAWOWA W KLĘCZANACH ROK SZKOLNY 2014/ 2015 Dostosowane do programu,,matematyka z kluczem'' I półrocze Dopuszczający Dostateczny
Kurs wyrównawczy dla kandydatów i studentów UTP
Kurs wyrównawczy dla kandydatów i studentów UTP Część III Funkcja wymierna, potęgowa, logarytmiczna i wykładnicza Magdalena Alama-Bućko Ewa Fabińska Alfred Witkowski Grażyna Zachwieja Uniwersytet Technologiczno
POTĘGI WYMAGANIA EDUKACYJNE. Uczeń: określa definicję potęgi o wykładniku ujemnym szacuje wartość potęgi o wykładniku ujemnym
POTĘGI P-PODSTAWOWE ocena dop i dst WYMAGANIA EDUKACYJNE PP-PONADPODSTAWOWE ocena db i bdb ( wymagania z poziomu P i PP) W-WYKRACZAJĄCE ocena cel (wymagania z poziomu P, PP i W) zamienia potęgi o wykładnikach
Szczegółowe kryteria ocen dla klasy czwartej.
SZCZEGÓŁOWE WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLAS 4-6 SP ROK SZKOLNY 2016/2017 Szczegółowe kryteria ocen dla klasy czwartej. 1. Ocenę dopuszczającą otrzymuje uczeń, który: Zna zależności wartości
i danej prędkości; stosuje jednostki prędkości: km/h, m/s; umiejętności rachunkowe, a także własne poprawne metody.
Propozycja rozkładu materiału nauczania Matematyka wokół nas Rozkład materiału nauczania z odniesieniami do wymagań z podstawy programowej. Matematyka wokół nas KLASA 5 Nr lekcji Temat lekcji Zagadnienie
1 Granice funkcji. Definicja 1 (Granica w sensie Cauchy ego). Mówimy, że liczba g jest granicą funkcji f(x) w punkcie x = a, co zapisujemy.
Granice funkcji Definicja (Granica w sensie Cauchy ego). Mówimy, że liczba g jest granicą funkcji f() w punkcie = a, co zapisujemy f() = g (.) a jeżeli dla każdego ε > 0 można wskazać taką liczbę (istnieje
Matematyka z plusemdla szkoły ponadgimnazjalnej WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE TRZECIEJ LICEUM. KATEGORIA B Uczeń rozumie:
WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE TRZECIEJ LICEUM POZIOMY WYMAGAŃ EDUKACYJNYCH: K - konieczny ocena dopuszczająca P - podstawowy ocena dostateczna (dst.) R - rozszerzający ocena dobra (db.) D
Trenuj przed sprawdzianem! Matematyka Test 4
mię i nazwisko ucznia...................................................................... Klasa............... Numer w dzienniku.............. nformacja do zadań od 1. do 3. Historia telewizji w Polsce
Analiza wyników egzaminu gimnazjalnego 2014 r. Test matematyczno-przyrodniczy (matematyka)
Analiza wyników egzaminu gimnazjalnego 2014 r. Test matematyczno-przyrodniczy (matematyka) Zestaw standardowy zawierał 23 zadania, w tym 20 zadań zamkniętych i 3 zadania otwarte. Wśród zadań zamkniętych
MATEMATYKA Klasa I ZAKRES PODSTAWOWY. Zakres na egzaminy poprawkowe w r. szk. 2012/13. 1. Liczby rzeczywiste
Zakres na egzaminy poprawkowe w r. szk. 2012/13 MATEMATYKA Klasa I /nauczyciel M.Tatar/ ZAKRES PODSTAWOWY Hasła programowe Wymagania szczegółowe. Uczeń: 1. Liczby rzeczywiste Liczby naturalne Liczby całkowite,
WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE PIERWSZEJ GIMNAZJUM
Matematyka z plusem dla gimnazjum WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE PIERWSZEJ GIMNAZJUM POZIOMY WYMAGAŃ EDUKACYJNYCH: K - konieczny ocena dopuszczająca (dp.) P - podstawowy ocena dostateczna (dst.)
Opis programu do wizualizacji algorytmów z zakresu arytmetyki komputerowej
Opis programu do wizualizacji algorytmów z zakresu arytmetyki komputerowej 3.1 Informacje ogólne Program WAAK 1.0 służy do wizualizacji algorytmów arytmetyki komputerowej. Oczywiście istnieje wiele narzędzi
KARTY PRACY UCZNIA. Twierdzenie Pitagorasa i jego zastosowanie. samodzielnej pracy ucznia. Zawarte w nich treści są ułożone w taki sposób,
KARTY PRACY UCZNIA Twierdzenie Pitagorasa i jego zastosowanie opracowanie: mgr Teresa Kargol, nauczyciel matematyki w PSP nr 162 w Łodzi Karty pracy to materiały pomocnicze, które mogą służyć do samodzielnej
TEST WIADOMOŚCI: Równania i układy równań
Poziom nauczania: Gimnazjum, klasa II Przedmiot: Matematyka Dział: Równania i układy równań Czas trwania: 45 minut Wykonała: Joanna Klimeczko TEST WIADOMOŚCI: Równania i układy równań Liczba punktów za
Wymagania edukacyjne z matematyki dla klasy I TM w roku szkolnym 2012/2013
Wymagania edukacyjne z matematyki dla klasy I TM w roku szkolnym 2012/2013 Uczeń otrzymuje ocenę celującą, gdy: a) w 100% opanował treści zawarte w programie nauczania. Uczeń otrzymuje ocenę bardzo dobrą,
Przedmiotowy system oceniania z matematyki kl.i
I Matematyka klasa I - wymagania programowe DZIAŁ 1. LICZBY I DZIAŁANIA zna pojęcie liczby naturalnej, całkowitej, wymiernej (K) rozumie rozszerzenie osi liczbowej na liczby ujemne (K) umie porównywać
TWIERDZENIE PITAGORASA
PODSTAWY > Figury płaskie (2) TWIERDZENIE PITAGORASA Twierdzenie Pitagorasa dotyczy trójkąta prostokątnego, to znaczy takiego, który ma jeden kąt prosty. W trójkącie prostokątnym boki, które tworzą kąt
Wymagania edukacyjne dla klasy IV z matematyki opracowane na podstawie programu nauczania Matematyka z plusem
Wymagania edukacyjne dla klasy IV z matematyki opracowane na podstawie programu nauczania Matematyka z plusem Wymagania Skala ocen konieczne dopuszczający podstawowe dostateczny rozszerzające dobry dopełniający
Rozkład materiału nauczania z odniesieniami do wymagań z podstawy programowej. Matematyka wokół nas
Rozkład materiału nauczania z odniesieniami do wymagań z podstawy programowej. Matematyka wokół nas KLASA 5 Nr lekcji 1 2 Temat lekcji Wakacje, wakacje i po wakacjach 3 Systemy zapisywania liczb 4 5 Rachunek
3b. Rozwiązywanie zadań ze skali mapy
3b. Rozwiązywanie zadań ze skali mapy SKALA MAPY określa stopień zmniejszenia odległości przedstawionej na mapie w stosunku do odpowiedniej odległości w terenie. Wyróżniamy następujące rodzaje skali: SKALA
Wojewódzki Konkurs Przedmiotowy z Matematyki dla uczniów gimnazjów województwa śląskiego w roku szkolnym 2013/2014
Wojewódzki Konkurs Przedmiotowy z Matematyki dla uczniów gimnazjów województwa śląskiego w roku szkolnym 2013/2014 KOD UCZNIA Etap: Data: Czas pracy: rejonowy 8 stycznia 2014 r. 120 minut Informacje dla
PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI DLA KLAS IV VI
PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI DLA KLAS IV VI Kryteria ocen 1. Wymagania edukacyjne na poszczególne oceny: Ocenę celującą otrzymuje uczeń, który: Posiadł wiedzę i umiejętności obejmujące pełny
W. Guzicki Zadanie 23 z Informatora Maturalnego poziom rozszerzony 1
W. Guzicki Zadanie 3 z Informatora Maturalnego poziom rozszerzony 1 Zadanie 3. Rozwiąż równanie: sin 5x cos x + sin x = 0. W rozwiązaniach podobnych zadań często korzystamy ze wzorów trygonometrycznych
KONKURSY MATEMATYCZNE. Treść zadań
KONKURSY MATEMATYCZNE Treść zadań Wskazówka: w każdym zadaniu należy wskazać JEDNĄ dobrą odpowiedź. Zadanie 1 Wlewamy 1000 litrów wody do rurki w najwyższym punkcie systemu rurek jak na rysunku. Zakładamy,
MATEMATYKA 9. INSTYTUT MEDICUS Kurs przygotowawczy do matury i rekrutacji na studia medyczne Rok 2017/2018 FUNKCJE WYKŁADNICZE, LOGARYTMY
INSTYTUT MEDICUS Kurs przygotowawczy do matury i rekrutacji na studia medyczne Rok 017/018 www.medicus.edu.pl tel. 501 38 39 55 MATEMATYKA 9 FUNKCJE WYKŁADNICZE, LOGARYTMY Dla dowolnej liczby a > 0, liczby
Czas pracy 170 minut
ORGANIZATOR WSPÓŁORGANIZATOR PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI DLA UCZNIÓW LICEUM MARZEC ROK 015 POZIOM PODSTAWOWY Czas pracy 170 minut Instrukcja dla piszącego 1. Sprawdź, czy arkusz zawiera 16 stron..
WYMAGANIA EDUKACYJNE - MATEMATYKA klasa 6
Rachunki pamięciowe na liczbach naturalnych i ułamkach dziesiętnych. LICZBY NATURALNE I UŁAMKI zaznaczyć i odczytać na osi liczbowej ułamek dziesiętny (P-R) obliczyć wartość wyrażenia arytmetycznego zawierającego
WOJEWÓDZKI KONKURS MATEMATYCZNY DLA SZKÓŁ PODSTAWOWYCH W ROKU SZKOLNYM 2012/2013
Etap szkolny 13 listopada 2012 r. Godzina 10.00 Kod ucznia Instrukcja dla ucznia 1. Sprawdź, czy zestaw zawiera 7 stron. Ewentualny brak stron lub inne usterki zgłoś nauczycielowi. 2. Na tej stronie i
Rozkład materiału klasa 1BW
Rozkład materiału klasa BW wg podręcznika Matematyka kl. wyd. Nowa Era 2h x 38 tyg. = 76h lekcyjnych LICZBYRZECZYWISTE (7 godz.). Zapoznanie z programem nauczania, wymaganiami edukacyjnymi, zasadami BHP
Matematyka Wokół Nas - klasa 5 Katalog wymagań programowych na poszczególne stopnie szkolne
Matematyka Wokół Nas - klasa 5 Katalog wymagań programowych na poszczególne stopnie szkolne Kategorie zostały określone następująco: dotyczące wiadomości uczeń zna uczeń rozumie dotyczące przetwarzania
Wojewódzki Konkurs Przedmiotowy z Matematyki dla uczniów gimnazjów województwa śląskiego w roku szkolnym 2012/2013
Wojewódzki Konkurs Przedmiotowy z Matematyki dla uczniów gimnazjów województwa śląskiego w roku szkolnym 2012/2013 KOD UCZNIA Etap: Data: Czas pracy: wojewódzki 4 marca 2013 r. 120 minut Informacje dla
Klasa 1. 1. LICZBY RZECZYWISTE I WYRAŻENIA ALGEBRAICZNE
Wymagania edukacyjne niezbędne do uzyskania poszczególnych śródrocznych i rocznych ocen z matematyki w Zasadniczej Szkole Zawodowej nr 1 w Regionalnym Centrum Edukacji Zawodowej Klasa 1. 1. LICZBY RZECZYWISTE
PROGRAM ZAJĘĆ MATEMATYCZNYCH DLA UCZNIÓW Z DYSLEKSJĄ
Nie wystarczy mieć rozum, trzeba jeszcze umieć z niego korzystać Kartezjusz Rozprawa o metodzie PROGRAM ZAJĘĆ MATEMATYCZNYCH DLA UCZNIÓW Z DYSLEKSJĄ II KLASA LICEUM OGÓLNOKSZTAŁCĄCE 1 Opracowała : Dorota
KASA EDUKACYJNA INSTRUKCJA. WARIANT I - dla dzieci młodszych
INSTRUKCJA KASA EDUKACYJNA WARIANT I - dla dzieci młodszych rekwizyty: 1) plansza (żółta) 2) pionki - 4 szt. 3) kostka do gry 4) żetony (50 szt.) 6) kaseta z monetami i banknotami rys. 1 Przygotowanie
BADANIE UMIEJĘTNOŚCI UCZNIÓW W TRZECIEJ KLASIE GIMNAZJUM CZĘŚĆ MATEMATYCZNO-PRZYRODNICZA
BADANIE UMIEJĘTNOŚCI UCZNIÓW W TRZECIEJ KLASIE GIMNAZJUM CZĘŚĆ MATEMATYCZNO-RZYRODNICZA MATEMATYKA TEST 4 Zadanie 1 Dane są punkty A = ( 1, 1) oraz B = (3, 2). Jaką długość ma odcinek AB? Wybierz odpowiedź
Temat: Mnożenie liczby całej przez ułamek. Obliczanie ułamka z danej liczby.
Temat: Mnożenie liczby całej przez ułamek. Obliczanie ułamka z danej liczby. Cele lekcji: A. Uczeń zna zasadę mnożenia liczby naturalnej przez ułamek. B. Uczeń potrafi pomnożyć ułamek przez liczbę całą
Matematyka klasa 5 Wymagania edukacyjne na ocenę śródroczną.
Matematyka klasa 5 Wymagania edukacyjne na ocenę śródroczną. Każda wyższa ocena zawiera wymagania dotyczące ocen niższych. Wymagania na ocenę dopuszczającą obejmują wiadomości i umiejętności umożliwiające
Matematyka z kluczem. Plan wynikowy z rozkładem materiału Klasa 4
Matematyka z kluczem Plan wynikowy z rozkładem materiału Klasa 4 Plan wynikowy z rozkładem materiału Klasa 4 Matematyka z kluczem Lp. Temat lekcji Punkty z podstawy programowej z dnia 27 sierpnia 2012
14.Rozwiązywanie zadań tekstowych wykorzystujących równania i nierówności kwadratowe.
Matematyka 4/ 4.Rozwiązywanie zadań tekstowych wykorzystujących równania i nierówności kwadratowe. I. Przypomnij sobie:. Wiadomości z poprzedniej lekcji... Że przy rozwiązywaniu zadań tekstowych wykorzystujących
MATEMATYKA 4 INSTYTUT MEDICUS FUNKCJA KWADRATOWA. Kurs przygotowawczy na studia medyczne. Rok szkolny 2010/2011. tel. 0501 38 39 55 www.medicus.edu.
INSTYTUT MEDICUS Kurs przygotowawczy na studia medyczne Rok szkolny 00/0 tel. 050 38 39 55 www.medicus.edu.pl MATEMATYKA 4 FUNKCJA KWADRATOWA Funkcją kwadratową lub trójmianem kwadratowym nazywamy funkcję
Wymagania edukacyjne z matematyki w klasie V Matematyka z plusem
Wymagania edukacyjne z matematyki w klasie V Matematyka z plusem Poziomy wymagań edukacyjnych K konieczny ocena dopuszczająca P podstawowy ocena dostateczna R rozszerzający ocena dobra D dopełniający ocena
PLAN REALIZACJI MATERIAŁU NAUCZANIA Z MATEMATYKI W KLASIE PIERWSZEJ GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH
PLAN REALIZACJI MATERIAŁU NAUCZANIA Z MATEMATYKI W KLASIE PIERWSZEJ GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH OPRACOWANO NA PODSTAWIE PROGRAMU MATEMATYKA Z PLUSEM I PODRĘCZNIKA O NR DOP. 168/1/2015/z1
SPRAWDZIANY Z MATEMATYKI
SPRAWDZIANY Z MATEMATYKI dla klasy III gimnazjum dostosowane do programu Matematyka z Plusem opracowała mgr Marzena Mazur LICZBY I WYRAŻENIA ALGEBRAICZNE Grupa I Zad.1. Zapisz w jak najprostszej postaci
NUMER IDENTYFIKATORA:
Społeczne Liceum Ogólnokształcące z Maturą Międzynarodową im. Ingmara Bergmana IB WORLD SCHOOL 53 ul. Raszyńska, 0-06 Warszawa, tel./fax 668 54 5 www.ib.bednarska.edu.pl / e-mail: liceum.ib@rasz.edu.pl
MATERIAŁY DIAGNOSTYCZNE Z MATEMATYKI
MATERIAŁY DIAGNOSTYCZNE Z MATEMATYKI LUTY 01 POZIOM PODSTAWOWY Czas pracy 170 minut Instrukcja dla zdającego 1. Sprawdź, czy arkusz zawiera strony (zadania 1 ).. Arkusz zawiera 4 zadania zamknięte i 9
WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY IV
WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY IV Opracowano na podstawie dokumentu GWO: ZAŁOŻENIA DO PLANU WYNIKOWEGO Z MATEMATYKI DLA KLASY IV Program nauczania: Matematyka z plusem Podręczniki : Matematyka
EGZAMIN MATURALNY Z MATEMATYKI
Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. MMA 016 KOD UZUPEŁNIA ZDAJĄCY PESEL miejsce na naklejkę dyskalkulia dysleksja EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY
P 3.3. Plan wynikowy klasa 6
P 3.3. Plan wynikowy klasa 6 W propozycji planu wynikowego uwzględniono 136 lekcyjnych. Do dyspozycji nauczyciela pozostawiono 21. Liczby naturalne 8 h Już za rok w gimnazjum 1 P 4.6 Wykonuje nieskomplikowane
Czas pracy 170 minut
ORGANIZATOR WSPÓŁORGANIZATOR PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI MARZEC ROK 013 POZIOM PODSTAWOWY Czas pracy 170 minut Instrukcja dla piszącego 1. Sprawdź, czy arkusz zawiera 16 stron.. W zadaniach od
ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA
Miejsce na identyfikację szkoły ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA POZIOM ROZSZERZONY LISTOPAD 015 Instrukcja dla zdającego Czas pracy: 180 minut 1. Sprawdź, czy arkusz egzaminacyjny zawiera 16
ADAM KONSTANTYNOWICZ MATEMATYKA KOREPETYCJE GIMNAZJALISTY
ADAM KONSTANTYNOWICZ MATEMATYKA KOREPETYCJE GIMNAZJALISTY Redaktor serii: Marek Jannasz Redakcja: Inga Linder-Kopiecka Korekta: Marek Kowalik Projekt okładki: Teresa Chylińska-Kur, KurkaStudio Projekt
EGZAMIN MATURALNY Z MATEMATYKI MAJ 2011 POZIOM ROZSZERZONY. Czas pracy: 180 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY
Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 2010 KOD WPISUJE ZDAJĄCY PESEL Miejsce na naklejkę z kodem EGZAMIN MATURALNY
Podstawowe działania w rachunku macierzowym
Podstawowe działania w rachunku macierzowym Marcin Detka Katedra Informatyki Stosowanej Kielce, Wrzesień 2004 1 MACIERZE 1 1 Macierze Macierz prostokątną A o wymiarach m n (m wierszy w n kolumnach) definiujemy:
EGZAMIN MATURALNY Z MATEMATYKI CZERWIEC 2012 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY
Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 010 KOD WPISUJE ZDAJĄCY PESEL Miejsce na naklejkę z kodem dysleksja EGZAMIN
Spis treści. Dokument pochodzi ze strony www.gwo.pl LICZBY NATURALNE I UŁAMKI
Spis treści LICZBY NATURALNE I UŁAMKI Działania na liczbach naturalnych i ułamkach dziesiętnych... 3 Potęgowanie liczb.. 8 Przykłady pierwiastków 12 Działania na ułamkach zwykłych... 13 Ułamki zwykłe i
PRZEDMIOTOWY SYSTEM OCENIANIA. z Matematyki. Krysztof Jerzy
PRZEDMIOTOWY SYSTEM OCENIANIA z Matematyki Krysztof Jerzy 1 Matematyka jest jednym z głównych przedmiotów nauczania w szkole, między innymi, dlatego, że służy stymulowaniu rozwoju intelektualnego uczniów.
Matematyka klasa 1a i 1b gimnazjum
Matematyka klasa 1a i 1b gimnazjum Wymagania edukacyjne na ocenę śródroczną. Każda wyższa ocena zawiera wymagania dotyczące ocen niższych Wymagania na ocenę dopuszczającą obejmują wiadomości i umiejętności
KONSPEKT LEKCJI OTWARTEJ Z MATEMATYKI w klasie II gimnazjum. Temat: Przed nami powtórki materiału działania na potęgach i pierwiastkach
Beata Jędrys doradca metodyczny matematyki PCDZN Puławy KONSPEKT LEKCJI OTWARTEJ Z MATEMATYKI w klasie II gimnazjum Temat: Przed nami powtórki materiału działania na potęgach i pierwiastkach Cele ogólne:
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI
Miejsce na naklejk z kodem szko y dysleksja PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY Czas pracy 180 minut Instrukcja dla zdaj cego 1. Sprawd, czy arkusz egzaminacyjny zawiera 16 stron (zadania
Zadanie 3 - (7 punktów) Iloczyn składników Jeśli zapis liczby 22 w postaci sumy zawiera składnik 1, lepiej pogrupować go z innym składnikiem
Zadanie 1 - (7 punktów) Latające kartki Ponieważ są 64 liczby od 27 do 90 włącznie, mamy 64 strony, czyli 16 kartek (16= 64 : 4). Pod stroną 26. znajdują się strony 24., 22.,..., 4. i 2. wraz z ich nieparzystymi
Plan naprawczy. Sokółka 2006/2007. Opracowanie: Urszula Bronowicz Henryka Sarosiek ElŜbieta Plichta Katarzyna Dykiel Tomasz Mucuś
Plan naprawczy przyjęty do realizacji w klasach VI-tych po wykonaniu analizy wyników próbnego sprawdzianu Na grzyby przeprowadzonego 10 października 2006 roku Opracowanie: Urszula Bronowicz Henryka Sarosiek
PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI W KLASIE I
PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI W KLASIE I Przedmiotowy System Oceniania z matematyki jest zgodny z Wewnątrzszkolnym Systemem Oceniania GIMNAZJUM IM. JANA PAWŁA II W BOGUSZYCACH Nauczyciel matematyki:
Czy zdążyłbyś w czasie, w jakim potrzebuje światło słoneczne, aby dotrzeć do Saturna, oglądnąć polski hit kinowy: Nad życie Anny Pluteckiej-Mesjasz?
ZADANIE 1. (4pkt./12min.) Czy zdążyłbyś w czasie, w jakim potrzebuje światło słoneczne, aby dotrzeć do Saturna, oglądnąć polski hit kinowy: Nad życie Anny Pluteckiej-Mesjasz? 1. Wszelkie potrzebne dane
KRYTERIA WYMAGAŃ Z MATEMATYKI NA POSZCZEGÓLNE OCENY
KRYTERIA WYMAGAŃ Z MATEMATYKI NA POSZCZEGÓLNE OCENY KLASA I LICZBY I DZIAŁANIA zna pojęcie liczby naturalnej, całkowitej, wymiernej rozumie rozszerzenie osi liczbowej na liczby ujemne umie porównywać liczby
XIII KONKURS MATEMATYCZNY
XIII KONKURS MTMTYZNY L UZNIÓW SZKÓŁ POSTWOWYH organizowany przez XIII Liceum Ogólnokształcace w Szczecinie FINŁ - 19 lutego 2013 Test poniższy zawiera 25 zadań. Za poprawne rozwiązanie każdego zadania
Logika I. Wykład 2. Działania na zbiorach
Andrzej Wiśniewski Logika I Materiały do wykładu dla studentów kognitywistyki Wykład 2. Działania na zbiorach 1 Suma zbiorów Niech A i B będą dowolnymi zbiorami. Definicja 2.1. (suma zbiorów) Suma zbiorów
Przykłady wybranych fragmentów prac egzaminacyjnych z komentarzami Technik ochrony fizycznej osób i mienia 515[01]
Przykłady wybranych fragmentów prac egzaminacyjnych z komentarzami Technik ochrony fizycznej osób i mienia 515[01] 1 2 3 4 5 6 Efektem rozwiązania zadania egzaminacyjnego przez zdającego była praca 7 egzaminacyjna,
Matematyka klasa 6 Wymagania na poszczególne oceny
Matematyka klasa 6 Wymagania na poszczególne oceny Wymagania na ocenę dopuszczającą obejmują wiadomości i umiejętności umożliwiające uczniowi dalszą naukę, bez których uczeń nie jest w stanie zrozumieć
,,Nie bój się matematyki - Program zajęć wyrównawczych z matematyki dla uczniów klas VI Szkoły Podst. nr 5 w Nowym Dworze Maz.
1,,Nie bój się matematyki - Program zajęć wyrównawczych z matematyki dla uczniów klas VI Szkoły Podst. nr 5 w Nowym Dworze Maz. Wstęp Program zajęć wyrównawczych został napisany z myślą o uczniach klas
K P K P R K P R D K P R D W
KLASA III TECHNIKUM POZIOM PODSTAWOWY I ROZSZERZONY PROPOZYCJA POZIOMÓW WYMAGAŃ Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające (R), dopełniające (D) i
EGZAMIN MATURALNY Z MATEMATYKI
Miejsce na naklejk z kodem szko y dysleksja EGZAMIN MATURALNY Z MATEMATYKI MMA-P1A1P-061 POZIOM PODSTAWOWY Czas pracy 10 minut Instrukcja dla zdaj cego 1. Sprawd, czy arkusz egzaminacyjny zawiera 1 stron.
KONSPEKT LEKCJI MATEMATYKI. Z WYKORZYSTANIEM METOD AKTYWIZUJĄCYCH w klasie I gimnazjum. TEMAT: Działania łączne na liczbach wymiernych
KONSPEKT LEKCJI MATEMATYKI Z WYKORZYSTANIEM METOD AKTYWIZUJĄCYCH w klasie I gimnazjum TEMAT: Działania łączne na liczbach wymiernych Cele lekcji: Cel ogólny: - utrwalenie wiadomościiumiejętności z działu
EGZAMIN MATURALNY Z MATEMATYKI
ARKUSZ ZAWIERA INFORMACJE PRAWNIE CHRONIONE DO MOMENTU ROZPOCZ CIA EGZAMINU! Miejsce na naklejk MMA-P1_1P-082 EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY MAJ ROK 2008 Czas pracy 120 minut Instrukcja
PRZYK ADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI
PRZYK ADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI Zestaw P1 POZIOM PODSTAWOWY Czas pracy 170 minut Instrukcja dla pisz cego 1. Sprawd, czy arkusz zawiera 16 stron.. W zadaniach od 1. do 5. s podane 4 odpowiedzi:
WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY 4, 5, 6 SZKOŁY PODSTAWOWEJ NR 2 W LIMANOWEJ
WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY 4, 5, 6 SZKOŁY PODSTAWOWEJ NR 2 W LIMANOWEJ TREŚCI NAUCZANIA MATEMATYKI I WYMAGANIA SZCZEGÓŁOWE Treści nauczania określone w programie Matematyka wokół nas szkoła
EGZAMIN MATURALNY Z MATEMATYKI
ARKUSZ ZAWIERA INFORMACJE PRAWNIE CHRONIONE DO MOMENTU ROZPOCZ CIA EGZAMINU! Miejsce na naklejk MMA-P1_1P-082 EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY MAJ ROK 2008 Czas pracy 120 minut Instrukcja
ZAŁĄCZNIK NR 1. Zakres wiedzy i umiejętności oraz wykaz proponowanej bibliografii
ZAŁĄCZNIK NR 1 Zakres wiedzy i umiejętności oraz wykaz proponowanej bibliografii I. Obszary umiejętności sprawdzane na kaŝdym etapie Konkursu 1. Wykorzystanie i tworzenie informacji. Uczeń: 1) interpretuje
Warszawska Giełda Towarowa S.A.
KONTRAKT FUTURES Poprzez kontrakt futures rozumiemy umowę zawartą pomiędzy dwoma stronami transakcji. Jedna z nich zobowiązuje się do kupna, a przeciwna do sprzedaży, w ściśle określonym terminie w przyszłości
ARKUSZ PRÓBNEJ MATURY ZESTAW ĆWICZENIOWY Z MATEMATYKI
ARKUSZ PRÓBNEJ MATURY ZESTAW ĆWICZENIOWY Z MATEMATYKI Styczeń 2013 POZIOM PODSTAWOWY Czas pracy 170 minut Instrukcja dla piszącego 1. Sprawdź, czy arkusz zawiera 16 stron. 2. W zadaniach od 1. do 25. są
STA T T A YSTYKA Korelacja
STATYSTYKA Korelacja Pojęcie korelacji Korelacja (współzależność cech) określa wzajemne powiązania pomiędzy wybranymi zmiennymi. Charakteryzując korelację dwóch cech podajemy dwa czynniki: kierunek oraz
Podstawa programowa z matematyki - II etap edukacyjny (klasy IV-VI SP)
Podstawa programowa z matematyki - II etap edukacyjny (klasy IV-VI SP) Cele kształcenia (wymagania ogólne): sprawność rachunkowa - uczeń wykonuje proste działania pamięciowe na liczbach naturalnych, całkowitych
Zagadnienia transportowe
Mieczysław Połoński Zakład Technologii i Organizacji Robót Inżynieryjnych Wydział Inżynierii i Kształtowania Środowiska SGGW Zagadnienia transportowe Z m punktów odprawy ma być wysłany jednorodny produkt
1. Rozwiązać układ równań { x 2 = 2y 1
Dzień Dziecka z Matematyką Tomasz Szymczyk Piotrków Trybunalski, 4 czerwca 013 r. Układy równań szkice rozwiązań 1. Rozwiązać układ równań { x = y 1 y = x 1. Wyznaczając z pierwszego równania zmienną y,
Matematyka:Matematyka I - ćwiczenia/granice funkcji
Matematyka:Matematyka I - ćwiczenia/granice funkcji 1 Matematyka:Matematyka I - ćwiczenia/granice funkcji Granice funkcji Zadanie 1 Wykorzystując definicję Heinego granicy funkcji, znaleźć (1) Zadanie
ETAP I KONKURSU MATEMATYCZNEGO CONTINUUM
ETAP I KONKURSU MATEMATYCZNEGO CONTINUUM DLA UCZNIÓW GIMNAZJUM Drogi gimnazjalisto! Serdecznie dziękujemy, że zdecydowałeś się na wzięcie udziału w naszym konkursie. Test (tzw. wielokrotnego wyboru) składa
ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA
Miejsce na identyfikację szkoły ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA POZIOM PODSTAWOWY LISTOPAD 014 Czas pracy: 170 minut Instrukcja dla zdającego 1. Sprawdź, czy arkusz egzaminacyjny zawiera 1
Przedmiotowy system oceniania z matematyki w klasach IV - VI
Przedmiotowy system oceniania z matematyki w klasach IV - VI 1. Ocenie podlegają: a) wiadomości i umiejętności związane z realizacją podstawy programowej kształcenia ogólnego z matematyki, b) praca na
Zadania z parametrem
Zadania z paramerem Zadania z paramerem są bardzo nielubiane przez maurzysów Nie jes ławo odpowiedzieć na pyanie: dlaczego? Nie są o zadania o dużej skali rudności Myślę, że głównym powodem akiego sanu