Spis treści Wykład 3. Modelowanie fal. Równanie sine-gordona
|
|
- Alicja Stefaniak
- 8 lat temu
- Przeglądów:
Transkrypt
1 Spis treści Wykład 3. Modelowanie fal. Równanie sine-gordona Równanie sine-gordona Rozwiązania dla fali biegnącej Równanie falowe Wyprowadzenie równania falowego Rozwiązania równania falowego Rozwiązanie d Alemberta równania falowego Ogólne rozwiązanie równania falowego Rozwiązanie d Alemberta
2
3 Wykład 3 Modelowanie fal. Równanie sine-gordona Simply seeing is an act of creation Równanie sine-gordona Równanie sine-gordona u tt u xx + sin u = 0, (3.1) opisuje mechaniczną linię transmisyjną, będącą analogiem linii długiej w elektryczności. Nazwa nawiązuje do równania Kleina-Gordona z kwantowej teorii pola. Linia transymisyjna została zaproponowana przez A.C. Scotta pod koniec lat 1960-ych. Urządzenie składa się z układu wielu wahadeł połączonych poziomo cienkim drutem. Każde wahadło może swobodnie bujać się w płaszczyźnie prostopadłej do drutu, powodując równocześnie ruch dwu sąsiednich wahadeł. Takie sprzężenie wahadeł pozwala na przemieszczanie się zakłócenia z jednej części układu do następnego, w sposób mechaniczny przekazując sygnał z jednego końca do drugiego końca urządzenia. Równanie Sine-Gordona występuje również w nadprzewodzących liniach transmisyjnych, kryształach, impulsach laserowych i w geometrii powierzchni. Niech u(x, t) oznacza kąt obrotu wahadła w punkcie x i w chwili t. Zakładamy, że każde wahadło ma masę m, długość l i że są rozmieszczone w równych odległościach x. Korzystamy z równania Newtona dla ruchu obrotowego I d2 u i = moment obrotowy działający na i-te wahadło (3.2) dt2 I = m l 2 moment bezwładności wahadła. Mamy trzy momenty obrotowe: 1. związany z siłą grawitacji (±mg sin u i l) ; 2. związany z obrotem sprężyny, na której zaczepione są wahadła i i i 1; 3. związany z obrotem sprężyny, na której zaczepione są wahadła i i i + 1; Jeśli wahadło jest wychylone w lewo (jeśli w lewo, to π/2 < u i < 0 i sin u i < 0) lub w prawo (jeśli w prawo, to 0 < u i < π/2 i sin u i > 0), to moment zmienia swój znak (tak jak sin u i ) i próbuje obrócić wahadło z powrotem w położenie równowagi.
4 4 Wykład 3. Modelowanie fal. Równanie sine-gordona Rys Wahadła przypięte do poziomej struny. Rys Małe zakłócenie przemieszczające się wzdłuż linii wahadeł.
5 3.1. Równanie sine-gordona Rys Duże zakłócenie przemieszczające się wzdłuż linii wahadeł. Rys Dwa sąsiednie wahadła. 5
6 6 Wykład 3. Modelowanie fal. Równanie sine-gordona X O ) PJ PJFRVX PJVLQX Rys Wahadło matematyczne. Momenty obrotowe, pochodzące od skręcania sprężyny, zależą od trzech elementów: 1. od wielkości skręcenia; 2. od długości skręcanej sprężyny; 3. od materiału, z jakiego sprężyna jest wykonana. Moment ten możemy modelować równaniem moment obrotowy sprężyny = K u i+1 u i x u i+1 u i wielkość skręcenia pomiędzy whadłami i i i + 1; x długość tej części sprężyny; K > 0 stała materiałowa. Podobnie dla wahadeł i i i 1. Ostatecznie m l 2 d2 u i dt 2 = K u i+1 2u i + u i 1 x Będziemy modelować kratkę materiału, zakładając, że ρ gęstość masy. m x ρ, gdy x 0,, mgl sin u i. (3.3) Jeśli podzielimy równanie (3.3) przez x i przejdziemy do granicy x 0, to otrzymamy równanie różniczkowe ρ l 2 u tt = K u xx ρgl sin u. Kładąc A = ρl 2 i T = ρgl dostajemy równanie Sine-Gordona A u tt K u xx + T sin u = 0.
7 3.2. Równanie falowe Rozwiązania dla fali biegnącej Będziemy poszukiwać rozwiązań równania Sine-Gordona (3.1) u tt u xx + sin u = 0, w postaci fali biegnącej u(x, t) = f(x ct). Mamy Mnożymy dwustronnie przez f c 2 f f + sin f = 0. (c 2 1) f f + (sin f) f = 0. i całkujemy dostając równanie pierwszego rzędu Poszukujemy rozwiązań f wahadła) co daje a = 1. Tak więc 1 2 (c2 1)(f ) 2 cos f = a. zachowujących się dobrze asymptotycznie (np. dla f(z) 0, f (z) 0, dla z (f ) 2 = 2 4 (1 cos f) = 1 c2 1 c 2 sin2 (f/2). Prędkość dźwięku musi spełniać warunek c 2 < 1. Rozwiązanie [ ( f(z) = 4 arctan exp z )], 1 c 2 generuje falę biegnącą [ ( u(x, t) = 4 arctan exp x ct )]. 1 c 2 Badanie granicy lim u(x, t) = 0, x lim u(x, t) = 2π, x co oznacza, że rozwiązanie jest frontem falowym. Przed frontem falowym wahadło jest w stanie niezakłóconym (kąt u jest bliski 0), a za frontem falowym wahadło jest bliskie kąta 2π, co oznacza, że to wahadło wykonało pełny obrót wokół poziomej sprężyny dokładnie raz.
8 8 Wykład 3. Modelowanie fal. Równanie sine-gordona [ X[W Rys Przemieszczenie struny u(x, t) w chwili t w położeniu x. [ [ [ Rys Fragment struny S Równanie falowe Omówimy równanie falowe u tt = c 2 u xx, modelujące drgania napiętej struny (np. w gitarze). u(x, t) miara przemieszczenia struny w położeniu x w chwili t; u t (x, t) pionowa prędkość punktu x na strunie w chwili t; u tt (x, t) pionowe przyspieszenie punktu x na strunie w chwili t; u x (x, t) miara nachylenia struny w punkcie x. Sposób drgań zależy od materiału z jakiego zrobiono strunę i od siły na nią działającej. Robimy następujące założenia: jednorodność struny: gęstość masy na jednostkę długości ρ jest stała; drgania płaskie: struna pozostaje w swej płaszczyźnie drgań; jednorodne napięcie: każdy fragment struny wywiera na sąsiednie segmenty taką samą siłę T ; kierunek tej siły zmienia, gdyż jest zawsze styczny do struny; brak innych sił; małe drgania: nachylenie u x zawsze jest niewielkie Wyprowadzenie równania falowego Równanie falowe jest wnioskiem z drugiego prawa Newtona. Niech S będzie odcinkiem struny leżącym między punktami x a x + x, gdzie x > 0 jest małe. Drugie prawo Newtona (Masa S) (Przyspieszenie S) = Siła całkowita działająca na S, (3.4) gdzie przyspieszenie i siła działają w kierunku prostopadłym do S.
9 3.2. Równanie falowe [ [ [ Rys Naprężenia rozciągające segment struny S. Masa S: Masa S = ρ x+ x dla małych wychyleń u x 1, więc Przyspieszenie S: x Masa S = ρ 1 + (u x (s, t)) 2 ds. x+ x x u tt (x, t) 1 ds = ρ x. Siła działająca na S: Siła ta rozciąga końce segmentu (stycznie do kierunku segmentu) Wektor styczny w punkcie x do struny ma współrzędne (1, u x (x, t), czyli siła rozciągajaca T T (1, u x (x, t)) 1 + (u x (s, t)) 2, działająca na lewy koniec segmentu. Korzystamy jeszcze raz z założenia o małych amplitudach 1 + (u x (s, t)) 2 1, i wtedy pionowa składowa siły wynosi T u x (x, t). Powtarzamy rozumowanie dla prawego końca segmentu Siła całkowita T u x (x + x, t). Siła całkowita na S = T u x (x + x, t) T u x (x, t). Podstawiamy powyższe wyniki do równania (3.4) Dzielimy przez x (ρ x) u tt (x, t) = T u x (x + x, t) T u x (x, t). (3.5) ρ u tt (x, t) = T u x(x + x, t) u x (x, t) x,
10 10 Wykład 3. Modelowanie fal. Równanie sine-gordona Rys Ekranowana linia przesyłowa. co w granicy x 0 daje Kładąc c = ρ u tt (x, t) = T u xx (x, t). T/ρ otrzymujemy tradycyjną postać równania falowego u tt (x, t) = c 2 u xx (x, t). (3.6) Równanie przyjmuje bardziej skomplikowana postać, jeśli uwzględnimy jeszcze inne siły, np. ρ u tt = T u xx F u t R u + f(x, t). F u t siła tarcia (const. = F > 0); R u liniowa siła zwrotna (const. = R > 0); f(x, t) siła zewnętrzna (np. grawitacja) Rozwiązania równania falowego Tu tylko uwagi wstępne. Szczegóły dalej. Rozwiązaniami równania falowego są fale biegnące i u(x, t) = f(x c t), u(x, t) = f(x + c t), gdzie c jest prędkością propagacji fali. Ponieważ c = T ρ, to prędkość fali możemy: zwiększać, zwiększając napięcie struny T, zmniejszać dobierając materiał o większej gęstości masy. Klasyczne równanie falowe jest jednym z wielu równań posiadającym rozwiązania w postaci fal. To równanie opisuje drgania struny, długiej smukłej belki, prądu i napięcia w elektrycznej linii przesyłowej. i(x, t) prąd elektryczny; v(x, t) napięcie prądu elektrycznego; Równanie linii transmisyjnej i x + C v t + G v = 0,
11 3.3. Rozwiązanie d Alemberta równania falowego 11 v x + L i t + R i = 0, C pojemność elektryczna na jednostkę długości kabla; G upływ (wyciekanie) na jednostkę długości; R oporność elektryczna na jednostkę długości kabla; L induktancja elektryczna na jednostkę długości kabla. Eliminujemy v (pierwsze równanie różniczkujemy wzgl. x, a drugie względem t i eliminujemy człony v xt i v tx, a następnie jeszcze raz używamy równanie drugie do eliminacji v x ). W wyniku dostajemy Podobnie możemy wyeliminować i. i xx = (CL) i tt + (CR + GL) i t + (GR) i. Jeśli R = G = 0, to otrzymujemy znane równania falowe gdzie c = 1/(CL). i tt = c 2 i xx, v tt = c 2 v xx, 3.3. Rozwiązanie d Alemberta równania falowego Pokażemy, że rozwiązanie równania falowego u tt = c 2 u xx jest sumą dwu fal biegnących, jednej w prawo, a drugiej w lewo Zagadnienie początkowe: cząstkowe równanie różniczkowe u(x, t) = F (x ct) + G(x + ct). u tt = c 2 u xx, < x <, t > 0, warunki początkowe u(x, 0) = f(x), może być sformułowane następująco: u t (x, 0) = g(x), u(x, t) = 1 2 (f(x ct) + f(x + ct)) = 1 2c Ogólne rozwiązanie równania falowego x+ct x ct g(s) ds. Wiemy już, że rozwiązaniami są dwie fale biegnące: h(x cy) i h(x + ct). Robimy zamianę zmiennych: ξ(x, t) = x ct, η(x, t) = x + ct,
12 12 Wykład 3. Modelowanie fal. Równanie sine-gordona są to współrzędne śledzące fale biegnące z lewej i z prawej strony. W tym nowym układzie współrzędnych rozwiązanie buduje się łatwiej. Z definicji Różniczkujemy u(x, t) = U(ξ(x, t), η(x, t)). u t = U ξ ξ t + U η η t = cu ξ + cu η, u tt = c(u ξξ ξ t + U ξη η t ) + c(u ηξ ξ t + U ηη η t ) = c( cu ξξ + cu ξη ) + c( cu ηξ + cu ηη )) = c 2 U ξξ 2c 2 U ξη + c 2 U ηη, u x = U ξ ξ x + U η η x = U ξ + U η, (3.7) Po podstawieniu, dostajemy u xx = (U ξξ ξ x + U ξη η x ) + (U ηξ ξ x + U ηη η x ) = (U ξξ + U ξη ) + (U ηξ + U ηη ) = U ξξ + 2U ξη + U ηη. U ξη = 0. Całkujemy względem η (od η nie zależy) U ξ = φ(ξ). Całkujemy względem ξ U(ξ, η) = φ(ξ)dξ + G(η) = F (ξ) + G(η). Wracając do starych zmiennych Przykłady rozwiązań równania falowego: u(x, t) = F (x ct) + G(x + ct). (3.8) u(x, t) = e x ct, u(x, t) = sin(x + ct), u(x, t) = (x + ct) 2 + e (x ct)2. Dwa pierwsze równania reprezentują fale biegnące w lewo i w prawo. Trzecie równanie jest kombinacją fal w lewo i w prawo Rozwiązanie d Alemberta Założenia: położenie początkowe u(x, 0) i początkowa prędkość u t (x, 0) są dane dla wszystkich x (np. niech będą równe 0). Jeśli w chwili początkowej potrącimy strunę, to w chwili początkowej będzie ona miała profil u(x, 0) = f(x) i prędkość u t (x, 0) = 0.
13 3.3. Rozwiązanie d Alemberta równania falowego 13 Rys Profile rozwiązania równania falowego z profilem początkowym u(x, 0) = e x2. Rozwiążemy teraz następujące zadanie: PDE: u tt = c 2 u xx, < x <, t > 0, IC: u(x, 0) = f(x), u t (x, 0) = g(x). Poszukujemy rozwiązania w postaci ogólnej: u(x, t) = F (x ct) + G(x + ct). Wstawiamy warunki początkowe na położenie i na prędkość Dzielimy powyższe przez c i całkujemy od 0 do x F (x) + G(x) = f(x). (3.9) c F (x) + c G (x) = g(x). (3.10) F (x) + G(x) = F (0) + G(0) + 1 c x 0 g(s)ds. (3.11) Równania (3.9) i (3.11) tworzą układ równań liniowych na F (x) i G(x) F (x) = 1 2 f(x) (F (0) G(0)) 1 2c G(x) = 1 2 f(x) 1 2 (F (0) G(0)) + 1 2c Rozwiązanie będzie więc mieć postać: u(x, t) = F (x ct) + G(x + ct) = 1 2 f(x ct) (F (0) G(0)) 1 2c x 0 x f(x + ct) 1 2 (F (0) G(0)) + 1 2c = 1 2 f(x ct) f(x + t) + 1 2c 0 x+ct x ct g(s)ds, g(s)ds, x ct 0 g(s)ds x+ct 0 g(s)ds. g(s)ds
14 14 Wykład 3. Modelowanie fal. Równanie sine-gordona Ostatecznie otrzymujemy rozwiązanie d Alemberta u(x, t) = 1 2 (f(x ct) + f(x + ct)) + 1 2c x+ct x ct g(s)ds. (3.12) równania falowego. Jest to rzadki przypadek rozwiązania w jawnej postaci. Literatura 1. Knobel Roger, An introduction to the mathematical theory of waves, American Mathematical Society, USA, Matyka Maciej. Symulacje komputerowe w fizyce. Helion, File: fpk2004w3.tex, Version 2.0, 15.III.2004
Ćwiczenie: "Ruch harmoniczny i fale"
Ćwiczenie: "Ruch harmoniczny i fale" Opracowane w ramach projektu: "Wirtualne Laboratoria Fizyczne nowoczesną metodą nauczania realizowanego przez Warszawską Wyższą Szkołę Informatyki. Zakres ćwiczenia:
Bardziej szczegółowo2.Prawo zachowania masy
2.Prawo zachowania masy Zdefiniujmy najpierw pewne podstawowe pojęcia: Układ - obszar przestrzeni o określonych granicach Ośrodek ciągły - obszar przestrzeni którego rozmiary charakterystyczne są wystarczająco
Bardziej szczegółowoDRGANIA MECHANICZNE. materiały uzupełniające do ćwiczeń. Wydział Samochodów i Maszyn Roboczych studia inżynierskie
DRGANIA MECHANICZNE materiały uzupełniające do ćwiczeń Wydział Samochodów i Maszyn Roboczych studia inżynierskie prowadzący: mgr inż. Sebastian Korczak część modelowanie, drgania swobodne Poniższe materiały
Bardziej szczegółowoPRAWA ZACHOWANIA. Podstawowe terminy. Cia a tworz ce uk ad mechaniczny oddzia ywuj mi dzy sob i z cia ami nie nale cymi do uk adu za pomoc
PRAWA ZACHOWANIA Podstawowe terminy Cia a tworz ce uk ad mechaniczny oddzia ywuj mi dzy sob i z cia ami nie nale cymi do uk adu za pomoc a) si wewn trznych - si dzia aj cych na dane cia o ze strony innych
Bardziej szczegółowo14P2 POWTÓRKA FIKCYJNY EGZAMIN MATURALNYZ FIZYKI I ASTRONOMII - II POZIOM PODSTAWOWY
14P2 POWTÓRKA FIKCYJNY EGZAMIN MATURALNYZ FIZYKI I ASTRONOMII - II POZIOM PODSTAWOWY Ruch jednostajny po okręgu Pole grawitacyjne Rozwiązania zadań należy zapisać w wyznaczonych miejscach pod treścią zadania
Bardziej szczegółowoWyznaczanie współczynnika sprężystości sprężyn i ich układów
Ćwiczenie 63 Wyznaczanie współczynnika sprężystości sprężyn i ich układów 63.1. Zasada ćwiczenia W ćwiczeniu określa się współczynnik sprężystości pojedynczych sprężyn i ich układów, mierząc wydłużenie
Bardziej szczegółowoTemat: Funkcje. Własności ogólne. A n n a R a j f u r a, M a t e m a t y k a s e m e s t r 1, W S Z i M w S o c h a c z e w i e 1
Temat: Funkcje. Własności ogólne A n n a R a j f u r a, M a t e m a t y k a s e m e s t r 1, W S Z i M w S o c h a c z e w i e 1 Kody kolorów: pojęcie zwraca uwagę * materiał nieobowiązkowy A n n a R a
Bardziej szczegółowoMateriały pomocnicze 8 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej
Materiały pomocnicze 8 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej 1. Ruch drgający. Drgania harmoniczne opisuje równanie: ( ω + φ) x = Asin t gdzie: A amplituda ruchu ω prędkość
Bardziej szczegółowoMATEMATYKA 4 INSTYTUT MEDICUS FUNKCJA KWADRATOWA. Kurs przygotowawczy na studia medyczne. Rok szkolny 2010/2011. tel. 0501 38 39 55 www.medicus.edu.
INSTYTUT MEDICUS Kurs przygotowawczy na studia medyczne Rok szkolny 00/0 tel. 050 38 39 55 www.medicus.edu.pl MATEMATYKA 4 FUNKCJA KWADRATOWA Funkcją kwadratową lub trójmianem kwadratowym nazywamy funkcję
Bardziej szczegółowoJan Olek. Uniwersytet Stefana Kardynała Wyszyńskiego. Procesy z Opóźnieniem. J. Olek. Równanie logistyczne. Założenia
Procesy z Procesy z Jan Olek Uniwersytet Stefana ardynała Wyszyńskiego 2013 Wzór równania logistycznego: Ṅ(t)=rN(t)(1- N ), gdzie Ṅ(t) - przyrost populacji w czasie t r - rozrodczość netto, (r > 0) N -
Bardziej szczegółowo40. Międzynarodowa Olimpiada Fizyczna Meksyk, 12-19 lipca 2009 r. ZADANIE TEORETYCZNE 2 CHŁODZENIE LASEROWE I MELASA OPTYCZNA
ZADANIE TEORETYCZNE 2 CHŁODZENIE LASEROWE I MELASA OPTYCZNA Celem tego zadania jest podanie prostej teorii, która tłumaczy tak zwane chłodzenie laserowe i zjawisko melasy optycznej. Chodzi tu o chłodzenia
Bardziej szczegółowoKurs wyrównawczy dla kandydatów i studentów UTP
Kurs wyrównawczy dla kandydatów i studentów UTP Część III Funkcja wymierna, potęgowa, logarytmiczna i wykładnicza Magdalena Alama-Bućko Ewa Fabińska Alfred Witkowski Grażyna Zachwieja Uniwersytet Technologiczno
Bardziej szczegółowoRozdział 6. Pakowanie plecaka. 6.1 Postawienie problemu
Rozdział 6 Pakowanie plecaka 6.1 Postawienie problemu Jak zauważyliśmy, szyfry oparte na rachunku macierzowym nie są przerażająco trudne do złamania. Zdecydowanie trudniejszy jest kryptosystem oparty na
Bardziej szczegółowoProjekt MES. Wykonali: Lidia Orkowska Mateusz Wróbel Adam Wysocki WBMIZ, MIBM, IMe
Projekt MES Wykonali: Lidia Orkowska Mateusz Wróbel Adam Wysocki WBMIZ, MIBM, IMe 1. Ugięcie wieszaka pod wpływem przyłożonego obciążenia 1.1. Wstęp Analizie poddane zostało ugięcie wieszaka na ubrania
Bardziej szczegółowo1. Rozwiązać układ równań { x 2 = 2y 1
Dzień Dziecka z Matematyką Tomasz Szymczyk Piotrków Trybunalski, 4 czerwca 013 r. Układy równań szkice rozwiązań 1. Rozwiązać układ równań { x = y 1 y = x 1. Wyznaczając z pierwszego równania zmienną y,
Bardziej szczegółowoTransport Mechaniczny i Pneumatyczny Materiałów Rozdrobnionych. Ćwiczenie 2 Podstawy obliczeń przenośników taśmowych
Transport Mechaniczny i Pneumatyczny Materiałów Rozdrobnionych Ćwiczenie 2 Podstawy obliczeń przenośników taśmowych Wydajność przenośnika Wydajnością przenośnika określa się objętość lub masę nosiwa przemieszczanego
Bardziej szczegółowo14.Rozwiązywanie zadań tekstowych wykorzystujących równania i nierówności kwadratowe.
Matematyka 4/ 4.Rozwiązywanie zadań tekstowych wykorzystujących równania i nierówności kwadratowe. I. Przypomnij sobie:. Wiadomości z poprzedniej lekcji... Że przy rozwiązywaniu zadań tekstowych wykorzystujących
Bardziej szczegółowoKONKURS PRZEDMIOTOWY Z FIZYKI dla uczniów gimnazjów województwa lubuskiego 23 marca 2012 r. zawody III stopnia (finałowe)
Pieczęć KONKURS PRZEDMIOTOWY Z FIZYKI dla uczniów gimnazjów województwa lubuskiego 23 marca 2012 r. zawody III stopnia (finałowe) Witamy Cię na trzecim etapie Konkursu Przedmiotowego z Fizyki i życzymy
Bardziej szczegółowo8. Zginanie ukośne. 8.1 Podstawowe wiadomości
8. 1 8. ginanie ukośne 8.1 Podstawowe wiadomości ginanie ukośne zachodzi w przypadku, gdy płaszczyzna działania obciążenia przechodzi przez środek ciężkości przekroju pręta jednak nie pokrywa się z żadną
Bardziej szczegółowoOd redakcji. Symbolem oznaczono zadania wykraczające poza zakres materiału omówionego w podręczniku Fizyka z plusem cz. 2.
Od redakcji Niniejszy zbiór zadań powstał z myślą o tych wszystkich, dla których rozwiązanie zadania z fizyki nie polega wyłącznie na mechanicznym przekształceniu wzorów i podstawieniu do nich danych.
Bardziej szczegółowoPL 205289 B1 20.09.2004 BUP 19/04. Sosna Edward,Bielsko-Biała,PL 31.03.2010 WUP 03/10 RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 205289
RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 205289 (13) B1 (21) Numer zgłoszenia: 359196 (51) Int.Cl. B62D 63/06 (2006.01) Urząd Patentowy Rzeczypospolitej Polskiej (22) Data zgłoszenia: 17.03.2003
Bardziej szczegółowoPodstawowe działania w rachunku macierzowym
Podstawowe działania w rachunku macierzowym Marcin Detka Katedra Informatyki Stosowanej Kielce, Wrzesień 2004 1 MACIERZE 1 1 Macierze Macierz prostokątną A o wymiarach m n (m wierszy w n kolumnach) definiujemy:
Bardziej szczegółowoKurs z matematyki - zadania
Kurs z matematyki - zadania Miara łukowa kąta Zadanie Miary kątów wyrażone w stopniach zapisać w radianach: a) 0, b) 80, c) 90, d), e) 0, f) 0, g) 0, h), i) 0, j) 70, k), l) 80, m) 080, n), o) 0 Zadanie
Bardziej szczegółowoWYZNACZANIE PRZYSPIESZENIA ZIEMSKIEGO ZA POMOCĄ WAHADŁA REWERSYJNEGO I MATEMATYCZNEGO
Nr ćwiczenia: 101 Prowadzący: Data 21.10.2009 Sprawozdanie z laboratorium Imię i nazwisko: Wydział: Joanna Skotarczyk Informatyki i Zarządzania Semestr: III Grupa: I5.1 Nr lab.: 1 Przygotowanie: Wykonanie:
Bardziej szczegółowoKomentarz do prac egzaminacyjnych w zawodzie technik administracji 343[01] ETAP PRAKTYCZNY EGZAMINU POTWIERDZAJĄCEGO KWALIFIKACJE ZAWODOWE
Komentarz do prac egzaminacyjnych w zawodzie technik administracji 343[01] ETAP PRAKTYCZNY EGZAMINU POTWIERDZAJĄCEGO KWALIFIKACJE ZAWODOWE OKE Kraków 2012 Zadanie egzaminacyjne zostało opracowane
Bardziej szczegółowoSCENARIUSZ LEKCJI Liceum
Proponowany scenariusz jest przykładem postępowania dydaktycznego wyprowadzonego z zasad konstruktywizmu edukacyjnego: SCENARIUSZ LEKCJI Liceum Temat lekcji: Czy huśtawka jest oscylatorem harmonicznym?
Bardziej szczegółowoPRZYBLI ONE METODY ROZWI ZYWANIA RÓWNA
PRZYBLI ONE METODY ROZWI ZYWANIA RÓWNA Metody kolejnych przybli e Twierdzenie. (Bolzano Cauchy ego) Metody kolejnych przybli e Je eli funkcja F(x) jest ci g a w przedziale domkni tym [a,b] i F(a) F(b)
Bardziej szczegółowoBazy danych. Andrzej Łachwa, UJ, 2013 andrzej.lachwa@uj.edu.pl www.uj.edu.pl/web/zpgk/materialy 9/15
Bazy danych Andrzej Łachwa, UJ, 2013 andrzej.lachwa@uj.edu.pl www.uj.edu.pl/web/zpgk/materialy 9/15 Przechowywanie danych Wykorzystanie systemu plików, dostępu do plików za pośrednictwem systemu operacyjnego
Bardziej szczegółowoTemat: Czy świetlówki energooszczędne są oszczędne i sprzyjają ochronie środowiska? Imię i nazwisko
Temat: Czy świetlówki energooszczędne są oszczędne i sprzyjają ochronie środowiska? Karta pracy III.. Imię i nazwisko klasa Celem nauki jest stawianie hipotez, a następnie ich weryfikacja, która w efekcie
Bardziej szczegółowoKratownice Wieża Eiffel a
Kratownice Wieża Eiffel a Kratownica jest to konstrukcja nośna, składająca się z prętów połączonch ze sobą w węzłach. Kratownica może bć: 1) płaska, gd wszstkie pręt leżą w jednej płaszczźnie, 2) przestrzenna,
Bardziej szczegółowoWYKŁAD 8. Postacie obrazów na różnych etapach procesu przetwarzania
WYKŁAD 8 Reprezentacja obrazu Elementy edycji (tworzenia) obrazu Postacie obrazów na różnych etapach procesu przetwarzania Klasy obrazów Klasa 1: Obrazy o pełnej skali stopni jasności, typowe parametry:
Bardziej szczegółowoĆwiczenie 5 Hologram gruby
Ćwiczenie 5 Hologram gruby 1. Wprowadzenie: Na poprzednim ćwiczeniu zapoznaliśmy się z hologramem Fresnela, który daje nam moŝliwość zapisu obiektu przestrzennego. Wadą jego jednak jest to, iŝ moŝemy go
Bardziej szczegółowoPomiar prędkości dźwięku w metalach
Pomiar prędkości dźwięku w metalach Ćwiczenie studenckie dla I Pracowni Fizycznej Barbara Pukowska Andrzej Kaczmarski Krzysztof Sokalski Instytut Fizyki UJ Eksperymenty z dziedziny akustyki są ciekawe,
Bardziej szczegółowoy i a o Ma F x i z i r r r r r v r r r r
SIŁY BEZWŁADNOŚCI 1 z i S i NIEINERCJALNE UKŁADY ODNIESIENIA siły bezwładności = siły pozone = pseudosiły Siły działające na ciała w układach nieinecjalnych (posiadających pzyspieszenie) Układ nieinecjalny
Bardziej szczegółowo10 RUCH JEDNOSTAJNY PO OKRĘGU
Włodzimiez Wolczyński Miaa łukowa kąta 10 RUCH JEDNOSTAJNY PO OKRĘGU 360 o =2π ad = = 2 s 180 o =π ad 90 o =π/2 ad = jednostka adian [1 = 1 = 1] Π ad 180 o 1 ad - x o = 180 57, 3 57 18, Ruch jednostajny
Bardziej szczegółowoOgólna charakterystyka kontraktów terminowych
Jesteś tu: Bossa.pl Kurs giełdowy - Część 10 Ogólna charakterystyka kontraktów terminowych Kontrakt terminowy jest umową pomiędzy dwiema stronami, z których jedna zobowiązuje się do nabycia a druga do
Bardziej szczegółowoBadanie silnika asynchronicznego jednofazowego
Badanie silnika asynchronicznego jednofazowego Cel ćwiczenia Celem ćwiczenia jest poznanie budowy i zasady funkcjonowania silnika jednofazowego. W ramach ćwiczenia badane są zmiany wartości prądu rozruchowego
Bardziej szczegółowoLVI OLIMPIADA FIZYCZNA 2006/2007 Zawody II stopnia
LVI OLIMPIADA FIZYCZNA 2006/2007 Zawody II stopnia Zadanie doświadczalne Energia elektronów w półprzewodniku może przybierać wartości należące do dwóch przedziałów: dolnego (tzw. pasmo walencyjne) i górnego
Bardziej szczegółowoUKŁAD ROZRUCHU SILNIKÓW SPALINOWYCH
UKŁAD ROZRUCHU SILNIKÓW SPALINOWYCH We współczesnych samochodach osobowych są stosowane wyłącznie rozruszniki elektryczne składające się z trzech zasadniczych podzespołów: silnika elektrycznego; mechanizmu
Bardziej szczegółowoPL 211524 B1. FAKRO PP SPÓŁKA Z OGRANICZONĄ ODPOWIEDZIALNOŚCIĄ, Nowy Sącz, PL 29.10.2007 BUP 22/07 31.05.2012 WUP 05/12. WACŁAW MAJOCH, Nowy Sącz, PL
RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 211524 (13) B1 (21) Numer zgłoszenia: 379508 (51) Int.Cl. E06B 7/14 (2006.01) E04D 13/03 (2006.01) Urząd Patentowy Rzeczypospolitej Polskiej (22)
Bardziej szczegółowoPAKIET MathCad - Część III
Opracowanie: Anna Kluźniak / Jadwiga Matla Ćw3.mcd 1/12 Katedra Informatyki Stosowanej - Studium Podstaw Informatyki PAKIET MathCad - Część III RÓWNANIA I UKŁADY RÓWNAŃ 1. Równania z jedną niewiadomą MathCad
Bardziej szczegółowoINSTRUKCJA OBSŁUGI MC-2810 CYFROWY SYSTEM GŁOŚNIKOWY 5.1 KANAŁÓW DO KINA DOMOWEGO
MC-2810 CYFROWY SYSTEM GŁOŚNIKOWY 5.1 KANAŁÓW DO KINA DOMOWEGO GRATULUJEMY UDANEGO ZAKUPU ZESTAWU GŁOŚNIKOWEGO MC-2810 Z AKTYWNYM SUBWOOFEREM I GŁOŚNIKAMI SATELITARNYMI. ZESTAW ZOSTAŁ STARANNIE ZAPROJEKTOWANY
Bardziej szczegółowoWyznaczenie sprawności grzejnika elektrycznego i ciepła właściwego cieczy za pomocą kalorymetru z grzejnikiem elektrycznym
Nr. Ćwiczenia: 215 Politechnika Łódzka FTIMS Kierunek: Informatyka rok akademicki: 2008/2009 sem. 2. Termin: 20 IV 2009 Temat Ćwiczenia: Wyznaczenie sprawności grzejnika elektrycznego i ciepła właściwego
Bardziej szczegółowoStowarzyszenie Lokalna Grupa Działania EUROGALICJA Regulamin Rady
Stowarzyszenie Lokalna Grupa Działania EUROGALICJA Regulamin Rady Rozdział I Postanowienia ogólne 1 1. Rada Stowarzyszenia Lokalna Grupa Działania Eurogalicja, zwana dalej Radą, działa na podstawie: Ustawy
Bardziej szczegółowoProjektowanie bazy danych
Projektowanie bazy danych Pierwszą fazą tworzenia projektu bazy danych jest postawienie definicji celu, założeo wstępnych i określenie podstawowych funkcji aplikacji. Każda baza danych jest projektowana
Bardziej szczegółowoARIGOLD Paulina Kukla UL. ŚWIĘTOJAŃSKA 92-94C/4, 81-388 GDYNIA TEL. 733-460-745; FAX. (12) 376-77-67; biuro@arigold.pl
_ ARIGOLD Paulina Kukla UL. ŚWIĘTOJAŃSKA 92-94C/4, 81-388 GDYNIA TEL. 733-460-745; FAX. (12) 376-77-67; biuro@arigold.pl Nr egzemplarza 1 TEMAT OPRACOWANIA: PROJEKT STAŁEJ ORGANIZACJI RUCHU PRZEBUDOWA
Bardziej szczegółowoWyznaczanie statycznego i kinetycznego współczynnika tarcia przy pomocy równi pochyłej
Wyznaczanie statycznego i kinetycznego współczynnika tarcia przy pomocy równi pochyłej Równia pochyła jest przykładem maszyny prostej. Jej konstrukcja składa się z płaskiej powierzchni nachylonej pod kątem
Bardziej szczegółowoKomentarz technik ochrony fizycznej osób i mienia 515[01]-01 Czerwiec 2009
Strona 1 z 19 Strona 2 z 19 Strona 3 z 19 Strona 4 z 19 Strona 5 z 19 Strona 6 z 19 Strona 7 z 19 W pracy egzaminacyjnej oceniane były elementy: I. Tytuł pracy egzaminacyjnej II. Założenia do projektu
Bardziej szczegółowoZadanie 1. Liczba szkód w każdym z trzech kolejnych lat dla pewnego ubezpieczonego ma rozkład równomierny:
Matematyka ubezpieczeń majątkowych 5.2.2008 r. Zadanie. Liczba szkód w każdym z trzech kolejnych lat dla pewnego ubezpieczonego ma rozkład równomierny: Pr ( N = k) = 0 dla k = 0,, K, 9. Liczby szkód w
Bardziej szczegółowoP 0max. P max. = P max = 0; 9 20 = 18 W. U 2 0max. U 0max = q P 0max = p 18 2 = 6 V. D = T = U 0 = D E ; = 6
XL OLIMPIADA WIEDZY TECHNICZNEJ Zawody II stopnia Rozwi zania zada dla grupy elektryczno-elektronicznej Rozwi zanie zadania 1 Sprawno przekszta tnika jest r wna P 0ma a Maksymaln moc odbiornika mo na zatem
Bardziej szczegółowoPrzygotowały: Magdalena Golińska Ewa Karaś
Przygotowały: Magdalena Golińska Ewa Karaś Druk: Drukarnia VIVA Copyright by Infornext.pl ISBN: 978-83-61722-03-8 Wydane przez Infornext Sp. z o.o. ul. Okopowa 58/72 01 042 Warszawa www.wieszjak.pl Od
Bardziej szczegółowoPROCEDURA OCENY RYZYKA ZAWODOWEGO. w Urzędzie Gminy Mściwojów
I. Postanowienia ogólne 1.Cel PROCEDURA OCENY RYZYKA ZAWODOWEGO w Urzędzie Gminy Mściwojów Przeprowadzenie oceny ryzyka zawodowego ma na celu: Załącznik A Zarządzenia oceny ryzyka zawodowego monitorowanie
Bardziej szczegółowoZintegrowane Systemy Zarządzania Biblioteką SOWA1 i SOWA2 SKONTRUM
Zintegrowane Systemy Zarządzania Biblioteką SOWA1 i SOWA2 SKONTRUM PROGRAM INWENTARYZACJI Poznań 2011 Spis treści 1. WSTĘP...4 2. SPIS INWENTARZA (EWIDENCJA)...5 3. STAŁE UBYTKI...7 4. INTERPRETACJA ZAŁĄCZNIKÓW
Bardziej szczegółowoK P K P R K P R D K P R D W
KLASA III TECHNIKUM POZIOM PODSTAWOWY I ROZSZERZONY PROPOZYCJA POZIOMÓW WYMAGAŃ Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające (R), dopełniające (D) i
Bardziej szczegółowoUmowa o pracę zawarta na czas nieokreślony
Umowa o pracę zawarta na czas nieokreślony Uwagi ogólne Definicja umowy Umowa o pracę stanowi dokument stwierdzający zatrudnienie w ramach stosunku pracy. Według ustawowej definicji jest to zgodne oświadczenie
Bardziej szczegółowoWYDZIAŁ MECHANICZNY Katedra Technologii Maszyn i Automatyzacji Produkcji. Laboratorium Obróbki ubytkowej materiałów.
WYDZIAŁ MECHANICZNY Katedra Technologii Maszyn i Automatyzacji Produkcji Laboratorium Obróbki ubytkowej materiałów Ćwiczenie nr 1 Temat: Geometria ostrzy narzędzi skrawających Cel ćwiczenia Celem ćwiczenia
Bardziej szczegółowoPolitechnika Warszawska Wydział Matematyki i Nauk Informacyjnych ul. Koszykowa 75, 00-662 Warszawa
Zamawiający: Wydział Matematyki i Nauk Informacyjnych Politechniki Warszawskiej 00-662 Warszawa, ul. Koszykowa 75 Przedmiot zamówienia: Produkcja Interaktywnej gry matematycznej Nr postępowania: WMiNI-39/44/AM/13
Bardziej szczegółowoWymagania edukacyjne z fizyki do gimnazjum Gimnazjum Sióstr Salezjanek w Ostrowie Wielkopolskim
Wymagania edukacyjne z fizyki do gimnazjum Gimnazjum Sióstr Salezjanek w Ostrowie Wielkopolskim Uczeń uzyskuje z poszczególnych działów fizyki oceny cząstkowe jeżeli sprostał wymaganiom ogólnym, doświadczalnym,
Bardziej szczegółowoPODSTAWY METROLOGII ĆWICZENIE 4 PRZETWORNIKI AC/CA Międzywydziałowa Szkoła Inżynierii Biomedycznej 2009/2010 SEMESTR 3
PODSTAWY METROLOGII ĆWICZENIE 4 PRZETWORNIKI AC/CA Międzywydziałowa Szkoła Inżynierii Biomedycznej 29/2 SEMESTR 3 Rozwiązania zadań nie były w żaden sposób konsultowane z żadnym wiarygodnym źródłem informacji!!!
Bardziej szczegółowoProjekt. Projekt opracował Inż. Roman Polski
Projekt stałej organizacji ruchu na drogach powiatowych i gminnych miasta Puławy związany z projektem przebudowy niebieskiego szlaku rowerowego do rezerwatu Piskory. Projekt opracował Inż. Roman Polski
Bardziej szczegółowoUmowa - wzór. Zawarta w dniu..01.2016 roku w Świątkach pomiędzy :
Umowa - wzór Zawarta w dniu..01.2016 roku w Świątkach pomiędzy : Gminą Świątki - zwaną dalej Zamawiającym reprezentowana przez Wójta Gminy Sławomira Kowalczyka, przy kontrasygnacie Skarbnika Gminy Krystyny
Bardziej szczegółowoAdres strony internetowej, na której Zamawiający udostępnia Specyfikację Istotnych Warunków Zamówienia: www.wup.pl/index.php?
1 z 6 2013-10-03 14:58 Adres strony internetowej, na której Zamawiający udostępnia Specyfikację Istotnych Warunków Zamówienia: www.wup.pl/index.php?id=221 Szczecin: Usługa zorganizowania szkolenia specjalistycznego
Bardziej szczegółowoNUMER IDENTYFIKATORA:
Społeczne Liceum Ogólnokształcące z Maturą Międzynarodową im. Ingmara Bergmana IB WORLD SCHOOL 53 ul. Raszyńska, 0-06 Warszawa, tel./fax 668 54 5 www.ib.bednarska.edu.pl / e-mail: liceum.ib@rasz.edu.pl
Bardziej szczegółowoWYROK W IMIENIU RZECZYPOSPOLITEJ POLSKIEJ
Sygn. akt I UK 377/10 WYROK W IMIENIU RZECZYPOSPOLITEJ POLSKIEJ Sąd Najwyższy w składzie : Dnia 22 kwietnia 2011 r. SSN Józef Iwulski (przewodniczący) SSN Roman Kuczyński (sprawozdawca) SSN Jolanta Strusińska-Żukowska
Bardziej szczegółowoKOMISJA WSPÓLNOT EUROPEJSKICH. Wniosek DECYZJA RADY
KOMISJA WSPÓLNOT EUROPEJSKICH Bruksela, dnia 13.12.2006 KOM(2006) 796 wersja ostateczna Wniosek DECYZJA RADY w sprawie przedłużenia okresu stosowania decyzji 2000/91/WE upoważniającej Królestwo Danii i
Bardziej szczegółowoZamawiający potwierdza, że zapis ten należy rozumieć jako przeprowadzenie audytu z usług Inżyniera.
Pytanie nr 1 Bardzo prosimy o wyjaśnienie jak postrzegają Państwo możliwość przeliczenia walut obcych na PLN przez Oferenta, który będzie składał ofertę i chciał mieć pewność, iż spełnia warunki dopuszczające
Bardziej szczegółowo7. REZONANS W OBWODACH ELEKTRYCZNYCH
OBWODY SYGNAŁY 7. EZONANS W OBWODAH EEKTYZNYH 7.. ZJAWSKO EZONANS Obwody elektryczne, w których występuje zjawisko rezonansu nazywane są obwodami rezonansowymi lub drgającymi. ozpatrując bezźródłowy obwód
Bardziej szczegółowoPL 215399 B1. POLITECHNIKA POZNAŃSKA, Poznań, PL 03.01.2011 BUP 01/11. RAFAŁ TALAR, Kościan, PL 31.12.2013 WUP 12/13
PL 215399 B1 RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 215399 (13) B1 (21) Numer zgłoszenia: 388446 (51) Int.Cl. B23F 9/08 (2006.01) Urząd Patentowy Rzeczypospolitej Polskiej (22) Data zgłoszenia:
Bardziej szczegółowoProcedura nadawania uprawnień do potwierdzania Profili Zaufanych w Urzędzie Gminy w Ryjewie
WÓJT GMINY RYJEWO Załącznik Nr 2 do Zarządzenia Nr 13/15 Wójta Gminy Ryjewo z dnia 20 lutego 2015 roku w sprawie zmiany treści zarządzenia Nr 45/14 Wójta Gminy Ryjewo z dnia 30 czerwca 2014 roku w sprawie
Bardziej szczegółowoWZORU UŻYTKOWEGO EGZEMPLARZ ARCHIWALNY. d2)opis OCHRONNY. (19) PL (n)62894. Centralny Instytut Ochrony Pracy, Warszawa, PL
RZECZPOSPOLITA POLSKA Urząd Patentowy Rzeczypospolitej Polskiej d2)opis OCHRONNY WZORU UŻYTKOWEGO (21) Numer zgłoszenia: 112772 (22) Data zgłoszenia: 29.11.2001 EGZEMPLARZ ARCHIWALNY (19) PL (n)62894 (13)
Bardziej szczegółowoWykład 10. Urządzenia energoelektroniczne poprzez regulację napięcia, prądu i częstotliwości umoŝliwiają
Serwonapędy w automatyce i robotyce Wykład 10 Piotr Sauer Katedra Sterowania i Inżynierii Systemów Urządzenia energoelektroniczne Urządzenia energoelektroniczne poprzez regulację napięcia, prądu i częstotliwości
Bardziej szczegółowoHarmonogramowanie projektów Zarządzanie czasem
Harmonogramowanie projektów Zarządzanie czasem Zarządzanie czasem TOMASZ ŁUKASZEWSKI INSTYTUT INFORMATYKI W ZARZĄDZANIU Zarządzanie czasem w projekcie /49 Czas w zarządzaniu projektami 1. Pojęcie zarządzania
Bardziej szczegółowoStanowisko Rzecznika Finansowego i Prezesa Urzędu Ochrony Konkurencji i Konsumentów w sprawie interpretacji art. 49 ustawy o kredycie konsumenckim
Prezes Urzędu Ochrony Konkurencji i Konsumentów Warszawa, 16 maja 2016 r. Stanowisko Rzecznika Finansowego i Prezesa Urzędu Ochrony Konkurencji i Konsumentów w sprawie interpretacji art. 49 ustawy o kredycie
Bardziej szczegółowoSPRZĄTACZKA pracownik gospodarczy
Szkolenie wstępne InstruktaŜ stanowiskowy SPRZĄTACZKA pracownik gospodarczy pod red. Bogdana Rączkowskiego Zgodnie z rozporządzeniem Ministra Gospodarki i Pracy z dnia 27 lipca 2004 r. w sprawie szkolenia
Bardziej szczegółowoProcedura nadawania uprawnień do potwierdzania, przedłuŝania waŝności i uniewaŝniania profili zaufanych epuap. Załącznik nr 1
Załącznik nr 1 do zarządzenia Nr 204/2014 Burmistrza Miasta Kudowa-Zdrój z dnia 5 sierpnia 2014 r. Procedura nadawania uprawnień do potwierdzania, przedłuŝania waŝności i uniewaŝniania profili zaufanych
Bardziej szczegółowo7. OPRACOWYWANIE DANYCH I PROWADZENIE OBLICZEŃ powtórka
7. OPRACOWYWANIE DANYCH I PROWADZENIE OBLICZEŃ powtórka Oczekiwane przygotowanie informatyczne absolwenta gimnazjum Zbieranie i opracowywanie danych za pomocą arkusza kalkulacyjnego Uczeń: wypełnia komórki
Bardziej szczegółowotel/fax 018 443 82 13 lub 018 443 74 19 NIP 7343246017 Regon 120493751
Zespół Placówek Kształcenia Zawodowego 33-300 Nowy Sącz ul. Zamenhoffa 1 tel/fax 018 443 82 13 lub 018 443 74 19 http://zpkz.nowysacz.pl e-mail biuro@ckp-ns.edu.pl NIP 7343246017 Regon 120493751 Wskazówki
Bardziej szczegółowoAutomatyka. Etymologicznie automatyka pochodzi od grec.
Automatyka Etymologicznie automatyka pochodzi od grec. : samoczynny. Automatyka to: dyscyplina naukowa zajmująca się podstawami teoretycznymi, dział techniki zajmujący się praktyczną realizacją urządzeń
Bardziej szczegółowo2.1. Ruch, gradient pr dko ci, tensor pr dko ci odkszta cenia, Ruchem cia a B nazywamy dostatecznie g adko zale ne od czasu t jego odkszta cenie
Rozdzia 2 Ruch i kinematyka 2.. Ruch, gradient pr dko ci, tensor pr dko ci odkszta cenia, wirowo Ruchem cia a B nazywamy dostatecznie g adko zale ne od czasu t jego odkszta cenie t, tzn. B X! t (X) =x
Bardziej szczegółowoUSTAWA. z dnia 26 czerwca 1974 r. Kodeks pracy. 1) (tekst jednolity)
Dz.U.98.21.94 1998.09.01 zm. Dz.U.98.113.717 art. 5 1999.01.01 zm. Dz.U.98.106.668 art. 31 2000.01.01 zm. Dz.U.99.99.1152 art. 1 2000.04.06 zm. Dz.U.00.19.239 art. 2 2001.01.01 zm. Dz.U.00.43.489 art.
Bardziej szczegółowoPlan wykładu. Uwagi ogólne i definicje (1)
Plan wykładu Wprowadzenie Elementy elektroniczne w obudowach SO, CC i QFP Elementy elektroniczne w obudowach BGA i CSP Montaż drutowy i flip-chip struktur nie obudowanych Tworzywa sztuczne i lepkospręż
Bardziej szczegółowoProcedura działania Punktu Potwierdzającego Profile Zaufane epuap Urzędzie Gminy w Ułężu
Załącznik nr 1 do Zarządzenia Wójta Gminy Ułęż nr 21 z dnia 14 maja 2014r. Procedura działania Punktu Potwierdzającego Profile Zaufane epuap Urzędzie Gminy w Ułężu Spis treści Użyte pojęcia i skróty...
Bardziej szczegółowoTECHNOLOGICZNOŚĆ WYPRASEK
TECHNOLOGICZNOŚĆ WYPRASEK Technologiczność konstrukcji określa zgodność budowy wypraski z uwarunkowaniami określonego procesu wytwarzania w tym przypadku - wtryskiwania. Zalecenia dotyczące technologiczności
Bardziej szczegółowoWOJEWÓDZKI KONKURS FIZYCZNY
KOD UCZNIA Liczba uzyskanych punktów (maks. 40): Młody Fizyku! WOJEWÓDZKI KONKURS FIZYCZNY Etap rejonowy Masz do rozwiązania 20 zadań (w tym 3 otwarte). Całkowity czas na rozwiązanie wynosi 90 minut. W
Bardziej szczegółowoCzego oczekujemy od LHC? Piotr Traczyk. IPJ Warszawa
Czego oczekujemy od LHC? Piotr Traczyk IPJ Warszawa Plan 1)Dwa słowa o LHC 2)Eksperymenty i program fizyczny 3)Kilka wybranych tematów - szczegółowo 2 LHC Large Hadron Collider UWAGA! Start jeszcze w tym
Bardziej szczegółowoUCHWAŁA NR... RADY MIASTA KIELCE. z dnia... 2016 r.
Projekt UCHWAŁA NR... RADY MIASTA KIELCE z dnia... 2016 r. w sprawie ustalenia zasad udzielania i rozmiaru obniżek tygodniowego obowiązkowego wymiaru godzin zajęć nauczycielom, którym powierzono stanowiska
Bardziej szczegółowo'()(*+,-./01(23/*4*567/8/23/*98:)2(!."/+)012+3$%-4#"4"$5012#-4#"4-6017%*,4.!"#$!"#%&"!!!"#$%&"#'()%*+,-+
'()(*+,-./01(23/*4*567/8/23/*98:)2(!."/+)012+3$%-4#"4"$5012#-4#"4-6017%*,4.!"#$!"#%&"!!!"#$%&"#'()%*+,-+ Ucze interpretuje i tworzy teksty o charakterze matematycznym, u ywa j zyka matematycznego do opisu
Bardziej szczegółowoOprogramowanie klawiatury matrycowej i alfanumerycznego wyświetlacza LCD
Oprogramowanie klawiatury matrycowej i alfanumerycznego wyświetlacza LCD 1. Wprowadzenie DuŜa grupa sterowników mikroprocesorowych wymaga obsługi przycisków, które umoŝliwiają uŝytkownikowi uruchamianie
Bardziej szczegółowoMetrologia cieplna i przepływowa
Metrologia cieplna i przepływowa Systemy, Maszyny i Urządzenia Energetyczne, I rok mgr Pomiar małych ciśnień Instrukcja do ćwiczenia Katedra Systemów Energetycznych i Urządzeń Ochrony Środowiska AGH Kraków
Bardziej szczegółowoWiedza niepewna i wnioskowanie (c.d.)
Wiedza niepewna i wnioskowanie (c.d.) Dariusz Banasiak Katedra Informatyki Technicznej Wydział Elektroniki Wnioskowanie przybliżone Wnioskowanie w logice tradycyjnej (dwuwartościowej) polega na stwierdzeniu
Bardziej szczegółowoW nawiązaniu do korespondencji z lat ubiegłych, dotyczącej stworzenia szerszych
W nawiązaniu do korespondencji z lat ubiegłych, dotyczącej stworzenia szerszych mechanizmów korzystania z mediacji, mając na uwadze treść projektu ustawy o mediatorach i zasadach prowadzenia mediacji w
Bardziej szczegółowoProgramowanie obrabiarek CNC. Nr H8
1 Politechnika Poznańska Instytut Technologii Mechanicznej Laboratorium Programowanie obrabiarek CNC Nr H8 Programowanie obróbki 5-osiowej (3+2) w układzie sterowania itnc530 Opracował: Dr inż. Wojciech
Bardziej szczegółowoSERI A 93 S E RI A 93 O FLUSH GRID WITHOUT EDGE TAB
SERIA E93 CONIC FRINCTION CONIC 2 SERIA 93 SERIA 93 O FLUSH GRID WITHOUT EDGE TAB Podziałka Powierzchnia 30 mm Flush Grid Prześwit 47% Grubość Minimalny promień skrętu taśmy Układ napędowy Szerokość taśmy
Bardziej szczegółowoZasady przyjęć do klas I w gimnazjach prowadzonych przez m.st. Warszawę
Zasady przyjęć do klas I w gimnazjach prowadzonych przez m.st. Warszawę Podstawy prawne Zasady przyjęć do gimnazjów w roku szkolnym 2016/2017 zostały przygotowane w oparciu o zapisy: ustawy z dnia 7 września
Bardziej szczegółowoStatystyczna analiza danych w programie STATISTICA. Dariusz Gozdowski. Katedra Doświadczalnictwa i Bioinformatyki Wydział Rolnictwa i Biologii SGGW
Statystyczna analiza danych w programie STATISTICA ( 4 (wykład Dariusz Gozdowski Katedra Doświadczalnictwa i Bioinformatyki Wydział Rolnictwa i Biologii SGGW Regresja prosta liniowa Regresja prosta jest
Bardziej szczegółowoŚwiat fizyki powtórzenie
Przygotowano za pomocą programu Ciekawa fizyka. Bank zadań Copyright by Wydawnictwa Szkolne i Pedagogiczne sp. z o.o., Warszawa 2011 strona 1 Imię i nazwisko ucznia Data...... Klasa... Zadanie 1. Masz
Bardziej szczegółowoINSTRUKCJA OBSŁUGI WD2250A. WATOMIERZ 0.3W-2250W firmy MCP
INSTRUKCJA OBSŁUGI WD2250A WATOMIERZ 0.3W-2250W firmy MCP 1. CHARAKTERYSTYKA TECHNICZNA Zakresy prądowe: 0,1A, 0,5A, 1A, 5A. Zakresy napięciowe: 3V, 15V, 30V, 240V, 450V. Pomiar mocy: nominalnie od 0.3
Bardziej szczegółowoINSTRUKCJA BHP PRZY RECZNYCH PRACACH TRANSPORTOWYCH DLA PRACOWNIKÓW KUCHENKI ODDZIAŁOWEJ.
INSTRUKCJA BHP PRZY RECZNYCH PRACACH TRANSPORTOWYCH DLA PRACOWNIKÓW KUCHENKI ODDZIAŁOWEJ. I. UWAGI OGÓLNE. 1. Dostarczanie posiłków, ich przechowywanie i dystrybucja musza odbywać się w warunkach zapewniających
Bardziej szczegółowoAdres strony internetowej, na której Zamawiający udostępnia Specyfikację Istotnych Warunków Zamówienia: www.wup.pl
1 z 6 2015-06-09 10:55 Adres strony internetowej, na której Zamawiający udostępnia Specyfikację Istotnych Warunków Zamówienia: www.wup.pl Szczecin: Usługa szkolenia specjalistycznego pn. Obsługa trudnego
Bardziej szczegółowoKLAUZULE ARBITRAŻOWE
KLAUZULE ARBITRAŻOWE KLAUZULE arbitrażowe ICC Zalecane jest, aby strony chcące w swych kontraktach zawrzeć odniesienie do arbitrażu ICC, skorzystały ze standardowych klauzul, wskazanych poniżej. Standardowa
Bardziej szczegółowo