FERDYNAND TWARDOSZ I JERZY ZIELNICA (POZNAŃ)
|
|
- Czesław Sokołowski
- 5 lat temu
- Przeglądów:
Transkrypt
1 MECHANIKA TEORETYCZNA I STOSOWANA 4, 16 (1978) O STATECZNOŚ CI DYNAMICZNEJ POWŁOKI STOŻ KOWEJ PRZY PULSUJĄ CYCH SIŁACH PODŁUŻ NYCH I POPRZECZNYCH Z UWZGLĘ DNIENIEM NIELINIOWEGO TŁUMIENIA MATERIAŁOWEGO FERDYNAND TWARDOSZ I JERZY ZIELNICA (POZNAŃ) W pracy niniejszej zajmiemy się zagadnieniem statecznoś ci dynamicznej cienkoś ciennej powł oki w kształcie stoż ka ś cię tego, swobodnie podpartej na obu brzegach. Powłoka obcią ż ona jest siłami podłuż nymi N(t) i wszechstronnym równomiernym ciś nieniem p(t) zmieniają cymi się okresowo w czasie. U wzglę dniono przy tym wpł yw nieliniowego tł u- mienia na rezonans parametryczny. Rozważ ania prowadzone niż ej bę dą oparte na wynikach pracy [3] w której zagadnienie to został o dość obszernie omówione. 1. Równanie róż niczkowe ruchu Problem statecznoś ci dynamicznej powłoki stoż kowej przy uwzglę dnieniu tłumienia wg hipotezy Dawidenkowa sprowadza się do analizy rozwią zań nastę pują cego równania róż niczkowego [3]: (1.1) i jfł +Q 2 mnfif) nn - e[2/ u m Ql n cos tf(t) mn - Ą t)], w którym (L2) H tn sin y ^(/ ) = %^hml(^ V^- } l) ] / J ^VuVeV^smm^comMdndz oznacza funkcję tł umienia, a parametr e może przybierać dostatecznie mał e dodatnie wartoś ci. W równaniu (1.1) przyję to nastę pują ce oznaczenia: (1.3) i2m = cojj, 11 ^ \ czę stość drgań swobodnych powłoki obcią ż one j stał ymi \ Pkrmnl sił ami podłuż nymi N Q < N krm i równomiernym stał ym ciś nieniem zewnę trznm p 0 < Punm, 0-4) 2,M m = współczynnik pulsacji, Pkrmn Po (1-5) K = ; I = 2. stosunek obcią ż eń zewnę trznych, i Pyt) po
2 484 F. TWARDOSZ, i. ZIELNICA N(t) = N o +N t cos0t\ (16) f. \ okresowo zmienne obcią ż eni e zewnę trzne, Pv) Po+Ptcos&t ) (1.7) «2 = (1.8) i^ftrmn = powłoki nieobcią ż one j siłami zewnę trznymi, I)(m] + 2n 2 3v l 3v 2 0,5)(l 2ł >,)[(l ~2vi) T - X - + *'*- t ^ i*iai y \ - i -. L- * * it - - j. j. J. v - i, v obcią ż eni e krytyczne przy równoczesnym działaniu przy czym sił podłuż nych i wszechstronnego obcią ż eni a zewnę trznego, $ x = Q,2S{2m l (l+v 1 )B 1 +[(l+v 1 ) 2 - m 2 - ni]b 2 }, B = ni\ 1(1 2v 1 )<x m + 4i'i (1.9) B 2 = - i - j2 Aa- mf+ nf+ 1- vf, 1 v?j nm n liczba fal po obwodzie, m liczba pół fal w kierunku tworzą cej.
3 O STATECZNOŚ CI DYNAMICZNEJ 483 Ponieważ sił y tł umienia nie są wielkie w stosunku do sił sprę ż ystych, a amplituda harmonicznego wymuszenia jest mał a (zagadnienie geometrycznie liniowe), w zwią zku z tym moż emy rozważ aną powł okę traktować jako sł abonieliniowy ukł ad niezachowawczy i dla wyznaczenia drgań zastosować metodę asymptotycznych rozwinięć wzglę dem potęg mał ego parametru [1], [2]. 2. Okreś lenie gł ównego obszaru rezonansowego Rozpatrzymy drgania w otoczeniu podstawowego rezonansu, który w przypadku parametrycznego pobudzania zachodzi dla czę stośi c0 zawartych w pewnym otoczeniu wartoś ci 0 = 2o) O; 0 czę stość okresowego wymuszenia, eo 0 czę stość drgań wł asnych. Zajmiemy się wyznaczeniem podstawowego obszaru rezonansowego. G ranice tego obszaru w pierwszym przybliż eniu okreś lono z warunku [3]: 231 (2.1) H J(acosip)cosy>df~o Q 2 I J(acosf)cosy)dy> + e I / / i z rrgs"! I J(acos,yi)sinychp\. o \ o Dla konkretnego okreś lenia obszaru rezonansowego należy obliczyć funkcję tł umienia / (iscosy)- W tym celu musimy przyjąć wartoś ci współ czynników i, I (wzór 3.4 w [3]). Wielkość ite zależą od rodzaju materiał u z którego wykonana jest powł oka. Na przykł ad dla stali / = / = 3. Wstawiając te wartoś ci do (1.2) otrzymamy po scalkowaniu a 3 = J(y>)a\ gdzie??[(! ± cosyq ] ^ 3(1- v 2 ) 33 ' 3(1- k,?] oznaczają tutaj parametry pę tl i histerezy odpowiednio przy ś cinaniu i rozcią ganiu.
4 486 F. TWARDOSZ, J. ZIELNICA Współczynniki D ; («" = 1, 2,..., 8) wystę pują ce w powyż szej funkcji są zależ ne od stałych materiał u, wymiarów powłoki i od liczb m i n. Ze wzglę du na bardzo zł oż oną i rozbudowaną postać, współ czynników tych nie podajemy. Po podstawieniu wyraż enia (2.2) do (2.1) uzyskamy (2.3) 1 - o J(v) siny) dip Na podstawie (2.3) moż na sporzą dzić wykres obszaru rezonansowego dla róż nych amplitud 0 a w trójwymiarowym układzie współ rzę dnych ^, p,, a Przykład liczbowy i wnioski Jak wynika z rozwią zania, analizę zagadnienia sprowadzono do wyznaczenia granic pierwszego obszaru niestatecznoś ci, tzn. obszaru odpowiadają cemu najniż szej czę stoś ic drgań własnych i najmniejszej sile krytycznej powł oki. Uwzglę dnienie tł umienia materiałowego znacznie wpływa na zmiejszenie obszarów niestatecznoś ci wyż szych rzę dów, co wobec duż ego nakł adu pracy przy wyznaczaniu współ czynników tł umienia w peł ni uzasadnia przyję te tutaj założ enia. Dla zilustrowania otrzymanych wyników i wycią gnię ci a wniosków przytoczymy szereg przykładów liczbowych. Zakł adają c konkretne wymiary powłoki, współczynnik % (1.5) oraz stał e materiał owe, obliczymy wpierw statyczną siłę krytyczną p krm (1.8) i czę stość drgań własnych ukł adu nieobcią ż onego co mn (1.7). Przyjmują c p Q i p, wyznaczymy współczynnik pulsacji [x m (1.4) i ś rednią czę stość drgań swobodnych Q, n (1.3) układu obcią ż onego stałymi siłami podłuż nymi i poprzecznymi N o ipo- Z kolei obliczamy funkcje: J J(yj)sin f dip, J J(y>)cosy>dtp, wchodzą ce w skład zależ nośic o o (2.3), wykorzystują c wzór (2.2). Po scałkowaniu otrzymano wyraż enia algebraiczne, posiadają ce jednak bardzo zł oż oną i rozbudowaną postać, dlatego też przy ich obliczaniu posłuż ono się maszyną cyfrową. Do ostatecznego ustalenia granicy dolnej i górnej głównego obszaru rezonansowego wykorzystano zależ ność (2.3). Celem podanych przykładów liczbowych jest zbadanie wpływu podstawowych parametrów geometrycznych i materiałowych powłoki na kształt i przebieg granic obszaru niestatecznoś ci. Zrealizowanie tego problemu umoż liwiają przedstawione wykresy (rys. 1 do 7). Jako wspólne dla wszystkich analizowanych przypadków przyję to nastę pują ce dane; E = (kg/ cm 2 ), v = 0,3, Q «0,000008(kGs 2 / cm*), % - ivo/j7o = 4, natomiast pozostałe parametry zaznaczono na wykresach. Na rys. 1 przedstawiono krzywe obrazują ce obszary rezonansowe we współ rzę dnych & - ^TQ, [i, dla róż nych amplitud a. Tutaj oczywiś cie oznacza czę stość drgań obcią ż eni a
5 0/2S2 1,2 1,0 0,8 0,6 0,4 0,2 S, S 2 632[. rj= 4860 k a 4 0,1 0,2 0,3 0,4 0,3 0,5 Rys. 1 k q Rys. 2 [487]
6 6/2S2 n Rys. 3 0/2 a-10 6 cm Rys. 4 [488]
7 , O STATECZNOŚ CI DYNAMICZNEJ 489 wymuszają cego, Q czę stość drgań powłoki pod obcią ż eniem. Dla analizowanej powł oki uzyskano siłę krytyczną pod obcią ż eniem statycznym p kr = 0,0384 (kg/ cm 2 ) (przy m = 1 i n = 19) oraz czę stość drgań własnych a> = 142,2(s~ 1 ). Przyję to Q = 0,9 co. Z wykresu widać, że w miarę wzrostu amplitudy obszar rezonansowy zmniejsza się, wraz z przesuwaniem się w kierunku wię kszych wartoś ci współ czynnika pulsacji ^ i mniejszych war- Po przekroczeniu pewnej amplitudy granicznej nie nastą pi dynamiczna utrata toś ci statecznoś ci dla tej powł oki. N a rys. 2, 3, 4 sporzą dzono wykresy w ukł adzie trójwymiarowym - ^-, / u, a. Celem tych wykresów było zbadanie wpływu parametrów tłumienia pę tli histerezy k i r\, odpowiednio przy ś cinaniu i rozcią ganiu. Stwierdzono, że współczynnik k nie wpływa w sposób istotny na zmianę kształ tu powierzchni ograniczają cej obszar rezonansowy. Rys. 2, 3, 4 ["] \ m$k k a- 0,05-1O" 7 [cm] S 7 - ^'200[cm] S,- 432 [cm] h = 0,4 [cm] Jl j- 0,4;S2-0,8u) \ A I.....I,..- ^ [s" 1 ] Rys. 5 przedstawiają kolejno powierzchnie obszarów 1 rezonansowych przy wzrastają cej wartość współczynnika rj, przy innych parametrach stał ych. Wzrost r\ wywołuje zmniejszenie się obszaru dynamicznej niestatecznoś ci poprzez jego skrócenie" w kierunku maleją cych amplitud i przegię cie ku doł owi, co wyraź nie widać n a wykresach. Kolejnym etapem analizy był o zbadanie wpływu zmiany ką ta wierzchoł kowego 2y na przebieg granic obszarów dynamicznej niestatecznoś ci. W tym celu sporzą dzono wykresy 5 i 6, gdzie na osi pionowej odniesiono ką t y, a wzdłuż poziomej ś rednią czę stość
8 490 F. TWARDOSZ, J. ZlELNICA IT so C ~? icrrj kr [s* 1 ] Rys. 6 cm]' Sz 83C -" S ' I" I I I,, kr [s"'] Rys, 7 krytyczną siły wymuszają cej & kn uzyskaną po przekształceniu zależ noś c i (2.3). Analizę przeprowadzono tutaj w dwóch wariantach. W pierwszym zmieniano ką t y przy stał ych pozostałych parametrach (rys. 5), a w drugim zachowano stały ś redni promień powłoki, r ś r = 0,5(s t +S2)smy const (rys. 6) i długość tworzą cej / = s 2 jj = const. Z wykre-
9 O STATECZNOŚ CI DYNAMICZNEJ 49] sów widać, że w miarę wzrostu ką ta y szerokość obszarów rezonansowych maleje. Przy zachowaniu stałego promienia ś redniego istnieje pewien optymalny ką t wierzchołkowy, przy którym czę stość krytyczna jest najwię ksza, co wynika z rys. 6. Zwię kszenie współ - czynnika pulsacji fj, powoduje rozszerzenie obszaru niestatecznoś ci, tak jak i zwię kszenie amplitudy siły wymuszają cej p t, W kolejnoś ci zbadano wpł yw zmiany długoś ci tworzą cej (poprzez zmianę s 2 ) na granice obszarów niestatecznoś ci, przy innych parametrach stał ych. Analizę tę podaje rys. 7, z którego wynika, że wraz ze wzrostem dł ugoś ci tworzą cej nieliniowo maleje czę stość krytyczna & kr przy nieznacznym zmniejszeniu szerokoś ci obszaru. Przeprowadzona analiza numeryczna daje moż liwośi cwł aś ciwej oceny doboru parametrów geometrycznych i materiałowych przy projektowaniu powł ok stoż kowych obcią ż o- nych dynamicznie wszechstronnym ciś nieniem równomiernym i siłą podł uż ną. Dokonują c porównania z analizą statecznoś ci dynamicznej powł oki stoż kowej przy analogicznych założ eniach, lecz bez uwzgę dnienia tł umienia moż na zauważ yć, że tł umienie wpływa wyraź nie na zmniejszenie się, obszarów dynamicznej niestatecznoś ci np. przy wzroś cie ką ta wierzchołkowego (rys. 5), czyli odwrotnie niż to miało miejsce bez tłumienia (por. [4]). Nasuwa się tutaj również uwaga, że w przypadku uwzglę dnienia tł umienia materiał owego rezonans zachodzi dla małych wartoś ci amplitud. Przy wię kszych wartoś ciach amplitud tł umienie materiałowe nie odgrywa zasadniczej roli. Literatura cytowana w tekś cie 1. A. A. BEPE3OBCKH, A. fł. MHTPonojiŁCKń, Acu.tmmomimecKue Memobu s meopuu napamempiinecuux KOAeóattuu cmcamux BUBKUX n/ iacmun, H36paHHBie npobjiemłi nphkjiannofr i\ iexainlk0, H3fl. AH CCCP, MocKBa, M. M. BorojKOEOB, A. fł. MHTPOIIOJIBCKHH, AcuMnmomuwcKue Memodu e meopuu HemmeuHux Kojie- 6amu, H3fl. 3, roc. 'łtofl. <E>ii3.- MaT. HHT., MocKBa, F. TWARDOSZ, Zagadnienie statecznoś cipowł oki stoż kowej. Wyprowadzenie podstawowych równań, Rozprawy Inż ynierskie, oddana do druku. 4. F. TWARDOSZ, J. ZIELNICA, Analiza statecznoś cidynamicznej powł oki stoż kowejobcią ż onejsił ami podłuż nymii wszechstronnym ciś nieniem,archiwum Budowy Maszyn, w druku. P e 3 IO M e v OB HHHAMIMECKOH yctoś MHBOCTH KOHIMECKOEC OBOJIO^KH riph nyjilchpyiomhx npojj;ojibhłix H nonepe^hlix CHJIAX C yqtehhem HEJIHHEKHOrO flemn*hpobahha MATEPHAJIA B pa6oie npeflcrabjieho ahanh3 jranamiweckoh ycrofrtobocth TOHKodeHHOH o6ono it ikh B ycenehhoro KOHyca, CBO6OHHO onepioro Ha Kpaax. O6oncraKa Harpywemia nporjjojibhoii CHJIOH Nit) a BcecTopoHHbiM flabjiehheivi p(j) H3MeHHK>imtivicfl: nephofliweckh BO BpeMeini. H a ocaose riłnote3bi JJ[aBHfleHi<oBa yhteho BJIKHKHC HejiHHeftHoro ffleiwn(i)hpobahha; Ha napameipiweciorii pe3okahc. Oirpepe3onancHbie osnacth H nccneflobaho BJiHHHHe OCH OBH BK djh3eraeckhx H reoiwexpiweckhx na- Ha flkhamifieckyro ireycroń ihboctł.
10 492 F. TWARDOSZ, J. ZIELNICA Summary DYNAMICAL STABILITY OF A CONICAL SHELL LOADED BY TRANSVERSAL AND LONGI- TUDINAL FORCES WITH THE NONLINEAR MATERIAL'S DAMPING The papsr deals with the dynamical stability analysis of a thin- walled truncated conical shell, free supported at the edges. The shell is loaded by the longitudinal forces N(t), and the external uniformly distributed hydrostatic pressure p(t), changing periodically with. time. Supporting on the Davidenkov's hypothesis the influence of the material damping to the parametric resonance was taken into account. The main resonance areas were derivatcd, and the influence of the basic physical and geometrical parameters to the dynamical instability was investigated. POLITECHNIKA POZNAŃ SKA INSTYTUT MECHANIKI TECHNICZNEJ Praca została złoż onaw Redakcji dnia 25 listopada~1977 i:
i- i.a... (i) 1. Wstę p
MECHANIKA TEORETYCZNA I STOSOWANA 2, 23 (1985) ANALIZA DRGAŃ PARAMETRYCZNYCH UKŁADÓW CIĄ GŁYCH PODDANYCH STAŁEMU OBCIĄ Ż ENI U POPRZECZNEMU Z ZASTOSOWANIEM METODY ASYMPTOTYCZNEJ I METODY ELEMENTÓW SKOŃ
I Pracownia fizyczna ćwiczenie nr 16 (elektrycznoś ć)
BADANIE PĘTLI HISTEREZY DIELEKTRYCZNEJ SIARCZANU TRÓJGLICYNY Zagadnienia: 1. Pole elektryczne wewnątrz dielektryków. 2. Własnoś ci ferroelektryków. 3. Układ Sowyera-Towera. Literatura: 1. Sz. Szczeniowski,
DANE DOTYCZĄCE DZIAŁALNOŚ CI OGÓŁEM DOMÓW MAKLERSKICH, ASSET MANAGEMENT I BIUR MAKLERSKICH BANKÓW W 2002 ROKU I W PIERWSZYM PÓŁROCZU 2003
INFORMACJA D OT Y CZ Ą CA D Z IAŁ AL NOŚ CI D OMÓ W MAK L E RS K ICH I B ANK Ó W P ROW AD Z Ą CY CH D Z IAŁ AL NOŚ CI MAK L E RS K Ą NA KONIEC 2002 ROKU ORAZ NA KONIEC I PÓŁROCZA 2003 R. WARSZAWA, 18 listopada
INSTRUKCJA DO ĆWICZENIA NR 5
KATEDRA MECHANIKI STOSOWANEJ Wydział Mechaniczny POLITECHNIKA LUBELSKA INSTRUKCJA DO ĆWICZENIA NR 5 PRZEDMIOT TEMAT OPRACOWAŁ MODELOWANIE UKŁADÓW MECHANICZNYCH Badania analityczne układu mechanicznego
Ćwiczenie: "Ruch harmoniczny i fale"
Ćwiczenie: "Ruch harmoniczny i fale" Opracowane w ramach projektu: "Wirtualne Laboratoria Fizyczne nowoczesną metodą nauczania realizowanego przez Warszawską Wyższą Szkołę Informatyki. Zakres ćwiczenia:
DRGANIA UKŁADU Z NIESYMETRYCZNĄ CHARAKTERYSTYKĄ SPRĘ Ż YSTOŚI CPRZY PARAMETRYCZNYCH I ZEWNĘ TRZNYM WYMUSZENIU. 1. Wstę p
MECHANIKA TEORETYCZNA I STOSOWANA 2, 23 (1985) DRGANIA UKŁADU Z NIESYMETRYCZNĄ CHARAKTERYSTYKĄ SPRĘ Ż YSTOŚI CPRZY PARAMETRYCZNYCH I ZEWNĘ TRZNYM WYMUSZENIU KAZIMIERZ SZABELSKI WALDEMAR SAMODULSKI Politechnika
POWŁOKI PROSTOKREŚ LNE OPARTE NA OKRĘ GU PRACUJĄ CE W STANIE ZGIĘ CIOWYM STANISŁAW BIELAK, ANDRZEJ DUDA. 1. Wstę p
MECHANIKA TEORETYCZNA I STOSOWANA 4, 18 (1980) POWŁOKI PROSTOKREŚ LNE OPARTE NA OKRĘ GU PRACUJĄ CE W STANIE ZGIĘ CIOWYM STANISŁAW BIELAK, ANDRZEJ DUDA (OPOLE) 1. Wstę p W pracy przedstawiono rozwią zanie
Ruch w potencjale U(r)=-α/r. Zagadnienie Keplera Przybli Ŝ enie małych drgań. Wykład 7 i 8
Wykład 7 i 8 Zagadnienie Keplera Przybli Ŝ enie małych drgań Ruch w potencjale U(r)=-α/r RozwaŜ my ruch punktu materialnego w polu centralnym, o potencjale odwrotnie proporcjonalnym do odległo ś ci r od
OBROTOWO- SYMETRYCZNE DRGANIA WŁASNE POWŁOKI STOŻ KOWEJ Z MATERIAŁU Ś CIŚ LIWEGO NIELINIOWO SPRĘ Ż YSTEGO
MECHANIKA TEORETYCZNA I STOSOWANA 3, 13 (1975) OBROTOWO- SYMETRYCZNE DRGANIA WŁASNE POWŁOKI STOŻ KOWEJ Z MATERIAŁU Ś CIŚ LIWEGO NIELINIOWO SPRĘ Ż YSTEGO FERDYNAND TWARDOSZ, TADEUSZ WEGNER (POZNAŃ) W pracy
Wykład 3. Ruch w obecno ś ci wię zów
Wykład 3 Ruch w obecno ś ci wię zów Wię zy Układ nieswobodnych punktów materialnych Układ punktów materialnych, których ruch podlega ograniczeniom wyraŝ onym przez pewne zadane warunki dodatkowe. Wię zy
O PEWNYM UOGÓLNIENIU METODY ORTOGONALIZACYJNEJ. 1, Uwagi wstę pne
MECHANIKA TEORETYCZNA I STOSOWANA 1, 3 (1965) O PEWNYM UOGÓLNIENIU METODY ORTOGONALIZACYJNEJ SYLWESTER KALISKI (WARSZAWA) 1, Uwagi wstę pne W problemach teorii drgań zasadniczą rolę odgrywają metody przybliż
STATECZNOŚĆ SPRĘ Ż YSTO- PLASTYCZNE J TRÓJWARSTWOWEJ POWŁOKI W KSZTAŁCIE WYCINKA STOŻ KA W UJĘ CIU GEOMETRYCZNIE NIELINIOWYM
MECHANIKA TEORETYCZNA I STOSOWANA 3-4, 23 (1985) STATECZNOŚĆ SPRĘ Ż YSTO- PLASTYCZNE J TRÓJWARSTWOWEJ POWŁOKI W KSZTAŁCIE WYCINKA STOŻ KA W UJĘ CIU GEOMETRYCZNIE NIELINIOWYM JAROSŁAW NOWINKA I JERZY ZIELNICA
METODA OBLICZANIA AMPLITUD DRGAŃ WYMUSZONYCH BELEK SŁABO TŁUMIONYCH TARCIEM KONSTRUKCYJNYM. 1. Wstę p
MECHANIKA TEORETYCZNA I STOSOWANA 3, 4, (986) METODA OBLICZANIA AMPLITUD DRGAŃ WYMUSZONYCH BELEK SŁABO TŁUMIONYCH TARCIEM KONSTRUKCYJNYM WIESŁAW OSTACHOWICZ DARIUSZ SZWEDOWICZ Politechnika Gdań ska. Wstę
7. REZONANS W OBWODACH ELEKTRYCZNYCH
OBWODY SYGNAŁY 7. EZONANS W OBWODAH EEKTYZNYH 7.. ZJAWSKO EZONANS Obwody elektryczne, w których występuje zjawisko rezonansu nazywane są obwodami rezonansowymi lub drgającymi. ozpatrując bezźródłowy obwód
DRGANIA UKŁ ADÓW QUASI- LINIOWYCH Z CZŁ ONAMI Ż YROSKOPOWYMI Z UWZGLĘ DNIENIEM REZONANSU WEWNĘ TRZNEGO W. A. GROBÓW (KIJÓW)
MECHAIKA TEORETYCZA I STOSOWAA 3, 4 (1966) DRGAIA UKŁ ADÓW QUASI- LIIOWYCH Z CZŁ OAMI Ż YROSKOPOWYMI Z UWZGLĘ DIEIEM REZOASU WEWĘ TRZEGO W. A. GROBÓW (KIJÓW) Ukł ady drgają ce z czł onami ż yroskopowymi
MATEMATYKA 4 INSTYTUT MEDICUS FUNKCJA KWADRATOWA. Kurs przygotowawczy na studia medyczne. Rok szkolny 2010/2011. tel. 0501 38 39 55 www.medicus.edu.
INSTYTUT MEDICUS Kurs przygotowawczy na studia medyczne Rok szkolny 00/0 tel. 050 38 39 55 www.medicus.edu.pl MATEMATYKA 4 FUNKCJA KWADRATOWA Funkcją kwadratową lub trójmianem kwadratowym nazywamy funkcję
Drgania poprzeczne belki numeryczna analiza modalna za pomocą Metody Elementów Skończonych dr inż. Piotr Lichota mgr inż.
Drgania poprzeczne belki numeryczna analiza modalna za pomocą Metody Elementów Skończonych dr inż. Piotr Lichota mgr inż. Joanna Szulczyk Politechnika Warszawska Instytut Techniki Lotniczej i Mechaniki
WYZNACZANIE NAPRĘ ŻŃ ENA PODSTAWIE POMIARÓW TYLKO JEDNEJ SKŁ ADOWEJ ODKSZTAŁ CENIA
MECHANIKA. TEORETYCZNA I STOSOWANA 1, 2 (1964) WYZNACZANIE NAPRĘ ŻŃ ENA PODSTAWIE POMIARÓW TYLKO JEDNEJ SKŁ ADOWEJ ODKSZTAŁ CENIA WOJCIECH SZCZEPIKJSKI (WARSZAWA) Dla peł nego wyznaczenia na drodze doś
DRGANIA MECHANICZNE. materiały uzupełniające do ćwiczeń. Wydział Samochodów i Maszyn Roboczych studia inżynierskie
DRGANIA MECHANICZNE materiały uzupełniające do ćwiczeń Wydział Samochodów i Maszyn Roboczych studia inżynierskie prowadzący: mgr inż. Sebastian Korczak część modelowanie, drgania swobodne Poniższe materiały
Ruch drgający. Ruch harmoniczny prosty, tłumiony i wymuszony
Ruch drgający Ruch harmoniczny prosty, tłumiony i wymuszony Ruchem drgającym nazywamy ruch ciała zachodzący wokół stałego położenia równowagi. Ruchy drgające dzielimy na ruchy: okresowe, nieokresowe. Ruch
PŁYTY PROSTOKĄ TNE O JEDNOKIERUNKOWO ZMIENNEJ SZTYWNOŚ CI
MECHANIKA TEORETYCZNA I STOSOWANA 3, 10 (1972) PŁYTY PROSTOKĄ TNE O JEDNOKIERUNKOWO ZMIENNEJ SZTYWNOŚ CI KAROL H. BOJDA (GLIWICE) W pracy wykorzystano wł asnoś ci operacji T a [1] do rozwią zania równania
6. FUNKCJE. f: X Y, y = f(x).
6. FUNKCJE Niech dane będą dwa niepuste zbiory X i Y. Funkcją f odwzorowującą zbiór X w zbiór Y nazywamy przyporządkowanie każdemu elementowi X dokładnie jednego elementu y Y. Zapisujemy to następująco
PRZEGLĄ D NOWSZYCH PRAC Z DZIEDZINY STATECZNOŚ CI POWŁOK CIENKOŚ CIENNYCH. 1. Wstę p
MECHANIK A TEORETYCZNA I STOSOWANA 2, 1 (1963) PRZEGLĄ D NOWSZYCH PRAC Z DZIEDZINY STATECZNOŚ CI POWŁOK CIENKOŚ CIENNYCH ZBIGNIEW NOWAK i MICHAŁ Ż YCZ KOWSKI (KRAKÓW) 1. Wstę p Powł oki cienkoś cienne,
MAREK Ś LIWOWSKI I KAROL TURSKI (WARSZAWA)
MECHANIKA TEORETYCZNA I STOSOWANA 3, 12 (1974) WPŁYW CYKLICZNEJ PLASTYCZNEJ DEFORMACJI NA POWIERZCHNIĘ PLASTYCZNOŚ CI* MAREK Ś LIWOWSKI I KAROL TURSKI (WARSZAWA) W pracach eksperymentalnych, poś wię conych
ZJAWISKA REZONANSÓW WEWNĘ TRZNYCH W NIELINIOWYCH UKŁADACH DRGAJĄ CYCH. 1. Wstę p i przeglą d literatury
MECHANIKA TEORETYCZNA I STOSOWANA 3, 25, (1987) ZJAWISKA REZONANSÓW WEWNĘ TRZNYCH W NIELINIOWYCH UKŁADACH DRGAJĄ CYCH JÓZEF BAJKOWSKI WANDA SZEMPLIŃ SKA- STUPNICKA 1PPT PAN, Warszawa 1. Wstę p i przeglą
MECHANIKA 2. Drgania punktu materialnego. Wykład Nr 8. Prowadzący: dr Krzysztof Polko
MECHANIKA 2 Wykład Nr 8 Drgania punktu materialnego Prowadzący: dr Krzysztof Polko Wstęp Drgania Okresowe i nieokresowe Swobodne i wymuszone Tłumione i nietłumione Wstęp Drgania okresowe ruch powtarzający
STATECZNOŚĆ EULEROWSKA PRĘ TÓW PRZEKŁADKOWYCH Z RDZEN IEM O ZMIENNEJ CHARAKTERYSTYCE. 1. Wstę p
MECHANIKA TEORETYCZNA I STOSOWANA 1/2, 20 (1982) STATECZNOŚĆ EULEROWSKA PRĘ TÓW PRZEKŁADKOWYCH Z RDZEN IEM O ZMIENNEJ CHARAKTERYSTYCE PIOTR A. WRZECIONIARZ (WROCŁAW) 1. Wstę p Pojawienie się tworzyw o
8. Zginanie ukośne. 8.1 Podstawowe wiadomości
8. 1 8. ginanie ukośne 8.1 Podstawowe wiadomości ginanie ukośne zachodzi w przypadku, gdy płaszczyzna działania obciążenia przechodzi przez środek ciężkości przekroju pręta jednak nie pokrywa się z żadną
ANALIZA WYTRZYMAŁOŚ CIOWA PIONOWEJ PRZEPŁYWOWEJ WYTWORNICY PARY ELEKTROWNI JĄ DROWYCH MICHAŁ N I E Z G O D Z I Ń S K I, WACŁAW ZWOLIŃ SKI (ŁÓDŹ)
MECHANIKA TEORETYCZNA I STOSOWANA 2, 19 ANALIZA WYTRZYMAŁOŚ CIOWA PIONOWEJ PRZEPŁYWOWEJ WYTWORNICY PARY ELEKTROWNI JĄ DROWYCH MICHAŁ N I E Z G O D Z I Ń S K I, WACŁAW ZWOLIŃ SKI (ŁÓDŹ) 1. Wprowadzenie
DYNAMIKA SZTYWNEJ PŁYTY SPOCZYWAJĄ CEJ NA SPRĘ Ż YSTO- PLĄ STYCZNY M PODŁOŻU ZE ZMIENNĄ GRANICĄ PLASTYCZNOŚ CI CZĘ ŚĆ II. SPRĘ Ż YSTE ODCIĄ Ż ENI E
MECHANIKA TEORETYCZNA I STOSOWANA 1, 10 (1972) DYNAMIKA SZTYWNEJ PŁYTY SPOCZYWAJĄ CEJ NA SPRĘ Ż YSTO- PLĄ STYCZNY M PODŁOŻU ZE ZMIENNĄ GRANICĄ PLASTYCZNOŚ CI CZĘ ŚĆ II. SPRĘ Ż YSTE ODCIĄ Ż ENI E. JERZY
SYMULACJA NUMERYCZNA STEROWANEGO SAMOLOTU W RUCHU SPIRALNYM. 1. Wstę p
MECHANIKA TEORETYCZNA I STOSOWANA 3, 24 (1986) SYMULACJA NUMERYCZNA STEROWANEGO SAMOLOTU W RUCHU SPIRALNYM JERZY MARYNIAK ITLiMS Politechnika Warszawska JĘ DRZEJ TRAJER JMRiL Akademia Rolnicza Warszawa
MODELOWANIE SERWOMECHANIZMU HYDRAULICZNEGO NA MASZYNIE CYFROWEJ. 1. Wprowadzenie
MECHANIKA TEORETYCZNA I STOSOWANA 1/2, 25, 1987 MODELOWANIE SERWOMECHANIZMU HYDRAULICZNEGO NA MASZYNIE CYFROWEJ WŁADYSŁAW JAROMINEK Polska Akademia Nauk, Warszawa TADEUSZ STEFAŃ SKI Politechnika Ś wię
BADANIE ELEKTRYCZNEGO OBWODU REZONANSOWEGO RLC
Ćwiczenie 45 BADANE EEKTYZNEGO OBWOD EZONANSOWEGO 45.. Wiadomości ogólne Szeregowy obwód rezonansowy składa się z oporu, indukcyjności i pojemności połączonych szeregowo i dołączonych do źródła napięcia
DRGANIA SWOBODNE UKŁADU O DWÓCH STOPNIACH SWOBODY. Rys Model układu
Ćwiczenie 7 DRGANIA SWOBODNE UKŁADU O DWÓCH STOPNIACH SWOBODY. Cel ćwiczenia Doświadczalne wyznaczenie częstości drgań własnych układu o dwóch stopniach swobody, pokazanie postaci drgań odpowiadających
ZMODYFIKOWANA METODA PROPORCJONALNEGO NAPROWADZANIA POCISKÓW W POZIOMEJ PŁASZCZYŹ NIE ZBLIŻ ENIA
MECHANIKA TEORETYCZNA 1 STOSOWANA 3-4, 23 (1985) ZMODYFIKOWANA METODA PROPORCJONALNEGO NAPROWADZANIA POCISKÓW W POZIOMEJ PŁASZCZYŹ NIE ZBLIŻ ENIA MIROSŁAW GLAPSKI (WARSZAWA) Wojskowa Akademia Techniczna
OSZACOWANIE ROZWIĄ ZAŃ RÓWNAŃ KANONICZNYCH METODY SIŁ W PRZYPADKU PRZYBLIŻ ONEGO WYZNACZANIA LICZB WPŁYWOWYCH. 1. Wstę p
MECHANIKA TEORETYCZNA I STOSOWANA 3, 9 (1971) OSZACOWANIE ROZWIĄ ZAŃ RÓWNAŃ KANONICZNYCH METODY SIŁ W PRZYPADKU PRZYBLIŻ ONEGO WYZNACZANIA LICZB WPŁYWOWYCH SZCZEPAN BORKOWSKI (GLIWICE) 1. Wstę p Zagadnienie
7. CIĄGI. WYKŁAD 5. Przykłady :
WYKŁAD 5 1 7. CIĄGI. CIĄGIEM NIESKOŃCZONYM nazywamy funkcję określoną na zbiorze liczb naturalnych, dodatnich, a wyrazami ciągu są wartości tej funkcji. CIĄGIEM SKOŃCZONYM nazywamy funkcję określoną na
WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA III ZAKRES ROZSZERZONY (90 godz.) , x
WYMAGANIA EDUACYJNE Z MATEMATYI LASA III ZARES ROZSZERZONY (90 godz.) Oznaczenia: wymagania konieczne (dopuszczający); P wymagania podstawowe (dostateczny); R wymagania rozszerzające (dobry); D wymagania
7. Symulacje komputerowe z wykorzystaniem opracowanych modeli
Opracowane w ramach wykonanych bada modele sieci neuronowych pozwalaj na przeprowadzanie symulacji komputerowych, w tym dotycz cych m.in.: zmian twardo ci stali szybkotn cych w zale no ci od zmieniaj cej
Podstawowe działania w rachunku macierzowym
Podstawowe działania w rachunku macierzowym Marcin Detka Katedra Informatyki Stosowanej Kielce, Wrzesień 2004 1 MACIERZE 1 1 Macierze Macierz prostokątną A o wymiarach m n (m wierszy w n kolumnach) definiujemy:
ÓŁ Ą Ś Ą Ś ę ń Ń ę ę ą ó Ź Ł ó ą ę ę ó ó ą ę Ś Ą ŚÓ ą ą ę Ó ó ę Ł ę ą ą ą Ż ęś ą ń Łą ó ń ó ó ą ę ą Ż ę ę ę ę ó ę ę ę ę ę ę ó ę ą ę ć ę ą ó ź ę ę ó ó óź ę ę ń ą ę ó ó ń ą ę ó ę ą ę ó ó ó ó ó ę ę ę ę ę
OPTYMALIZACJA POŁOŻ ENIA PODPÓR BELKI SZTYWNO- PLASTYCZNEJ OBCIĄ Ż ONEJ IMPULSEM PRĘ DKOŚ CI. 1, Wstę p
MECHANIKA TEORETYCZNA I STOSOWANA 4, lfi (978) OPTYMALIZACJA POŁOŻ ENIA PODPÓR BELKI SZTYWNO- PLASTYCZNEJ OBCIĄ Ż ONEJ IMPULSEM PRĘ DKOŚ CI JAAN LELLEP (WARSZAWA), Wstę p Optymalizacji poł oż enia podpory
Drgania układu o wielu stopniach swobody
Drgania układu o wielu stopniach swobody Rozpatrzmy układ składający się z n ciał o masach m i (i =,,..., n, połączonych między sobą i z nieruchomym podłożem za pomocą elementów sprężystych o współczynnikach
Scenariusz lekcji. Wojciech Dindorf Elżbieta Krawczyk
Scenariusz lekcji Czy światło ma naturę falową Wojciech Dindorf Elżbieta Krawczyk? Doświadczenie Younga. Cele lekcji nasze oczekiwania: Chcemy, aby uczeń: postrzegał doś wiadczenie jako ostateczne rozstrzygnię
EKSPERYMENTALNY SPOSÓB WYZNACZANIA WSPÓŁCZYNNIKA RESTYTUCJI PRACUJĄ CEJ MASZYNY WIBROUDERZENIOWEJ MICHAŁ TALL (GDAŃ. 1. Wstę p
MECHANIKA TEORETYCZNA I STOSOWANA 2, 6 (1968) EKSPERYMENTALNY SPOSÓB WYZNACZANIA WSPÓŁCZYNNIKA RESTYTUCJI PRACUJĄ CEJ MASZYNY WIBROUDERZENIOWEJ MICHAŁ TALL (GDAŃ SK) 1. Wstę p Współ czynnik restytucji
Instrukcja do ćwiczeń laboratoryjnych Numeryczne metody analizy konstrukcji
POLITECHNIKA SZCZECIŃSKA KATEDRA MECHANIKI I PODSTAW KONSTRUKCJI MASZYN Ćwiczenie nr 5 Instrukcja do ćwiczeń laboratoryjnych Numeryczne metody analizy konstrukcji Obliczenia statycznie obciążonej belki
8 2 [EJ\ 8 I 8v\ 8 2 v dv _
MECHANIKA TEORETYCZNA 1 STOSOWANA 3-4, 23 (19»5) DRGANIA GIĘ TNE, NIELINIOWE BELKI POD DZIAŁ ANIEM OBCIĄ ŻŃ E STOCHASTYCZNYCH POPRZECZNYCH I WZDŁ UŻ NYCH NGUYEN CAO MENH (HANOI) Instytut Mechaniki, 1.
Podstawowe przypadki (stany) obciążenia elementów : 1. Rozciąganie lub ściskanie 2. Zginanie 3. Skręcanie 4. Ścinanie
Podstawowe przypadki (stany) obciążenia elementów : 1. Rozciąganie lub ściskanie 2. Zginanie 3. Skręcanie 4. Ścinanie Rozciąganie lub ściskanie Zginanie Skręcanie Ścinanie 1. Pręt rozciągany lub ściskany
Ż ć ź ć ć ź Ż Ż Ł Ż ć Ż Ż Ż ć Ł Ż ć ć ć ź Ż Ż Ż Ż Ż Ż ć ć ź Ż ć ć ć ź Ż Ż ć Ż Ż źć ć Ż Ż Ż ć Ż Ż Ż Ż Ś ć Ż ć Ł Ż Ł ć Ą Ż Ł ć Ż ć Ż Ż Ż ć ć ć Ż Ż Ż Ż Ż Ż Ł ć Ł Ż ź ć Ż Ż Ż ć ć ć ć ć Ż Ż Ą Ż Ż Ż ć Ż Ż ć
Wyznaczanie współczynnika sztywności sprężyny. Ćwiczenie nr 3
Wyznaczanie. Ćwiczenie nr 3 Metoda teoretyczna Znając średnicę D, średnicę drutu d, moduł sprężystości poprzecznej materiału G oraz liczbę czynnych zwojów N, współczynnik można obliczyć ze wzoru: Wzór
Nazwisko i imię: Zespół: Data: Ćwiczenie nr 1: Wahadło fizyczne. opis ruchu drgającego a w szczególności drgań wahadła fizycznego
Nazwisko i imię: Zespół: Data: Cel ćwiczenia: Ćwiczenie nr 1: Wahadło fizyczne opis ruchu drgającego a w szczególności drgań wahadła fizycznego wyznaczenie momentów bezwładności brył sztywnych Literatura
AUDIOMETRYCZNE BADANIE SŁUCHU ORAZ CECH WYPOWIADANYCH GŁOSEK
AUDIOMETRYCZNE BADANIE SŁUCHU ORAZ CECH WYPOWIADANYCH GŁOSEK I. Zagadnienia 1. Wielkości Fizyczne opisują ce falę dź wię kową. 2. Powstawanie dź wię ków mowy. 3. Odbieranie dź wię ków przez narzą d słuchu.
Mechanika teoretyczna
Siła skupiona Mechanika teoretyczna Wykłady nr 5 Obliczanie sił wewnętrznych w belkach przykłady 1 2 Moment skupiony Obciążenie ciągłe równomierne 3 4 Obciążenie ciągłe liniowo zmienne Obciążenie ciągłe
CHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWE
CHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWE Do opisu członów i układów automatyki stosuje się, oprócz transmitancji operatorowej (), tzw. transmitancję widmową. Transmitancję widmową () wyznaczyć można na podstawie
Próbny egzamin z matematyki dla uczniów klas II LO i III Technikum. w roku szkolnym 2012/2013
Próbny egzamin z matematyki dla uczniów klas II LO i III Technikum w roku szkolnym 2012/2013 I. Zakres materiału do próbnego egzaminu maturalnego z matematyki: 1) liczby rzeczywiste 2) wyrażenia algebraiczne
STABILNOŚĆ UKŁADU WIBRO- UDERZENIOWEGO O WYMUSZENIU KINEMATYCZNYM BOHDAN KOWALCZYK (GDAŃ
MECHANIKA TEORETYCZNA I STOSOWANA 2, 4(1965) STABILNOŚĆ UKŁADU WIBRO- UDERZENIOWEGO O WYMUSZENIU KINEMATYCZNYM BOHDAN KOWALCZYK (GDAŃ SK) W cią gu ostatnich lat coraz czę ś cie j stosowane są mechanizmy,
Wprowadzenie do informatyki - ć wiczenia
Stałoprzecinkowy zapis liczb wymiernych dr inż. Izabela Szczęch WSNHiD Ćwiczenia z wprowadzenia do informatyki Reprezentacja liczb wymiernych Stałoprzecinkowa bez znaku ze znakiem Zmiennoprzecinkowa pojedynczej
2 cos α 4. 2 h) g) tgx. i) ctgx
ZESTAW I - FUNKCJE TRYGONOMETRYCZNE - powtórzenie. Znajdź wartości pozostałych funkcji trygonometrycznych, jeśli: sin α b). Oblicz wartość wyrażenia: tg ctg 77 = b) sin 0 (cos ) = c) sin = d) [( sin 0
Temat: Funkcje. Własności ogólne. A n n a R a j f u r a, M a t e m a t y k a s e m e s t r 1, W S Z i M w S o c h a c z e w i e 1
Temat: Funkcje. Własności ogólne A n n a R a j f u r a, M a t e m a t y k a s e m e s t r 1, W S Z i M w S o c h a c z e w i e 1 Kody kolorów: pojęcie zwraca uwagę * materiał nieobowiązkowy A n n a R a
ANALIZA ROZKŁADU NAPRĘ Ż EŃ W SPOINIE KLEJOWEJ POŁĄ CZENIA ZAKŁADKOWEGO W ZAKRESIE ODKSZTAŁCEŃ PLASTYCZNYCH
MECHANIKA TEORETYCZNA I STOSOWANA 3, 26 (1988) ANALIZA ROZKŁADU NAPRĘ Ż EŃ W SPOINIE KLEJOWEJ POŁĄ CZENIA ZAKŁADKOWEGO W ZAKRESIE ODKSZTAŁCEŃ PLASTYCZNYCH JAN GODZIMIRSKI Wojskowa Akademia Techniczna,
Pochodna i różniczka funkcji oraz jej zastosowanie do obliczania niepewności pomiarowych
Pochodna i różniczka unkcji oraz jej zastosowanie do obliczania niepewności pomiarowych Krzyszto Rębilas DEFINICJA POCHODNEJ Pochodna unkcji () w punkcie określona jest jako granica: lim 0 Oznaczamy ją
PRÓG RENTOWNOŚCI i PRÓG
PRÓG RENTOWNOŚCI i PRÓG WYPŁACALNOŚCI (MB) Próg rentowności (BP) i margines bezpieczeństwa Przychody Przychody Koszty Koszty całkowite Koszty stałe Koszty zmienne BP Q MB Produkcja gdzie: BP próg rentowności
Komentarz technik dróg i mostów kolejowych 311[06]-01 Czerwiec 2009
Strona 1 z 14 Strona 2 z 14 Strona 3 z 14 Strona 4 z 14 Strona 5 z 14 Strona 6 z 14 Uwagi ogólne Egzamin praktyczny w zawodzie technik dróg i mostów kolejowych zdawały wyłącznie osoby w wieku wskazującym
MODEL MATEMATYCZNY WYZNACZANIA FUNKCJI STEROWANIA SAMOLOTEM W PĘ TLI
MECHANIKA TEORETYCZNA I STOSOWANA 1/ 2, 25, 1987 MODEL MATEMATYCZNY WYZNACZANIA FUNKCJI STEROWANIA SAMOLOTEM W PĘ TLI WOJCIECH BLAJER JAN PARCZEWSKI Wyż szaszkoł a Inż ynierskaw Radomiu Modelowano programowy
PREFABRYKOWANE STUDNIE OPUSZCZANE Z ŻELBETU ŚREDNICACH NOMINALNYCH DN1500, DN2000, DN2500, DN3200 wg EN 1917 i DIN V 4034-1
PREFABRYKOWANE STUDNIE OPUSZCZANE Z ŻELBETU ŚREDNICACH NOMINALNYCH DN1500, DN2000, DN2500, DN3200 wg EN 1917 i DIN V 4034-1 DO UKŁADANIA RUROCIĄGÓW TECHNIKAMI BEZWYKOPOWYMI 1. Rodzaje konstrukcji 1.1.
Wykład FIZYKA I. 10. Ruch drgający tłumiony i wymuszony. Dr hab. inż. Władysław Artur Woźniak
Wykład FIZYKA I 1. Ruch drgający tłumiony i wymuszony Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html Siły oporu (tarcia)
MATERIAŁY DIAGNOSTYCZNE Z MATEMATYKI
MATERIAŁY DIAGNOSTYCZNE Z MATEMATYKI LUTY 01 POZIOM PODSTAWOWY Czas pracy 170 minut Instrukcja dla zdającego 1. Sprawdź, czy arkusz zawiera strony (zadania 1 ).. Arkusz zawiera 4 zadania zamknięte i 9
WPŁYW PODATN OŚ CI PIERŚ CIENI WZMACNIAJĄ CYCH N A PRACĘ KOMPENSATORÓW MIESZKOWYCH 1 * CYPRIAN KOMORZYCKI (LUBLIN), JACEK STUPNICKI
MECHANIKA TEORETYCZNA I STOSOWANA 3, 19 (1981) WPŁYW PODATN OŚ CI PIERŚ CIENI WZMACNIAJĄ CYCH N A PRACĘ KOMPENSATORÓW MIESZKOWYCH 1 * CYPRIAN KOMORZYCKI (LUBLIN), JACEK STUPNICKI (WARSZAWA) 1. Wstę p Przewody
ODPOWIEDZI I SCHEMAT PUNKTOWANIA ZESTAW NR 2 POZIOM ROZSZERZONY. S x 3x y. 1.5 Podanie odpowiedzi: Poszukiwane liczby to : 2, 6, 5.
Nr zadania Nr czynno ci... ODPOWIEDZI I SCHEMAT PUNKTOWANIA ZESTAW NR POZIOM ROZSZERZONY Etapy rozwi zania zadania Wprowadzenie oznacze : x, x, y poszukiwane liczby i zapisanie równania: x y lub: zapisanie
ROZKŁAD MATERIAŁU DO 1 KLASY LICEUM (ZAKRES ROZSZERZONY) A WYMAGANIA PODSTAWY PROGRAMOWEJ.
ROZKŁAD MATERIAŁU DO 1 KLASY LICEUM (ZAKRES ROZSZERZONY) A WYMAGANIA PODSTAWY PROGRAMOWEJ. TEMAT Równania i nierówności (36 h) LICZBA GODZIN LEKCYJNYCH Liczby wymierne 3 Liczby niewymierne 1 Zapisywanie
9. Dyskretna transformata Fouriera algorytm FFT
Transformata Fouriera ma szerokie zastosowanie w analizie i syntezie układów i systemów elektronicznych, gdyż pozwala na połączenie dwóch sposobów przedstawiania sygnałów reprezentacji w dziedzinie czasu
Laboratorium Mechaniki Technicznej
Laboratorium Mechaniki Technicznej Ćwiczenie nr 5 Badanie drgań liniowych układu o jednym stopniu swobody Katedra Automatyki, Biomechaniki i Mechatroniki 90-924 Łódź, ul. Stefanowskiego 1/15, budynek A22
Program zajęć pozalekcyjnych z matematyki poziom rozszerzony- realizowanych w ramach projektu Przez naukę i praktykę na Politechnikę
Program zajęć pozalekcyjnych z matematyki poziom rozszerzony- realizowanych w ramach projektu Przez naukę i praktykę na Politechnikę 1. Omówienie programu. Zaznajomienie uczniów ze źródłami finansowania
Tadeusz Opasiak* BADANIA PODSTAWOWYCH PARAMETRÓW SPRZĘGIEŁ PODATNYCH 1. WSTĘP
Tadeusz Opasiak* BADANIA PODSTAWOWYCH PARAMETRÓW SPRZĘGIEŁ PODATNYCH Streszczenie. W artykule przedstawiono wyniki badań podstawowych parametrów charakteryzujących sprzęgła podatne. Badania ograniczyły
ć ć ż ć ź ż ż ź ź ŚĆ Ź ź ć Ź ź ź ź ź Ś Ą Ć Ć ć Ź ź
Ł Ł ć ć Ś Ź Ć Ś ć ć ż ć ź ż ż ź ź ŚĆ Ź ź ć Ź ź ź ź ź Ś Ą Ć Ć ć Ź ź Ś Ć Ć Ś ź Ć ż ż ź ż Ć ć ż Ć Ć ż ż ź Ć Ś Ś ż ż ć ż ż Ć ż Ć Ś Ś Ź Ć Ę ż Ś Ć ć ć ź ź Ś Ć Ś Ć Ł Ś Ź Ś ć ż Ś Ć ć Ś ż ÓŹ Ś Ś Ź Ś Ś Ć ż ż Ś ż
ROZKŁAD MATERIAŁU DO 1 KLASY LICEUM (ZAKRES PODSTAWOWY) A WYMAGANIA PODSTAWY PROGRAMOWEJ.
ROZKŁAD MATERIAŁU DO 1 KLASY LICEUM (ZAKRES PODSTAWOWY) A WYMAGANIA PODSTAWY PROGRAMOWEJ. TEMAT Równania i nierówności (30h) LICZBA GODZIN LEKCYJNYCH Liczby wymierne 3 Liczby niewymierne 1 Zapisywanie
UKŁAD O DWÓCH STOPNIACH SWOBODY JAKO DYNAMICZNY IZOLATOR" DRGAŃ BOGUSŁAW RADZISZEWSKI, ANDRZEJ RÓŻ YCKI (WARSZAWA)
MECHANIKA TEORETYCZNA I STOSOWANA I, 6(1968) UKŁAD O DWÓCH STOPNIACH SWOBODY JAKO DYNAMICZNY IZOLATOR" DRGAŃ BOGUSŁAW RADZISZEWSKI, ANDRZEJ RÓŻ YCKI (WARSZAWA) 1. Zagadnienie drgań układu o dwu stopniach
ZADANIA OTWARTE KRÓTKIEJ ODPOWIEDZI
Zadanie 51. ( pkt) Rozwi równanie 3 x 1. 1 x Zadanie 5. ( pkt) x 3y 5 Rozwi uk ad równa. x y 3 Zadanie 53. ( pkt) Rozwi nierówno x 6x 7 0. ZADANIA OTWARTE KRÓTKIEJ ODPOWIEDZI Zadanie 54. ( pkt) 3 Rozwi
PLASTYCZNE SKRĘ CANIE NIEJEDNORODNYCH PRĘ TÓW O ZMIENNEJ Ś REDNICY. 1. Uwagi wstę pne
MECHANIKA TEORETYCZNA I STOSOWANA 1, 9 (1971) PLASTYCZNE SKRĘ CANIE NIEJEDNORODNYCH PRĘ TÓW O ZMIENNEJ Ś REDNICY MARIAN GALOS (KRAKÓW) 1. Uwagi wstę pne Problemowi sprę ż ysteg o skrę cania prę tów o zmiennej
ANALIZA N IELIN IOWYCH DRGAŃ WŁASNYCH BELEK WIELOPRZĘ SŁOWYCH
MECHANIKA TEORETYCZNA I STOSOWANA 3, 26 (1988) ANALIZA N IELIN IOWYCH DRGAŃ WŁASNYCH BELEK WIELOPRZĘ SŁOWYCH ROMAN LEWANDOWSKI Politechnika Poznań ska W niniejszej pracy podano numeryczne rozwią zanie
3. FUNKCJA LINIOWA. gdzie ; ół,.
1 WYKŁAD 3 3. FUNKCJA LINIOWA FUNKCJĄ LINIOWĄ nazywamy funkcję typu : dla, gdzie ; ół,. Załóżmy na początek, że wyraz wolny. Wtedy mamy do czynienia z funkcją typu :.. Wykresem tej funkcji jest prosta
STATECZNOŚĆ SPIRALNA SAMOLOTU W RUCHU PRZESTRZENNYM Z UWZGLĘ DNIENIEM EFEKTÓW ELEMENTÓW WIRUJĄ CYCH ZESPOŁU NAPĘ DOWEGO*
MECHANIKA TEORETYCZNA 1 STOSOWANA 3-4, 23 (1985) STATECZNOŚĆ SPIRALNA SAMOLOTU W RUCHU PRZESTRZENNYM Z UWZGLĘ DNIENIEM EFEKTÓW ELEMENTÓW WIRUJĄ CYCH ZESPOŁU NAPĘ DOWEGO* JERZY MARYNIAK, WITOLD MOLICKJ
Wyznaczanie przyspieszenia ziemskiego za pomocą wahadła prostego
Ćwiczenie M6 Wyznaczanie przyspieszenia ziemskiego za pomocą wahadła prostego M6.1. Cel ćwiczenia Celem ćwiczenia jest wyznaczenie przyspieszenia ziemskiego poprzez analizę ruchu wahadła prostego. M6..
PRÓBNA MATURA ZADANIA PRZYKŁADOWE
ZESPÓŁ SZKÓŁ HOTELARSKO TURYSTYCZNO GASTRONOMICZNYCH NR UL. KRASNOŁĘCKA 3, WARSZAWA Z A D AN I A Z A M K N I Ę T E ) Liczba, której 5% jest równe 6, to : A. 0,3 C. 30. D. 0 5% 6 II sposób: x nieznana liczba
MODEL AERODYNAMICZNY I OPIS MATEMATYCZNY RUCHU WYDŁUŻ ONEGO POCISKU CIĘ Ż KIEGO* 1. Wprowadzenie
MECHANIKA TEORETYCZNA I STOSOWANA 3.4, 23 0985) MODEL AERODYNAMICZNY I OPIS MATEMATYCZNY RUCHU WYDŁUŻ ONEGO POCISKU CIĘ Ż KIEGO* JÓZEF GACEK (WARSZAWA) Wojskowa Akademia Techniczna 1. Wprowadzenie Przedmiotem
Wyznaczanie współczynnika sprężystości sprężyn i ich układów
Ćwiczenie 63 Wyznaczanie współczynnika sprężystości sprężyn i ich układów 63.1. Zasada ćwiczenia W ćwiczeniu określa się współczynnik sprężystości pojedynczych sprężyn i ich układów, mierząc wydłużenie
POLITECHNIKA ŁÓDZKA INSTYTUT OBRABIAREK I TECHNOLOGII BUDOWY MASZYN. Ćwiczenie D-3
POLITECHNIKA ŁÓDZKA INSTYTUT OBRABIAREK I TECHNOLOGII BUDOWY MASZYN Ćwiczenie D-3 Temat: Obliczenie częstotliwości własnej drgań swobodnych wrzecion obrabiarek Konsultacje: prof. dr hab. inż. F. Oryński
METODA IDENTYFIKACJI PODATNOŚ CI DYNAMICZNEJ FUNDAMENTÓW MASZYN JANUSZ K O L E N D A (GDAŃ SK) 1. Wstę p
MECHANIKA TEORETYCZNA I STOSOWANA 3, 6 (978) METODA IDENTYFIKACJI PODATNOŚ CI DYNAMICZNEJ FUNDAMENTÓW MASZYN JANUSZ K O L E N D A (GDAŃ SK). Wstę p Obserwowany w ostatnich latach wzrost mocy jednostkowych
ć ć ć ć ć ć ź ć ź ć Ć Ó Ż Ó Ć Ł ć ć ć ć ć Ą
ć ć ń ń ć ć ć ć ń ć ń ć ć ć ć ć ć ć ź ć ź ć Ć Ó Ż Ó Ć Ł ć ć ć ć ć Ą ć Ó Ż ÓŻ ć Ó Ó Ż Ó Ż Ó ń Ó Ż ć Ż ń ź ć ć ć ć ć ć ć ń ź ń Ż ć Ł Ź ć ć ź ź ć ć Ż Ś Ż Ż Ó ć ź ć ć ń ć ń Ą ń Ą Ó ć Ó ć Ś ć ć ć ń Ś ć ć Ż
PRÓBNA MATURA ZADANIA PRZYKŁADOWE
ZESPÓŁ SZKÓŁ HOTELARSKO TURYSTYCZNO GASTRONOMICZNYCH NR UL. KRASNOŁĘCKA, WARSZAWA Z A D AN I A Z A M K N I Ę T E ) Liczba, której 5% jest równe 6, to : A. 0, C. 0. D. 0 5% 6 II sposób: x nieznana liczba
Dr inż. Janusz Dębiński
Wytrzymałość materiałów ćwiczenia projektowe 5. Projekt numer 5 przykład 5.. Temat projektu Na rysunku 5.a przedstawiono belkę swobodnie podpartą wykorzystywaną w projekcie numer 5 z wytrzymałości materiałów.
Zadanie 21. Stok narciarski
Numer zadania Zadanie. Stok narciarski KLUCZ DO ZADA ARKUSZA II Je eli zdaj cy rozwi e zadanie inn, merytorycznie poprawn metod otrzymuje maksymaln liczb punktów Numer polecenia i poprawna odpowied. sporz
OPTYMALNE KSZTAŁTOWANIE BELKI WSPORNIKOWEJ, OBCIĄ Ż ONEJ SIŁAMI ZEWNĘ TRZNYMI I CIĘ Ż AREM WŁASNYM, W WARUNKACH PEŁZANIA*
MECHANIKA TEORETYCZNA I STOSOWANA 4, 16 (1978) OPTYMALNE KSZTAŁTOWANIE BELKI WSPORNIKOWEJ, OBCIĄ Ż ONEJ SIŁAMI ZEWNĘ TRZNYMI I CIĘ Ż AREM WŁASNYM, W WARUNKACH PEŁZANIA* MAŁGORZATA ALBIŃ SKA, ANTONI GAJEWSKI
INFORMACJA DOTYCZĄCA DZIAŁALNOŚ TOWARZYSTW FUNDUSZY INWESTYCYJNYCH W 2004 ROKU
KOMISJA PAPIERÓW WARTOŚCIOWYCH I GIEŁD DEPARTAMENT FUNDUSZY INWESTYCYJNYCH INFORMACJA DOTYCZĄCA DZIAŁALNOŚ CI TOWARZYSTW FUNDUSZY INWESTYCYJNYCH W 2004 ROKU WARSZAWA, DNIA 25.04.2005 R. strona 1 /9 WSTĘP
ZASTOSOWANIE FUN KCJI KSZTAŁTU D O OPISU DRGAŃ PRĘ TÓW CIENKOŚ CIENNYCH O ZAMKNIĘ TYM PROFILU. 1. Wstę p
MECHANIKA TEORETYCZNA I STOSOWANA 3, 25, (987) ZASTOSOWANIE FUN KCJI KSZTAŁTU D O OPISU DRGAŃ PRĘ TÓW CIENKOŚ CIENNYCH O ZAMKNIĘ TYM PROFILU MAREK SPERSKI Politechnika Gdań ska. Wstę p Z chwilą wprowadzenia
Schemat ukł adu pokazano na rys. 1. Na masę m podwieszoną na sprę ż yni e o sztywnoś ci c działa siła okresowa P(t) = P o
MECHANIKA TEORETYCZNA I STOSOWANA 3 10 (1972) STATYSTYCZNA ANALIZA UKŁADU WIBROUDERZENIOWEGO WŁODZIMIERZ GAWROŃ SKI (GDAŃ SK) Waż niejsze oznaczenia jakobian (wyznacznik funkcyjny) M x wartość ś rednia
11.1. Zale no ć pr dko ci propagacji fali ultrad wi kowej od czasu starzenia
11. Wyniki bada i ich analiza Na podstawie nieniszcz cych bada ultrad wi kowych kompozytu degradowanego cieplnie i zm czeniowo wyznaczono nast puj ce zale no ci: pr dko ci propagacji fali ultrad wi kowej
Projekt nr 4. Dynamika ujęcie klasyczne
Projekt nr 4 Dynamika POLITECHNIKA POZNAŃSKA WYDZIAŁ BUDOWNICTWA I INŻYNIERII ŚRODOWISKA INSTYTUT KONSTRUKCJI BUDOWLANYCH ZAKŁAD MECHANIKI BUDOWLI Projekt nr 4 Dynamika ujęcie klasyczne Konrad Kaczmarek
WIBROIZOLACJA określanie właściwości wibroizolacyjnych materiałów
LABORATORIUM WIBROAUSTYI MASZYN Wydział Budowy Maszyn i Zarządzania Instytut Mechaniki Stosowanej Zakład Wibroakustyki i Bio-Dynamiki Systemów Ćwiczenie nr WIBROIZOLACJA określanie właściwości wibroizolacyjnych
Zadanie 3 Oblicz jeżeli wiadomo, że liczby 8 2,, 1, , tworzą ciąg arytmetyczny. Wyznacz różnicę ciągu. Rozwiązanie:
Zadanie 3 Oblicz jeżeli wiadomo, że liczby 8 2,, 1, 6 11 6 11, tworzą ciąg arytmetyczny. Wyznacz różnicę ciągu. Uprośćmy najpierw liczby dane w treści zadania: 8 2, 2 2 2 2 2 2 6 11 6 11 6 11 26 11 6 11