Rozwój konstrukcji soczewek sztywnych
|
|
- Amalia Pawlik
- 10 lat temu
- Przeglądów:
Transkrypt
1 Conflex air (Wohlk, 18) W pełni asferyczna konstrukcja z polimeru fluorowego, dopasowywana równolegle w części centralnej. TD =,30 mm,,80 mm, 10,30 mm BOZR = 7,20 8,0 mm Asferyczne peryferia e = 0,4.2 Współczesne konstrukcje dwukrzywiznowe, trójkrzywiznowe i wielokrzywiznowe Soczewki rogówkowe są obecnie projektowane z jedną lub większą liczbą stref obwodowych, które mają celowo podnosić się z rogówki. Większość nowoczesnych soczewek sferycznych opiera się na tych konstrukcjach. Dwukrzywiznowa (C2) Składa się z promienia centralnego i jednej bardziej płaskiej krzywizny obwodowej (ryc..1). Przejście między tymi dwiema krzywiznami jest ostre. Przykład: 7,80:7,00/8,70:,00 (ryc..2). Trójkrzywiznowa (C3) Składa się z promienia centralnego i dwóch bardziej płaskich krzywizn obwodowych (ryc..3). Jest to podstawowa konstrukcja większości nowoczesnych soczewek sztywnych, w której ostatnia krzywizna jest o wiele bardziej płaska od pierwszego promienia obwodowego. Przykład: 7,80:7,80/ 8,50:8,70/10,50:,50 (ryc..4). Ø 0 Ostre przejście Rycina.1 Dwukrzywiznowa soczewka rogówkowa (, średnica całkowita; Ø 0, średnica tylnej strefy optycznej;, promień tylnej strefy optycznej;, pierwszy tylny promień peryferyjny). 135
2 CZĘŚĆ DRUGA Dopasowanie soczewek gazoprzepuszczalnych Rycina.2 Profil /soczewka dwukrzywiznowa (C2). Ø 1 Ø 0 r 2 Rycina.3 Trójkrzywiznowa soczewka rogówkowa (, średnica całkowita; Ø 1, pierwsza średnica tylnej strefy peryferyjnej; Ø 0, średnica tylnej strefy optycznej;, promień tylnej strefy optycznej;, pierwszy tylny promień peryferyjny; r 2, drugi tylny promień peryferyjny). (Według: Phillips i Stone, Contact Lenses, 3rd edn, Butterworth-Heinemann, Oxford, przedrukowano za zgodą). Wielokrzywiznowa Składa się z promienia centralnego i trzech lub więcej krzywizn obwodowych (ryc..5). Lepiej odpowiada spłaszczeniu rogówki niż konstrukcje dwukrzywiznowe i trójkrzywiznowe, a kiedy przejścia są wygładzone, zachowuje się jak soczewka o krzywiźnie ciągłej. Przykład: 7,80:7,50/8,40:8,20/,00:8,0/11,50:,50 (ryc..6). 136
3 Rycina.4 Profil /soczewka trójkrzywiznowa (C3). Rycina.5 Wielokrzywiznowa soczewka rogówkowa (r 3, trzeci tylny promień peryferyjny; pozostałe symbole jak na ryc..1) r 2 r 3 Stałe osiowe podniesienie krawędzi Soczewki z CAEL zostały opracowane jako dalsze ulepszenie konstrukcji soczewek wielokrzywiznowych, aby uzyskać stały, liniowy luz pomiędzy krawędzią soczewki a rogówką w całym zakresie promieni dla danej średnicy. Osiowe podniesienie krawędzi dla krzywizn obwodowych jest obliczane tak, aby pozostawało stałe dla wszystkich BOZR, w przeciwieństwie do tradycyjnych soczewek, gdzie obliczone AEL jest większe przy bardziej stromych soczewkach, niż w przypadku soczewek bardziej płaskich. 137
4 CZĘŚĆ DRUGA Dopasowanie soczewek gazoprzepuszczalnych Rycina.6 Profil /soczewka wielokrzywiznowa. Nb. AEL odnosi się do konstrukcji soczewki poza okiem. Średnie CAEL dla TD wynoszącej 8,60 mm; 0,105 mm. Średnie CAEL dla TD wynoszącej,20 mm; 0,11 mm. Średnie CAEL dla TD wynoszącej,60 mm; 0,14 mm..3 Współczesne soczewki asferyczne Soczewki asferyczne mają jedną lub obie powierzchnie o konstrukcji niesferycznej. Konstrukcje asferyczne zwykle przybierają formę paraboli, elipsy lub hiperboli i określa je ekscentryczność. Definicje Ekscentryczność (e): Matematyczna definicja odejścia krzywizny asferycznej od koła. Stosowana do opisu kształtu soczewki lub krzywizny rogówki. Wartość P: Określa stopień spłaszczenia przy ekscentryczności: p = 1 e. 2 Najlepsze matematyczne przybliżenie topografii ludzkiej rogówki stanowi elipsa. Średnia ekscentryczność = 0,45; p = 0,8. Okrąg: Całkowicie symetryczny. Ekscentryczność = 0; p = 1. Elipsa: Symetryczna względem dwóch osi, ale ma dwie średnice jedną dłuższą, drugą krótszą. Ekscentryczność = 0 < e < 1; p = <
5 Parabola: Symetryczna względem jednej osi. Ekscentryczność = 1; p = 0. Hiperbola: Ekscentryczność > 1; p = < 0. Wszystkie krzywizny asferyczne można zdefiniować za pomocą dwóch promieni obwodowych promienia strzałkowego, który jest bardziej stromy, i promienia stycznego, który jest bardziej płaski. Związek pomiędzy promieniami wierzchołkowymi a obwodowymi określa wartość ekscentryczności i, w konsekwencji, kształt soczewki. Dwie często stosowane w branży soczewek kontaktowych podgrupy powierzchni asferycznych to: (1) krzywe stożkowe i (2) krzywizny wyższego rzędu, nazywane wielomianowymi. Krzywa stożkowa to krzywizna powstała na bazie przekroju stożka (ryc..7a i B). Kiedy przekrój jest bardziej ukośny, krzywizna staje się coraz bardziej eliptyczna, a następnie paraboliczna i wreszcie zmienia się w parabolę. Hiperbola skutkuje największym spłaszczeniem obwodowym i dlatego jest stosowana do uzyskiwania strefy obwodowej konstrukcji bi-asferycznych. Krzywizna wielomianowa jest postępującą, ekscentryczną krzywizną podnoszącą się od wierzchołka na zewnątrz. Opisuje się ją jako w zróżnicowany sposób spłaszczającą się krzywą asferyczną jedynie lekko odchodzącą od sfery w środku, ale z szybko wzrastającym osiowym podniesieniem krawędzi w części obwodowej. Hiperbola e > 1 Parabola e = 1 Koło Sfera e = 0 Elipsa e < 1 Elipsa Parabola Hiperbola A B Rycina.7A, B Przykłady powierzchni asferycznych. 13
Część 1. Podstawowe zagadnienia 1. Informacje ogólne 1
Spis treści Wstęp do wydania czwartego Wstęp do wydania pierwszego Skróty xiii xiv xv Część 1. Podstawowe zagadnienia 1. Informacje ogólne 1 1.1 Anatomia stosowana 1 1.2 Fizjologia stosowana 4 1.3 Fizyczne
(12) TŁUMACZENIE PATENTU EUROPEJSKIEGO (19) PL (11) PL/EP 1831750. (96) Data i numer zgłoszenia patentu europejskiego: 21.11.2005 05808212.
RZECZPOSPOLITA POLSKA (12) TŁUMACZENIE PATENTU EUROPEJSKIEGO (19) PL (11) PL/EP 183170 (96) Data i numer zgłoszenia patentu europejskiego: 21.11.0 0808212.4 (13) (1) T3 Int.Cl. G02C 7/04 (06.01) Urząd
(a) (b) (c) o1" o2" o3" o1'=o2'=o3'
Zad.0. Odwzorowanie powierzchni stożka, walca, sfery oraz punktów leżących na tych powierzchniach. Przy odwzorowaniu powierzchni stożka, walca, sfery przyjmiemy reprezentację konturową, co oznacza, że
Zestaw Obliczyć objętość równoległościanu zbudowanego na wektorach m, n, p jeśli wiadomo, że objętość równoległościanu zbudowanego na wektorach:
Zestaw 9. Wykazać, że objętość równoległościanu zbudowanego na przekątnych ścian danego równoległościanu jest dwa razy większa od objętości równoległościanu danego.. Obliczyć objętość równoległościanu
WYKŁAD IV BRYŁY OBROTOWE PRZEKROJE BRYŁ OBROTOWYCH DR INŻ. ELŻBIETA RUDCZYK-MALIJEWSKA
WYKŁAD IV BRYŁY OBROTOWE PRZEKROJE BRYŁ OBROTOWYCH DR INŻ. ELŻBIETA RUDCZYK-MALIJEWSKA WALEC powstaje w wyniku obrotu prostokąta wokół prostej zawierającej jeden z jego boków WALEC oś obrotu podstawa wysokość
Zadania nadobowiązkowe KRZYWE STOŻKOWE OKRĄG
OKRĄG Przykład 1. W układzie współrzędnych XOY narysujmy okrąg o środku w punkcie (0,0) i promieniu 1: Współrzędne dowolnego punktu P(x,y) leżącego na okręgu spełniają równanie + y =1, natomiast współrzędne
SCENARIUSZ LEKCJI Temat lekcji: Soczewki i obrazy otrzymywane w soczewkach
Scenariusz lekcji : Soczewki i obrazy otrzymywane w soczewkach Autorski konspekt lekcyjny Słowa kluczowe: soczewki, obrazy Joachim Hurek, Publiczne Liceum Ogólnokształcące z Oddziałami Dwujęzycznymi w
STEREOMETRIA CZYLI GEOMETRIA W 3 WYMIARACH
STEREOMETRIA CZYLI GEOMETRIA W 3 WYMIARACH Stereometria jest działem geometrii, którego przedmiotem badań są bryły przestrzenne oraz ich właściwości. WZAJEMNE POŁOŻENIE PROSTYCH W PRZESTRZENI 2 proste
Wskazówki dopasowania soczewek RGP
Wskazówki dopasowania soczewek RGP Standardowe Sferyczna strefa optyczna asferycznym spłaszczeniem Sferyczne bifokalne / multifokalne, przednia powierzchnia z asferycznym spłaszczeniem Sferyczna strefa
PORÓWNANIE NARZĘDZI DOSTĘPNYCH W OBSZARZE ROBOCZYM SZKICOWNIKA NX Z POLECENIAMI ZAWARTYMI W ANALOGICZNEJ PRZESTRZENI GEOMETRYCZNEJ CATIA V5
PORÓWNANIE NARZĘDZI DOSTĘPNYCH W OBSZARZE ROBOCZYM SZKICOWNIKA NX Z POLECENIAMI ZAWARTYMI W ANALOGICZNEJ PRZESTRZENI GEOMETRYCZNEJ CATIA V5 Tworzenie profili o charakterystycznym kształcie NARZĘDZIA, KTÓRE
- Wydział Fizyki Zestaw nr 2. Krzywe stożkowe
1 Algebra Liniowa z Geometria - Wydział Fizyki Zestaw nr 2 Krzywe stożkowe 1 Znaleźć współrze dne środka i promień okre gu x 2 8x + y 2 + 6y + 20 = 0 2 Znaleźć zbiór punktów płaszczyzny R 2, których odległość
Pytania do spr / Własności figur (płaskich i przestrzennych) (waga: 0,5 lub 0,3)
Pytania zamknięte / TEST : Wybierz 1 odp prawidłową. 1. Punkt: A) jest aksjomatem in. pewnikiem; B) nie jest aksjomatem, bo można go zdefiniować. 2. Prosta: A) to zbiór punktów; B) to zbiór punktów współliniowych.
ZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI W KLASIE 3 ZASADNICZEJ SZKOŁY ZAWODOWEJ
ZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI W KLASIE 3 ZASADNICZEJ SZKOŁY ZAWODOWEJ I. Funkcja kwadratowa i wymierna 1. Funkcja kwadratowa i jej postacie. 2. Wykres funkcji kwadratowej. 3. Równania
OPTYKA GEOMETRYCZNA I INSTRUMENTALNA
1100-1BO15, rok akademicki 2018/19 OPTYKA GEOMETRYCZNA I INSTRUMENTALNA dr hab. Rafał Kasztelanic Wykład 6 Optyka promieni 2 www.zemax.com Diafragmy Pęk promieni świetlnych, przechodzący przez układ optyczny
PL B1. Hybrydowy układ optyczny do rozsyłu światła z tablicy znaków drogowych o zmiennej treści
PL 219112 B1 RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 219112 (13) B1 Urząd Patentowy Rzeczypospolitej Polskiej (21) Numer zgłoszenia: 392659 (22) Data zgłoszenia: 15.10.2010 (51) Int.Cl.
Rozdział 2. Krzywe stożkowe. 2.1 Elipsa. Krzywe stożkowe są zadane ogólnym równaniem kwadratowym na płaszczyźnie
Rozdział Krzywe stożkowe Krzywe stożkowe są zadane ogólnym równaniem kwadratowym na płaszczyźnie x + By + Cxy + Dx + Ey + F = 0. (.) W zależności od relacji pomiędzy współczynnikami otrzymujemy elipsę,
- Wydział Fizyki Zestaw nr 2. Krzywe stożkowe
1 Algebra Liniowa z Geometria - Wydział Fizyki Zestaw nr 2 Krzywe stożkowe 1 Znaleźć współrze dne środka i promień okre gu x 2 8x + y 2 + 6y + 20 = 0 2 Znaleźć zbiór punktów płaszczyzny R 2, których odległość
Stożkiem nazywamy bryłę obrotową, która powstała przez obrót trójkąta prostokątnego wokół jednej z jego przyprostokątnych.
1.4. Stożek W tym temacie dowiesz się: jak obliczać pole powierzchni bocznej i pole powierzchni całkowitej stożka, jak obliczać objętość stożka, jak wykorzystywać własności stożków w zadaniach praktycznych.
Sztuczny satelita Ziemi. Ruch w polu grawitacyjnym
Sztuczny satelita Ziemi Ruch w polu grawitacyjnym Sztuczny satelita Ziemi Jest to obiekt, któremu na pewnej wysokości nad powierzchnią Ziemi nadano prędkość wystarczającą do uzyskania przez niego ruchu
LABORATORIUM OPTYKI GEOMETRYCZNEJ
LABORATORIUM OPTYKI GEOMETRYCZNEJ POMIAR OGNISKOWYCH SOCZEWEK CIENKICH 1. Cel dwiczenia Zapoznanie z niektórymi metodami badania ogniskowych soczewek cienkich. 2. Zakres wymaganych zagadnieo: Prawa odbicia
RÓWNANIA RÓŻNICZKOWE WYKŁAD 14
RÓWNANIA RÓŻNICZKOWE WYKŁAD 14 Wybrane przykłady krzywych płaskich Wybrane przykłady krzywych Cykloida Okrąg o promieniu a toczy sie bez poslizgu po prostej. Ustalony punkt tego okręgu porusza się po krzywej
Opis matematyczny odbicia światła od zwierciadła kulistego i przejścia światła przez soczewki.
Opis matematyczny odbicia światła od zwierciadła kulistego i przejścia światła przez soczewki. 1. Równanie soczewki i zwierciadła kulistego. Z podobieństwa trójkątów ABF i LFD (patrz rysunek powyżej) wynika,
POMIARY OPTYCZNE 1. Wykład 1. Dr hab. inż. Władysław Artur Woźniak
POMIARY OPTYCZNE Wykład Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej Pokój 8/ bud. A- http://www.if.pwr.wroc.pl/~wozniak/ OPTYKA GEOMETRYCZNA Codzienne obserwacje: światło
1 Geometria analityczna
1 Geometria analityczna 1.1 Wektory na płaszczyźnie Wektor to uporządkowana para punktów, z których pierwszy nazywa się początkiem, a drugi końcem wektora. Jeżeli wprowadzimy prostokątny układ współrzędnych,
WYMAGANIA EDUKACYJNE Rok szkolny 2018/2019
WYMAGANIA EDUKACYJNE Rok szkolny 2018/2019 Przedmiot Klasa Nauczyciele uczący Poziom matematyka 4e Łukasz Jurczak rozszerzony 2. Elementy analizy matematycznej ocena dopuszczająca ocena dostateczna ocena
DZIAŁ 1. STATYSTYKA DZIAŁ 2. FUNKCJE
DZIAŁ 1. STATYSTYKA poda pojęcie diagramu słupkowego i kołowego (2) poda pojęcie wykresu (2) poda potrzebę korzystania z różnych form prezentacji informacji (2) poda pojęcie średniej, mediany (2) obliczy
Korekcja stożka rogówki za pomocą stabilnokształtnych (twardych) soczewek kontaktowych
Korekcja stożka rogówki za pomocą stabilnokształtnych (twardych) soczewek kontaktowych Centre for Contact Lens Research School of Optometry University of Waterloo, Canada Wstęp O książce Stożek rogówki
Technologia elementów optycznych
Technologia elementów optycznych dr inż. Michał Józwik pokój 507a jozwik@mchtr.pw.edu.pl Część 1 Treść wykładu Specyfika wymagań i technologii elementów optycznych. Ogólna struktura procesów technologicznych.
POMIAR ODLEGŁOŚCI OGNISKOWYCH SOCZEWEK
ĆWICZENIE 77 POMIAR ODLEGŁOŚCI OGNISKOWYCH SOCZEWEK Cel ćwiczenia: 1. Poznanie zasad optyki geometrycznej, zasad powstawania i konstrukcji obrazów w soczewkach cienkich. 2. Wyznaczanie odległości ogniskowych
Wykład XI. Optyka geometryczna
Wykład XI Optyka geometryczna Jak widzimy? Aby przedmiot był widoczny, musi wysyłać światło w wielu kierunkach. Na podstawie światła zebranego przez oko mózg lokalizuje położenie obiektu. Niekiedy promienie
Optyka w fotografii Ciemnia optyczna camera obscura wykorzystuje zjawisko prostoliniowego rozchodzenia się światła skrzynka (pudełko) z małym okrągłym otworkiem na jednej ściance i przeciwległą ścianką
WOJEWÓDZKI KONKURS MATEMATYCZNY dla uczniów gimnazjów i oddziałów gimnazjalnych województwa pomorskiego w roku szkolnym 2018/2019 etap wojewódzki
WOJEWÓDZKI KONKURS MATEMATYCZNY dla uczniów gimnazjów i oddziałów gimnazjalnych województwa pomorskiego w roku szkolnym 2018/2019 etap wojewódzki Zad.1. (0-3) PRZYKŁADOWE ROZWIĄZANIA I KRYTERIA OCENIANIA
rozwiązanie zadania us. 25-go. 28. Własność czterech punktów na kole, przez które przechodzą promienie pęku harmonicznego, maj%cogo swój wierzchołek
SPIS RZECZY. PRZEDMOWA Errata Str. XIII XVI ROZDZIAŁ I. POJĘCIA WSTĘPNE slr. 1 6 1. Szereg punktów. 2. Zwykłe wyznaczanie położenia punktu na prostej. 3. Wyznaczenie położenia punktu na prostej przy pomocy
(12) OPI S OCHRONN Y WZORU PRZEMYSŁOWEGO
(12) OPI S OCHRONN Y WZORU PRZEMYSŁOWEGO (19) 'L (11 ) Rp.1040 (21) Nume r zgłoszenia: 19573 (51) Klasyfikacja : 09-03 (22) Dat a zgłoszenia: 08.03.2000 (54) Opakowani e n a żywność (30) Pierwszeństwo
OPTYKA W INSTRUMENTACH GEODEZYJNYCH
OPTYKA W INSTRUMENTACH GEODEZYJNYCH Prawa Euklidesa: 1. Promień padający i odbity znajdują się w jednej płaszczyźnie przechodzącej przez prostopadłą wystawioną do powierzchni zwierciadła w punkcie odbicia.
35 OPTYKA GEOMETRYCZNA. CZĘŚĆ 2
Włodzimierz Wolczyński Załamanie światła 35 OPTYKA GEOMETRYCZNA. CZĘŚĆ 2 ZAŁAMANIE ŚWIATŁA. SOCZEWKI sin sin Gdy v 1 > v 2, więc gdy n 2 >n 1, czyli gdy światło wchodzi do ośrodka gęstszego optycznie,
Wymagania na poszczególne oceny szkolne z. matematyki. dla uczniów klasy IIIa i IIIb. Gimnazjum im. Jana Pawła II w Mętowie. w roku szkolnym 2015/2016
Wymagania na poszczególne oceny szkolne z matematyki dla uczniów klasy IIIa i IIIb Gimnazjum im. Jana Pawła II w Mętowie w roku szkolnym 2015/2016 DZIAŁ 1. FUNKCJE (11h) Uczeń: poda definicję funkcji (2)
Klasa 3.Graniastosłupy.
Klasa 3.Graniastosłupy. 1. Uzupełnij nazwy odcinków oznaczonych literami: a........................................................... b........................................................... c...........................................................
Rysujemy. Rysunek techniczny. Dyskusji w kolejnym międzynarodowym języku ciąg dalszy Odwzoruj to co widzisz
Rysujemy Dr inż. Hieronim Piotr Janecki Miłe spotkanie wyższego rzędu No 9 Rysunek techniczny Dyskusji w kolejnym międzynarodowym języku ciąg dalszy Odwzoruj to co widzisz 1 Rysujemy informacje o detalu
ZAKRES PODSTAWOWY CZĘŚĆ II. Wyrażenia wymierne
CZĘŚĆ II ZAKRES PODSTAWOWY Wyrażenia wymierne Temat: Wielomiany-przypomnienie i poszerzenie wiadomości. (2 godz.) znać i rozumieć pojęcie jednomianu (2) znać i rozumieć pojęcie wielomianu stopnia n (2)
Ćw.6. Badanie własności soczewek elektronowych
Pracownia Molekularne Ciało Stałe Ćw.6. Badanie własności soczewek elektronowych Brygida Mielewska, Tomasz Neumann Zagadnienia do przygotowania: 1. Budowa mikroskopu elektronowego 2. Wytwarzanie wiązki
Optyka geometryczna. Soczewki. Marcin S. Ma kowicz. rok szk. 2009/2010. Zespóª Szkóª Ponadgimnazjalnych Nr 2 w Brzesku
skupiaj ce rozpraszaj ce Optyka geometryczna Zespóª Szkóª Ponadgimnazjalnych Nr 2 w Brzesku rok szk. 2009/2010 skupiaj ce rozpraszaj ce Spis tre±ci 1 Wprowadzenie 2 Ciekawostki 3 skupiaj ce Konstrukcja
(12) OPIS PATENTOWY (19) PL
RZECZPO SPO LITA POLSKA Urząd Patentowy Rzeczypospolitej Polskiej (12) OPIS PATENTOWY (19) PL (21) Numer zgłoszenia: 313394 (22) Data zgłoszenia: 09.09.1994 (86) Data i numer zgłoszenia międzynarodowego:
PL 215189 B1. INSTYTUT OPTYKI STOSOWANEJ, Warszawa, PL INSTYTUT BADAWCZY DRÓG I MOSTÓW, Warszawa, PL 21.06.2010 BUP 13/10
PL 215189 B1 RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 215189 (13) B1 Urząd Patentowy Rzeczypospolitej Polskiej (21) Numer zgłoszenia: 386785 (22) Data zgłoszenia: 11.12.2008 (51) Int.Cl.
KWADRYKI PARABOLOIDA HIPERBOLICZNA ELIPSOIDA HIPERBOLOIDA DWUPOWŁOKOWA HIPERBOLOIDA JEDNOPOWŁOKOWA PARABOLOIDA ELIPTYCZNA
POWIERZCHNIE 1. Powierzchnia jedno z podstawowych pojęć geometrii. 1.1. W geometrii elementarnej powierzchnię opisuje się jako pewne zbiory punktów lub prostych o określonych własnościach np.: - sfera
Krzywe stożkowe Lekcja I: Wprowadzenie
Krzywe stożkowe Lekcja I: Wprowadzenie Wydział Matematyki Politechniki Wrocławskiej Powierzchnia stożkowa Zaczniemy od przyjrzenia się powierzchni stożkowej. Jest ona wyznaczona przez linię prostą (tworzącą)
WSTSP. str. 1, Wstęp... t e Elementy niewłaściwe p_r o_a_t_ojk_jjb_jtt_e_;_. Rozdział I. Punkt, prosta i płaszczyzna,,
- 640 - \ S P I S TREŚCI WSTSP. str. 1, Wstęp.... t... 1 2 e Elementy niewłaściwe... 1 CZjjlŚó I.! i f R aju. t y p_r o_a_t_ojk_jjb_jtt_e_;_ Rozdział I. Punkt, prosta i płaszczyzna,, 3. Rauty punktów właściwych...
LABORATORIUM FIZYKI PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ W NYSIE. Ćwiczenie nr 3 Temat: Wyznaczenie ogniskowej soczewek za pomocą ławy optycznej.
LABORATORIUM FIZYKI PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ W NYSIE Ćwiczenie nr 3 Temat: Wyznaczenie ogniskowej soczewek za pomocą ławy optycznej.. Wprowadzenie Soczewką nazywamy ciało przezroczyste ograniczone
Optyka. Wykład XI Krzysztof Golec-Biernat. Równania zwierciadeł i soczewek. Uniwersytet Rzeszowski, 3 stycznia 2018
Optyka Wykład XI Krzysztof Golec-Biernat Równania zwierciadeł i soczewek Uniwersytet Rzeszowski, 3 stycznia 2018 Wykład XI Krzysztof Golec-Biernat Optyka 1 / 16 Plan Równanie zwierciadła sferycznego i
Katedra Fizyki i Biofizyki UWM, Instrukcje do ćwiczeń laboratoryjnych z biofizyki. Maciej Pyrka wrzesień 2013
M Wyznaczanie zdolności skupiającej soczewek za pomocą ławy optycznej. Model oka. Zagadnienia. Podstawy optyki geometrycznej: Falowa teoria światła. Zjawisko załamania i odbicia światła. Prawa rządzące
(12) OPI S OCHRONN Y WZORU PRZEMYSŁOWEGO
(12) OPI S OCHRONN Y WZORU PRZEMYSŁOWEGO (19) PL (11 ) Rp.1459 (21) Numer zgłoszenia: 2011 1 (51) Klasyfikacja : 31-00 (22) Dat a zgłoszenia: 16.06.200 0 (54) Robo t kuchenn y (73) Uprawnion y z rejestracj
Opracowanie tablic: Adam Konstantynowicz, Anna Konstantynowicz, Kaja Mikoszewska
Opracowanie tablic: Adam Konstantynowicz, Anna Konstantynowicz, Kaja Mikoszewska Redaktor serii: Marek Jannasz Ilustracje: Magdalena Wójcik Projekt okładki: Teresa Chylińska-Kur, KurkaStudio Projekt makiety
Krzywe stożkowe. Algebra. Aleksander Denisiuk
Algebra Krzywe stożkowe Aleksander Denisiuk denisjuk@pjwstk.edu.pl Polsko-Japońska Wyższa Szkoła Technik Komputerowych Wydział Informatyki w Gdańsku ul. Brzegi 55 80-045 Gdańsk Algebra p. 1 Krzywe stożkowe
Praca kontrolna z matematyki nr 1 Liceum Ogólnokształcące dla Dorosłych Semestr 5 Rok szkolny 2014/2015
Praca kontrolna z matematyki nr 1 Liceum Ogólnokształcące dla Dorosłych Semestr 5 Rok szkolny 2014/2015 2 6 + 3 1. Oblicz 3. 3 x 1 3x 2. Rozwiąż nierówność > x. 2 3 3. Funkcja f przyporządkowuje każdej
Kurs ZDAJ MATURĘ Z MATEMATYKI - MODUŁ 13 Teoria stereometria
1 GRANIASTOSŁUPY i OSTROSŁUPY wiadomości ogólne Aby tworzyć wzory na OBJĘTOŚĆ i POLE CAŁKOWITE graniastosłupów musimy znać pola figur płaskich a następnie na ich bazie stosować się do zasady: Objętość
PLANIMETRIA CZYLI GEOMETRIA PŁASZCZYZNY CZ. 1
PLANIMETRIA CZYLI GEOMETRIA PŁASZCZYZNY CZ. 1 Planimetria to dział geometrii, w którym przedmiotem badań są własności figur geometrycznych leżących na płaszczyźnie (patrz określenie płaszczyzny). Pojęcia
Najprostszą soczewkę stanowi powierzchnia sferyczna stanowiąca granicę dwóch ośr.: powietrza, o wsp. załamania n 1. sin θ 1. sin θ 2.
Ia. OPTYKA GEOMETRYCZNA wprowadzenie Niemal każdy system optoelektroniczny zawiera oprócz źródła światła i detektora - co najmniej jeden element optyczny, najczęściej soczewkę gdy system służy do analizy
Miesięczne soczewki kontaktowe iloox CONTACT
Miesięczne soczewki kontaktowe iloox CONTACT 1 soczewka gratis dokonując zakupu w salonach LOOX i sunloox w Twoim mieście! Darmowa dostawa do domu, zamawiając soczewki w naszym internetowym salonie optycznym
Wektory, układ współrzędnych
Wektory, układ współrzędnych Wielkości występujące w przyrodzie możemy podzielić na: Skalarne, to jest takie wielkości, które potrafimy opisać przy pomocy jednej liczby (skalara), np. masa, czy temperatura.
Projektowanie soczewek dla źródeł LED
Modelowanie cyfrowe układów świetlno-optycznych oprac. Marcin Leśko, 2015, wszelkie prawa zastrzeżone Projektowanie soczewek dla źródeł LED Celem ćwiczenia jest zapoznanie z podstawami projektowania soczewek
11. Znajdż równanie prostej prostopadłej do prostej k i przechodzącej przez punkt A = (2;2).
1. Narysuj poniższe figury: a), b), c) 2. Punkty A = (0;1) oraz B = (-1;0) należą do okręgu którego środek należy do prostej o równaniu x-2 = 0. Podaj równanie okręgu. 3. Znaleźć równanie okręgu przechodzącego
GEOMETRIA ELEMENTARNA
Bardo, 7 11 XII A. D. 2016 I Uniwersytecki Obóz Olimpiady Matematycznej GEOMETRIA ELEMENTARNA materiały przygotował Antoni Kamiński na podstawie zbiorów zadań: Przygotowanie do olimpiad matematycznych
PRZYSŁONY. Przysłona aperturowa APERTURE STOP (ogranicza ilość promieni pochodzących od obiektu)
ELEMENTY PRZYSŁONY Przysłona aperturowa APERTURE STOP (ogranicza ilość promieni pochodzących od obiektu) Przysłona polowa FIELD STOP (całkowicie zasłania promienie) Źrenica wejściowa Źrenica wejściowa
Matematyka podstawowa VII Planimetria Teoria
Matematyka podstawowa VII Planimetria Teoria 1. Rodzaje kątów: a) Kąty wierzchołkowe; tworzą je dwie przecinające się proste, mają takie same miary. b) Kąty przyległe; mają wspólne jedno ramię, ich suma
OPTYKA GEOMETRYCZNA I INSTRUMENTALNA
1100-1BO15, rok akademicki 2018/19 OPTYKA GEOMETRYCZNA I INSTRUMENTALNA dr hab. Raał Kasztelanic Wykład 4 Obliczenia dla zwierciadeł Równanie zwierciadła 1 1 2 1 s s r s s 2 Obliczenia dla zwierciadeł
(12) TŁUMACZENIE PATENTU EUROPEJSKIEGO (19) PL (11) PL/EP (96) Data i numer zgłoszenia patentu europejskiego:
RZECZPOSPOLITA POLSKA (12) TŁUMACZENIE PATENTU EUROPEJSKIEGO (19) PL (11) PL/EP 2258256 (96) Data i numer zgłoszenia patentu europejskiego: 01.06.2010 10164555.4 (13) (51) T3 Int.Cl. A61B 3/103 (2006.01)
GEOMETRIA PRZESTRZENNA (STEREOMETRIA)
GEOMETRIA PRZESTRZENNA (STEREOMETRIA) WZAJEMNE POŁOŻENIE PROSTYCH W PRZESTRZENI Stereometria jest działem geometrii, którego przedmiotem badań są bryły przestrzenne oraz ich właściwości. Na początek omówimy
Modelowanie krzywych i powierzchni
3 Modelowanie krzywych i powierzchni Modelowanie powierzchniowe jest kolejną metodą po modelowaniu bryłowym sposobem tworzenia części. Jest to też sposób budowy elementu bardziej skomplikowany i wymagający
Wymagania na egzamin poprawkowy z matematyki dla klasy I C LO (Rok szkolny 2015/16) Wykaz zakładanych osiągnięć ucznia klasy I liceum
Wymagania na egzamin poprawkowy z matematyki dla klasy I C LO (Rok szkolny 05/6) Wykaz zakładanych osiągnięć ucznia klasy I liceum (osiągnięcia ucznia w zakresie podstawowym) I. Liczby rzeczywiste. Język
PLAN WYNIKOWY Z MATEMATYKI DLA KLASY II TECHNIKUM 5 - LETNIEGO
Lp. I PLAN WYNIKOWY Z MATEMATYKI DLA KLASY II TECHNIKUM 5 - LETNIEGO Temat lekcji Umiejętności Podstawowe Ponadpodstawowe Funkcja kwadratowa Uczeń: Uczeń: 1 Wykres i własności funkcji y = ax 2. - narysuje
Korekcja wad wzroku. zmiana położenia ogniska. Aleksandra Pomagier Zespół Szkół nr1 im KEN w Szczecinku, klasa 1BLO
Korekcja wad wzroku zmiana położenia ogniska Aleksandra Pomagier Zespół Szkół nr im KEN w Szczecinku, klasa BLO OKULISTYKA Dział medycyny zajmujący się budową oka, rozpoznawaniem i leczeniem schorzeń oczu.
Kształcenie w zakresie rozszerzonym. Klasa IV
Kształcenie w zakresie rozszerzonym. Klasa IV Poniżej podajemy umiejętności, jakie powinien zdobyć uczeń z każdego działu, aby uzyskać poszczególne stopnie. Na ocenę dopuszczającą uczeń powinien opanować
Geometria. Hiperbola
Geometria. Hiperbola Definicja 1 Dano dwa punkty na płaszczyźnie: F 1 i F 2 oraz taką liczbę d, że F 1 F 2 > d > 0. Zbiór punktów płaszczyzny będących rozwiązaniami równania: XF 1 XF 2 = ±d. nazywamy hiperbolą.
Katalog wymagań programowych na poszczególne stopnie szkolne. Matematyka. Poznać, zrozumieć
Katalog wymagań programowych na poszczególne stopnie szkolne Matematyka. Poznać, zrozumieć Kształcenie w zakresie podstawowym. Klasa 3 Poniżej podajemy umiejętności, jakie powinien zdobyć uczeń z każdego
PL B1. POLITECHNIKA ŚLĄSKA, Gliwice, PL FUNDACJA ROZWOJU KARDIOCHIRURGII IM. PROF. ZBIGNIEWA RELIGI, Zabrze, PL
PL 216284 B1 RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 216284 (13) B1 (21) Numer zgłoszenia: 390781 (51) Int.Cl. F04D 29/28 (2006.01) F04D 29/26 (2006.01) Urząd Patentowy Rzeczypospolitej
Nazwisko i imię: Zespół: Data: Ćwiczenie nr 53: Soczewki
Nazwisko i imię: Zespół: Data: Ćwiczenie nr : Soczewki Cel ćwiczenia: Wyznaczenie ogniskowych soczewki skupiającej i układu soczewek (skupiającej i rozpraszającej) oraz ogniskowej soczewki rozpraszającej
Wymiary tolerowane i pasowania. Opracował: mgr inż. Józef Wakuła
Wymiary tolerowane i pasowania Opracował: mgr inż. Józef Wakuła Pojęcia podstawowe Wykonanie przedmiotu zgodnie z podanymi na rysunku wymiarami, z uwagi na ograniczone dokładności wykonawcze oraz pomiarowe
Krzywe stożkowe Lekcja VII: Hiperbola
Krzywe stożkowe Lekcja VII: Hiperbola Wydział Matematyki Politechniki Wrocławskiej Czym jest hiperbola? Hiperbola jest krzywą stożkową powstałą przez przecięcie stożka płaszczyzną pod kątem 0 β < α (gdzie
Soczewkami nazywamy ciała przeźroczyste ograniczone dwoma powierzchniami o promieniach krzywizn R 1 i R 2.
Optyka geometryczna dla soczewek Autorzy: Zbigniew Kąkol, Piotr Morawski Soczewkami nazywamy ciała przeźroczyste ograniczone dwoma powierzchniami o promieniach krzywizn R i R 2. Nasze rozważania własności
Ćwiczenie 53. Soczewki
Ćwiczenie 53. Soczewki Małgorzata Nowina-Konopka, Andrzej Zięba Cel ćwiczenia Pomiar ogniskowych soczewki skupiającej i układu soczewek (skupiająca i rozpraszająca), obliczenie ogniskowej soczewki rozpraszającej.
Matematyka z plusem dla szkoły ponadgimnazjalnej. ZAŁOŻENIA DO PLANU RALIZACJI MATERIAŁU NAUCZANIA MATEMATYKI W KLASIE III (zakres podstawowy)
Program nauczania: Matematyka z plusem, Liczba godzin nauki w tygodniu: 3 Planowana liczba godzin w ciągu roku: 72 ZAŁOŻENIA DO PLANU RALIZACJI MATERIAŁU NAUCZANIA MATEMATYKI W KLASIE III (zakres podstawowy)
WYMAGANIA Z WIEDZY I UMIEJĘTNOŚCI NA POSZCZEGÓLNE STOPNIE SZKOLNE DLA KLASY CZWARTEJ H. zakres rozszerzony. Wiadomości i umiejętności
WYMAGANIA Z WIEDZY I UMIEJĘTNOŚCI NA POSZCZEGÓLNE STOPNIE SZKOLNE DLA KLASY CZWARTEJ H. zakres rozszerzony Funkcja wykładnicza i funkcja logarytmiczna. Stopień Wiadomości i umiejętności -definiować potęgę
ReLEx SMILE firmy ZEISS Pierwsza minimalnie inwazyjna, bezpłatkowa technika SMILE
ReLEx SMILE firmy ZEISS Pierwsza minimalnie inwazyjna, bezpłatkowa technika SMILE Błyskawiczne zabiegi bezpłatkowe dzięki SMILE stają się rzeczywistością na naszych oczach. Dla takich chwil pracujemy.
Ćwiczenie 42 WYZNACZANIE OGNISKOWEJ SOCZEWKI CIENKIEJ. Wprowadzenie teoretyczne.
Ćwiczenie 4 WYZNACZANIE OGNISKOWEJ SOCZEWKI CIENKIEJ Wprowadzenie teoretyczne. Soczewka jest obiektem izycznym wykonanym z materiału przezroczystego o zadanym kształcie i symetrii obrotowej. Interesować
Ostrosłupy ( ) Zad. 4: Jedna z krawędzi ostrosłupa trójkątnego ma długość 2, a pozostałe 4. Znajdź objętość tego ostrosłupa. Odp.: V =
Ostrosłupy Zad 1: W ostrosłupie prawidłowym trójkątnym kwadrat długości krawędzi podstawy, kwadrat długości wysokości ostrosłupa i kwadrat długości krawędzi bocznej są kolejnymi wyrazami ciągu arytmetycznego
Wyznaczanie ogniskowej soczewki za pomocą ławy optycznej
POLITECHNIKA ŚLĄSKA WYDZIAŁ CHEMICZNY KATEDRA FIZYKOCHEMII I TECHNOLOGII POLIMERÓW LABORATORIUM Z FIZYKI Wyznaczanie ogniskowej soczewki za pomocą ławy optycznej Wstęp Jednym z najprostszych urządzeń optycznych
WYMAGANIA EDUKACYJNE Z PRZEDMIOTU: KONSTRUKCJE BUDOWLANE klasa III Podstawa opracowania: PROGRAM NAUCZANIA DLA ZAWODU TECHNIK BUDOWNICTWA 311204
WYMAGANIA EDUKACYJNE Z PRZEDMIOTU: KONSTRUKCJE BUDOWLANE klasa III Podstawa opracowania: PROGRAM NAUCZANIA DLA ZAWODU TECHNIK BUDOWNICTWA 311204 1 DZIAŁ PROGRAMOWY V. PODSTAWY STATYKI I WYTRZYMAŁOŚCI MATERIAŁÓW
Wymiarowanie. Wymiary normalne. Elementy wymiaru rysunkowego Znak ograniczenia linii wymiarowej
Wymiary normalne Wymiarowanie Elementy wymiaru rysunkowego Znak ograniczenia linii wymiarowej 1. Linia wymiarowa 2. Znak ograniczenia linii wymiarowej 3. Liczba wymiarowa 4. Pomocnicza linia wymiarowa
Ćwiczenie nr 8 - Modyfikacje części, tworzenie brył złożonych
Ćwiczenie nr 8 - Modyfikacje części, tworzenie brył złożonych Wprowadzenie Utworzone elementy bryłowe należy traktować jako wstępnie wykonane elementy, które dopiero po dalszej obróbce będą gotowymi częściami
Optyka geometryczna - soczewki Tadeusz M. Molenda Instytut Fizyki US
Optyka geometryczna - soczewki Tadeusz M. Molenda Instytut Fizyki US Budowa oka 1. twardówka 2. naczyniówka 3. kanał Schlemma 4. wyrostek rzęskowy 5. rogówka 6. tęczówka 7. źrenica 8. komora przednia oka
Ćwiczenie nr 8 Interferencyjny pomiar kształtu powierzchni
Ćwiczenie nr 8 Interferencyjny pomiar kształtu powierzchni I. Zestaw przyrządów 1. Interferometr Fizeau z kopiarką 2. Oświetlacz z transformatorem 3. Lampa spektralna z zasilaczem 4. Próbki II. Cel ćwiczenia:
Wstęp do astrofizyki I
Wstęp do astrofizyki I Wykład 5 Tomasz Kwiatkowski 3 listopad 2010 r. Tomasz Kwiatkowski, Wstęp do astrofizyki I, Wykład 5 1/41 Plan wykładu Podstawy optyki geometrycznej Załamanie światła, soczewki Odbicie
Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 8, Radosław Chrapkiewicz, Filip Ozimek
Podstawy Fizyki IV Optyka z elementami fizyki współczesnej wykład 8, 09.03.0 wykład: pokazy: ćwiczenia: zesław Radzewicz Radosław hrapkiewicz, Filip Ozimek Ernest Grodner Wykład 7 - przypomnienie eikonał
TOLERANCJE WYMIAROWE SAPA
TOLERANCJE WYMIAROWE SAPA Tolerancje wymiarowe SAPA zapewniają powtarzalność wymiarów w normalnych warunkach produkcyjnych. Obowiązują one dla wymiarów, dla których nie poczyniono innych ustaleń w trakcie
(12) OPI S OCHRONN Y WZORU PRZEMYSŁOWEGO
(12) OPI S OCHRONN Y WZORU PRZEMYSŁOWEGO (19) PL (11 ) Rp.2160 (21) Nume r zgłoszenia: 1912 1 (51) Klasyfikacja : 07-01 (22) Data zgłoszenia: 06.12.199 9 (54) Wazo n i salaterka (30) Pierwszeństwo : 14.09.1999
Wstęp do astrofizyki I
Wstęp do astrofizyki I Wykład 5 Tomasz Kwiatkowski Uniwersytet im. Adama Mickiewicza w Poznaniu Wydział Fizyki Instytut Obserwatorium Astronomiczne Tomasz Kwiatkowski, shortinst Wstęp do astrofizyki I,
PLAN REALIZACJI MATERIAŁU NAUCZANIA MATEMATYKI W KLASIE III WRAZ Z PLANEM WYNIKOWYM (ZAKRES PODSTAWOWY)
PLAN REALIZACJI MATERIAŁU NAUCZANIA MATEMATYKI W KLASIE III WRAZ Z PLANEM WYNIKOWYM (ZAKRES PODSTAWOWY) Kategorie celów nauczania: A zapamiętanie wiadomości, B rozumienie wiadomości, C stosowanie wiadomości
MAŁOPOLSKI KONKURS MATEMATYCZNY dla uczniów gimnazjów Rok szkolny 2016/2017 ETAP WOJEWÓDZKI 13 marca 2017 roku
MAŁOPOLSKI KONKURS MATEMATYCZNY dla uczniów gimnazjów Rok szkolny 016/017 ETAP WOJEWÓDZKI 13 marca 017 roku 1. Przed Tobą zestaw 15 zadań konkursowych.. Na ich rozwiązanie masz 10 minut. Piętnaście minut
Projekcje (rzuty) Sferyczna, stereograficzna, cyklograficzna,...
Projekcje (rzuty) Sferyczna, stereograficzna, cyklograficzna,... Rzut sferyczny (projekcja sferyczna) Kryształ zastępuje się zespołem płaszczyzn i prostych równoległych do odpowiadających im płaszczyzn
PLAN REALIZACJI MATERIAŁU NAUCZANIA MATEMATYKI W KLASIE III (ZAKRES ROZSZERZONY)
PLAN REALIZACJI MATERIAŁU NAUCZANIA MATEMATYKI W KLASIE III (ZAKRES ROZSZERZONY) Program nauczania: Matematyka z plusem Liczba godzin nauki w tygodniu: 5 Planowana liczba godzin w ciągu roku: 120 Kursywą