Algorytmy immunologiczne. Dr inż. Michał Bereta p. 144 / 10, Instytut Informatyki
|
|
- Robert Wójcik
- 6 lat temu
- Przeglądów:
Transkrypt
1 Algorytmy immunologiczne Dr inż. Michał Bereta p. 144 / 10, Instytut Informatyki mbereta@pk.edu.pl beretam@torus.uck.pk.edu.pl
2 Metody uczenia maszynowego Uczenie z nauczycielem Uczenie bez nadzoru Uczenie z krytykiem (ze wzmocnieniem, ang. reinforcement learning)
3 Metody uczenia maszynowego Uczenie z nauczycielem Nauczyciel: prezentuje przykłady, z którymi związana jest prawidłowa odpowiedź etykieta klasy (w przypadku klasyfikacji) wartośd rzeczywista (w przypadku zadania regresji) zna poprawną odpowiedź jest w stanie ukierunkowad naukę np. uczenie sieci neuronowych (algorytm backpropagation)
4 Metody uczenia maszynowego Uczenie bez nadzoru Do dyspozycji systemu uczącego się jest jedynie zbiór danych bez wskazania do jakich klas te dane należą Częstym zadaniem jest automatyczne wykrycie tych klas, jeśli one istnieją
5 Metody uczenia maszynowego Uczenie z krytykiem (ze wzmocnieniem, ang. reinforcement learning) Istnieje nauczyciel, ale udziela on odpowiedzi jedynie dobrze lub źle w odpowiedzi na zachowanie systemu Przykład: uczenie się strategi gry Wygrana = dobrze Przegrana = źle
6 Metody uczenia maszynowego Uczenie z krytykiem (ze wzmocnieniem, ang. reinforcement learning) Przykład: uczenie strategii gry w Backgammon (tryktrak)
7 Analiza danych Analiza danych ma za zadanie wykrycie istniejących w danych grup podobnych przykładów, sytuacji, itp. Każda grupa zawiera przykłady, które są podobne bardziej do siebie nawzajem niż do przykładów z innych grup. Częstym zadaniem jest również streszczenie danego zbioru danych.
8 Analiza danych Problemy: Ile grup szukamy? Jak mierzyd podobieostwo? Jak sobie radzied z danymi o dużej wymiarowości (duża liczba parametrów opisujących każdy przykład)? Jak sobie radzid w dużymi zbiorami danych?
9 Analiza danych Problemy: Dane niekompletne Dane zaszumione (z błędami) Problemy dynamiczne (zmieniające się w czasie) Dane rozproszone w wielu bazach danych Przykłady znajdują się w różnych miejscach Atrybuty znajdują się w różnych miejscach Rozproszone są zarówno przykłady jak i atrybuty
10 Analiza danych Problemy: Czego tak napradę szukamy? Innych danych podobnych do znanego nam przypadku? Najbardziej podobny przykład do naszego może byd mimo wszystko bardzo odmienny Wyróżniających się grup (np. klientów)? Zmian, nowości, informacji o łączenia się grup wcześniej wyraźnie oddzielonych?
11 Analiza danych Problemy z wizualizacją i weryfikacją wyników w problemach wielowymiarowych
12 Analiza danych Trzy wyraźnie grupy (rozkład sferyczny)
13 Analiza danych
14 Czy to są oddzielne grupy? Analiza danych
15 Grupy czy "szumy"? Analiza danych
16 Analiza danych Algorytm k-średnich (K-means) Określ liczbę szukanych grup Zainicjuj centra grup losowo lub za pomocą wybranych przykładów Powtarzaj dopóki centra ulegają zmianie: Dla każdego centrum określ zbiór przykładów, dla których jest to najbliższe centrum (przy danej mierze odległości) Wylicz nowe centrum jako średnia z przykładów z poprzedniego punktu
17 Analiza danych Problemy z algorytmem k-średnich Jak dobrad liczbę grup? Zastosowad współczynniki jakości grupowania Który współczynnik jakości wybrad? Algorytm może utknąd (centrum ustala się w miejscu gdzie nie ma żadnych danych) Dobrze działa dla danych, w których istnieją wyraźnie grupy sferyczne
18 Analiza danych Algorytm rozmytych k-średnich (fuzzy k- means) Każdy przykład może należed jednocześnie do więcej niż jednej grupy, ale z różnych stopniem przynależności Brak ostrego przydziału do wybranej grupy Może byd zaletą wykrycie wątpliwych przypadków na granicy Ostry podział łatwy do otrzymania z podziału rozmytego
19 Analiza danych Duża liczba innych algorytmów Possibility clustering Algorytmy grupowania hierachicznego Sieci Kohonena Algorytm gazu neuronowego Sztuczne systemy immunologiczne Sieci diotypowe
20 Sieci Kohonena
21 Sieci Kohonena
22 Sieci idiotypowe Modele immunologiczne Klonalna selekcja Negatywna selekcja Dojrzewanie specyficzności odpowiedzi immunologicznej Teoria sieci immunologicznej (ang. immune network theory)
23 Sieci idiotypowe Oznaczenia Ab (ang. Antibody, przeciwciało) Ag (ang. Antigen, antygen) B (limfocyt B)
24 Sieci idiotypowe Ab rozpoznaje częśd Ag zwaną epitopem Idiotyp jest zdefiniowany jako zbiór epitopów obecnych w zbiorze Ab Każdy B jest mono-specyficzny (jeden rodzaj Ab) Ag ma przeważnie kilka rodzajów epitopów Może byd rozpoznany przez kilka rodzajów Ab) Paratop, V-region (ang. Variable region) częśd Ab odpowiedzialna za wiązanie/dopasowanie do Ag ang. Affinity stopieo dopasowania Ab-Ag
25 Sieci idiotypowe
26 Sieci idiotypowe Teoria sieci immunologicznej Jerne, N. K. (1974), Towards a Network Theory of the Immune System, Ann. Immunol. (Inst. Pasteur) 125C, pp Nagroda Nobla w 1984r. częściowo za prace nad teorią klonalnej selekcji i teorią sieci immunologicznych
27 Sieci idiotypowe Teoria sieci immunologicznej System immunologiczny jest zdefiniowany jako złożona sied połączeo paratope-idiotope Istotne są nie tylko molekuły ale również dynamika ich interakcji W efekcie na rozpoznanie komórki systemu immunologicznego odpowiadają pozytywnie lub negatywnie Pozytywnie: proliferacja, aktywacja, produkcja i uwalnienie przeciwciał Negatywnie: śmierd komorki, supresja, tolerancja
28 Sieci idiotypowe Sied immunologiczna Struktura Typy interakcji (połączenia między komórkami) Dynamika Zmiana w czasie koncentracji i jakości dopasowanie do antygenów Meta-dynamika Ciągła produkcja nowych komórek Śmierd nieaktywnych komórek Supresja autoagresywnych komórek
29 Sieci idiotypowe RPV rate of population variation Ostatni element zawiera interakcje zarówno Ab-Ag jak i Ab-Ab
30 Sieci idiotypowe W strukturze sieci zapisany jest wewnętrzny obraz (ang. internal image) Ag
31 Sieci idiotypowe Klonalna selekcja jest nadal używana do symulowanie dojrzewania odpowiedzi immunologicznej
32 Sieci idiotypowe Algorytm ten ma na celu zbudowanie zbioru połączonych komórek (reprezentacja grafowa) reprezentujących analizowany zbiór danych. Streszczenie danych liczba sztucznych Ab < liczba przykładów w analizowanym zbiorze danych
33 Sieci idiotypowe
34 Sieci idiotypowe
35 Sieci idiotypowe Odległośd Euklidesa użyta jako miara dopasowania Dwa kroki supresji Clonal suppression Network suppression
36 Sieci idiotypowe Analiza otrzymanej sieci idiotypowej Minimalne drzewo spinające Następny krok: odcięcie zbyt długich krawędzi w celu wyodrębnienia grup histogram dendrogram
37 Sieci idiotypowe Analiza otrzymanej sieci idiotypowej Minimalne drzewo spinające Następny krok: odcięcie zbyt długich krawędzi w celu wyodrębnienia grup
38 Sieci idiotypowe Analiza otrzymanej sieci idiotypowej histogram
39 Sieci idiotypowe Analiza otrzymanej sieci idiotypowej dendrogram
40 ainet Duża liczba parametrów Oddziałują na siebie w skomplikowany sposób Jaki jest ich optymalny dobór? Niewydajny jeśli zbiór do analizy jest duży - każdy przykład jest prezentowany sieci osobno, nadmiar Ab usuwany na koocu kiedy populacja jest już duża zostaje jeden klon jesli supresja klonalna zbyt mocna
41 ainet Krok supresji sieciowej: jak rozumied najgorsze? Suma do wszystkich przykładów? Minimum? Minimum z zadanej liczby najbardziej związanych (najbliższych)? Przy supresji - czy usuwad oba Ab? Jak generowad nowe - losowo czy losowo wybierac ze zbioru przykładów?
42 ainet System reaguje dynamicznie - np. nowe pośrednie grupy łączą grupy do tej pory oddzielone Co z nowymi małymi skupiskami? Male skupiska mogą rozregulowad sied - jeśli n (liczba Ab wybieranych do klonowania) jest duże a skupisko małe to będą co chwilę pojawiad się ogniwa pośrednie jeśli próg supresji sieciowej jest odpowiednio duży
43 ainet Siec niestabilna jeśli próg supresji sieciowej jest zbyt duży i n (liczba Ab wybieranych do klonowania) zbyt duze wybierane są Ab z innych grup
44 ainet Jeśli próg supresji sieciowej jest mały a trzeba usuwad najgorsze to usuwa dobre Rozwiązania: Nie usuwad jeśli dany Ab jest dośd dobry W kolejnych iteracjach usuwad coraz mniejszą liczbę Ab Usuwad małą liczbę Ab wolniejsza zbieżnośd algorytmu
45 Immune K-Means
46 Immune K-Means Połączenie algorytmu k-średnich i klonalnej selekcji Dwie wersje algorytmu różniące się krokiem supresji Dla analizy danych (uczenie bez nauczyciela) Do zadao klasyfikacji (uczenie z nauczycielem) Dwie zaproponowane supresje mogą byd wykorzystane jednocześnie
47 Immune K-Means
48 Immune K-Means
49 Immune K-Means
50 Immune K-Means
51 Analiza danych
Sztuczne sieci neuronowe i sztuczna immunologia jako klasyfikatory danych. Dariusz Badura Letnia Szkoła Instytutu Matematyki 2010
Sztuczne sieci neuronowe i sztuczna immunologia jako klasyfikatory danych Dariusz Badura Letnia Szkoła Instytutu Matematyki 2010 Sieci neuronowe jednokierunkowa wielowarstwowa sieć neuronowa sieci Kohonena
Bardziej szczegółowoPlan. Sztuczne systemy immunologiczne. Podstawowy słownik. Odporność swoista. Architektura systemu naturalnego. Naturalny system immunologiczny
Sztuczne systemy immunologiczne Plan Naturalny system immunologiczny Systemy oparte na selekcji klonalnej Systemy oparte na modelu sieci idiotypowej 2 Podstawowy słownik Naturalny system immunologiczny
Bardziej szczegółowoRozpoznawanie wzorców. Dr inż. Michał Bereta p. 144 / 10, Instytut Informatyki
Rozpoznawanie wzorców Dr inż. Michał Bereta p. 144 / 10, Instytut Informatyki mbereta@pk.edu.pl beretam@torus.uck.pk.edu.pl www.michalbereta.pl Co jest na zdjęciu? Iluzja Thatchera Iluzja Thatchera Rozpoznawanie
Bardziej szczegółowoPodstawy grupowania danych w programie RapidMiner Michał Bereta
Podstawy grupowania danych w programie RapidMiner Michał Bereta www.michalbereta.pl 1. Grupowanie hierarchiczne Grupowanie (analiza skupieo, ang. clustering) ma na celu automatyczne wykrycie grup istniejących
Bardziej szczegółowoSPOTKANIE 2: Wprowadzenie cz. I
Wrocław University of Technology SPOTKANIE 2: Wprowadzenie cz. I Piotr Klukowski Studenckie Koło Naukowe Estymator piotr.klukowski@pwr.edu.pl 17.10.2016 UCZENIE MASZYNOWE 2/27 UCZENIE MASZYNOWE = Konstruowanie
Bardziej szczegółowoAgnieszka Nowak Brzezińska
Agnieszka Nowak Brzezińska jeden z algorytmów regresji nieparametrycznej używanych w statystyce do prognozowania wartości pewnej zmiennej losowej. Może również byd używany do klasyfikacji. - Założenia
Bardziej szczegółowoBioinformatyka Laboratorium, 30h. Michał Bereta
Bioinformatyka Laboratorium, 30h Michał Bereta mbereta@pk.edu.pl www.michalbereta.pl 1 Filogenetyka molekularna wykorzystuje informację zawartą w sekwencjach aminokwasów lub nukleotydów do kontrukcji drzew
Bardziej szczegółowoMetody klasyfikacji i rozpoznawania wzorców
Metody klasyfikacji i rozpoznawania wzorców Dr inż. Michał Bereta p. 144 / 10, Instytut Informatyki mbereta@pk.edu.pl beretam@torus.uck.pk.edu.pl www.michalbereta.pl Rozpoznawanie wzroców Zaliczenie przedmiotu
Bardziej szczegółowoRozpoznawanie wzorców. Dr inż. Michał Bereta p. 144 / 10, Instytut Informatyki
Rozpoznawanie wzorców Dr inż. Michał Bereta p. 144 / 10, Instytut Informatyki mbereta@pk.edu.pl beretam@torus.uck.pk.edu.pl www.michalbereta.pl Twierzdzenie: Prawdopodobieostwo, że n obserwacji wybranych
Bardziej szczegółowoAlgorytmy decyzyjne będące alternatywą dla sieci neuronowych
Algorytmy decyzyjne będące alternatywą dla sieci neuronowych Piotr Dalka Przykładowe algorytmy decyzyjne Sztuczne sieci neuronowe Algorytm k najbliższych sąsiadów Kaskada klasyfikatorów AdaBoost Naiwny
Bardziej szczegółowoS O M SELF-ORGANIZING MAPS. Przemysław Szczepańczyk Łukasz Myszor
S O M SELF-ORGANIZING MAPS Przemysław Szczepańczyk Łukasz Myszor Podstawy teoretyczne Map Samoorganizujących się stworzył prof. Teuvo Kohonen (1982 r.). SOM wywodzi się ze sztucznych sieci neuronowych.
Bardziej szczegółowoCo to jest grupowanie
Grupowanie danych Co to jest grupowanie 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Szukanie grup, obszarów stanowiących lokalne gromady punktów Co to jest grupowanie
Bardziej szczegółowoSystemy uczące się Lab 4
Systemy uczące się Lab 4 dr Przemysław Juszczuk Katedra Inżynierii Wiedzy, Uniwersytet Ekonomiczny 26 X 2018 Projekt zaliczeniowy Podstawą zaliczenia ćwiczeń jest indywidualne wykonanie projektu uwzględniającego
Bardziej szczegółowoReprezentacja rozmyta - zastosowania logiki rozmytej
17.06.2009 Wrocław Bartosz Chabasinski 148384 Reprezentacja rozmyta - zastosowania logiki rozmytej 1. Wstęp Celem wprowadzenia pojęcia teorii zbiorów rozmytych była potrzeba matematycznego opisania tych
Bardziej szczegółowoSystemy uczące się. Dr inż. Michał Bereta p. 144 / 10, Instytut Informatyki
Systemy uczące się Dr inż. Michał Bereta p. 144 / 10, Instytut Informatyki mbereta@pk.edu.pl beretam@torus.uck.pk.edu.pl www.michalbereta.pl Systemy uczące się Zaliczenie przedmiotu Egzamin Laboratorium
Bardziej szczegółowoUczenie się pojedynczego neuronu. Jeśli zastosowana zostanie funkcja bipolarna s y: y=-1 gdy z<0 y=1 gdy z>=0. Wówczas: W 1 x 1 + w 2 x 2 + = 0
Uczenie się pojedynczego neuronu W0 X0=1 W1 x1 W2 s f y x2 Wp xp p x i w i=x w+wo i=0 Jeśli zastosowana zostanie funkcja bipolarna s y: y=-1 gdy z=0 Wówczas: W 1 x 1 + w 2 x 2 + = 0 Algorytm
Bardziej szczegółowoAlgorytmy metaheurystyczne Wykład 11. Piotr Syga
Algorytmy metaheurystyczne Wykład 11 Piotr Syga 22.05.2017 Drzewa decyzyjne Idea Cel Na podstawie przesłanek (typowo zbiory rozmyte) oraz zbioru wartości w danych testowych, w oparciu o wybrane miary,
Bardziej szczegółowoKlasyfikatory: k-nn oraz naiwny Bayesa. Agnieszka Nowak Brzezińska Wykład IV
Klasyfikatory: k-nn oraz naiwny Bayesa Agnieszka Nowak Brzezińska Wykład IV Naiwny klasyfikator Bayesa Naiwny klasyfikator bayesowski jest prostym probabilistycznym klasyfikatorem. Zakłada się wzajemną
Bardziej szczegółowoSieci neuronowe w Statistica. Agnieszka Nowak - Brzezioska
Sieci neuronowe w Statistica Agnieszka Nowak - Brzezioska Podstawowym elementem składowym sztucznej sieci neuronowej jest element przetwarzający neuron. Schemat działania neuronu: x1 x2 w1 w2 Dendrites
Bardziej szczegółowoStan dotychczasowy. OCENA KLASYFIKACJI w diagnostyce. Metody 6/10/2013. Weryfikacja. Testowanie skuteczności metody uczenia Weryfikacja prosta
Stan dotychczasowy OCENA KLASYFIKACJI w diagnostyce Wybraliśmy metodę uczenia maszynowego (np. sieć neuronowa lub drzewo decyzyjne), która będzie klasyfikować nieznane przypadki Na podzbiorze dostępnych
Bardziej szczegółowoSztuczne sieci neuronowe. Krzysztof A. Cyran POLITECHNIKA ŚLĄSKA Instytut Informatyki, p. 335
Sztuczne sieci neuronowe Krzysztof A. Cyran POLITECHNIKA ŚLĄSKA Instytut Informatyki, p. 335 Wykład 10 Mapa cech Kohonena i jej modyfikacje - uczenie sieci samoorganizujących się - kwantowanie wektorowe
Bardziej szczegółowoObliczenia Naturalne - Algorytmy immunologiczne
Literatura Podstawowe pojęcia Obliczenia Naturalne - immunologiczne Paweł Paduch Politechnika Świętokrzyska 10 kwietnia 2014 Paweł Paduch Obliczenia Naturalne - immunologiczne 1 z 44 Plan wykładu Literatura
Bardziej szczegółowoMETODY INŻYNIERII WIEDZY KNOWLEDGE ENGINEERING AND DATA MINING
METODY INŻYNIERII WIEDZY KNOWLEDGE ENGINEERING AND DATA MINING NEURONOWE MAPY SAMOORGANIZUJĄCE SIĘ Self-Organizing Maps SOM Adrian Horzyk Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki,
Bardziej szczegółowoAgnieszka Nowak Brzezińska Wykład III
Agnieszka Nowak Brzezińska Wykład III Naiwny klasyfikator bayesowski jest prostym probabilistycznym klasyfikatorem. Zakłada się wzajemną niezależność zmiennych niezależnych (tu naiwność) Bardziej opisowe
Bardziej szczegółowoKLASYFIKACJA. Słownik języka polskiego
KLASYFIKACJA KLASYFIKACJA Słownik języka polskiego Klasyfikacja systematyczny podział przedmiotów lub zjawisk na klasy, działy, poddziały, wykonywany według określonej zasady Klasyfikacja polega na przyporządkowaniu
Bardziej szczegółowomgr inż. Magdalena Deckert Poznań, r. Metody przyrostowego uczenia się ze strumieni danych.
mgr inż. Magdalena Deckert Poznań, 30.11.2010r. Metody przyrostowego uczenia się ze strumieni danych. Plan prezentacji Wstęp Concept drift i typy zmian Algorytmy przyrostowego uczenia się ze strumieni
Bardziej szczegółowoProf. Stanisław Jankowski
Prof. Stanisław Jankowski Zakład Sztucznej Inteligencji Zespół Statystycznych Systemów Uczących się p. 228 sjank@ise.pw.edu.pl Zakres badań: Sztuczne sieci neuronowe Maszyny wektorów nośnych SVM Maszyny
Bardziej szczegółowoGrupowanie Witold Andrzejewski, Politechnika Poznańska, Wydział Informatyki 201/633
Grupowanie Grupowanie 7 6 5 4 y 3 2 1 0-3 -2-1 0 1 2 3 4 5-1 -2-3 -4 x Witold Andrzejewski, Politechnika Poznańska, Wydział Informatyki 201/633 Wprowadzenie Celem procesu grupowania jest podział zbioru
Bardziej szczegółowoCLUSTERING. Metody grupowania danych
CLUSTERING Metody grupowania danych Plan wykładu Wprowadzenie Dziedziny zastosowania Co to jest problem klastrowania? Problem wyszukiwania optymalnych klastrów Metody generowania: k centroidów (k - means
Bardziej szczegółowoLekcja 5: Sieć Kohonena i sieć ART
Lekcja 5: Sieć Kohonena i sieć ART S. Hoa Nguyen 1 Materiał Sieci Kohonena (Sieć samo-organizująca) Rysunek 1: Sieć Kohonena Charakterystyka sieci: Jednowarstwowa jednokierunkowa sieć. Na ogół neurony
Bardziej szczegółowoAlgorytm wstecznej propagacji błędów dla sieci RBF Michał Bereta
Algorytm wstecznej propagacji błędów dla sieci RBF Michał Bereta www.michalbereta.pl Sieci radialne zawsze posiadają jedną warstwę ukrytą, która składa się z neuronów radialnych. Warstwa wyjściowa składa
Bardziej szczegółowoAlgorytm grupowania danych typu kwantyzacji wektorów
Algorytm grupowania danych typu kwantyzacji wektorów Wstęp Definicja problemu: Typowe, rozważane dotychczas problemy koncentrowały się na nauczeniu na podstawie zbioru treningowego i zbioru etykiet klasyfikacji
Bardziej szczegółowoAgnieszka Nowak Brzezińska Wykład III
Agnieszka Nowak Brzezińska Wykład III Naiwny klasyfikator bayesowski jest prostym probabilistycznym klasyfikatorem. Zakłada się wzajemną niezależność zmiennych niezależnych (tu naiwność) Bardziej opisowe
Bardziej szczegółowoINDUKOWANE REGUŁY DECYZYJNE ALORYTM APRIORI JAROSŁAW FIBICH
INDUKOWANE REGUŁY DECYZYJNE ALORYTM APRIORI JAROSŁAW FIBICH 1. Czym jest eksploracja danych Eksploracja danych definiowana jest jako zbiór technik odkrywania nietrywialnych zależności i schematów w dużych
Bardziej szczegółowoSystemy uczące się wykład 2
Systemy uczące się wykład 2 dr Przemysław Juszczuk Katedra Inżynierii Wiedzy, Uniwersytet Ekonomiczny 19 X 2018 Podstawowe definicje Fakt; Przesłanka; Konkluzja; Reguła; Wnioskowanie. Typy wnioskowania
Bardziej szczegółowoOntogeniczne sieci neuronowe. O sieciach zmieniających swoją strukturę
Norbert Jankowski Ontogeniczne sieci neuronowe O sieciach zmieniających swoją strukturę Warszawa 2003 Opracowanie książki było wspierane stypendium Uniwersytetu Mikołaja Kopernika Spis treści Wprowadzenie
Bardziej szczegółowoZastosowanie sztucznych systemów immunologicznych w zagadnieniach optymalizacji
Zastosowanie sztucznych systemów immunologicznych w zagadnieniach optymalizacji 26 października 2011 Agenda Wprowadzenie 1 Wprowadzenie 2 Struktura układu odpornościowego Adaptacja i dywersyfikacja systemu
Bardziej szczegółowoAnaliza skupień. Analiza Skupień W sztucznej inteligencji istotną rolę ogrywają algorytmy grupowania
Analiza skupień W sztucznej inteligencji istotną rolę ogrywają algorytmy grupowania Analiza Skupień Elementy składowe procesu grupowania obiekt Ekstrakcja cech Sprzężenie zwrotne Grupowanie klastry Reprezentacja
Bardziej szczegółowoRozpoznawanie wzorców. Dr inż. Michał Bereta p. 144 / 10, Instytut Informatyki
Rozpoznawanie wzorców Dr inż. Michał Bereta p. 144 / 10, Instytut Informatyki mbereta@pk.edu.pl beretam@torus.uck.pk.edu.pl www.michalbereta.pl Rozpoznawanie twarzy Co znaczy rozpoznawad Detekcja Identyfikacja
Bardziej szczegółowoJava Podstawy. Michał Bereta
Prezentacja współfinansowana przez Unię Europejską ze środków Europejskiego Funduszu Społecznego w ramach projektu Wzmocnienie znaczenia Politechniki Krakowskiej w kształceniu przedmiotów ścisłych i propagowaniu
Bardziej szczegółowoAlgorytm do rozpoznawania człowieka na podstawie dynamiki użycia klawiatury. Paweł Kobojek, prof. dr hab. inż. Khalid Saeed
Algorytm do rozpoznawania człowieka na podstawie dynamiki użycia klawiatury Paweł Kobojek, prof. dr hab. inż. Khalid Saeed Zakres pracy Przegląd stanu wiedzy w dziedzinie biometrii, ze szczególnym naciskiem
Bardziej szczegółowoMetody Sztucznej Inteligencji II
17 marca 2013 Neuron biologiczny Neuron Jest podstawowym budulcem układu nerwowego. Jest komórką, która jest w stanie odbierać i przekazywać sygnały elektryczne. Neuron działanie Jeżeli wartość sygnału
Bardziej szczegółowoWykrywanie twarzy na zdjęciach przy pomocy kaskad
Wykrywanie twarzy na zdjęciach przy pomocy kaskad Analiza i przetwarzanie obrazów Sebastian Lipnicki Informatyka Stosowana,WFIIS Spis treści 1. Wstęp... 3 2. Struktura i funkcjonalnośd... 4 3. Wyniki...
Bardziej szczegółowoAlgorytmy rozpoznawania obrazów. 11. Analiza skupień. dr inż. Urszula Libal. Politechnika Wrocławska
Algorytmy rozpoznawania obrazów 11. Analiza skupień dr inż. Urszula Libal Politechnika Wrocławska 2015 1 1. Analiza skupień Określenia: analiza skupień (cluster analysis), klasteryzacja (clustering), klasyfikacja
Bardziej szczegółowoWstęp do sieci neuronowych, wykład 07 Uczenie nienadzorowane.
Wstęp do sieci neuronowych, wykład 7. M. Czoków, J. Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika w Toruniu 212-11-28 Projekt pn. Wzmocnienie potencjału dydaktycznego UMK w Toruniu
Bardziej szczegółowoALGORYTM RANDOM FOREST
SKRYPT PRZYGOTOWANY NA ZAJĘCIA INDUKOWANYCH REGUŁ DECYZYJNYCH PROWADZONYCH PRZEZ PANA PAWŁA WOJTKIEWICZA ALGORYTM RANDOM FOREST Katarzyna Graboś 56397 Aleksandra Mańko 56699 2015-01-26, Warszawa ALGORYTM
Bardziej szczegółowoMetody selekcji cech
Metody selekcji cech A po co to Często mamy do dyspozycji dane w postaci zbioru cech lecz nie wiemy które z tych cech będą dla nas istotne. W zbiorze cech mogą wystąpić cechy redundantne niosące identyczną
Bardziej szczegółowoProjekt Sieci neuronowe
Projekt Sieci neuronowe Chmielecka Katarzyna Gr. 9 IiE 1. Problem i dane Sieć neuronowa miała za zadanie nauczyć się klasyfikować wnioski kredytowe. W projekcie wykorzystano dane pochodzące z 110 wniosków
Bardziej szczegółowoOD IMMUNOLOGII DO MODELOWANIA, PRZETWARZANIA I ANALIZ DANYCH
INFORMATYKA EKONOMICZNA BUSINESS INFORMATICS 4(30) 2013 ISSN 1507-3858 Mirosława Lasek Uniwersytet Warszawski e-mail: mlasek@wne.uw.edu.pl Witold Lasek Warszawski Uniwersytet Medyczny e-mail: witold.lasek@wum.edu.pl
Bardziej szczegółowoWstęp do sieci neuronowych, wykład 03 Warstwy RBF, jednostka Adaline.
Wstęp do sieci neuronowych, wykład 3 Warstwy, jednostka Adaline. Maja Czoków, Jarosław Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 211-1-18 1 Pomysł Przykłady Zastosowanie 2
Bardziej szczegółowoPRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: Kierunek: Informatyka Rodzaj przedmiotu: obowiązkowy w ramach treści kierunkowych, moduł kierunkowy oólny Rodzaj zajęć: wykład, laboratorium I KARTA PRZEDMIOTU CEL PRZEDMIOTU PRZEWODNIK
Bardziej szczegółowoOdkrywanie wiedzy z danych przy użyciu zbiorów przybliżonych. Wykład 3
Odkrywanie wiedzy z danych przy użyciu zbiorów przybliżonych Wykład 3 W internecie Teoria zbiorów przybliżonych zaproponowany w 1982 r. przez prof. Zdzisława Pawlaka formalizm matematyczny, stanowiący
Bardziej szczegółowoOdporność nabyta: Nadzieja Drela Wydział Biologii UW, Zakład Immunologii
Odporność nabyta: Komórki odporności nabytej: fenotyp, funkcje, powstawanie, krążenie w organizmie Cechy odporności nabytej Rozpoznawanie patogenów przez komórki odporności nabytej: receptory dla antygenu
Bardziej szczegółowoOptymalizacja parametrów w strategiach inwestycyjnych dla event-driven tradingu - metodologia badań
Raport 1/2015 Optymalizacja parametrów w strategiach inwestycyjnych dla event-driven tradingu - metodologia badań autor: Michał Osmoła INIME Instytut nauk informatycznych i matematycznych z zastosowaniem
Bardziej szczegółowoPrzykładowa analiza danych
Przykładowa analiza danych W analizie wykorzystano dane pochodzące z publicznego repozytorium ArrayExpress udostępnionego na stronach Europejskiego Instytutu Bioinformatyki (http://www.ebi.ac.uk/). Zbiór
Bardziej szczegółowoALGORYTMY EWOLUCYJNE W OPTYMALIZACJI JEDNOKRYTERIALNEJ
ALGORYTMY EWOLUCYJNE W OPTYMALIZACJI JEDNOKRYTERIALNEJ Zalety: nie wprowadzają żadnych ograniczeń na sformułowanie problemu optymalizacyjnego. Funkcja celu może być wielowartościowa i nieciągła, obszar
Bardziej szczegółowoAsocjacyjna reprezentacja danych i wnioskowanie
Asocjacyjna reprezentacja danych i wnioskowanie Wykorzystane technologie JetBrains PyCharm 504 Python 35 Struktura drzewa GRAPH PARAM PARAM ID1 ID2 ID_N params params params param_name_1: param_value_1
Bardziej szczegółowoALGORYTMY SZTUCZNEJ INTELIGENCJI
ALGORYTMY SZTUCZNEJ INTELIGENCJI Sieci neuronowe 06.12.2014 Krzysztof Salamon 1 Wstęp Sprawozdanie to dotyczy ćwiczeń z zakresu sieci neuronowych realizowanym na przedmiocie: Algorytmy Sztucznej Inteligencji.
Bardziej szczegółowo4.1. Wprowadzenie...70 4.2. Podstawowe definicje...71 4.3. Algorytm określania wartości parametrów w regresji logistycznej...74
3 Wykaz najważniejszych skrótów...8 Przedmowa... 10 1. Podstawowe pojęcia data mining...11 1.1. Wprowadzenie...12 1.2. Podstawowe zadania eksploracji danych...13 1.3. Główne etapy eksploracji danych...15
Bardziej szczegółowoWstęp do sieci neuronowych, wykład 07 Uczenie nienadzorowane cd.
Wstęp do sieci neuronowych, wykład 07 Uczenie nienadzorowane cd. M. Czoków, J. Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika w Toruniu 2013-11-26 Projekt pn. Wzmocnienie potencjału
Bardziej szczegółowo4.3 Grupowanie według podobieństwa
4.3 Grupowanie według podobieństwa Przykłady obiektów to coś więcej niż wektory wartości atrybutów. Reprezentują one poszczególne rasy psów. Ważnym pytaniem, jakie można sobie zadać, jest to jak dobrymi
Bardziej szczegółowoJava Podstawy. Michał Bereta
Prezentacja współfinansowana przez Unię Europejską ze środków Europejskiego Funduszu Społecznego w ramach projektu Wzmocnienie znaczenia Politechniki Krakowskiej w kształceniu przedmiotów ścisłych i propagowaniu
Bardziej szczegółowoOpenAI Gym. Adam Szczepaniak, Kamil Walkowiak
OpenAI Gym Adam Szczepaniak, Kamil Walkowiak Plan prezentacji Programowanie agentowe Uczenie przez wzmacnianie i problemy związane z rozwojem algorytmów Charakterystyka OpenAI Gym Biblioteka gym Podsumowanie
Bardziej szczegółowoEwelina Dziura Krzysztof Maryański
Ewelina Dziura Krzysztof Maryański 1. Wstęp - eksploracja danych 2. Proces Eksploracji danych 3. Reguły asocjacyjne budowa, zastosowanie, pozyskiwanie 4. Algorytm Apriori i jego modyfikacje 5. Przykład
Bardziej szczegółowo8. Neuron z ciągłą funkcją aktywacji.
8. Neuron z ciągłą funkcją aktywacji. W tym ćwiczeniu zapoznamy się z modelem sztucznego neuronu oraz przykładem jego wykorzystania do rozwiązywanie prostego zadania klasyfikacji. Neuron biologiczny i
Bardziej szczegółowoDrzewa decyzyjne i lasy losowe
Drzewa decyzyjne i lasy losowe Im dalej w las tym więcej drzew! ML Gdańsk http://www.mlgdansk.pl/ Marcin Zadroga https://www.linkedin.com/in/mzadroga/ 20 Czerwca 2017 WPROWADZENIE DO MACHINE LEARNING CZYM
Bardziej szczegółowoWidzenie komputerowe
Widzenie komputerowe Uczenie maszynowe na przykładzie sieci neuronowych (3) źródła informacji: S. Osowski, Sieci neuronowe w ujęciu algorytmicznym, WNT 1996 Zdolność uogólniania sieci neuronowej R oznaczenie
Bardziej szczegółowoPodstawy Sztucznej Inteligencji (PSZT)
Podstawy Sztucznej Inteligencji (PSZT) Paweł Wawrzyński Uczenie maszynowe Sztuczne sieci neuronowe Plan na dziś Uczenie maszynowe Problem aproksymacji funkcji Sieci neuronowe PSZT, zima 2013, wykład 12
Bardziej szczegółowokomputery? Andrzej Skowron, Hung Son Nguyen Instytut Matematyki, Wydział MIM, UW
Czego moga się nauczyć komputery? Andrzej Skowron, Hung Son Nguyen son@mimuw.edu.pl; skowron@mimuw.edu.pl Instytut Matematyki, Wydział MIM, UW colt.tex Czego mogą się nauczyć komputery? Andrzej Skowron,
Bardziej szczegółowoObliczenia z wykorzystaniem sztucznej inteligencji
Obliczenia z wykorzystaniem sztucznej inteligencji wykład V Sztuczne systemy immunologiczne Joanna Kołodziejczyk 18 maja 2014 Plan wykładu 1 Wprowadzenie Definicje Historia 2 Elementy IS 3 Działanie IS
Bardziej szczegółowoKlasyfikator liniowy Wstęp Klasyfikator liniowy jest najprostszym możliwym klasyfikatorem. Zakłada on liniową separację liniowy podział dwóch klas między sobą. Przedstawia to poniższy rysunek: 5 4 3 2
Bardziej szczegółowo1. Historia 2. Podstawy neurobiologii 3. Definicje i inne kłamstwa 4. Sztuczny neuron i zasady działania SSN. Agenda
Sieci neuropodobne 1. Historia 2. Podstawy neurobiologii 3. Definicje i inne kłamstwa 4. Sztuczny neuron i zasady działania SSN Agenda Trochę neurobiologii System nerwowy w organizmach żywych tworzą trzy
Bardziej szczegółowoUczenie ze wzmocnieniem aplikacje
Uczenie ze wzmocnieniem aplikacje Na podstawie: AIMA ch21 oraz Reinforcement Learning (Sutton i Barto) Wojciech Jaśkowski Instytut Informatyki, Politechnika Poznańska 23 maja 2014 Problem decyzyjny Markova
Bardziej szczegółowoArchipelag Sztucznej Inteligencji
Archipelag Sztucznej Inteligencji Istniejące metody sztucznej inteligencji mają ze sobą zwykle niewiele wspólnego, więc można je sobie wyobrażać jako archipelag wysp, a nie jako fragment stałego lądu.
Bardziej szczegółowoJazda autonomiczna Delphi zgodna z zasadami sztucznej inteligencji
Jazda autonomiczna Delphi zgodna z zasadami sztucznej inteligencji data aktualizacji: 2017.10.11 Delphi Kraków Rozwój jazdy autonomicznej zmienia krajobraz technologii transportu w sposób tak dynamiczny,
Bardziej szczegółowoData Mining Wykład 9. Analiza skupień (grupowanie) Grupowanie hierarchiczne O-Cluster. Plan wykładu. Sformułowanie problemu
Data Mining Wykład 9 Analiza skupień (grupowanie) Grupowanie hierarchiczne O-Cluster Plan wykładu Wprowadzanie Definicja problemu Klasyfikacja metod grupowania Grupowanie hierarchiczne Sformułowanie problemu
Bardziej szczegółowoInteligentne systemy decyzyjne: Uczenie maszynowe sztuczne sieci neuronowe
Inteligentne systemy decyzyjne: Uczenie maszynowe sztuczne sieci neuronowe Trening jednokierunkowych sieci neuronowych wykład 2. dr inż. PawełŻwan Katedra Systemów Multimedialnych Politechnika Gdańska
Bardziej szczegółowoSieci neuronowe jako sposób na optymalizacje podejmowanych decyzji. Tomasz Karczyoski Wydział W-08 IZ
optymalizacje podejmowanych decyzji Tomasz Karczyoski Wydział W-08 IZ Czym są sieci neuronowe Struktura matematycznych oraz programowy lub sprzętowy model, realizujących obliczenia lub przetwarzanie sygnałów
Bardziej szczegółowoUczenie sieci radialnych (RBF)
Uczenie sieci radialnych (RBF) Budowa sieci radialnej Lokalne odwzorowanie przestrzeni wokół neuronu MLP RBF Budowa sieci radialnych Zawsze jedna warstwa ukryta Budowa neuronu Neuron radialny powinien
Bardziej szczegółowoTechniki grupowania danych w środowisku Matlab
Techniki grupowania danych w środowisku Matlab 1. Normalizacja danych. Jedne z metod normalizacji: = = ma ( y =, rσ ( = ( ma ( = min = (1 + e, min ( = σ wartość średnia, r współczynnik, σ odchylenie standardowe
Bardziej szczegółowoObliczenia z wykorzystaniem sztucznej inteligencji
Obliczenia z wykorzystaniem sztucznej inteligencji wykład V Sztuczne systemy immunologiczne Joanna Kołodziejczyk 2016 Joanna Kołodziejczyk Obliczenia z wykorzystaniem sztucznej inteligencji 2016 1 / 51
Bardziej szczegółowoAutomatyczna klasyfikacja zespołów QRS
Przetwarzanie sygnałów w systemach diagnostycznych Informatyka Stosowana V Automatyczna klasyfikacja zespołów QRS Anna Mleko Tomasz Kotliński AGH EAIiE 9 . Opis zadania Tematem projektu było zaprojektowanie
Bardziej szczegółowoSztuczna inteligencja : Zbiory rozmyte cz. 2
Sztuczna inteligencja : Zbiory rozmyte cz. 2 Przemysław Juszczuk Instytut Informatyki Uniwersytetu Śląskiego 1 marca 2012 Funkcja trójkątna: Funkcja trójkątna: Funkcja przynależności γ (gamma): Rysunek:
Bardziej szczegółowoKARTA MODUŁU KSZTAŁCENIA
KARTA MODUŁU KSZTAŁCENIA I. Informacje ogólne 1 Nazwa modułu kształcenia Sztuczna inteligencja 2 Nazwa jednostki prowadzącej moduł Instytut Informatyki, Zakład Informatyki Stosowanej 3 Kod modułu (wypełnia
Bardziej szczegółowoWstęp do sieci neuronowych, wykład 07 Uczenie nienadzorowane.
Wstęp do sieci neuronowych, wykład 7. M. Czoków, J. Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika w Toruniu 213-11-19 Projekt pn. Wzmocnienie potencjału dydaktycznego UMK w Toruniu
Bardziej szczegółowoLEMRG algorytm generowania pokoleń reguł decyzji dla baz danych z dużą liczbą atrybutów
LEMRG algorytm generowania pokoleń reguł decyzji dla baz danych z dużą liczbą atrybutów Łukasz Piątek, Jerzy W. Grzymała-Busse Katedra Systemów Ekspertowych i Sztucznej Inteligencji, Wydział Informatyki
Bardziej szczegółowoSAS wybrane elementy. DATA MINING Część III. Seweryn Kowalski 2006
SAS wybrane elementy DATA MINING Część III Seweryn Kowalski 2006 Algorytmy eksploracji danych Algorytm eksploracji danych jest dobrze zdefiniowaną procedurą, która na wejściu otrzymuje dane, a na wyjściu
Bardziej szczegółowoWstęp do sieci neuronowych laboratorium 01 Organizacja zajęć. Perceptron prosty
Wstęp do sieci neuronowych laboratorium 01 Organizacja zajęć. Perceptron prosty Jarosław Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2012-10-03 Projekt pn. Wzmocnienie potencjału
Bardziej szczegółowoWidzenie komputerowe (computer vision)
Widzenie komputerowe (computer vision) dr inż. Marcin Wilczewski 2018/2019 Organizacja zajęć Tematyka wykładu Cele Python jako narzędzie uczenia maszynowego i widzenia komputerowego. Binaryzacja i segmentacja
Bardziej szczegółowoStrefa pokrycia radiowego wokół stacji bazowych. Zasięg stacji bazowych Zazębianie się komórek
Problem zapożyczania kanałów z wykorzystaniem narzędzi optymalizacji Wprowadzenie Rozwiązanie problemu przydziału częstotliwości prowadzi do stanu, w którym każdej stacji bazowej przydzielono żądaną liczbę
Bardziej szczegółowoPrzygotowanie materiału uczącego dla OCR w oparciu o aplikację Wycinanki.
Przygotowanie materiału uczącego dla OCR w oparciu o aplikację Wycinanki. Zespół bibliotek cyfrowych PCSS 6 maja 2011 1 Cel aplikacji Aplikacja wspomaga przygotowanie poprawnego materiału uczącego dla
Bardziej szczegółowoUczenie się maszyn. Dariusz Banasiak. Katedra Informatyki Technicznej Wydział Elektroniki
Dariusz Banasiak Katedra Informatyki Technicznej Wydział Elektroniki Machine Learning (uczenie maszynowe, uczenie się maszyn, systemy uczące się) interdyscyplinarna nauka, której celem jest stworzenie
Bardziej szczegółowoOBLICZENIA EWOLUCYJNE
1 OBLICZENIA EWOLUCYJNE FITNESS F. START COMPUTATION FITNESS F. COMPUTATION INITIAL SUBGenration SENDING CHROM. TO COMPUTERS chromosome AND RECEIVING FITNESS F. VALUE fitness f. value wykład 7 FITNESS
Bardziej szczegółowoIndeksy w bazach danych. Motywacje. Techniki indeksowania w eksploracji danych. Plan prezentacji. Dotychczasowe prace badawcze skupiały się na
Techniki indeksowania w eksploracji danych Maciej Zakrzewicz Instytut Informatyki Politechnika Poznańska Plan prezentacji Zastosowania indeksów w systemach baz danych Wprowadzenie do metod eksploracji
Bardziej szczegółowoWYKŁAD 11 Uczenie maszynowe drzewa decyzyjne
WYKŁAD 11 Uczenie maszynowe drzewa decyzyjne Reprezentacja wiedzy w postaci drzew decyzyjnych entropia, przyrost informacji algorytmy ID3, C4.5 problem przeuczenia wyznaczanie reguł rzykładowe drzewo decyzyjne
Bardziej szczegółowoGenomika Porównawcza. Agnieszka Rakowska Instytut Informatyki i Matematyki Komputerowej Uniwersytet Jagiellooski
Genomika Porównawcza Agnieszka Rakowska Instytut Informatyki i Matematyki Komputerowej Uniwersytet Jagiellooski 1 Plan prezentacji 1. Rodzaje i budowa drzew filogenetycznych 2. Metody ukorzeniania drzewa
Bardziej szczegółowoAlgorytm grupowania danych typu kwantyzacji wektorów
Algorytm grupowania danych typu kwantyzacji wektorów Wstęp Definicja problemu: Typowe, problemem często spotykanym w zagadnieniach eksploracji danych (ang. data mining) jest zagadnienie grupowania danych
Bardziej szczegółowoMetody klasyfikacji danych - część 1 p.1/24
Metody klasyfikacji danych - część 1 Inteligentne Usługi Informacyjne Jerzy Dembski Metody klasyfikacji danych - część 1 p.1/24 Plan wykładu - Zadanie klasyfikacji danych - Przeglad problemów klasyfikacji
Bardziej szczegółowoZadania laboratoryjne i projektowe - wersja β
Zadania laboratoryjne i projektowe - wersja β 1 Laboratorium Dwa problemy do wyboru (jeden do realizacji). 1. Water Jug Problem, 2. Wieże Hanoi. Water Jug Problem Ograniczenia dla każdej z wersji: pojemniki
Bardziej szczegółowoPodejście memetyczne do problemu DCVRP - wstępne wyniki. Adam Żychowski
Podejście memetyczne do problemu DCVRP - wstępne wyniki Adam Żychowski Na podstawie prac X. S. Chen, L. Feng, Y. S. Ong A Self-Adaptive Memeplexes Robust Search Scheme for solving Stochastic Demands Vehicle
Bardziej szczegółowo