Ćwiczenie 6 Wspomagana mikrofalowo synteza organiczna 1. WSTĘP
|
|
- Marek Wawrzyniak
- 6 lat temu
- Przeglądów:
Transkrypt
1 Ćwiczenie 6 Wspomagana mikrofalowo synteza organiczna 1. WSTĘP Świadomość nieodwracalnych zmian w przyrodzie związanych z szeroko pojętym rozwojem cywilizacyjnym, postępujące tempo zanieczyszczania środowiska naturalnego, zmiany klimatu oraz wyczerpywanie się zasobów naturalnych związane z rozwojem przemysłu, nie tylko chemicznego, spowodowało zwrócenie uwagi na jakość odwiecznej relacji człowiek-natura. Początki filozofii zielonej chemii sięgają 1962 roku, kiedy to w USA zwrócono szczególną uwagę na problem środowiskowy. Pojęcie green chemistry po raz pierwszy zostało użyte w publikacji naukowej w 1990 roku, a w 1998 roku Anastas i Warner [1] usystematyzowali i opublikowali 12 zasad zielonej chemii, które wskazują na istotne założenia oraz metody realizacji zielonej idei. Zawierają one wytyczne dotyczące interdyscyplinarnego dążenia do oszczędnego i rozważnego gospodarowania surowcami chemicznymi i energetycznymi. Synteza organiczna wspomagana mikrofalowo stanowi znakomitą alternatywę do klasycznego ogrzewania, ponieważ niejednokrotnie skraca długotrwałe reakcje chemiczne, nawet do kilku sekund. Ponadto często umożliwia procesy, które w warunkach standardowych nie zachodzą. Energia mikrofalowa, która po raz pierwszy została zastosowana w 1946 roku do podgrzewania żywności, do chemii organicznej została wprowadzona w 1986 roku, kiedy Richard Gedye [1] oraz Raymond J. Giguere [2] równocześnie opublikowali pierwsze prace na temat przyspieszania reakcji chemicznych za pomocą ogrzewania mikrofalowego. Pierwsze eksperymenty były prowadzone w zamkniętych naczyniach reakcyjnych i nie zapewniały możliwości pomiaru temperatury i ciśnienia, co wielokrotnie powodowało gwałtowne eksplozje. Intensywny rozwój teorii i praktyki mikrofalowej techniki syntetycznej pozwolił wyeliminować zagrożenia, ponieważ rozpoczęto eksperymenty w warunkach bezrozpuszczalnikowych tzw. solvent-free lub drymedia [3], pojawiły się również nowoczesne reaktory mikrofalowe z funkcją kontroli parametrów reakcji. Wspomagana mikrofalowo synteza organiczna (MAS) wzbudziła ogromne zainteresowanie badaczy z całego świata jako metoda skutecznej syntezy nowych związków chemicznych, optymalizacji warunków reakcji oraz lepszego zrozumienia mechanizmów chemicznych. Mikrofale z powodzeniem są stosowane w licznych reakcjach organicznych, takich jak: acylowanie i alkilowanie, aromatyczna substytucja nukleofilowa, kondensacja i przegrupowania, cykloaddycja, estryfikacja, utlenianie i redukcja oraz w syntezie m.in. związków heterocyklicznych i polimerów [4]. Promieniowanie mikrofalowe jest częścią promieniowania elektromagnetycznego o częstości od 0,3 do 300 GHz, co odpowiada długości fali od 1 cm do 1 m i mieści się w zakresie pomiędzy podczerwienią a falami radiowymi.
2 Rysunek 1. Promieniowanie mikrofalowe w widmie elektromagnetycznym [5] Energia kwantu mikrofalowego jest zbyt niska by samodzielnie doprowadzić do zajścia reakcji chemicznej, powoduje jednak szybki wzrost temperatury substratów z wykorzystaniem tzw. mikrofalowego dielektrycznego ogrzewania, który zależy od zdolności reagentów do absorpcji energii mikrofalowej i przekształceniu jej w ciepło. Wyróżnia się dwa główne mechanizmy ogrzewania mikrofalowego: dipolarna polaryzacja (molekularne tarcie pomiędzy cząsteczkami posiadającymi moment dipolowy) przewodnictwo jonowe (zderzenia międzycząsteczkowe pod wpływem zmiennego pola elektrycznego). prócz głównych mechanizmów ogrzewania istnieją także specyficzne efektymikrofalowe [6]: superheating effect - przegrzanie rozpuszczalnika w warunkach ciśnienia atmosferycznego, volumetric heating - szybkie i równomierne ogrzanie całej objętości reakcyjnej, wall effect - odwrócenie gradientu temperatur w układzie reagenty-naczynie reakcyjne, selective heating - selektywne ogrzewanie reagentów o wysokiej absorpcji, molecular radiators - tworzenie mikroskopowych miejsc aktywnych w jednorodnej mieszaninie. Ekspozycja substancji, posiadającej moment dipolowy, na promieniowanie mikrofalowe o odpowiedniej częstotliwości powoduje, że dipole lub jony ulegają orientacji zgodnie z przyłożonym polem elektrycznym. późnienie fazowe, które powoduje rozproszenie energii dipoli w formie ciepła, powstaje, gdy cząsteczki nie nadążają za ustawieniem zewnętrznego pola elektrycznego [6,7]. Właściwości cieplne różnych substancji w warunkach promieniowania mikrofalowego zależą od ich właściwości dielektrycznych. Drugi sposób absorpcji promieniowania mikrofalowego dotyczy substancji występujących głównie w postaci jonów. Zmienne pole elektryczne wywołuje ruch wibracyjny jonów, zgodnie z
3 kierunkiem pola elektrycznego. Zderzenia jonów z napotkanymi cząsteczkami wywołują efekt cieplny, wzrastający ze stężeniem i ruchliwością jonów [4]. Syntezy organiczne wykorzystujące tradycyjne ogrzewanie polegają na przewodzeniu ciepła z zewnętrznego źródła i są zależne od przewodnictwa cieplnego materiałów wchodzących w skład naczynia reakcyjnego. Promieniowanie mikrofalowe ogrzewa wyłącznie mieszaninę reakcyjną w całej jej objętości, ponieważ cząsteczki substratów pochłaniają energię mikrofalową bezpośrednio. aczynia reakcyjne używane w tej technice są wykonane z materiałów transparentnych dla promieniowania mikrofalowego np. ze szkła borokrzemianowego, kwarcu lub teflonu [7,8]. 2. TECHIKI PRWADZEIE REAKCJI owoczesna synteza mikrofalowa wykorzystuje szereg technik prowadzenia reakcji: a) reakcje typu solvent-free czyste reagenty nieorganiczne podłoża transparentne dla promieniowania MW (Si2, Al23, glinki, zeolity) absorbujące promieniowanie MW (grafit) nieorganiczne domieszkowane (katalizatory, reagenty) b) kataliza przeniesienia międzyfazowego PTC c) heterogeniczna fazowa kataliza gazowa d) reakcje w roztworach organicznych warunki open-vessel warunki sealed-vessel e) reakcje w roztworach nieklasycznych woda jako rozpuszczalnik ciecze jonowe Wpływ promieniowania mikrofalowego na przebieg reakcji determinuje kilka czynników, jednym z nich jest środowisko reakcji. Zastosowanie rozpuszczalnika o dużej polarności spowoduje, że mikrofale będą pochłaniane głównie przez polarne cząsteczki rozpuszczalnika, w wyniku czego szybkość prowadzonej reakcji będzie zbliżona do prowadzonej przy klasycznym ogrzewaniu. atomiast zmniejszenie polarności rozpuszczalnika zwiększa efekt promieniowania, ponieważ niepolarne substancje absorbują w małym stopniu promieniowanie mikrofalowe, a prawie cała energia może być pochłonięta przez reagenty. Wyeliminowanie rozpuszczalnika pozwala uzyskać maksymalny efekt działania mikrofal [4].
4 Piśmiennictwo 1. R. Geyde, F. Smith, K. Westaway; Tetrahedron Lett., 27, 279 (1986). 2. R.J. Giguere, T.L. Bray, S.M. Dunkan; Tetrahedron Lett., 27, 4945 (1986). 3. R.S. Varma; Tetrahedron, 58, 1235 (1999). 4. M.J. Sawicka, J.A. Soroka, K.B. Soroka; Wiadomości chemiczne, 61,11 (2007) 5. P. Y. Bruice, rganic chemistry, 4th Ed., Prentice Hall, p. 497 (2010). 6. P. Lidström, J. Tierney, B. Wathey; Tetrahedron, 57, 9225 (2001). 7. C.. Kappe; Angew. Chem. Int. Ed., 43, 6250 (2004). 8. C.. Kappe, A. Stadler; Microwaves in rganic and Medicinal Chemistry, Wiley-WCH, Weinheim (2005). WYKAIE ĆWICZEIA Cel: zapoznanie się z koncepcjami racjonalnego projektowania i przeprowadzanie procesów chemicznych w sposób oszczędzający środowisko naturalne wykorzystanie promieniowania mikrofalowego w reakcjach -, C- lub -alkilowania porównanie warunków mikrofalowych i konwencjonalnych kontrola stopnia konwersji metodą TLC z wykorzystaniem wizualizacji lampą UV, par jodu oraz odczynnikiem Dragendorffa ĆWICZEIE 1. Reakcja -alkilowania (eteryfikacja). Synteza kwasów aryloksyoctowych z wykorzystaniem promieniowania mikrofalowego dczynniki: fenol (np. tymol, nipagina M, nipagina P, 1-naftol, 2-naftol) - 10 mmoli kwas chlorooctowy - 10 mmoli 50% ah 10% HCl chloroform:metanol 9:1
5 H CH Cl CH Do kolby płaskodennej (100 ml) odważyć 10 mmoli odpowiedniego fenolu (np.: tymolu (1,50 g), nipaginy M (1,52 g), nipaginy P (1,80 g)) oraz 10 mmoli (0,94 g) kwasu chlorooctowego. Całość dokładnie wymieszać. astępnie do otrzymanej mieszaniny wkroplić 20 mmoli (1,60 g) 50% roztworu ah. (opcjonalnie: z mieszaniny oddestylować niewielkie ilości wody z wykorzystaniem wyparki rotacyjnej). trzymaną pozostałość poddać działaniu promieniowania mikrofalowego przez 10 minut stosując moc 400 W. Po ochłodzeniu, zawartość kolby rozpuścić w minimalnej ilości wody, a uzyskany roztwór zakwasić 10% roztworem kwasu solnego do ph~3 wobec papierka wskaźnikowego. Wydzielony osad odsączyć na lejku Buchnera. trzymany i wysuszony osad krystalizować z etanolu. W celu kontroli przebiegu reakcji i czystości produktu, jako fazę rozwijającą zastosować układ chloroform-metanol 9:1. ĆWICZEIE 2. Reakcja -alkilowania związków heterocyklicznych z wykorzystaniem stałego podłoża (metoda solvent free) dczynniki: związek heterocykliczny (np. 2-metyloimidazol (0.4 g), benzimidazol (0.59 g), 3,5- dimetylopirazol (0.48 g), benzotriazol (0.66 g) - 5 mmoli bromek alkilowy (np. bromek butylu, 0.89 g) - 7,5 mmoli KH (1.12 g) 20 mmoli K2C3 (2.76 g) 20 mmoli, TBAB (bromek tetra n-butyloamoniowy) 0.50 mmola (0.16 g - koniec szpatułki) chlorek metylenu lub chloroform chloroform-metanol 9:1 Br - TBAB M=322,4g/mol
6 C 4 H 9 Br H CH 3 CH 3 W kolbie płaskodennej (100 ml) umieścić dobrze roztartą mieszaninę 20 mmoli bezwodnego węglanu potasu, 0,5 mmola bromku tetrabutyloamoniowego (TBAB) do której następnie dodać 5 mmoli związku heterocyklicznego z aktywnym wodorem (np.: 2-metyloimidazol) oraz 7,5 mmola bromku alkilowego, np. bromku butylu. a końcu dodać 20 mmoli utartego KH. Całość dokładnie wymieszać. Do erlenmayerki można włożyć lejek szklany. trzymaną mieszaninę poddać działaniu promieniowania mikrofalowego przez 5 minut stosując moc 230 W. (np. dla benzimidazolu zastosować 120W przez 2-3 min., dla 3,5-dimetylopirazolu zastosować 230W przez 8 min.). Po ochłodzeniu, zawartość kolby wyekstrahować dwukrotnie 15 ml chlorku metylenu lub chloroformu. Z połączonych wyciągów organicznych oddestylować rozpuszczalnik na wyparce rotacyjnej. trzymaną pozostałość zważyć i obliczyć wydajność reakcji. W celu kontroli przebiegu reakcji i czystości produktu, jako fazę rozwijającą zastosować układ chloroform-metanol 9:1. Płytkę wizualizujemy parami jodu a następnie odczynnikiem Dragendorffa. ĆWICZEIE 3. Reakcja C-alkilowania z wykorzystaniem stałego podłoża (metoda solvent free) dczynniki: acetyloaceton (0,50 g) (5 mmoli) bromek alkilowy - (np. bromek butylu, 0.89 g) - 7,5 mmoli K2C3 (2.76 g) 20 mmoli TBAB 0.50 mmola (0.16 g - koniec szpatułki) chlorek metylenu lub chloroform heksan-octan etylu 6:1 Br - TBAB M=322,4g/mol
7 C 4 H 9 Br W kolbie płaskodennej (100 ml) umieścić dobrze roztartą mieszaninę 20 mmoli bezwodnego węglanu potasu i 0,5 mmola bromku tetrabutyloamoniowego (TBAB), do której następnie dodać 5 mmoli acetyloacetonu oraz 6 mmoli bromku alkilowego (np. bromku butylu). Całość dokładnie wymieszać. trzymaną mieszaninę poddać działaniu promieniowania mikrofalowego przez 5 minut stosując moc 385W. Po ochłodzeniu, zawartość kolby wyekstrahować dwukrotnie eterem dietylowym. Z połączonych wyciągów organicznych oddestylować rozpuszczalnik na wyparce rotacyjnej. trzymaną pozostałość zważyć i obliczyć wydajność reakcji. W celu kontroli przebiegu reakcji i czystości produktu, jako fazę rozwijającą zastosować układ heksan-octan etylu 6:1. Płytkę wizualizujemy pod lampą UV..
Synteza eteru allilowo-cykloheksylowego w reakcji alkilowania cykloheksanolu bromkiem allilu w warunkach PTC.
Synteza eteru allilowo-cykloheksylowego w reakcji alkilowania cykloheksanolu bromkiem allilu w warunkach PTC. OH + Br NaOH aq. Bu 4 NHSO 4 O Zastosowanie produktu: półprodukt w syntezie organicznej, monomer.
Oranż β-naftolu; C 16 H 10 N 2 Na 2 O 4 S, M = 372,32 g/mol; proszek lub
Laboratorium Chemii rganicznej, Synteza oranżu β-naftolu, 1-5 Synteza oranżu β-naftolu Wydział Chemii UMCS w Lublinie 1. Właściwości fizyczne i chemiczne oranżu β-naftolu S 3 a ranż β-naftolu; C 16 10
AKADEMIA GÓRNICZO-HUTNICZA im. Stanisława Staszica w Krakowie OLIMPIADA O DIAMENTOWY INDEKS AGH 2017/18 CHEMIA - ETAP I
Związki manganu i manganometria AKADEMIA GÓRNICZO-HUTNICZA 1. Spośród podanych grup wybierz tą, w której wszystkie związki lub jony można oznaczyć metodą manganometryczną: Odp. C 2 O 4 2-, H 2 O 2, Sn
1 ekwiwalent 6 ekwiwalentów 0,62 ekwiwalentu
PREPARAT NR 31 Stechiometria reakcji Metanol Kwas siarkowy(vi) stężony OH MeOH, H OCH 3 2 SO 4 t. wrz., 3 godz. 1 ekwiwalent 6 ekwiwalentów 0,62 ekwiwalentu 2-METOKSYNAFTALEN Dane do obliczeń Związek molowa
Katedra Chemii Organicznej. Przemysłowe Syntezy Związków Organicznych Ćwiczenia Laboratoryjne 10 h (2 x5h) Dr hab.
Katedra Chemii Organicznej Przemysłowe Syntezy Związków Organicznych Ćwiczenia Laboratoryjne 10 h (2 x5h) Dr hab. Sławomir Makowiec GDAŃSK 2019 Preparaty wykonujemy w dwuosobowych zespołach, każdy zespół
KINETYKA INWERSJI SACHAROZY
Dorota Warmińska, Maciej Śmiechowski Katedra Chemii Fizycznej, Wydział Chemiczny, Politechnika Gdańska KINETYKA INWERSJI SACHAROZY Wstęp teoretyczny Kataliza kwasowo-zasadowa Kataliza kwasowo-zasadowa
Zakład Chemii Organicznej, Wydział Chemii UMCS Strona 1
PREPARAT NR 2 2,4,6-TRIBROMOANILINA NH 2 NH 2 Br Br Br 2 AcOH, 0 o C, 1 godz. Br Stechiometria reakcji Anilina 1 ekwiwalent 3.11 ekwiwalenta Dane do obliczeń Związek molowa (g/mol) Gęstość (g/ml) Anilina
Zakład Chemii Organicznej, Wydział Chemii UMCS Strona 1
PREPARAT NR 20 KWAS 2JODOBENZOESOWY NH 2 NaNO 2, HCl Woda, < 5 o C, 15 min N 2 Cl KI Woda, < 5 o C, potem 50 o C, 20 min I Stechiometria reakcji Kwas antranilowy Azotyn sodu Kwas solny stężony 1 ekwiwalent
Zakład Chemii Organicznej, Wydział Chemii UMCS Strona 1
PREPARAT NR 3 Et BENZILACETYLCTAN ETYLU PhCCl, NaH H 2 -heksan, 5-10 o C, 1 godz. Ph Et Stechiometria reakcji Acetylooctan etylu Chlorek benzoilu Wodorotlenek sodu 1 ekwiwalent 1,1 ekwiwalentu 1,66 ekwiwalentu
1 ekwiwalent 4 ekwiwalenty 5 ekwiwalentów
PREPARAT NR 9 NH 2 NH 2 HCOOH 100 o C, 1 godz. N N H BENZIMIDAZOL Stechiometria reakcji Kwas mrówkowy Amoniak (25% m/m w wodzie) 1 ekwiwalent 4 ekwiwalenty 5 ekwiwalentów Dane do obliczeń Związek molowa
Zakład Chemii Organicznej, Wydział Chemii UMCS Strona 1
PREPARAT NR 31 Stechiometria reakcji Metanol Kwas siarkowy(vi) stężony OH MeOH, H OCH 3 2 SO 4 t. wrz., 3 godz. 1 ekwiwalent 6 ekwiwalentów 0,62 ekwiwalentu 2-METOKSYNAFTALEN Dane do obliczeń Związek molowa
1 ekwiwalent 1 ekwiwalent
PREPARAT NR 1 1,1 -BINAFTYLO-2,2 -DIOL FeCl 3 *6H 2 O H 2 O, t. wrz. Stechiometria reakcji Chlorek żelaza(iii) sześciowodny 1 ekwiwalent 1 ekwiwalent Dane do obliczeń Związek molowa (g/mol) Gęstość (g/ml)
Zakład Chemii Organicznej, Wydział Chemii UMCS Strona 1
PREPARAT NR 24 BENZOESAN 2-NAFTYLU OH PhCOCl, NaOH H 2 O, t. pok., 2 godz. O O Stechiometria reakcji Chlorek benzoilu NaOH 1 ekwiwalent 1 ekwiwalent 1,05 ekwiwalenta Dane do obliczeń Związek molowa (g/mol)
Zakład Chemii Organicznej, Wydział Chemii UMCS Strona 1
PREPARAT NR 4 O O BENZAMID Cl NH 3 -H 2 O NH 2 5 o C, 1 godz. Stechiometria reakcji Chlorek kwasu benzoesowego Amoniak, wodny roztwór 1 ekwiwalent 4 ekwiwalenty Dane do obliczeń Związek molowa (g/mol)
OZNACZANIE ŻELAZA METODĄ SPEKTROFOTOMETRII UV/VIS
OZNACZANIE ŻELAZA METODĄ SPEKTROFOTOMETRII UV/VIS Zagadnienia teoretyczne. Spektrofotometria jest techniką instrumentalną, w której do celów analitycznych wykorzystuje się przejścia energetyczne zachodzące
SZYBKOŚĆ REAKCJI CHEMICZNYCH. RÓWNOWAGA CHEMICZNA
SZYBKOŚĆ REAKCJI CHEMICZNYCH. RÓWNOWAGA CHEMICZNA Zadania dla studentów ze skryptu,,obliczenia z chemii ogólnej Wydawnictwa Uniwersytetu Gdańskiego 1. Reakcja między substancjami A i B zachodzi według
Zakład Chemii Organicznej, Wydział Chemii UMCS Strona 1
PREPARAT NR 24 BENZOESAN 2-NAFTYLU OH PhCOCl, NaOH H 2 O, t. pok., 2 godz. O O Stechiometria reakcji Chlorek benzoilu NaOH 1 ekwiwalent 1 ekwiwalent 1,05 ekwiwalenta Dane do obliczeń Związek molowa (g/mol)
Zakład Chemii Organicznej, Wydział Chemii UMCS Strona 1
PREPARAT NR 5 Stechiometria reakcji Naftalen Kwas siarkowy stężony 1. H 2 SO 4 2. NaOH/NaCl 160-165 o C, 15 min 2-NAFTALENOSULFONIAN SODU 1 ekwiwalent 2,1 ekwiwalenta SO 3 Na Dane do obliczeń Związek molowa
KWAS 1,2-DIBROMO-2-FENYLOPROPIONOWY
PREPARAT NR 5 KWAS 1,2-DIBROMO-2-FENYLOPROPIONOWY Br COOH Br COOH 2 CHCl 3,
INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH: PROCESY ESTRYFIKACJI NA PRZYKŁADZIE OTRZYMYWANIA WYBRANYCH PLASTYFIKATORÓW
PLITECHNIKA ŚLĄSKA WYDZIAŁ CHEMICZNY KATEDRA TECHNLGII CHEMICZNEJ RGANICZNEJ I PETRCHEMII INSTRUKCJA D ĆWICZEŃ LABRATRYJNYCH: PRCESY ESTRYFIKACJI NA PRZYKŁADZIE TRZYMYWANIA WYBRANYCH PLASTYFIKATRÓW Laboratorium
Prof. dr hab. Stanisław Ignatowicz SGGW Katedra Entomologii Stosowanej
Saurus Prof. dr hab. Stanisław Ignatowicz SGGW Katedra Entomologii Stosowanej Mikrofale Mikrofaleto rodzaj promieniowania elektromagnetycznego o długości fali pomiędzy podczerwienią i falami ultrakrótkimi.
Spis treści. Wstęp... 9
Spis treści Wstęp... 9 1. Szkło i sprzęt laboratoryjny 1.1. Szkła laboratoryjne własności, skład chemiczny, podział, zastosowanie.. 11 1.2. Wybrane szkło laboratoryjne... 13 1.3. Szkło miarowe... 14 1.4.
Kolor i stan skupienia: czerwone ciało stałe. Analiza NMR: Zakład Chemii Organicznej, Wydział Chemii UMCS Strona 1
PREPARAT NR 22 HO OH ZnCl 2 (bezw.) HO O O FLUORESCEINA 180210 o C, 40 min COOH Stechiometria reakcji ZnCl 2 bezw. 1 ekwiwalent 2.5 ekwiwalenta 0.5 ekwiwalenta Dane do obliczeń Związek molowa (g/mol) Gęstość
N-BENZYLOWANIE FTALIMIDU W WARUNKACH BEZROZPUSZCZALNIKOWEJ KATALIZY MIĘDZYFAZOWEJ (PTC)
JLANTA JAŚKWSKA, PITR KWALSKI N-BENZYLWANIE FTALIMIDU W WARUNKACH BEZRZPUSZCZALNIKWEJ KATALIZY MIĘDZYFAZWEJ (PTC) N-BENZYLATIN F PHTHALIMIDE USING PHASE TRANSFER CATALYSTS UNDER SLVENT-FREE CNDITINS Streszczenie
1 ekwiwalent 1,45 ekwiwalenta 0,6 ekwiwalenta
PREPARAT NR 1 O H 1. CH 3 COOK 2. woda, HCl KWAS trans-cynamonowy COOH t. wrz., 4 godz. Stechiometria reakcji Aldehyd benzoesowy 1 ekwiwalent 1,45 ekwiwalenta 0,6 ekwiwalenta Dane do obliczeń Związek molowa
XXIV KONKURS CHEMICZNY DLA GIMNAZJALISTÓW ROK SZKOLNY 2016/2017
IMIĘ I NAZWISKO PUNKTACJA SZKOŁA KLASA NAZWISKO NAUCZYCIELA CHEMII I LICEUM OGÓLNOKSZTAŁCĄCE Inowrocław 2 maja 217 Im. Jana Kasprowicza INOWROCŁAW XXIV KONKURS CHEMICZNY DLA GIMNAZJALISTÓW ROK SZKOLNY
Współczesne metody chromatograficzne: Chromatografia cienkowarstwowa
Ćwiczenie 2: Chromatografia dwuwymiarowa (TLC 2D) 1. Celem ćwiczenia jest zaobserwowanie rozdziału mieszaniny aminokwasów w dwóch układach rozwijających. Aminokwasy: Asp, Cys, His, Leu, Ala, Val (1% roztwory
a) 1 mol b) 0,5 mola c) 1,7 mola d) potrzebna jest znajomość objętości zbiornika, aby można było przeprowadzić obliczenia
1. Oblicz wartość stałej równowagi reakcji: 2HI H 2 + I 2 w temperaturze 600K, jeśli wiesz, że stężenia reagentów w stanie równowagi wynosiły: [HI]=0,2 mol/dm 3 ; [H 2 ]=0,02 mol/dm 3 ; [I 2 ]=0,024 mol/dm
Zakład Chemii Organicznej, Wydział Chemii UMCS Strona 1
PREPARAT NR 23 ALDEHYD 2-HYDROKSY-1-NAFTOESOWY O H OH CHCl 3, NaOH Etanol/Woda, 70-80 o C, 1 godz. OH Stechiometria reakcji 2-Naftol Chloroform NaOH 1 ekwiwalent 1,5 ekwiwalenta 7,5 ekwiwalenta Dane do
PRZYKŁADOWE ZADANIA ALKOHOLE I FENOLE
PRZYKŁADOWE ZADANIA ALKOHOLE I FENOLE INFORMACJA DO ZADAŃ 864 865 Poniżej przedstawiono cykl reakcji zachodzących z udziałem związków organicznych. 1 2 cykloheksen cykloheksan chlorocykloheksan Zadanie
Zastosowanie metod dielektrycznych do badania właściwości żywności
Zastosowanie metod dielektrycznych do badania właściwości żywności Ze względu na właściwości elektryczne materiały możemy podzielić na: Przewodniki (dobrze przewodzące prąd elektryczny) Półprzewodniki
Zagadnienia z chemii na egzamin wstępny kierunek Technik Farmaceutyczny Szkoła Policealna im. J. Romanowskiej
Zagadnienia z chemii na egzamin wstępny kierunek Technik Farmaceutyczny Szkoła Policealna im. J. Romanowskiej 1) Podstawowe prawa i pojęcia chemiczne 2) Roztwory (zadania rachunkowe zbiór zadań Pazdro
Węglowodory poziom podstawowy
Węglowodory poziom podstawowy Zadanie 1. (2 pkt) Źródło: CKE 2010 (PP), zad. 19. W wyniku całkowitego spalenia 1 mola cząsteczek węglowodoru X powstały 2 mole cząsteczek wody i 3 mole cząsteczek tlenku
Zadanie 1. [ 3 pkt.] Uzupełnij zdania, wpisując brakującą informację z odpowiednimi jednostkami.
Zadanie 1. [ 3 pkt.] Uzupełnij zdania, wpisując brakującą informację z odpowiednimi jednostkami. I. Gęstość propanu w warunkach normalnych wynosi II. Jeżeli stężenie procentowe nasyconego roztworu pewnej
Kuratorium Oświaty w Lublinie
Kuratorium Oświaty w Lublinie KOD UCZNIA ZESTAW ZADAŃ KONKURSOWYCH Z CHEMII DLA UCZNIÓW GIMNAZJÓW ROK SZKOLNY 2015/2016 ETAP WOJEWÓDZKI Instrukcja dla ucznia 1. Zestaw konkursowy zawiera 12 zadań. 2. Przed
Wykład z Chemii Ogólnej i Nieorganicznej
Wykład z Chemii Ogólnej i Nieorganicznej Część 5 ELEMENTY STATYKI CHEMICZNEJ Katedra i Zakład Chemii Fizycznej Collegium Medicum w Bydgoszczy Uniwersytet Mikołaja Kopernika w Toruniu Prof. dr hab. n.chem.
Opracowała: mgr inż. Ewelina Nowak
Materiały dydaktyczne na zajęcia wyrównawcze z chemii dla studentów pierwszego roku kierunku zamawianego Inżynieria Środowiska w ramach projektu Era inżyniera pewna lokata na przyszłość Opracowała: mgr
ROZTWORY. Mieszaniny heterogeniczne homogeniczne Roztwory - jednorodne mieszaniny dwóch lub wi cej składników gazowe ciekłe stałe
ROZTWORY Mieszaniny heterogeniczne homogeniczne Roztwory - jednorodne mieszaniny dwóch lub wi cej składników gazowe ciekłe stałe roztwór nienasycony - roztwór, w którym st enie substancji rozpuszczonej
Główne zagadnienia: - mol, stechiometria reakcji, pisanie równań reakcji w sposób jonowy - stężenia, przygotowywanie roztworów - ph - reakcje redoks
Główne zagadnienia: - mol, stechiometria reakcji, pisanie równań reakcji w sposób jonowy - stężenia, przygotowywanie roztworów - ph - reakcje redoks 1. Która z próbek o takich samych masach zawiera najwięcej
Zakład Chemii Organicznej, Wydział Chemii UMCS Strona 1
PREPARAT NR 26 NH 2 I2, NaHCO 3 NH 2 4-JODOANILINA Woda, 12-15 o C, 30 min I Stechiometria reakcji Jod Wodorowęglan sodu 1 ekwiwalent 0,85 ekwiwalentu 1,5 ekwiwalentu Dane do obliczeń Związek molowa (g/mol)
1,2,3,4,6-PENTA-O-ACETYLO- -D-GLUKOPIRANOZA
1,2,3,4,6-PENTA--ACETYL- -D-GLUKPIRANZA Cel zadania. Synteza pentaoctanu -D-glukozy jako krystalicznej pochodnej monosacharydu. znaczanie skręcalności właściwej. Kinetyczna i termodynamiczna kontrola reakcji.
1. Określ, w którą stronę przesunie się równowaga reakcji syntezy pary wodnej z pierwiastków przy zwiększeniu objętości zbiornika reakcyjnego:
1. Określ, w którą stronę przesunie się równowaga reakcji syntezy pary wodnej z pierwiastków przy zwiększeniu objętości zbiornika reakcyjnego: 2. Określ w którą stronę przesunie się równowaga reakcji rozkładu
1 ekwiwalent 0,85 ekwiwalentu 1,5 ekwiwalentu
PREPARAT NR 26 NH 2 I2, NaHCO 3 NH 2 4-JODOANILINA Woda, 12-15 o C, 30 min I Stechiometria reakcji Jod Wodorowęglan sodu 1 ekwiwalent 0,85 ekwiwalentu 1,5 ekwiwalentu Dane do obliczeń Związek molowa (g/mol)
Ćwiczenie 5 Izolacja tłuszczów z surowców naturalnych
Ćwiczenie 5 Izolacja tłuszczów z surowców naturalnych Zagadnienia teoretyczne Lipidy podział, budowa, charakterystyka, zastosowanie w farmacji (przykłady) Ekstrakcja ciągła Kwasy tłuszczowe - podział,
Kinetyka chemiczna jest działem fizykochemii zajmującym się szybkością i mechanizmem reakcji chemicznych w różnych warunkach. a RT.
Ćwiczenie 12, 13. Kinetyka chemiczna. Kinetyka chemiczna jest działem fizykochemii zajmującym się szybkością i mechanizmem reakcji chemicznych w różnych warunkach. Szybkość reakcji chemicznej jest związana
KATALITYCZNE OZNACZANIE ŚLADÓW MIEDZI
6 KATALITYCZNE OZNACZANIE ŚLADÓW MIEDZI CEL ĆWICZENIA Zapoznanie studenta z zagadnieniami katalizy homogenicznej i wykorzystanie reakcji tego typu do oznaczania śladowych ilości jonów Cu 2+. Zakres obowiązującego
Zakład Chemii Organicznej, Wydział Chemii UMCS Strona 1
PREPARAT NR 25 Stechiometria reakcji Bromek potasowy Kwas siarkowy 96% OH NaBr, H 2 SO 4 H 2 O, t. wrz., 1 godz. 1 ekwiwalent 1,2 ekwiwalenta 2,4 ekwiwalenta 1-BROMOBUTAN Br Związek molowa (g/mol) Gęstość
1 ekwiwalent 2 ekwiwalenty 2 krople
PREPARAT NR 5 COOH OH H 2 SO 4 COOH O ASPIRYNA 50-60 o C, 30 min. O Stechiometria reakcji Kwas salicylowy bezwodny Bezwodnik kwasu octowego Kwas siarkowy stęż. 1 ekwiwalent 2 ekwiwalenty 2 krople Dane
LABORATORIUM Z KATALIZY HOMOGENICZNEJ I HETEROGENICZNEJ WYZNACZANIE STAŁEJ SZYBKOŚCI REAKCJI UTLENIANIA POLITECHNIKA ŚLĄSKA WYDZIAŁ CHEMICZNY
POLITECHNIKA ŚLĄSKA WYDZIAŁ CHEMICZNY KATEDRA FIZYKOCHEMII I TECHNOLOGII POLIMERÓW WYZNACZANIE STAŁEJ SZYBKOŚCI REAKCJI UTLENIANIA JONÓW TIOSIARCZANOWYCH Miejsce ćwiczenia: Zakład Chemii Fizycznej, sala
1 ekwiwalent 1 ekwiwalent
PREPARAT NR 32 4-[BENZYLIDENOAMINO]FENOL HO NH 2 PhCHO Etanol, t. wrz., 1,5 godz. N HO Stechiometria reakcji p-aminofenol Aldehyd benzoesowy 1 ekwiwalent 1 ekwiwalent Dane do obliczeń Związek molowa (g/mol)
... imię i nazwisko,nazwa szkoły, miasto
Zadanie 1. (3 pkt) Aspirynę czyli kwas acetylosalicylowy można otrzymać w reakcji kwasu salicylowego z bezwodnikiem kwasu etanowego (octowego). a. Zapisz równanie reakcji, o której mowa w informacji wstępnej
Zakład Chemii Organicznej, Wydział Chemii UMCS Strona 1
PREPARAT NR 13 4-METYLOACETOFENON O (CH 3 CO) 2 O, AlCl 3 t.pok. - 100 o C, 1 h Stechiometria reakcji Chlorek glinu bezwodny Bezwodnik octowy 1 ekwiwalent 0,43 ekwiwalenta 0,2 ekwiwalenta Dane do obliczeń
) Sposób otrzymywania kwasu 2, 4-di-/1, 1-dimetylopropylo/fenoksyoctowego
RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 162805 (13) B1 (2 1) Numer zgłoszenia: 286926 Urząd Patentowy (22) Data zgłoszenia: 17. 09. 1990 Rzeczypospolitej Polskiej (51) IntCl5: C07C 59/70
PL B1. POLITECHNIKA POZNAŃSKA, Poznań, PL BUP 24/09. JULIUSZ PERNAK, Poznań, PL OLGA SAMORZEWSKA, Koło, PL MARIUSZ KOT, Wolin, PL
PL 212157 B1 RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 212157 (13) B1 Urząd Patentowy Rzeczypospolitej Polskiej (21) Numer zgłoszenia: 385143 (22) Data zgłoszenia: 09.05.2008 (51) Int.Cl.
(12) OPIS PATENTOWY (19) PL (11) (13) B1
RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 162013 (13) B1 (21) Numer zgłoszenia: 28 3 8 2 5 (51) IntCl5: C 07D 499/76 Urząd Patentowy Rzeczypospolitej Polskiej (22) Data zgłoszenia: 16.02.1990
1. Zaproponuj doświadczenie pozwalające oszacować szybkość reakcji hydrolizy octanu etylu w środowisku obojętnym
1. Zaproponuj doświadczenie pozwalające oszacować szybkość reakcji hydrolizy octanu etylu w środowisku obojętnym 2. W pewnej chwili szybkość powstawania produktu C w reakcji: 2A + B 4C wynosiła 6 [mol/dm
Ćwiczenie 1. Badanie wypierania wodoru z wody za pomocą metali
VII. Reakcje utlenienia i redukcji Zagadnienia Szereg napięciowy metali Przewidywanie przebiegu reakcji w oparciu o szereg napięciowy Stopnie utlenienie Utleniacz, reduktor, utlenianie, redukcja Reakcje
Kolokwium z SUBSTYTUCJI NUKLEOFILOWEJI, ELIMINACJI, ADDYCJI Autorzy: A. Białońska, M. Kijewska
Kolokwium z SUBSTYTUCJI NUKLEFILWEJI, ELIMINACJI, ADDYCJI Autorzy: A. Białońska, M. Kijewska Wersja A czas: 45 minut Imię i nazwisko Kierunek studiów Nazwisko prowadzącego Data Skala ocen: ndst 0 20, dst
a. Dobierz współczynniki w powyższym schemacie tak, aby stał się równaniem reakcji chemicznej.
Zadanie 1. Nitrogliceryna (C 3 H 5 N 3 O 9 ) jest środkiem wybuchowym. Jej rozkład można opisać następującym schematem: C 3 H 5 N 3 O 9 (c) N 2 (g) + CO 2 (g) + H 2 O (g) + O 2 (g) H rozkładu = - 385 kj/mol
OZNACZANIE ZAWARTOŚCI MANGANU W GLEBIE
OZNACZANIE ZAWARTOŚCI MANGANU W GLEBIE WPROWADZENIE Przyswajalność pierwiastków przez rośliny zależy od procesów zachodzących między fazą stałą i ciekłą gleby oraz korzeniami roślin. Pod względem stopnia
WOJEWÓDZKI KONKURS CHEMICZNY
WOJEWÓDZKI KONKURS CHEMICZNY DLA UCZNIÓW GIMNAZJUM W ROKU SZKOLNYM 2012/2013 STOPIEŃ WOJEWÓDZKI KOD UCZNIA. INSTRUKCJA DLA UCZNIA Czas trwania konkursu 90 minut. 1.Przeczytaj uważnie instrukcje i postaraj
Ćwiczenie 8 Wyznaczanie stałej szybkości reakcji utleniania jonów tiosiarczanowych
CHEMI FIZYCZN Ćwiczenie 8 Wyznaczanie stałej szybkości reakcji utleniania jonów tiosiarczanowych W ćwiczeniu przeprowadzana jest reakcja utleniania jonów tiosiarczanowych za pomocą jonów żelaza(iii). Przebieg
Kinetyka reakcji chemicznych. Dr Mariola Samsonowicz
Kinetyka reakcji chemicznych Dr Mariola Samsonowicz 1 Czym zajmuje się kinetyka chemiczna? Badaniem szybkości reakcji chemicznych poprzez analizę eksperymentalną i teoretyczną. Zdefiniowanie równania kinetycznego
Kuratorium Oświaty w Lublinie
Kuratorium Oświaty w Lublinie KOD UCZNIA ZESTAW ZADAŃ KONKURSOWYCH Z CHEMII DLA UCZNIÓW GIMNAZJÓW ROK SZKOLNY 2014/2015 ETAP WOJEWÓDZKI Instrukcja dla ucznia 1. Zestaw konkursowy zawiera 11 zadań. 2. Przed
1 ekwiwalent 2.5 ekwiwalenta 0.5 ekwiwalenta
PREPARAT NR 10 HO OH ZnCl 2 (bezw.) HO O O FLUORESCEINA 180-210 o C, 40 min COOH Stechiometria reakcji ZnCl 2 bezw. 1 ekwiwalent 2.5 ekwiwalenta 0.5 ekwiwalenta Dane do obliczeń Związek molowa (g/mol)
EGZAMIN MATURALNY Z CHEMII
KOD ZDAJĄCEGO WPISUJE ZDAJĄCY PO OTRZYMANIU ARKUSZA WPISAĆ PO ROZKODOWANIU PRACY IMIĘ NAZWISKO EGZAMIN MATURALNY Z CHEMII ARKUSZ I MAJ - CZERWIEC ROK 2002 CHEMIA Arkusz egzaminacyjny I Uzyskane punkty
Nazwy pierwiastków: ...
Zadanie 1. [ 3 pkt.] Na podstawie podanych informacji ustal nazwy pierwiastków X, Y, Z i zapisz je we wskazanych miejscach. I. Atom pierwiastka X w reakcjach chemicznych może tworzyć jon zawierający 20
X Konkurs Chemii Nieorganicznej i Ogólnej rok szkolny 2011/12
ŁÓDZKIE CENTRUM DOSKONALENIA NAUCZYCIELI I KSZTAŁCENIA PRAKTYCZNEGO X Konkurs Chemii Nieorganicznej i Ogólnej rok szkolny 2011/12 Imię i nazwisko Szkoła Klasa Nauczyciel Uzyskane punkty Zadanie 1. (10
Zadanie 2. [2 pkt.] Podaj symbole dwóch kationów i dwóch anionów, dobierając wszystkie jony tak, aby zawierały taką samą liczbę elektronów.
2 Zadanie 1. [1 pkt] Pewien pierwiastek X tworzy cząsteczki X 2. Stwierdzono, że cząsteczki te mogą mieć różne masy cząsteczkowe. Wyjaśnij, dlaczego cząsteczki o tym samym wzorze mogą mieć różne masy cząsteczkowe.
Zakład Chemii Organicznej, Wydział Chemii UMCS Strona 1
PREPARAT NR 1 O H 2 SO 4 COOH + HO t. wrz., 1 godz. O OCTAN IZOAMYLU Stechiometria reakcji Kwas octowy lodowaty Alkohol izoamylowy Kwas siarkowy 1.5 ekwiwalenta 1 ekwiwalentów 0,01 ekwiwalenta Dane do
relacje ilościowe ( masowe,objętościowe i molowe ) dotyczące połączeń 1. pierwiastków w związkach chemicznych 2. związków chemicznych w reakcjach
1 STECHIOMETRIA INTERPRETACJA ILOŚCIOWA ZJAWISK CHEMICZNYCH relacje ilościowe ( masowe,objętościowe i molowe ) dotyczące połączeń 1. pierwiastków w związkach chemicznych 2. związków chemicznych w reakcjach
Uniwersytet Śląski Wydział Matematyki, Fizyki i Chemii Instytut Chemii KATALIZA. Laboratorium. część 1 SYNTEZA KATALIZATORÓW
Uniwersytet Śląski Wydział Matematyki, Fizyki i Chemii Instytut Chemii KATALIZA Laboratorium część 1 SYNTEZA KATALIZATORÓW Opracowali: Stanisław Krompiec, Hanna Ignasiak, Michał Krompiec SPIS PREPARATÓW
TEST SPRAWDZAJĄCY Z CHEMII
TEST SPRAWDZAJĄCY Z CHEMII Test przeznaczony jest dla uczniów szkół średnich. Zadania zawarte w teście obejmują obszerny zakres wiadomości z chemii, które ujęte są w podstawach programowych. Większa część
Recykling surowcowy odpadowego PET (politereftalanu etylenu)
Laboratorium: Powstawanie i utylizacja zanieczyszczeń i odpadów Makrokierunek Zarządzanie Środowiskiem INSTRUKCJA DO ĆWICZENIA 24 Recykling surowcowy odpadowego PET (politereftalanu etylenu) 1 I. Cel ćwiczenia
ROZPORZĄDZENIE MINISTRA ŚRODOWISKA 1)
ROZPORZĄDZENIE MINISTRA ŚRODOWISKA 1) z dnia 6 listopada 2002 r. w sprawie metodyk referencyjnych badania stopnia biodegradacji substancji powierzchniowoczynnych zawartych w produktach, których stosowanie
Wojewódzki Konkurs Przedmiotowy z Chemii dla uczniów gimnazjów województwa śląskiego w roku szkolnym 2012/2013
Wojewódzki Konkurs Przedmiotowy z Chemii dla uczniów gimnazjów województwa śląskiego w roku szkolnym 2012/2013 KOD UCZNIA Etap: Data: Czas pracy: wojewódzki 13 marca 2013 r. 90 minut Informacje dla ucznia
Ćwiczenie 6 Zastosowanie destylacji z parą wodną oraz ekstrakcji ciecz-ciecz do izolacji eugenolu z goździków Wstęp
Ćwiczenie 6 Zastosowanie destylacji z parą wodną oraz ekstrakcji ciecz-ciecz do izolacji eugenolu z goździków Wstęp Celem ćwiczenia jest zapoznanie się z destylacją z parą wodną oraz ekstrakcją w układzie
8. MANGANOMETRIA. 8. Manganometria
8. MANGANOMETRIA 5 8. Manganometria 8.1. Oblicz ile gramów KMnO 4 zawiera 5 dm 3 roztworu o stężeniu 0,0285 mol dm 3. Odp. 22,5207 g 8.2. W jakiej objętości 0,0205 molowego roztworu KMnO 4 znajduje się
Wpływ ilości modyfikatora na współczynnik retencji w technice wysokosprawnej chromatografii cieczowej
Wpływ ilości modyfikatora na współczynnik retencji w technice wysokosprawnej chromatografii cieczowej WPROWADZENIE Wysokosprawna chromatografia cieczowa (HPLC) jest uniwersalną techniką analityczną, stosowaną
PL B1. Kwasy α-hydroksymetylofosfonowe pochodne 2-azanorbornanu i sposób ich wytwarzania. POLITECHNIKA WROCŁAWSKA, Wrocław, PL
PL 223370 B1 RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 223370 (13) B1 (21) Numer zgłoszenia: 407598 (51) Int.Cl. C07D 471/08 (2006.01) Urząd Patentowy Rzeczypospolitej Polskiej (22) Data zgłoszenia:
ĆWICZENIE 2. Usuwanie chromu (VI) z zastosowaniem wymieniaczy jonowych
ĆWICZENIE 2 Usuwanie chromu (VI) z zastosowaniem wymieniaczy jonowych Część doświadczalna 1. Metody jonowymienne Do usuwania chromu (VI) można stosować między innymi wymieniacze jonowe. W wyniku przepuszczania
I KSZTAŁCENIA PRAKTYCZNEGO. Imię i nazwisko Szkoła Klasa Nauczyciel Uzyskane punkty
ŁÓDZKIE CENTRUM DOSKONALENIA NAUCZYCIELI I KSZTAŁCENIA PRAKTYCZNEGO XV Konkurs Chemii Organicznej rok szkolny 2011/12 Imię i nazwisko Szkoła Klasa Nauczyciel Uzyskane punkty Zadanie 1 (9 pkt) Ciekłą mieszaninę,
CHEMIA ŚRODKÓW BIOAKTYWNYCH I KOSMETYKÓW PRACOWNIA CHEMII ANALITYCZNEJ. Ćwiczenie 7
CHEMIA ŚRODKÓW BIOAKTYWNYCH I KOSMETYKÓW PRACOWNIA CHEMII ANALITYCZNEJ Ćwiczenie 7 Wykorzystanie metod jodometrycznych do miedzi (II) oraz substancji biologicznie aktywnych kwas askorbinowy, woda utleniona.
Chemia Organiczna Syntezy
Chemia rganiczna Syntezy Warsztaty dla uczestników Forum Młodych Chemików Gdańsk 2016 Dr hab. Sławomir Makowiec Mgr inż. Ewelina Najada-Mocarska Mgr inż. Anna Zakaszewska Wydział Chemiczny Katedra Chemii
Mg I. I Mg. Nie można ich jednak otrzymać ze związków, które posiadają grupy chlorowcowe w tak zwanym ustawieniu wicynalnym.
nformacje do zadań kwalifikacyjnych na "Analizę retrosyntetyczną" Urszula Chrośniak, Marcin Goławski Właściwe zadania znajdują się na stronach 9.-10. Strony 1.-8. zawieraja niezbędne informacje wstępne.
Powstawanie żelazianu(vi) sodu przebiega zgodnie z równaniem: Ponieważ termiczny rozkład kwasu borowego(iii) zachodzi zgodnie z równaniem:
Zad. 1 Ponieważ reakcja jest egzoenergetyczna (ujemne ciepło reakcji) to wzrost temperatury spowoduje przesunięcie równowagi w lewo, zatem mieszanina przyjmie intensywniejszą barwę. Układ będzie przeciwdziałał
Zadanie: 2 (4 pkt) Napisz, uzgodnij i opisz równania reakcji, które zaszły w probówkach:
Zadanie: 1 (1 pkt) Aby otrzymać ester o wzorze CH 3 CH 2 COOCH 3 należy jako substratów użyć: a) Kwasu etanowego i metanolu b) Kwasu etanowego i etanolu c) Kwasu metanowego i etanolu d) Kwasu propanowego
WOJEWÓDZKI KONKURS PRZEDMIOTOWY Z CHEMII DLA UCZNIÓW GIMNAZJÓW - rok szkolny 2016/2017 eliminacje wojewódzkie
kod ŁÓDZKIE CENTRUM DOSKONALENIA NAUCZYCIELI I KSZTAŁCENIA PRAKTYCZNEGO Uzyskane punkty.. WOJEWÓDZKI KONKURS PRZEDMIOTOWY Z CHEMII DLA UCZNIÓW GIMNAZJÓW - rok szkolny 2016/2017 eliminacje wojewódzkie Zadanie
Wpływ temperatury na szybkość reakcji chemicznej.
1 Wpływ temperatury na szybkość reakcji chemicznej. Czas trwania zajęć: 45 minut Pojęcia kluczowe: - szybkość reakcji chemicznej, - temperatura, - zderzenia cząsteczek, - energia cząsteczek. Hipoteza sformułowana
PL B1. POLITECHNIKA WROCŁAWSKA, Wrocław, PL BUP 05/12. JOANNA FEDER-KUBIS, Wrocław, PL ADAM SOKOŁOWSKI, Wrocław, PL
PL 214111 B1 RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 214111 (13) B1 (21) Numer zgłoszenia: 395999 (51) Int.Cl. C07D 233/60 (2006.01) C07C 31/135 (2006.01) Urząd Patentowy Rzeczypospolitej
Sprawdzian 1. CHEMIA. Przed próbną maturą (poziom rozszerzony) Czas pracy: 90 minut Maksymalna liczba punktów: 30. Imię i nazwisko ...
CHEMIA Przed próbną maturą 2017 Sprawdzian 1. (poziom rozszerzony) Czas pracy: 90 minut Maksymalna liczba punktów: 30 Imię i nazwisko... Liczba punktów Procent 2 Zadanie 1. Chlor i brom rozpuszczają się
Zadanie 2. (2 pkt) Roztwór kwasu solnego o ph = 5 rozcieńczono 1000 krotnie wodą. Oblicz ph roztworu po rozcieńczeniu.
Zadanie 1. (2 pkt) Oblicz, z jakiej objętości powietrza odmierzonego w temperaturze 285K i pod ciśnieniem 1029 hpa można usunąć tlen i azot dysponując 14 g magnezu. Magnez w tych warunkach tworzy tlenek
Woda. Najpospolitsza czy najbardziej niezwykła substancja Świata?
Woda Najpospolitsza czy najbardziej niezwykła substancja Świata? Cel wykładu Odpowiedź na pytanie zawarte w tytule A także próby odpowiedzi na pytania typu: Dlaczego woda jest mokra a lód śliski? Dlaczego
O MATURZE Z CHEMII ANALIZA TRUDNYCH DLA ZDAJĄCYCH PROBLEMÓW
O MATURZE Z CHEMII ANALIZA TRUDNYCH DLA ZDAJĄCYCH PROBLEMÓW Jolanta Baldy Politechnika Wrocławska, 6 listopada 2015 r. Matura 2015 z chemii w liczbach Średni wynik procentowy Województwo dolnośląskie Województwo
Estry. 1. Cele lekcji. 2. Metoda i forma pracy. 3. Środki dydaktyczne. a) Wiadomości. b) Umiejętności
Estry 1. Cele lekcji a) Wiadomości Uczeń: wie, jak zbudowane są cząsteczki estrów, wie, jakie jest zastosowanie estrów, wie, jakie są właściwości fizyczne octanu etylu zna pojęcia: stan równowagi dynamicznej,
Kierunek i poziom studiów: chemia poziom pierwszy Sylabus modułu: Podstawy Chemii B 0310-CH-S1-010
Uniwersytet Śląski w Katowicach str. 1 Kierunek i poziom studiów: chemia poziom pierwszy Sylabus modułu: Podstawy Chemii B 0310-CH-S1-010 1. Informacje ogólne koordynator modułu Prof. dr hab. Teresa Kowalska
XXV KONKURS CHEMICZNY DLA GIMNAZJALISTÓW
IMIĘ I NZWISKO PUNKTCJ SZKOŁ KLS NZWISKO NUCZYCIEL CHEMII I LICEUM OGÓLNOKSZTŁCĄCE Inowrocław 12 maja 2018 Im. Jana Kasprowicza INOWROCŁW XXV KONKURS CHEMICZNY DL GIMNZJLISTÓW ROK SZKOLNY 2017/2018 ZDNIE
prof. dr hab. Małgorzata Jóźwiak
Czy równowaga w przyrodzie i w chemii jest korzystna? prof. dr hab. Małgorzata Jóźwiak 1 Pojęcie równowagi łańcuch pokarmowy równowagi fazowe równowaga ciało stałe - ciecz równowaga ciecz - gaz równowaga
Kuratorium Oświaty w Lublinie ZESTAW ZADAŃ KONKURSOWYCH Z CHEMII DLA UCZNIÓW GIMNAZJUM ROK SZKOLNY 2016/2017 ETAP TRZECI
Kuratorium Oświaty w Lublinie.. Imię i nazwisko ucznia Pełna nazwa szkoły Liczba punktów ZESTAW ZADAŃ KONKURSOWYCH Z CHEMII DLA UCZNIÓW GIMNAZJUM ROK SZKOLNY 2016/2017 ETAP TRZECI Instrukcja dla ucznia
RÓŻNE TECHNIKI I METODY SYNTEZY. Reakcje wieloskładnikowe
RÓŻNE TECHNIKI I METDY SYNTEZY Reakcje wieloskładnikowe 1 MCR versus PR MCR multi component reaction A + B + C D + C E Reakcje zachodzące kolejno z co najmniej trzema składnikami znajdującymi się jednocześnie