MODELOWANIE RZECZYWISTOŚCI
|
|
- Ksawery Krupa
- 6 lat temu
- Przeglądów:
Transkrypt
1 MODELOWANIE RZECZYWISTOŚCI Daniel Wójcik Instytut Biologii Doświadczalnej PAN tel
2 Podręcznik Iwo Białynicki-Birula Iwona Białynicka-Birula ISBN: Data wydania: 6 maja 2002 wkrótce drugie wydanie, rozszerzone
3 Rzut monetą Załóżmy, że moneta jest symetryczna. Wtedy prawdopodobieństwo wyrzucenia orła p o i reszki p r jest takie samo. Przyjęto umowę, że suma prawdopodobieństw wynosi 1. Zatem p o =p r =1/2
4 Co to jest prawdopodobieństwo Prawdopodobieństwo: liczba z przedziału od 0 do 1, przyporządkowana zdarzeniu przypadkowemu. Liczba ta jest miarą szansy na to, że dane zdarzenie zajdzie.
5 Jak ustalić prawdopodobieństwo? na podstawie rozważań o symetrii na podstawie doświadczeń definicja częstotliwościowa von Misesa: prawdopodobieństwo p A zajścia zdarzenia A określamy jako granicę N A p A =lim N N N A liczba zdarzeń A podczas przeprowadzenia N prób
6 Symetryczne rozkłady prawdopodobieństwa rzut monetą rzut kostką wyciągnięcie karty z potasowanej talii
7 Weryfikacja doświadczalna teorii Doświadczenia Buffona rzutów razy reszka, 1992 orzełek - p r = Doświadczenia Romanowskiego rzutów - p r = Program Buffon
8 Chłopcy i dziewczęta W badaniach demograficznych stwierdzono, że stosunek liczby urodzeń chłopców do wszystkich urodzeń jest liczbą stałą i wynosi około 22/43 0,5116 Kiedy Laplace odkrył, że w Paryżu w latach liczba ta spadła do 25/49 0,5102 uzna ł, że co ś nadzwyczajnego musiało si ę wydarzy ć. Okazało si ę, że ubodzy mieszkańcy okolic Paryża chętniej podrzucali do stolicy dziewczęta ni ż chłopców
9 Definicja prawdopodobieństwa Laplace'a Prawdopodobieństwo P(A) jest równe stosunkowi liczby przypadków sprzyjających wystąpieniu zdarzenia A do wszystkich możliwych przypadków Jak na podstawie genetyki otrzymać stosunek liczby urodzeń chłopców do liczby wszystkich urodzeń?
10 Rzut dwoma kostkami Jakie jest prawdopodobieństwo wyrzucenia parzystej liczby oczek?
11 Definicja prawdopodobieństwa Laplace'a Prawdopodobieństwo P(A) jest równe stosunkowi liczby przypadków sprzyjających wystąpieniu zdarzenia A do wszystkich możliwych przypadków Jak na podstawie genetyki otrzymać stosunek liczby urodzeń chłopców do liczby wszystkich urodzeń?
12 Statystyczne własności liczb rzeczywistych Wybierzmy dowolną liczbę rzeczywistą. Co można powiedzieć o rozkładzie cyfr w zapisie dziesiętnym (dwójkowym, innym) tej liczby? Przykład: liczby wymierne 1/5 = = /7 = =
13 Statystyczne własności liczb rzeczywistych Przykład: liczby niewymierne e = 2, π = 3, = 1, prawdopodobieństwa wystąpienia cyfr prawdopodobieństwa wystąpienia par cyfr Program Poe i rozwinięcia liczb
14 Statystyczne własności liczb rzeczywistych Przykład: Binarna reprezentacja liczby π = 3, jest początkowo zdominowana przez zera: 125 zer w pierwszych 204 znakach! To daje odchylenie prawie 23% od wartości średniej. Dopiero po znakach liczby zer i jedynek zrównują się!
15 Nieskończona liczba przypadków Jakie jest prawdopodobieństwo zastania na stacji stojącego pociągu, jeżeli wiemy, że pociągi wjeżdżają na stację co 10 minut i stoją na niej minutę? Paradoks Bertranda: jakie jest prawdopodobieństwo tego, że na chybił trafił wybrana cięciwa koła będzie dłuższa od ramienia trójkąta równobocznego wpisanego w to koło? Program Bertrand
16 Paradoks Bertranda rozwiązanie 1 Ustalmy kierunek cięciwy, np. pionowy. Przesuwając cięciwę od lewa do prawa widzimy, że tylko pomiędzy punktami a i b długość cięciwy jest większa od połowy średnicy. Długość ab jest równa połowie średnicy, zatem prawdopodobieństwo jest 1/2.
17 Paradoks Bertranda rozwiązanie 2 Rozważmy cięciwę zaczepioną w jednym punkcie. Zmieniając jej kąt nachylenia względem średnicy od -90 do +90 stopni dostajemy wszystkie możliwe cięciwy. Te z nich, które ze średnicą tworzą kąt od -30 do +30 stopni są dłuższe od połowy średnicy. Zatem szukane prawdopodobieństwo wynosi 60/180 = 1/3.
18 Paradoks Bertranda rozwiązanie 3 Wybierzmy losowo dwa punkty na okręgu łącząc je cięciwą. Pierwszy punkt jest dowolny, drugi musi leżeć na jednej trzeciej okręgu naprzeciwko pierwszego punktu, żeby cięciwa była odpowiednio długa. Zatem prawdopodobieństwo wynosi również 1/3.
19 Paradoks Bertranda rozwiązanie 4 Środek każdej cięciwy leży wewnątrz koła i wyznacza jednoznacznie jej położenie. Ta część koła, w której leżą środki cięciw spełniających zadany warunek, jest również kołem o promieniu równym połowie długości promienia dużego koła. Stosunek pola tej części, do pola całego koła wynosi 1/4.
20 Paradoks Bertranda podsumowanie Które rozwiązanie jest poprawne?
21 Metoda Monte Carlo Metoda Monte Carlo polega na wykonaniu wielu eksperymentów losowych w celu oszacowania wyniku. Program Ulam: pole prostokąta: funkcja stała pole trójkąta: x pole koła i liczba π: (1-x 2 )
22 Ciągi liczb losowych Czy ciąg 0,1,0,1,0,1,... jest losowy? Napisz na kartce ciąg zer i jedynek o długości 100 znaków Policz ile jest w tym ciągu podciągów złożonych z trzech, czterech i pięciu jedynek Porównaj z wynikami wygenerowanymi przez program Bernoulli
23 Prawdopodobieństwo wylosowania ciągów samych jedynek Aby uzyskać samotną jedynkę w binarnym ciągu trzeba wyrzucić po kolei 0,1,0 prawdopodobieństwo ½ * ½ * ½ = 1/8 Aby uzyskać n jedynek w binarnym ciągu trzeba wyrzucić po kolei 0,1,...,1,0 to daje prawdopodobieństwo n =1 2 n razy Zatem prawdopodobieństwo wyrzucenia 6,7,8 jedynek pod rząd to odpowiednio 1/256, 1/512 i 1/1024
24 Prawdopodobieństwo wylosowania ciągów samych jedynek Jeżeli prawdopodobieństwo wyrzucenia 8 jedynek pod rząd to 1/1024, ile razy trzeba rzucić monetą, żeby średnio zaobserwować jeden ciąg 8 jedynek w serii?
25 Deska Galtona Pochylona deska z wbitymi gwoździami ułożonymi w trójkąt. Można jej użyć do wizualizacji wielokrotnego rzucania monetą
26 Deska Galtona Jeżeli prawdopodobieństwo skoku w prawo lub w lewo na każdym gwoździu jest takie samo, to prawdopodobieństwo rozkładu na ostatnim poziomie dane jest przez trójkąt Pascala Program Galton
27 Trójkąt Pascala Trójkąt Pascala powstaje przy obliczaniu n-tej potęgi dwumianu. Każdy współczynnik w trójkącie Pascala równy jest liczbie dróg jakimi można do niego dojść
28 Współczynniki dwumianu Liczby w n-tym wierszu trójkąta Pascala, zwane współczynnikami dwumianowymi, oznaczane są symbolem Newtona i dane są wzorem: n k = n! k! n k! Zatem prawdopodobieństwa trafienia do odpowiedniej przegródki wynoszą n! p n, k = 2 n k! n k! Zachodzi n k =0 p n, k =1
29 Błądzenie przypadkowe Ruch punktu na prostej lub w przestrzeni o dowolnym wymiarze polegający na wykonywaniu losowych kroków o stałej długości w jednym z kilku wybranych kierunków. Deska Galtona jest równoważna błądzeniu przypadkowemu na prostej. Błądzenie przypadkowe jest modelem ruchu cząstki Browna
30 Spacery losowe model dyfuzji Błądzenie przypadkowe (spacer losowy) w przestrzeni stanowi model dyfuzji i ruchów Browna rozprzestrzeniania się cząsteczek w danym środowisku. Średnia odległość od punktu początkowego rośnie z czasem t jak t Program Smoluchowski
31 Wzór Stirlinga Prawdopodobieństwo powrotu do miejsca startu wynosi Dla n = 2,4,6,8,10,12... otrzymujemy 1/2, 3/8, 5/16, 35/128, 63/256, 231/ Ze wzoru Stirlinga otrzymujemy przybliżenie: p 2n,n = 2n! 2 2n n!n! n! 2 nn n e n p 2n,n 2 n
32 Asymptotyka rozkładu dwumianowego Widzimy, że prawdopodobieństwo powrotu cząstki do punktu startu maleje do 0 Zauważmy, że także liczba możliwych wyników rośnie. Żeby badać zachowanie rozkładu dla dużych n musimy go znormalizować. Mnożąc prawdopodobieństwa przez n/2 i tak samo zwiększając skalę na osi x otrzymujemy dla dużych n rozkład Gaussa: p x = 1/ exp x 2
33 Asymptotyka rozkładu dwumianowego Mnożąc prawdopodobieństwa przez n/2 i tak samo zwiększając skalę na osi x otrzymujemy dla dużych n rozkład Gaussa: p x = 1/ exp x 2
34 Generatory liczb losowych Komputery generują liczby pseudolosowe, nie losowe. Wygenerowane liczby powtarzają się po pewnym czasie. Im dłuższy okres, tym lepszy generator. Im lepieje potasowane liczby, tym lepszy generator.
35 Inne źródła liczb losowych Tabele liczb losowych, np. rozwinięcia liczb normalnych Pomiary fizyczne odpowiednich układów Do czego potrzebujemy losowych ciągów? Do każdego praktycznego zastosowania teorii prawdopodobieństwa: Wybór próbki statystycznej Gry matematyczne (np. negocjacje) Obliczenia metodą Monte Carlo
36 Liczby normalne ponownie Liczba normalna liczba, w której rozwinięciu w danym układzie każdy blok cyfr jest tak samo prawdopodobny jak każdy inny blok tej samej długości Rozwijają liczbę normalną w bazie o podstawie 36 możemy generować losowe teksty: 10 cyfr + 26 liter łacińskich, albo 35 polskich liter i spacja. Przykład rozwinięcia liczby pi po polsku.
37 Prawdopodobieństwo wystąpienia dowolnego tekstu Trzydziestotomowa encyklopedia Brytannica zawiera około 30 milionów znaków. Prawdopodobieństwo wystąpienia jej tekstu w przypadkowym tekście wynosi Prawdopodobieństwo wystąpienia krótkich słów, jak Budda wynosi czyli w tekście długości 60 mln znaków oba te słowa powinny wystąpić przynajmniej raz
38 Kodowanie tekstów w rozwinięciach Znajdowanie tekstów w rozwinięciach liczb normalnych nie tylko zależy od podstawy ale i od kodowania, tj. od tego co przypiszemy danemu symbolowi w rozwinięciu
39 Grafy i sieci Mosty Królewca: własności topologiczne Problem komiwojażera: własności metryczne Języki naturalne: opis obiektów nieskończonych Małe światy i inne sieci
40 Mosty Królewca Czy można przejść Królewiec przechodząc każdy most dokładnie raz?
41 Mosty Królewca Czy można usunąć jeden most tak by dało się przejść Królewiec przechodząc każdy most dokładnie raz? Czy z każdego miejsca można wtedy wykonać pełen spacer?
42 Graf reprezentujący mosty Królewca Potrzebujemy informacji o połączeniach poszczególnych obszarów lądu Własności obiektu, które nie zmieniają się przy jego odkształceniach (bez rozrywania) to własności topologiczne Mosty Królewca można reprezentować przy pomocy grafu Cykl Eulera
43 Grafy eulerowskie i półeulerowskie
44 Graf Punkty oznaczające obszary lądu to wierzchołki grafu Połączenia między obszarami (mosty) to krawędzie grafu Minimalny model grafu składa się z wierzchołków i krawędzi.
45 Inne typy grafów Minimalny model grafu można rozbudować: Przypisując każdemu z wierzchołków lub krawędzi etykietę (napis) lub wagę (liczbę rzeczywistą) Ustalając kierunek krawędzi (np. ulice jednokierunkowe) graf skierowany Drzewa to spójne (= niepodzielne bez przecięcia krawędzi) grafy nie zawierające cykli (= zamkniętych dróg)
46 Przykład drzewa Często wyróżniamy jeden z węzłów drzewa nazywany korzeniem. Wtedy każdy węzeł w drzewie ma dokładnie jednego sąsiada, który jest bliżej korzenia od niego. Ten sąsiad nazywa się jego rodzicem, pozostali sąsiedzi to dzieci. Węzeł bezdzietny nazywa się liściem.
47 Problem komiwojażera Która droga jest najlepsza (najkrótsza)? minimalny cykl Hamiltona
48 Problem komiwojażera Nie istnieje efektywny algorytm rozwiązujący bezbłędnie problem komiwojażera dla dużych grafów w krótkim czasie Problem NP-zupełny Istnieją za to efektywne algorytmy heurystyczne, które szybko przybliżają najkrótszą drogę
49 Języki naturalne Graf generujący podzbiór zdań języka polskiego Inne przykłady automatów skończonych (np. sieci boolowskie)
50 Sieci to też grafy Przykłady sieci: Internet, ekosystem, społeczność, znajomi,sieć energetyczna, itd. Struktura sieci Ewolucja sieci Ewolucja na sieci
MODELOWANIE RZECZYWISTOŚCI
MODELOWANIE RZECZYWISTOŚCI Daniel Wójcik Instytut Biologii Doświadczalnej PAN d.wojcik@nencki.gov.pl tel. 022 5892 424 http://www.neuroinf.pl/members/danek/swps/ Podręcznik Iwo Białynicki-Birula Iwona
MODELOWANIE RZECZYWISTOŚCI
MODELOWANIE RZECZYWISTOŚCI Daniel Wójcik Instytut Biologii Doświadczalnej PAN d.wojcik@nencki.gov.pl tel. 022 5892 424 http://www.neuroinf.pl/members/danek/swps/ Podręcznik Iwo Białynicki-Birula Iwona
MODELOWANIE RZECZYWISTOŚCI
MODELOWANIE RZECZYWISTOŚCI Daniel Wójcik Instytut Biologii Doświadczalnej PAN Szkoła Wyższa Psychologii Społecznej d.wojcik@nencki.gov.pl dwojcik@swps.edu.pl tel. 022 5892 424 http://www.neuroinf.pl/members/danek/swps/
Podręcznik. Nieskończona liczba przypadków
MODELOWANIE RZECZYWISTOŚCI Daniel Wójcik Instytut Biologii Doświadczalnej PAN d.wojcik@nencki.gov.pl tel. 5892 424 http://www.neuroinf.pl/members/danek/swps/ Iwo Białynicki-Birula Iwona Białynicka-Birula
Podręcznik. Model czy teoria
MODELOWANIE RZECZYWISTOŚCI Daniel Wójcik Instytut Biologii Doświadczalnej PAN d.wojcik@nencki.gov.pl tel. 58 92 424 http://www.neuroinf.pl/members/danek/swps/ Iwo Białynicki-Birula Iwona Białynicka-Birula
MODELOWANIE RZECZYWISTOŚCI
MODELOWANIE RZECZYWISTOŚCI Daniel Wójcik Instytut Biologii Doświadczalnej PAN d.wojcik@nencki.gov.pl tel. 022 5892 424 http://www.neuroinf.pl/members/danek/swps/ Podręcznik Iwo Białynicki-Birula Iwona
Metody probabilistyczne
Metody probabilistyczne 2. Aksjomatyczna definicja prawdopodobieństwa Wojciech Kotłowski Instytut Informatyki PP http://www.cs.put.poznan.pl/wkotlowski/ 10.10.2017 1 / 33 Klasyczna definicja prawdopodobieństwa
Prawdopodobieństwo geometryczne
Prawdopodobieństwo geometryczne Krzysztof Jasiński Wydział Matematyki i Informatyki UMK, Toruń V Lieceum Ogólnokształące im. Jana Pawała II w Toruniu 13.03.2014 Krzysztof Jasiński (WMiI UMK) Prawdopodobieństwo
Lista zadania nr 4 Metody probabilistyczne i statystyka studia I stopnia informatyka (rok 2) Wydziału Ekonomiczno-Informatycznego Filia UwB w Wilnie
Lista zadania nr 4 Metody probabilistyczne i statystyka studia I stopnia informatyka (rok 2) Wydziału Ekonomiczno-Informatycznego Filia UwB w Wilnie Jarosław Kotowicz Instytut Matematyki Uniwersytet w
Podstawy nauk przyrodniczych Matematyka
Podstawy nauk przyrodniczych Matematyka Elementy rachunku prawdopodobieństwa dr inż. Małgorzata Szeląg Zakład Genetyki Molekularnej Człowieka tel. 61 829 59 04 malgorzata.szelag@amu.edu.pl Pokój 1.118
Metody probabilistyczne
Metody probabilistyczne. Twierdzenia graniczne Wojciech Kotłowski Instytut Informatyki PP http://www.cs.put.poznan.pl/wkotlowski/ 20.2.208 / 26 Motywacja Rzucamy wielokrotnie uczciwą monetą i zliczamy
Matematyczne Podstawy Kognitywistyki
Matematyczne Podstawy Kognitywistyki Dorota Leszczyńska-Jasion Kombinatoryka, ci agi liczbowe, skończone przestrzenie probabilistyczne Przykłady zagadnień kombinatorycznych Rozważmy układ n miast o bardzo
Spis treści. Definicje prawdopodobieństwa. Częstościowa definicja prawdopodobieństwa. Wnioskowanie_Statystyczne_-_wykład
Wnioskowanie_Statystyczne_-_wykład Spis treści 1 Definicje prawdopodobieństwa 1.1 Częstościowa definicja prawdopodobieństwa 1.1.1 Przykład 1.1.2 Rozwiązanie: 1.1.3 Inne rozwiązanie: 1.1.4 Jeszcze inne
a. zbiór wszystkich potasowań talii kart (w którym S dostaje 13 pierwszych kart, W - 13 kolejnych itd.);
03DRAP - Przykłady przestrzeni probabilistycznych A Zadania na ćwiczenia Zadanie A1 (wskazówka: pierwsze ćwicznia i rozdział 23 przykł 1 i 2) Zbuduj model przestrzeni klasycznej (czyli takiej, w której
Prawdopodobieństwo geometryczne
Prawdopodobieństwo geometryczne Bartosz Ziemkiewicz Wydział Matematyki i Informatyki UMK, Toruń Uniwersyteckie Koło Matematyczne 23 kwietnia 2009 r. Bartosz Ziemkiewicz (WMiI UMK) Prawdopodobieństwo geometryczne
MODELOWANIE RZECZYWISTOŚCI
MODELOWANIE RZECZYWISTOŚCI Daniel Wójcik Instytut Biologii Doświadczalnej PAN Szkoła Wyższa Psychologii Społecznej d.wojcik@nencki.gov.pl dwojcik@swps.edu.pl tel. 022 5892 424 http://www.neuroinf.pl/members/danek/swps/
III. ZMIENNE LOSOWE JEDNOWYMIAROWE
III. ZMIENNE LOSOWE JEDNOWYMIAROWE.. Zmienna losowa i pojęcie rozkładu prawdopodobieństwa W dotychczas rozpatrywanych przykładach każdemu zdarzeniu była przyporządkowana odpowiednia wartość liczbowa. Ta
= A. A - liczba elementów zbioru A. Lucjan Kowalski
Lucjan Kowalski ZADANIA, PROBLEMY I PARADOKSY W PROBABILISTYCE Przypomnienie. Ω - zbiór zdarzeń elementarnych. A zdarzenie (podzbiór Ω). A - liczba elementów zbioru A Jeśli zdarzeń elementarnych jest skończenie
Doświadczenie i zdarzenie losowe
Doświadczenie i zdarzenie losowe Doświadczenie losowe jest to takie doświadczenie, które jest powtarzalne w takich samych warunkach lub zbliżonych, a którego wyniku nie można przewidzieć jednoznacznie.
WYKŁAD 2. Zdarzenia losowe i prawdopodobieństwo Zmienna losowa i jej rozkłady
WYKŁAD 2 Zdarzenia losowe i prawdopodobieństwo Zmienna losowa i jej rozkłady Metody statystyczne metody opisu metody wnioskowania statystycznego syntetyczny liczbowy opis właściwości zbioru danych ocena
Wstęp do sieci neuronowych, wykład 11 Łańcuchy Markova
Wstęp do sieci neuronowych, wykład 11 Łańcuchy Markova M. Czoków, J. Piersa 2010-12-21 1 Definicja Własności Losowanie z rozkładu dyskretnego 2 3 Łańcuch Markova Definicja Własności Losowanie z rozkładu
Metody probabilistyczne
Metody probabilistyczne 1. Prawdopodobieństwo klasyczne Wojciech Kotłowski Instytut Informatyki PP http://www.cs.put.poznan.pl/wkotlowski/ 03.10.2017 1 / 19 Rys historyczny Francja, XVII w.: gry hazardowe
Ważne rozkłady i twierdzenia
Ważne rozkłady i twierdzenia Rozkład dwumianowy i wielomianowy Częstość. Prawo wielkich liczb Rozkład hipergeometryczny Rozkład Poissona Rozkład normalny i rozkład Gaussa Centralne twierdzenie graniczne
Rachunek prawdopodobieństwa- wykład 2
Rachunek prawdopodobieństwa- wykład 2 Pojęcie dyskretnej przestrzeni probabilistycznej i określenie prawdopodobieństwa w tej przestrzeni dr Marcin Ziółkowski Instytut Matematyki i Informatyki Uniwersytet
a. zbiór wszystkich potasowań talii kart (w którym S dostaje 13 pierwszych kart, W - 13 kolejnych itd.);
03DRAP - Przykłady przestrzeni probabilistycznych Definicja 1 Przestrzeń probabilistyczna to trójka (Ω, F, P), gdzie Ω zbiór zdarzeń elementarnych, F σ ciało zdarzeń (podzbiorów Ω), P funkcja prawdopodobieństwa/miara
Rachunek prawdopodobieństwa (Elektronika, studia niestacjonarne) Wykład 2
Rachunek prawdopodobieństwa (Elektronika, studia niestacjonarne) Wykład 2 Przygotowując wykład korzystam głównie z książki Jakubowski, Sztencel Wstęp do teorii prawdopodobieństwa. Prawdopodobieństwo geometryczne
Moneta 1 Moneta 2 Kostka O, R O,R 1,2,3,4,5, Moneta 1 Moneta 2 Kostka O O ( )
Nowa matura kombinatoryka i rachunek prawdopodobieństwa Zadania zamknięte (0 1 pkt) 1. Doświadczenie losowe polega na rzucie dwiema symetrycznymi monetami i sześcienną kostką do gry. Prawdopodobieństwo
P (A B) = P (A), P (B) = P (A), skąd P (A B) = P (A) P (B). P (A)
Wykład 3 Niezależność zdarzeń, schemat Bernoulliego Kiedy dwa zdarzenia są niezależne? Gdy wiedza o tym, czy B zaszło, czy nie, NIE MA WPŁYWU na oszacowanie prawdopodobieństwa zdarzenia A: P (A B) = P
Wstęp do probabilistyki i statystyki Wykład 3. Prawdopodobieństwo i algebra zdarzeń
Wstęp do probabilistyki i statystyki Wykład 3. Prawdopodobieństwo i algebra zdarzeń dr inż. Krystyna Schneider, Katedra Elektroniki, AGH e-mail: kryschna@agh.edu.pl http://home.agh.edu.pl/~kryschna 1 Plan:
PRÓBNY EGZAMIN MATURALNY
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO POZIOM PODSTAWOWY 10 MARCA 2018 CZAS PRACY: 170 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT) Liczba 4 7 8 25 0, 5
Wykład 2. Prawdopodobieństwo i elementy kombinatoryki
Wstęp do probabilistyki i statystyki Wykład 2. Prawdopodobieństwo i elementy kombinatoryki dr hab.inż. Katarzyna Zakrzewska, prof.agh Katedra Elektroniki, AGH e-mail: zak@agh.edu.pl http://home.agh.edu.pl/~zak
Metody numeryczne I Równania nieliniowe
Metody numeryczne I Równania nieliniowe Janusz Szwabiński szwabin@ift.uni.wroc.pl Metody numeryczne I (C) 2004 Janusz Szwabiński p.1/66 Równania nieliniowe 1. Równania nieliniowe z pojedynczym pierwiastkiem
WOJEWÓDZKI KONKURS MATEMATYCZNY dla uczniów gimnazjów i oddziałów gimnazjalnych województwa pomorskiego w roku szkolnym 2018/2019 etap wojewódzki
WOJEWÓDZKI KONKURS MATEMATYCZNY dla uczniów gimnazjów i oddziałów gimnazjalnych województwa pomorskiego w roku szkolnym 2018/2019 etap wojewódzki Zad.1. (0-3) PRZYKŁADOWE ROZWIĄZANIA I KRYTERIA OCENIANIA
MODELOWANIE RZECZYWISTOŚCI
MODELOWANIE RZECZYWISTOŚCI Daniel Wójcik Instytut Biologii Doświadczalnej PAN d.wojcik@nencki.gov.pl tel. 022 5892 424 http://www.neuroinf.pl/members/danek/swps/ Podręcznik Iwo Białynicki-Birula Iwona
Arkusz maturalny nr 2 poziom podstawowy ZADANIA ZAMKNIĘTE. Rozwiązania. Wartość bezwzględna jest odległością na osi liczbowej.
Arkusz maturalny nr 2 poziom podstawowy ZADANIA ZAMKNIĘTE Rozwiązania Zadanie 1 Wartość bezwzględna jest odległością na osi liczbowej. Stop Istnieje wzajemnie jednoznaczne przyporządkowanie między punktami
Statystyka matematyczna
Statystyka matematyczna Wykład 2 Magdalena Alama-Bućko 5 marca 2018 Magdalena Alama-Bućko Statystyka matematyczna 5 marca 2018 1 / 14 Prawdopodobieństwo klasyczne Ω - zbiór wszystkich zdarzeń elementarnych
Teoretyczne podstawy informatyki
Teoretyczne podstawy informatyki Wykład 12a: Prawdopodobieństwo i algorytmy probabilistyczne http://hibiscus.if.uj.edu.pl/~erichter/dydaktyka2010/tpi-2010 Prof. dr hab. Elżbieta Richter-Wąs 1 Teoria prawdopodobieństwa
Spacery losowe generowanie realizacji procesu losowego
Spacery losowe generowanie realizacji procesu losowego Michał Krzemiński Streszczenie Omówimy metodę generowania trajektorii spacerów losowych (błądzenia losowego), tj. szczególnych procesów Markowa z
KRZYŻÓWKA 2. 11. Może być np. równoboczny lub rozwartokątny. Jego pole to a b HASŁO:
KRZYŻÓWKA.Wyznaczają ją dwa punkty.. Jego pole to π r² 3. Jego pole to a a 4.Figura przestrzenna, której podstawą jest dowolny wielokąt, a ściany boczne są trójkątami o wspólnym wierzchołku. 5.Prosta mająca
RACHUNEK PRAWDOPODOBIEŃSTWA ZADANIA Z ROZWIĄZANIAMI. Uwaga! Dla określenia liczebności zbioru (mocy zbioru) użyto zamiennie symboli: Ω lub
RACHUNEK PRAWDOPODOBIEŃSTWA ZADANIA Z ROZWIĄZANIAMI Uwaga! Dla określenia liczebności zbioru (mocy zbioru) użyto zamiennie symboli: Ω lub 1. W grupie jest 15 kobiet i 18 mężczyzn. Losujemy jedną osobę
PRÓBNY EGZAMIN MATURALNY
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO POZIOM PODSTAWOWY 14 KWIETNIA 2018 CZAS PRACY: 170 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT) Liczba 5 30 2 3 5
Systemy liczbowe. 1. Przedstawić w postaci sumy wag poszczególnych cyfr liczbę rzeczywistą R = (10).
Wprowadzenie do inżynierii przetwarzania informacji. Ćwiczenie 1. Systemy liczbowe Cel dydaktyczny: Poznanie zasad reprezentacji liczb w systemach pozycyjnych o różnych podstawach. Kodowanie liczb dziesiętnych
str 1 WYMAGANIA EDUKACYJNE ( ) - matematyka - poziom podstawowy Dariusz Drabczyk
str 1 WYMAGANIA EDUKACYJNE (2017-2018) - matematyka - poziom podstawowy Dariusz Drabczyk Klasa 3e: wpisy oznaczone jako: (T) TRYGONOMETRIA, (PII) PLANIMETRIA II, (RP) RACHUNEK PRAWDOPODOBIEŃSTWA, (ST)
Matematyka podstawowa X. Rachunek prawdopodobieństwa
Matematyka podstawowa X Rachunek prawdopodobieństwa Zadania wprowadzające: 1. Rzucasz trzy razy monetą a) Napisz zbiór wszystkich wyników tego doświadczenia losowego. Ile ich jest? Wyrzuciłeś większą liczbę
Statystyka matematyczna dla leśników
Statystyka matematyczna dla leśników Wydział Leśny Kierunek leśnictwo Studia Stacjonarne I Stopnia Rok akademicki 2013/2014 Wykład 3 Zmienna losowa i jej rozkłady Zdarzenia losowe Pojęcie prawdopodobieństwa
METODY PROBABILISTYCZNE I STATYSTYKA
Andrzej Marciniak METODY PROBABILISTYCZNE I STATYSTYKA Wykłady dla studentów kierunku informatyka Państwowej Wyższej Szkoły Zawodowej w Kaliszu Wykłady są przeznaczone wyłącznie do indywidualnego użytku
STATYSTYKA. Rafał Kucharski. Uniwersytet Ekonomiczny w Katowicach 2015/16 ROND, Finanse i Rachunkowość, rok 2
STATYSTYKA Rafał Kucharski Uniwersytet Ekonomiczny w Katowicach 2015/16 ROND, Finanse i Rachunkowość, rok 2 Wybrane litery alfabetu greckiego α alfa β beta Γ γ gamma δ delta ɛ, ε epsilon η eta Θ θ theta
EGZAMIN MATURALNY OD ROKU SZKOLNEGO
EGZAMIN MATURALNY OD ROKU SZKOLNEGO 014/015 MATEMATYKA POZIOM ROZSZERZONY PRZYKŁADOWY ZESTAW ZADAŃ DLA OSÓB SŁABOSŁYSZĄCYCH (A3) W czasie trwania egzaminu zdający może korzystać z zestawu wzorów matematycznych,
Statystyka podstawowe wzory i definicje
1 Statystyka podstawowe wzory i definicje Średnia arytmetyczna to suma wszystkich liczb (a 1, a 2,, a n) podzielona przez ich ilość (n) Przykład 1 Dany jest zbiór liczb {6, 8, 11, 2, 5, 3}. Oblicz średnią
W czasie trwania egzaminu zdający może korzystać z zestawu wzorów matematycznych, linijki i cyrkla oraz kalkulatora.
Egzamin maturalny od roku szkolnego 2014/2015 Matematyka Poziom rozszerzony Przykładowy zestaw zadań dla osób słabowidzących (A4) W czasie trwania egzaminu zdający może korzystać z zestawu wzorów matematycznych,
RACHUNEK PRAWDOPODOBIEŃSTWA I KOMBINATORYKA
RACHUNEK PRAWDOPODOBIEŃSTWA I KOMBINATORYKA Doświadczenia losowe Rachunek prawdopodobieństwa zajmuje się zdarzeniami jakie zachodzą, gdy przeprowadzamy doświadczenia losowe. Mówimy, że doświadczenie jest
Deska Galtona. Adam Osękowski. Instytut Matematyki, Wydział Matematyki, Informatyki i Mechaniki Uniwersytet Warszawski
a schemat Bernoulliego Instytut Matematyki, Wydział Matematyki, Informatyki i Mechaniki Uniwersytet Warszawski XV Festiwal Nauki, 21 września 2011r. a schemat Bernoulliego Schemat Bernoulliego B(n, p)
RACHUNEK PRAWDOPODOBIEŃSTWA WYKŁAD 1. L. Kowalski, Statystyka, 2005
RACHUNEK PRAWDOPODOBIEŃSTWA WYKŁAD 1. Literatura: Marek Cieciura, Janusz Zacharski, Metody probabilistyczne w ujęciu praktycznym, L. Kowalski, Statystyka, 2005 R.Leitner, J.Zacharski, "Zarys matematyki
Rachunek prawdopodobieństwa
Rachunek prawdopodobieństwa Sebastian Rymarczyk srymarczyk@afm.edu.pl Tematyka zajęć 1. Elementy kombinatoryki. 2. Definicje prawdopodobieństwa. 3. Własności prawdopodobieństwa. 4. Zmienne losowe, parametry
zdarzenie losowe - zdarzenie którego przebiegu czy wyniku nie da się przewidzieć na pewno.
Rachunek prawdopodobieństwa Podstawowym celem rachunku prawdopodobieństwa jest określanie szans zajścia pewnych zdarzeń. Pojęcie podstawowe rachunku prawdopodobieństwa to: zdarzenie losowe - zdarzenie
Wskazówki do zadań testowych. Matura 2016
Wskazówki do zadań testowych. Matura 2016 Zadanie 1 la każdej dodatniej liczby a iloraz jest równy.. C.. Korzystamy ze wzoru Zadanie 2 Liczba jest równa.. 2 C.. 3 Zadanie 3 Liczby a i c są dodatnie. Liczba
Temat: Zmienna losowa. Rozkład skokowy. Rozkład ciągły. Kody kolorów: Ŝółty nowe pojęcie pomarańczowy uwaga. Anna Rajfura, Matematyka
Temat: Zmienna losowa. Rozkład skokowy. Rozkład ciągły Kody kolorów: Ŝółty nowe pojęcie pomarańczowy uwaga 1 Zagadnienia 1. Przypomnienie wybranych pojęć rachunku prawdopodobieństwa. Zmienna losowa. Rozkład
Wymagania kl. 3. Zakres podstawowy i rozszerzony
Wymagania kl. 3 Zakres podstawowy i rozszerzony Temat lekcji Zakres treści Osiągnięcia ucznia 1. RACHUNEK PRAWDOPODOBIEŃSTWA 1. Reguła mnożenia reguła mnożenia ilustracja zbioru wyników doświadczenia za
PRÓBNY EGZAMIN MATURALNY
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO POZIOM PODSTAWOWY 25 MARCA 2017 CZAS PRACY: 170 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT) Najmniejsza liczba całkowita
Rozkłady statystyk z próby
Rozkłady statystyk z próby Rozkłady statystyk z próby Przypuśćmy, że wykonujemy serię doświadczeń polegających na 4 krotnym rzucie symetryczną kostką do gry, obserwując liczbę wyrzuconych oczek Nr kolejny
EGZAMIN MATURALNY OD ROKU SZKOLNEGO 2014/2015 MATEMATYKA POZIOM ROZSZERZONY
EGZAMIN MATURALNY OD ROKU SZKOLNEGO 014/015 MATEMATYKA POZIOM ROZSZERZONY PRZYKŁADOWY ZESTAW ZADAŃ DLA OSÓB Z AUTYZMEM, W TYM Z ZESPOŁEM ASPERGERA (A) W czasie trwania egzaminu zdający może korzystać z
Wstęp do sieci neuronowych, wykład 12 Łańcuchy Markowa
Wstęp do sieci neuronowych, wykład 12 Łańcuchy Markowa M. Czoków, J. Piersa 2012-01-10 1 Łańcucha Markowa 2 Istnienie Szukanie stanu stacjonarnego 3 1 Łańcucha Markowa 2 Istnienie Szukanie stanu stacjonarnego
{( ) ( ) ( ) ( )( ) ( )( ) ( RRR)
.. KLASYCZNA DEFINICJA PRAWDOPODOBIEŃSTWA Klasyczna definicja prawdopodobieństwa JeŜeli jest skończonym zbiorem zdarzeń elementarnych jednakowo prawdopodobnych i A, to liczbę A nazywamy prawdopodobieństwem
Zmienne losowe ciągłe i ich rozkłady
Statystyka i opracowanie danych W3 Zmienne losowe ciągłe i ich rozkłady Dr Anna ADRIAN Paw B5, pok47 adan@agh.edu.pl Plan wykładu Rozkład Poissona. Zmienna losowa ciągła Dystrybuanta i funkcja gęstości
KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM. Etap Wojewódzki
Kod ucznia - - pieczątka WKK Dzień Miesiąc Rok DATA URODZENIA UCZNIA KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM Etap Wojewódzki Drogi Uczniu, witaj na III etapie konkursu matematycznego. Przeczytaj uważnie
Kombinowanie o nieskończoności. 3. Jak policzyć nieskończone materiały do ćwiczeń
Kombinowanie o nieskończoności. 3. Jak policzyć nieskończone materiały do ćwiczeń Projekt Matematyka dla ciekawych świata spisał: Michał Korch 22 marzec 2018 Szybkie przypomnienie z wykładu Prezentacja
WOJEWÓDZKI KONKURS MATEMATYCZNY
Kod ucznia Liczba punktów WOJEWÓDZKI KONKURS MATEMATYCZNY DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH W ROKU SZKOLNYM 2018/2019 28.02.2019 R. 1. Test konkursowy zawiera 24 zadania. Są to zadania zamknięte i otwarte.
WYMAGANIA EDUKACYJN KRYTERIA OCENY Z MATEMATYKI W KLASIE II GIMNAZJUM
Na ocenę dopuszczającą uczeń umie : WYMAGANIA EDUKACYJN KRYTERIA OCENY Z MATEMATYKI W KLASIE II GIMNAZJUM stosować cztery podstawowe działania na liczbach wymiernych, zna kolejność wykonywania działań
Niech x 1,..., x n będzie ciągiem zdarzeń. ---
Matematyczne podstawy kryptografii, Ćw2 TEMAT 7: Teoria Shannona. Kody Huffmana, entropia. BIBLIOGRAFIA: [] Cz. Bagiński, cez.wipb.pl, [2] T. H. Cormen, C. E. Leiserson, R. L Rivest, Wprowadzenie do algorytmów,
Wykład Centralne twierdzenie graniczne. Statystyka matematyczna: Estymacja parametrów rozkładu
Wykład 11-12 Centralne twierdzenie graniczne Statystyka matematyczna: Estymacja parametrów rozkładu Centralne twierdzenie graniczne (CTG) (Central Limit Theorem - CLT) Centralne twierdzenie graniczne (Lindenberga-Levy'ego)
Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów województwa wielkopolskiego
Data urodzenia ucznia Dzień miesiąc rok Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów ETAP WOJEWÓDZKI Rok szkolny 205/206 Instrukcja dla ucznia. Sprawdź, czy test zawiera 2 stron. Ewentualny brak
ZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI W KLASIE III TECHNIKUM.
ZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI W KLASIE III TECHNIKUM. I Geometria analityczna 1. Równanie prostej w postaci ogólnej i kierunkowej powtórzenie 2. Wzajemne położenie dwóch prostych powtórzenie
Elementy rachunku prawdopodobieństwa (M. Skośkiewicz, A. Siejka, K. Walczak, A. Szpakowska)
Elementy rachunku prawdopodobieństwa (M. Skośkiewicz, A. Siejka, K. Walczak, A. Szpakowska) Twierdzenie (o mnożeniu) Podstawowe pojęcia i wzory kombinatoryczne. Niech,, będą zbiorami mającymi odpowiednio,,
L.Kowalski zadania z rachunku prawdopodobieństwa-zestaw 1 ZADANIA - ZESTAW 1. (odp. a) B A C, b) A, c) A B, d) Ω)
ZADANIA - ZESTAW 1 Zadanie 1.1 Rzucamy trzy razy monetą. A i - zdarzenie polegające na tym, że otrzymamy orła w i - tym rzucie. Określić zbiór zdarzeń elementarnych. Wypisać zdarzenia elementarne sprzyjające
51. Wykorzystywanie sumy, iloczynu i różnicy zdarzeń do obliczania prawdopodobieństw zdarzeń.
Matematyka lekcja 5 5. Wykorzystywanie sumy, iloczynu i różnicy zdarzeń do obliczania prawdopodobieństw zdarzeń. I. rzypomnij sobie:. Jak rysujemy drzewo stochastyczne i przy jego pomocy obliczamy prawdopodobieństwo
NOWA FORMUŁA EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY MMA 2018 UZUPEŁNIA ZDAJĄCY. miejsce na naklejkę UZUPEŁNIA ZESPÓŁ NADZORUJĄCY
Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. MMA 018 KOD UZUPEŁNIA ZDAJĄCY PESEL miejsce na naklejkę EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY DATA: 5 czerwca 018
W rachunku prawdopodobieństwa wyróżniamy dwie zasadnicze grupy rozkładów zmiennych losowych:
W rachunku prawdopodobieństwa wyróżniamy dwie zasadnicze grupy rozkładów zmiennych losowych: Zmienne losowe skokowe (dyskretne) przyjmujące co najwyżej przeliczalnie wiele wartości Zmienne losowe ciągłe
P r a w d o p o d o b i eństwo Lekcja 1 Temat: Lekcja organizacyjna. Program. Kontrakt.
P r a w d o p o d o b i eństwo Lekcja 1 Temat: Lekcja organizacyjna. Program. Kontrakt. Lekcja 2 Temat: Podstawowe pojęcia związane z prawdopodobieństwem. Str. 10-21 1. Doświadczenie losowe jest to doświadczenie,
Wykład 6 Centralne Twierdzenie Graniczne. Rozkłady wielowymiarowe
Wykład 6 Centralne Twierdzenie Graniczne. Rozkłady wielowymiarowe Nierówność Czebyszewa Niech X będzie zmienną losową o skończonej wariancji V ar(x). Wtedy wartość oczekiwana E(X) też jest skończona i
ZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI W KLASIE III TECHNIKUM.
ZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI W KLASIE III TECHNIKUM. I GEOMETRIA ANALITYCZNA 1. Równanie prostej w postaci ogólnej i kierunkowej powtórzenie 2. Wzajemne położenie dwóch prostych powtórzenie
STATYSTYKA MATEMATYCZNA. rachunek prawdopodobieństwa
STATYSTYKA MATEMATYCZNA rachunek prawdopodobieństwa treść Zdarzenia losowe pojęcie prawdopodobieństwa prawo wielkich liczb zmienne losowe rozkłady teoretyczne zmiennych losowych Zanim zajmiemy się wnioskowaniem
Wykład 13. Podstawowe pojęcia rachunku prawdopodobieństwa
Wykład 13. Podstawowe pojęcia rachunku prawdopodobieństwa dr Mariusz Grzadziel Katedra Matematyki, Uniwersytet Przyrodniczy we Wrocławiu semestr zimowy, rok akademicki 2015 2016 Doświadczenie losowe Doświadczenie
Zagadnienia na powtórzenie
Zagadnienia na powtórzenie TERESA ZIEGLER IMIĘ I NAZWISKO: KLASA: GRUPA A 1. Zaznacz takie dokończenie zdania, aby otrzymać zdanie prawdziwe. Sześcian przecięto płaszczyzną zawierającą dwie równoległe
c) ( 13 (1) (2) Zadanie 2. Losując bez zwracania kolejne litery ze zbioru AAAEKMMTTY, jakie jest prawdopodobieństwo Odp.
Zadania na kolokwium nr Zadanie. Spośród kart w tali wylosowano. Jakie jest prawdopodobieństwo: pików, kierów, trefli i karo otrzymania wszystkich kolorów otrzymania dokładnie pików a ( b ( ( c ( ( ( (
XI Olimpiada Matematyczna Gimnazjalistów
XI Olimpiada Matematyczna Gimnazjalistów Zawody stopnia pierwszego część testowa www.omg.edu.pl (24 września 2015 r.) Rozwiązania zadań testowych 1. Dane są takie dodatnie liczby a i b, że 30% liczby a
Matematyka dyskretna. Andrzej Łachwa, UJ, A/14
Matematyka dyskretna Andrzej Łachwa, UJ, 2016 andrzej.lachwa@uj.edu.pl 9A/14 Permutacje Permutacja zbioru skończonego X to bijekcja z X w X. Zbiór permutacji zbioru oznaczamy przez, a permutacje małymi
KURS PRAWDOPODOBIEŃSTWO
KURS PRAWDOPODOBIEŃSTWO Lekcja 2 Klasyczna definicja prawdopodobieństwa ZADANIE DOMOWE www.etrapez.pl Strona 1 Część 1: TEST Zaznacz poprawną odpowiedź (tylko jedna jest prawdziwa). Pytanie 1 Według klasycznej
EGZAMIN MATURALNY Z MATEMATYKI
Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. MMA 016 KOD UZUPEŁNIA ZDAJĄCY PESEL miejsce na naklejkę dyskalkulia dysleksja EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY
Mini tablice matematyczne. Figury geometryczne
Mini tablice matematyczne Figury geometryczne Spis treści Własności kwadratu Ciekawostka:Kwadrat magiczny Prostokąt Własności prostokąta Trapez Własności trapezu Równoległobok Własności równoległoboku
PRZYKŁADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI
PRZYKŁADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI Zestaw P1 POZIOM PODSTAWOWY Czas pracy 170 minut Instrukcja dla piszącego 1. Sprawdź, czy arkusz zawiera 16 stron.. W zadaniach od 1. do 5. są podane 4 odpowiedzi:
MODELOWANIE RZECZYWISTOŚCI
MODELOWANIE RZECZYWISTOŚCI Daniel Wójcik Instytut Biologii Doświadczalnej PAN d.wojcik@nencki.gov.pl tel. 022 5892 424 http://www.neuroinf.pl/members/danek/swps/ Podręcznik Iwo Białynicki-Birula Iwona
ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA
Miejsce na identyfikację szkoły ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA POZIOM ROZSZERZONY MARZEC 2019 Instrukcja dla zdającego Czas pracy: 180 minut 1. Sprawdź, czy arkusz egzaminacyjny zawiera 12
Wojewódzki Konkurs Przedmiotowy z Matematyki dla uczniów gimnazjów województwa śląskiego w roku szkolnym 2014/2015
Wojewódzki Konkurs Przedmiotowy z Matematyki dla uczniów gimnazjów województwa śląskiego w roku szkolnym 2014/2015 KOD UCZNIA Etap: Data: Czas pracy: szkolny 13 listopada 2014 r. 120 minut Informacje dla
Materiały dla finalistów
Materiały dla finalistów Malachoviacus Informaticus 2016 11 kwietnia 2016 Wprowadzenie Poniższy dokument zawiera opisy zagadnień, które będą niezbędne do rozwiązania zadań w drugim etapie konkursu. Polecamy
Statystyka matematyczna
Statystyka matematyczna Wykład 1 Magdalena Alama-Bućko 20 lutego 2017 Magdalena Alama-Bućko Statystyka matematyczna 20 lutego 2017 1 / 21 Wykład : 10h (przez 10 tygodni po 45 minut) Ćwiczenia : 15h (45
ZAGADANIENIA NA EGZAMIN USTNY Z MATEMATYKI
ZAGADANIENIA NA EGZAMIN USTNY Z MATEMATYKI SEMESTR I ZESTAW. Podaj liczbę przeciwną i odwrotną do liczby 2 2. Jak zmieniła się cena wyrobu po podwyżce o 20%, a następnie po obniżeniu otrzymanej ceny o
EGZAMIN MATURALNY Z MATEMATYKI
Miejsce na naklejkę z kodem szkoły dysleksja EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY Czas pracy 180 minut Instrukcja dla zdającego 1. Sprawdź, czy arkusz egzaminacyjny zawiera 14 stron (zadania
4,5. Dyskretne zmienne losowe (17.03; 31.03)
4,5. Dyskretne zmienne losowe (17.03; 31.03) Definicja 1 Zmienna losowa nazywamy dyskretna (skokowa), jeśli zbiór jej wartości x 1, x 2,..., można ustawić w ciag. Zmienna losowa X, która przyjmuje wszystkie
Prawdopodobieństwo
Prawdopodobieństwo http://www.matemaks.pl/ Wstęp do rachunku prawdopodobieństwa http://www.matemaks.pl/wstep-do-rachunku-prawdopodobienstwa.html Rachunek prawdopodobieństwa pomaga obliczyć szansę zaistnienia
ZESPÓŁ SZKÓŁ W OBRZYCKU
Matematyka na czasie Program nauczania matematyki w gimnazjum ZGODNY Z PODSTAWĄ PROGRAMOWĄ I z dn. 23 grudnia 2008 r. Autorzy: Agnieszka Kamińska, Dorota Ponczek ZESPÓŁ SZKÓŁ W OBRZYCKU Wymagania edukacyjne